ما هي خوارزمية آلة المتجهات الداعمة (SVM)؟

مؤلف

Eda Kavlakoglu

Business Development + Partnerships

IBM Research

ما هي خوارزمية SVMs؟

خوارزمية آلة المتجهات الداعمة (SVM) هي خوارزمية تعلم آلي خاضعة للإشراف تصنِّف البيانات من خلال إيجاد خط مثالي أو مستوى فائق يوسع المسافة الفاصلة بين كل فئة في مساحة متعددة الأبعاد.

في التسعينيات، قام Vladimir N. Vapnik وزملاؤه بتطوير خوارزمية SVMs، ونشروا هذا العمل في ورقة بحثية بعنوان "Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing"1 في عام 1995.

تُستخدم خوارزمية SVMs بشكل شائع في مشاكل التصنيف، إذ تميِّز تلك الآلات بين فئتين من خلال إيجاد المستوى الفائق الأمثل الذي يزيد من الهامش بين أقرب نقاط بيانات للفئات المتقابلة. ويحدِّد عدد الميزات في بيانات الإدخال ما إذا كان المستوى الفائق عبارة عن خط في مساحة ثنائية الأبعاد أو مستوٍ في مساحة متعددة الأبعاد. ونظرًا لأنه من الممكن العثور على مستويات فائقة متعددة للتمييز بين الفئات، فإن تعظيم الهامش بين النقاط يمكّن الخوارزمية من العثور على حدود أفضل قرار بين الفئات. وهذا بدوره يمكّنها من التعميم بشكل جيد على البيانات الجديدة وإجراء تنبؤات تصنيفية دقيقة. تُعرف الخطوط المجاورة للمستوى الفائق المثالي باسم متجهات الدعم حيث تمر هذه المتجهات عبر نقاط البيانات التي تحدد الحد الأقصى للهوامش.

تُستخدم خوارزمية SVM على نطاق واسع في التعلم الآلي؛ لأنها تستطيع التعامل مع مهام التصنيف الخطية وغير الخطية. ومع ذلك، عندما تكون البيانات غير قابلة للفصل خطيًا، تُستخدم دوال النواة لتحويل المساحة ذات الأبعاد الأعلى والمخصصة للبيانات من أجل تمكين الفصل الخطي. تُعرَف هذه الطريقة لتطبيق دوال النواة باسم "خدعة النواة"، وتتطلب اختيار دالة نواة، مثل النوى الخطية، أو النوى متعددة الحدود، أو نواة الأساس الشعاعي (RBF)، أو نوى sigmoid استنادًا إلى خصائص البيانات وحالات الاستخدام المعينة.

إيجاد أقصى هامش لتوليد المستوى الفائق الأمثل

أنواع خوارزميات التصنيف SVM

خوارزمية SVMs الخطية

تستخدم خوارزميات آلات المتجهات الداعمة (SVM) الخطية مع البيانات القابلة للفصل خطيًا؛ مما يعني أن البيانات لا تحتاج إلى أي تحولات لفصلها إلى فئات مختلفة. والحد الفاصل والنقاط الداعمة (المتجهات الداعمة) تشبهان شارعًا، ويستخدم البروفيسور Professor Patrick Winston من معهد ماساتشوستس الأمريكي للتكنولوجيا تشبيه "بناء أوسع شارع ممكن "2 لوصف مشكلة التحسين التربيعية هذه. ويمكن تمثيل المستوى الفائق الفاصل رياضيًا على النحو التالي:

wx + b = 0

حيث w هو متجه الوزن، وx هو متجه الإدخال، و b هو معامل التحيز.

