Data democratization requires a move away from traditional “data at rest” architecture, which is meant for storing static data. Traditionally, data was seen as information to be put on reserve, only called upon during customer interactions or executing a program. Today, the way businesses use data is much more fluid; data literate employees use data across hundreds of apps, analyze data for better decision-making, and access data from numerous locations.
Data democratization uses a fit-for-purpose data architecture that is designed for the way today’s businesses operate, in real-time. It’s distributed both in the cloud and on-premises, allowing extensive use and movement across clouds, apps and networks, as well as stores of data at rest. An architecture designed for data democratization aims to be flexible, integrated, agile and secure to enable the use of data and artificial intelligence (AI) at scale. Here are some examples of the types of architectures well suited for data democratization.
Data fabric
Data fabric architectures are designed to connect data platforms with the applications where users interact with information for simplified data access in an organization and self-service data consumption. By leveraging data services and APIs, a data fabric can also pull together data from legacy systems, data lakes, data warehouses and SQL databases, providing a holistic view into business performance.
Data within a data fabric is defined using metadata and may be stored in a data lake, a low-cost storage environment that houses large stores of structured, semi-structured and unstructured data for business analytics, machine learning and other broad applications.
Data mesh
Another approach to data democratization uses a data mesh, a decentralized architecture that organizes data by a specific business domain. It uses knowledge graphs, semantics and AI/ML technology to discover patterns in various types of metadata. Then, it applies these insights to automate and orchestrate the data lifecycle. Instead of handling extract, transform and load (ETL) operations within a data lake, a data mesh defines the data as a product in multiple repositories, each given its own domain for managing its data pipeline.
Like microservices architecture where lightweight services are coupled together, a data mesh uses functional domains to set parameters around the data. This lets users across the organization treat the data like a product with widespread access. For example, marketing, sales and customer service teams would have their own domains, providing more ownership to the producers of a given dataset, while still allowing for sharing across different teams.
Data fabric and data mesh architectures are not mutually exclusive; they can even be used to complement each other. For example, a data fabric can make the data mesh stronger because it can automate key processes, such as creating data products faster, enforcing global governance, and making it easier to orchestrate the combination of multiple data products.
Read more: Data fabric versus data mesh: Which is right for you?