AI Ethics
aurora circolare
AI Ethics

Scopri cos'è l'etica AI, una struttura che assiste gli scienziati dei dati e i ricercatori a costruire sistemi AI in modo etico affinché la società intera ne tragga beneficio.


Questo articolo mira a fornire una visione odierna completa del mercato dell'etica AI nel settore. Per saperne di più sul punto di vista di IBM, consulta la nostra pagina sull'etica dell'AI qui.

Fai progredire l'etica dell'AI oggi

Leggi di più su come puoi mettere in pratica i principi etici dell'AI. (318 KB)


Cos'è l'etica dell'AI?

L'etica è un insieme di principi morali che ci aiutano a discernere tra giusto e sbagliato. L'etica dell'AI è un insieme di linee guida che forniscono consigli sulla progettazione e sui risultati dell'intelligenza artificiale. Gli esseri umani sono dotati di tutti i tipi di pregiudizi cognitivi, come pregiudizi derivanti da ricordi o affermazione, che si manifestano nei nostri comportamenti e, di conseguenza, nei nostri dati. Poiché i dati sono la base di tutti gli algoritmi di apprendimento automatico, è importante per noi strutturare gli esperimenti e gli algoritmi tenendone conto, poiché l'intelligenza artificiale ha il potenziale di amplificare e scalare questi pregiudizi umani a una velocità senza precedenti.

Con la comparsa dei big data, le aziende hanno promosso l'automazione e i processi decisionali basati sui dati nelle loro organizzazioni. Sebbene l'intenzione è di solito, se non sempre, di migliorare i risultati di business, le aziende stanno sperimentando conseguenze impreviste in alcune delle loro applicazioni di AI, in particolare a causa di una scarsa progettazione della ricerca iniziale e di set di dati distorti.

Poiché sono venuti alla luce casi di risultati non corretti, sono emerse nuove linee guida, principalmente dalle comunità di ricerca e di scienza dei dati, per rispondere alle preoccupazioni sull'etica dell'AI. Anche le aziende leader nel campo dell'AI hanno dimostrato un interesse personale nel plasmare queste linee guida, in quanto esse stesse hanno iniziato a sperimentare alcune delle conseguenze del mancato rispetto degli standard etici all'interno dei loro prodotti. Una mancanza di attenzione in quest'area può risultare in un'esposizione reputazionale, normativa e legale, con il risultato di costose sanzioni. Come per tutti i progressi tecnologici, l'innovazione tende a superare la regolamentazione del governo nei nuovi campi emergenti. Man mano che l'esperienza appropriata si sviluppa all'interno dell'industria governativa, possiamo aspettarci più protocolli AI da seguire per le aziende, permettendo loro di evitare qualsiasi violazione dei diritti umani e delle libertà civili.

Prodotti in evidenza

IBM Cloud Pak for Data

Watson Studio


Stabilire principi per l'etica dell'AI

Mentre si sviluppano regole e protocolli per gestire l'uso dell'IA, la comunità accademica ha sfruttato il Rapporto Belmont (PDF, 121 KB - link esterno a IBM) come mezzo per guidare l'etica all'interno della ricerca sperimentale e dello sviluppo algoritmico. Ci sono tre principi fondamentali emersi dal Rapporto Belmont che servono come guida per la progettazione di esperimenti e algoritmi, che sono:

  1. Rispetto per le persone: questo principio riconosce l'autonomia degli individui e stabilisce che i ricercatori devono proteggere gli individui con un'autonomia ridotta, che potrebbe essere dovuta a una varietà di circostanze come una malattia, una disabilità mentale o restrizioni di età. Questo principio tocca principalmente l'idea di consenso. Gli individui dovrebbero essere consapevoli dei potenziali rischi e benefici di qualsiasi esperimento di cui fanno parte, e dovrebbero essere in grado di scegliere di partecipare o ritirarsi in qualsiasi momento prima e durante l'esperimento.
  2. Beneficenza: questo principio riprende una pagina dell'etica sanitaria, dove i medici fanno il giuramento di "non fare danni". Questa idea può essere facilmente applicata all'intelligenza artificiale, dove gli algoritmi possono amplificare i pregiudizi relativi alla razza, al sesso, alle inclinazioni politiche, eccetera, nonostante l'intenzione di fare del bene e migliorare un dato sistema.
  3. Giustizia: questo principio tratta questioni come la congruità e l' uguaglianza. Chi dovrebbe trarre vantaggio dalla sperimentazione e dal machine learning? Il Rapporto Belmont offre cinque modi per ripartire oneri e benefici, che sono:
    • Pari condivisione
    • Esigenza individuale
    • Sforzo individuale
    • Contributo sociale
    • Merito
Link correlati

Etica IBM AI


Le principali preoccupazioni dell'AI oggi

Ci sono una serie di questioni che sono in prima linea nelle conversazioni etiche che circondano le tecnologie AI. Citiamone qualcuna:

 