هناك طريقتان لحساب الهامش، أو أقصى مسافة بين الفئات، وهما التصنيف بالهامش الصارم والتصنيف بالهامش اللين. إذا استخدمنا خوارزميات آلات المتجهات الداعمة (SVM) ذات الهامش الصارم، فستكون نقاط البيانات منفصلة تمامًا خارج المتجهات الداعمة، أو "خارج الشارع" حسب تعبير البروفيسور Hinton وتشبيهه لها. يُمثل ذلك بالصيغة التالية:

(wxj + b) yj ≥ a،

ثم تتم زيادة الهامش إلى الحد الأقصى، الذي يتم تمثيله على النحو التالي: max ə= a/||w||، حيث a هو الهامش المُسقط على w.

تصنيف الهامش اللين أكثر مرونة، حيث يسمح ببعض الأخطاء في التصنيف من خلال استخدام متغيرات الركود ("ξ"). تضبط قيمة معامل C الهامش؛ فكلما كانت قيمة C أكبر، كان الهامش أضيق لتقليل الأخطاء، بينما إذا كانت قيمة C أصغر، زاد الهامش، مما يسمح بزيادة الأخطاء.3

خوارزمية SVMs غير الخطية

الكثير من البيانات في السيناريوهات الواقعية ليست قابلة للفصل خطياً، وهنا يأتي دور خوارزمية SVMs غير الخطية. لجعل البيانات قابلة للفصل خطياً، يتم تطبيق طرق المعالجة المسبقة على بيانات التدريب لتحويلها إلى مساحة ميزات ذات أبعاد أعلى. ومع ذلك، يمكن أن تؤدي المساحات ذات الأبعاد الأعلى إلى مزيد من التعقيد من خلال زيادة خطر الإفراط في تخصيص البيانات وزيادة التكلفة الحاسوبية. تساعد "خدعة النواة" في تقليل بعض هذا التعقيد، مما يجعل الحساب أكثر كفاءة، ويتم ذلك عن طريق استبدال عمليات الضرب النقطي بدالة نواة مكافئة 4.

هناك عدة أنواع مختلفة من النواة يمكن تطبيقها لتصنيف البيانات. تتضمن بعض وظائف النواة الشائعة ما يلي:

  • نواة متعددة الحدود

  • نواة دالة الأساس الشعاعي (تُعرف أيضًا باسم نواة Gaussian أو RBF)

  • نواة سيجمويد

انحدار المتجه الداعم (SVR)

انحدار المتجه الدعم (SVR) هو امتداد لخوارزمية SVMs، والذي يتم تطبيقه على مشاكل الانحدار (أي أن النتيجة مستمرة). يشبه انحدار SVR خوارزمية SVMs الخطية، حيث يجد مستوى فاصل مع أكبر هامش بين نقاط البيانات، ويستخدم عادة للتنبؤ بالسلاسل الزمنية.

يختلف انحدار SVR عن الانحدار الخطي في أنك تحتاج إلى تحديد العلاقة التي تتطلع إلى فهمها بين المتغيرات المستقلة والتابعة. يكون فهم العلاقات بين المتغيرات وتوجهاتها مفيدًا عند استخدام الانحدار الخطي. وهذا غير ضروري في انحدار SVR حيث تحدد هذه العلاقات بشكل تلقائي.

أحدث اتجاهات الذكاء الاصطناعي، يقدمها لك الخبراء

احصل على رؤى منسقة حول أهم أخبار الذكاء الاصطناعي وأكثرها إثارةً للاهتمام. اشترِك في خدمة رسائل Think الإخبارية الأسبوعية. راجع بيان الخصوصية لشركة IBM.

شكرًا لك! لقد اشتركت بنجاح.

سيتم تسليم اشتراكك باللغة الإنجليزية. ستجد رابط إلغاء الاشتراك في كل رسالة إخبارية. يمكنك إدارة اشتراكاتك أو إلغاء اشتراكك هنا. راجع بيان خصوصية IBM لمزيد من المعلومات.

كيف تعمل خوارزمية SVMs

في هذا القسم، سنناقش عملية بناء خوارزمية التصنيف SVM، وكيفية مقارنتها مع خوارزميات التعلم تحت الإشراف الأخرى وتطبيقاته في الصناعة اليوم.

