Mainframes

Take the cognitive controls

Share this post:

The first airplane, “Flyer,” had two flight controls: a hip cradle and a wooden lever. The pilot could feel wind, navigate by sight and react by managing simple tools to manipulate the wings, the rudder and the elevator. A commercial airliner today has hundreds of controls for reacting to numerous systems in flight including hydraulics, fuel, the engine and navigation. In short, the dashboard of a 747 looks like… the dashboard of a 747. Pilots cannot feel the wind or sense the plane’s mechanical abilities, cannot fly by sight and cannot easily manage the tools to react. But, today, planes do a lot more than they did in 1903.

Computing controls today have a lot in common with flying a plane.

The more advanced that computing gets, the further away we are from being able to understand each and every problem that comes up and to see the solutions that are possible. We can no longer take the machine apart and fix it in our own garage–or in our own data center.

Cognitive computing is a tool that allows you to run your systems better based on rules you have set up. You don’t have to feel the wind to know what’s wrong. With cognitive computing we take subject-matter expertise and encapsulate it so that the machine can act on it without external input. The infrastructure runs itself most of the time based on policies set by the administrator, just like a plane can fly itself most of the time based on a route set by the pilot.

We are instructing the machine as to our desires. We are now giving the machine information so that it can meet those desires in an accelerated fashion.

In practical terms, this is how our systems work in a cognitive capacity to help IT leaders provide more innovative services for their enterprise. Watch IT leaders discuss how data is used for analytics services:

At IBM z Systems we have a number of tools that emit data and others that consume data.

For example, imagine those tools are both producing and collecting data related to failed login attempts. As an IT administrator, I have a few hunches about how failed logins need to be dealt with. Based on my subject-matter expertise, I assume that most of the time the errors are made by employees who have gone away for a three-day weekend and spaced out on what their password is. There are 30,000 employees in my company. It’s a waste of my time to personally evaluate each one. So, I create instructions on how failed login attempts following certain patterns indicate a forgetful employee is attempting to login. I automate a response for that error. However, I also assume that there is a possibility non-employees might be trying to log in. But I am not sure what the criteria would be to differentiate those login attempts from those by forgetful employees.
Fortunately, a cognitive system can build on what I have described as a pattern and extract more insight from emitted and consumed data than I can, to better recognize what the attempts by employees and non-employees look like. This also allows the system to differentiate its reaction when a non-employee tries and fails to login.

That’s cognitive computing. It saves me time by keeping me from having to personally evaluate login errors. Not only that, it can also capture data about those non-employee failed logins. This will help me improve my data center security. I don’t have to feel the wind, or look at the error on every failed login attempt.

Airplanes can fly further, faster and with more capacity than ever before today. The same goes for computing. Cognitive computing is the next step in our advancing search for tools able to expand our reach and our capacity for growth.

Cognitive computing allows us to amplify the experiences of our best IT architects and free up time spent on problem solving and maintenance so we can be more creative with our systems and data. Cognitive literally makes room for enterprise growth and innovation.

See what you can amplify in your data center with cognitive computing for IBM z Systems by visiting IBM z/OS Platform for Apache Spark or IBM Operations Analytics for z Systems.

 

More stories

The unbearable lightness of being: mainframe on the cloud

Cloud computing, Mainframes, Servers

Some time ago, having the words “cloud” and “mainframe” in the same phrase was considered implausible or even impossible. Working with mainframe-related technologies or even directly with any mainframe applications was always associated with green screens, blocky letters and this feeling of old technology. We could say this feeling still exists among a lot of ...read more


The next “tick” of SUSE Linux Enterprise Server for IBM Z and LinuxONE

Linux on z, LinuxONE solutions, Mainframes

The working philosophy at Fort Vale is “continuous improvement” according to the UK-based engineering company deploying its new ERP system on SUSE Linux Enterprise Server and IBM LinuxONE. Continuous improvement is also a good theme for the next “tick” of SUSE Linux Enterprise Server – following the “tick-tock” approach that SUSE uses for releases. SLES ...read more


IBM Z enhances the journey to cloud

Cloud computing, Linux on z, Mainframes

In today’s fast-paced world, forward-thinking enterprises constantly seek to innovate while continuing to delight their customers. Cloud–public, private and hybrid–underpins how these enterprises are innovating while also introducing new challenges. The world is not getting any simpler. It’s not moving to fewer clouds. It’s not moving to fewer options. Hybrid multicloud is the new standard. ...read more