بناء خوارزمية التصنيف SVM

قسّم بياناتك

كما هو الحال مع نماذج التعلم الآلي الأخرى، ابدأ بتقسيم بياناتك إلى مجموعة تدريب ومجموعة اختبار. كإضافة، يفترض هذا أنك قد أجريت بالفعل تحليلًا استكشافيًا على بياناتك. على الرغم من أن هذا ليس ضروريًا من الناحية الفنية لبناء خوارزمية تصنيف SVM، إلا أنه من الممارسات الجيدة قبل استخدام أي نموذج للتعلم الآلي، حيث يمنحك فهمًا لأي بيانات مفقودة أو قيم خارجية.

إنشاء النموذج وتقييمه

قم باستيراد وحدة SVM من المكتبة التي تختارها، مثل scikit-learn. قم بتدريب عينات التدريب على المصنِّف وتنبأ بالرد. يمكنك تقييم الأداء من خلال مقارنة دقة مجموعة الاختبار بالقيم المتنبأ بها. قد ترغب في استخدام مقاييس تقييم أخرى، مثل f1-score أو الدقة أو الاستدعاء.

ضبط المعلمات الفائقة

يمكن ضبط المعاملات الفائقة لتحسين أداء نموذج خوارزمية SVM. يمكن العثور على المعاملات الفائقة المثلى باستخدام طرق البحث الشبكي والتحقق المتقاطع، التي تقوم بالتنقل عبر قيم الأنوية، ومعاملات التنظيم (C) وقيم جاما المختلفة للعثور على أفضل تركيبة.

الفرق بين خوارزمية التصنيف SVMs ومصنفات التعلم الأخرى الخاضعة للإشراف

يمكن استخدام مصنفات مختلفة للتعلم الآلي لنفس حالة الاستخدام. من المهم اختبار النماذج المختلفة وتقييم أداءها لفهم النماذج التي تقدم أفضل أداء. ومع ذلك، قد يكون من المفيد فهم نقاط القوة والضعف لكل نموذج لتقييم تطبيقه على حالة الاستخدام الخاصة بك.

الفرق بين خوارزمية التصنيف SVMs وnaive bayes

تُستخدَم كلٌّ من خوارزميات التصنيف Naive bayes وSVM بشكل شائع في مهام تصنيف النصوص. تميل خوارزمية SVM إلى تقديم أداء أفضل من خوارزمية Naive bayes عندما لا تكون البيانات قابلة للفصل خطيًا. ومع ذلك، يجب على SVMs ضبط معاملات فائقة متعددة وقد يكون ذلك أكثر تكلفة من الناحية الحاسوبية.

الفرق بين خوارزمية التصنيف SVMs والانحدار اللوجستي

عادةً ما تقدم خوارزمية SVM أداءً أفضل مع مجموعات البيانات ذات الأبعاد العالية وغير المنظمة، مثل بيانات الصور والنصوص، مقارنة بالانحدار اللوجستي. كما أن خوارزمية SVM أقل عرضة للإفراط في التكيف وأسهل في التفسير. ومع ذلك، يمكن أن تكون خوارزمية SVM أكثر تكلفة من الناحية الحاسوبية.

الفرق بين خوارزمية SVMs وأشجار القرار

تعمل خوارزمية SVMs بشكل أفضل مع البيانات عالية الأبعاد وتكون أقل عرضة للإفراط في التكيف مقارنة بأشجار القرار. ومع ذلك، عادةً ما تكون أشجار القرار أسرع في التدريب، خاصةً مع مجموعات البيانات الصغيرة، وعادة ما تكون أسهل في التفسير.

الفرق بين خوارزمية SVM والشبكات العصبية

مثل المقارنات الأخرى بين النماذج، تكون خوارزمية SVM أكثر تكلفة من الناحية الحاسوبية وأقل عرضة للإفراط في التكيف، بينما تعتبر الشبكات العصبية أكثر مرونة وقابلة للتوسع.

أكاديمية الذكاء الاصطناعي

تسخير الذكاء الاصطناعي في العمل لخدمة العملاء

اكتشف كيف يمكن للذكاء الاصطناعي التوليدي إدخال السرور على العملاء من خلال تقديم تجربة أكثر سلاسة وزيادة إنتاجية المؤسسة في هذه المجالات الثلاثة الرئيسية: الخدمة الذاتية، والوكلاء البشريين، وعمليات مركز الاتصال.

تطبيقات خوارزمية SVMs

على الرغم من أن SVM يمكن استخدامها في العديد من المهام، فإن هذه بعض من أكثر التطبيقات شهرة لها عبر القطاعات.

تصنيف النص

تُستخدم خوارزمية SVMs بشكل شائع في معالجة اللغة الطبيعية (NLP)، عادة في مهام مثل تحليل المشاعر، واكتشاف البريد العشوائي غير المرغوب فيه، ونمذجة الموضوعات. تعمل هذه الخوارزمية جيدًا مع البيانات عالية الأبعاد، مما يجعلها ملائمة لهذه المهام.

تصنيف الصور

تُستخدم خوارزمية SVMs في مهام تصنيف الصور مثل اكتشاف الأجسام واسترجاع الصور. يمكن أن تكون مفيدة أيضًا في مجالات الأمان، مثل تصنيف الصور التي تم التلاعب بها.

المعلوماتية الحيوية

كما تُستخدم خوارزميات آلات المتجهات الداعمة (SVM) في تصنيف البروتينات، وتحليل التعبير الجيني، وتشخيص الأمراض. تُستخدم خوارزميات آلات المتجهات الداعمة (SVM) غالبًا في أبحاث السرطان نظرًا لقدرتها على اكتشاف الاتجاهات الدقيقة في مجموعة البيانات المعقدة.

نظام المعلومات الجغرافية (GIS)

تُستخدم خوارزمية SVMs لتحليل الهياكل الجيوفيزيائية تحت الأرض، وتصفيها من "الضوضاء" في البيانات الكهرومغناطيسية. كما ساهمت في التنبؤ بإمكانية السيولة الزلزالية للتربة، وهو موضوع ذو صلة بمجال الهندسة المدنية.

حلول ذات صلة
IBM watsonx.ai

تدريب الذكاء الاصطناعي التوليدي والتحقق من صحته وضبطه ونشره، وكذلك قدرات نماذج الأساس والتعلم الآلي باستخدام IBM watsonx.ai، وهو استوديو الجيل التالي من المؤسسات لمنشئي الذكاء الاصطناعي. أنشئ تطبيقات الذكاء الاصطناعي بسرعة أكبر وببيانات أقل.

اكتشف watsonx.ai
حلول الذكاء الاصطناعي

استفد من الذكاء الاصطناعي في عملك بالاستعانة بخبرة IBM الرائدة في مجال الذكاء الاصطناعي ومحفظة حلولها المتوفرة لك.

استكشف حلول الذكاء الاصطناعي
الاستشارات والخدمات المتعلقة بالذكاء الاصطناعي

أعدّ ابتكار عمليات ومهام سير العمل الحساسة بإضافة الذكاء الاصطناعي لتعزيز التجارب وصنع القرارات في الوقت الفعلي والقيمة التجارية.

استكشف خدمات الذكاء الاصطناعي
اتخِذ الخطوة التالية

احصل على وصول شامل إلى القدرات التي تغطي دورة حياة تطوير الذكاء الاصطناعي. تمكَّن من إنتاج حلول ذكاء اصطناعي قوية بفضل الواجهات سهلة الاستخدام وعمليات سير العمل السلسة وإمكانية الوصول إلى واجهات برمجة التطبيقات ومجموعات تطوير البرامج القياسية في الصناعة.

استكشف watsonx.ai احجز عرضًا توضيحيًا مباشرًا