Singolarità tecnologica


Anche se questo argomento attira molta attenzione pubblica, molti ricercatori non sono preoccupati dall'idea che l'AI possa superare l'intelligenza umana in un futuro prossimo o immediato. Si parla anche di superintelligenza, che Nick Bostrum definisce come "qualsiasi intelletto che supera di gran lunga i migliori cervelli umani praticamente in ogni campo, compresa la creatività scientifica, la saggezza generale e le abilità sociali". Nonostante il fatto che la strong AI e la superintelligenza non siano imminenti nella società, l'idea di esse solleva alcune domande interessanti quando consideriamo l'uso di sistemi autonomi, come le auto a guida autonoma. Non è realistico pensare che un'auto a guida autonoma non verrà mai coinvolta in un incidente automobilistico ma in tali circostanze chi è responsabile e chi ne risponde? Dovremmo continuare a dedicarci ai veicoli autonomi o limitiamo l'integrazione di questa tecnologia per creare solo veicoli semiautonomi che promuovono la sicurezza tra i conducenti? Non si è arrivati ancora a una conclusione, sull'argomento, ma questi sono i tipi di dibattiti che stanno accompagnando lo sviluppo di nuove e innovative tecnologie di AI.

 

Impatto dell'AI sui posti di lavoro


La percezione dell'opinione pubblica riguardo l'AI è incentrata in larga misura sulla perdita di posti di lavoro, ma questa preoccupazione dovrebbe probabilmente essere riformulata. Come sappiamo, ogni nuova e dirompente tecnologia è accompagnata da una variazione nella domanda di mercato di specifici profili occupazionali. Ad esempio, se guardiamo all'industria automobilistica, noteremo che molti produttori, come la GM, si stanno orientando in misura crescente verso la produzione di veicoli elettrici per allinearsi alle iniziative ecologiche. L'industria dell'energia non sta uscendo di scena ma la fonte di energia si sta spostando da un'economia basata sul carburante a una basata sull'elettricità. Si dovrebbe guardare all'AI in un modo analogo, in uno scenario in cui l'AI sposterà la domanda di lavori verso altre aree. Sarà necessaria la disponibilità di persone che contribuiscano a gestire questi sistemi, mentre i dati crescono e cambiano ogni giorno. Continueranno a essere necessarie delle risorse per occuparsi dei problemi più complessi nei settori che saranno con maggiore probabilità interessati dai mutamenti nella domanda di lavori, come il servizio clienti. L'aspetto importante dell'AI e il suo effetto sul mercato del lavoro sarà quello di aiutare le persone e eseguire la transizione a queste nuove aree della domanda di mercato.

 

Privacy


La privacy tende a essere discussa nel contesto della privacy, protezione e sicurezza dei dati, e queste preoccupazioni hanno consentito ai responsabili delle politiche di realizzare ulteriori progressi in materia, negli ultimi anni. Ad esempio, nel 2016, è stata creata la legislazione GDPR per proteggere i dati personali dei cittadini dell'Unione europea e dello Spazio economico europeo, dando alle persone un maggior controllo sui loro dati. Negli Stati Uniti, i singoli Stati stanno sviluppando delle politiche, quali il CCPA (California Consumer Privacy Act), che impongono alle aziende di informare i consumatori della raccolta dei loro dati. Questa recente legislazione ha costretto le aziende a riformulare il modo in cui archiviano e usano dati di identificazione personale (PII, personally identifiable data). Di conseguenza, gli investimenti nella sicurezza sono diventati una priorità crescente per le aziende nel loro sforzo di eliminare qualsiasi vulnerabilità e opportunità di sorveglianza, hacking e attacchi informatici.

 

Pregiudizio e discriminazione


Casi di pregiudizio e discriminazione in diversi sistemi intelligenti hanno sollevato molte questioni etiche riguardanti l'uso dell'AI. Come possiamo tutelarci dal pregiudizio e dalla discriminazione quando l'addestramento dei dati stesso può prestarsi al pregiudizio? Seppure le aziende abbiano di solito buone intenzioni nei loro sforzi di automazione, Reuters (link esterno a IBM) evidenzia alcune delle conseguenze impreviste dell'integrazione dell'AI nelle pratiche di assunzione. Nel suo sforzo di automatizzare e semplificare un processo, Amazon ha involontariamente introdotto un pregiudizio che colpiva i potenziali candidati ai ruoli tecnici disponibili in base al loro sesso e, alla fine, ha dovuto abbandonare il progetto. Mentre vengono alla luce eventi del genere, Harvard Business Review (link esterno a IBM) ha sollevato altre domande specifiche sull'utilizzo dell'AI nelle procedure di assunzione, ad esempio chiedendosi quali dati si dovrebbe essere in gradi di utilizzare quando si valuta un candidato per un ruolo.

Pregiudizio e discriminazione non sono limitate solo alla funzione delle risorse umane; si possono trovare in diverse applicazioni, dal software di riconoscimento facciale agli algoritmi dei social media.

La crescente consapevolezza dei rischi correlati all'AI ha spinto le aziende a partecipare in modo più attivo alla discussione sull'etica e i valori dell'AI. Ad esempio, l'anno scorso, l'amministratore delegato di IBM Arvind Krishna ha decretato l'abbandono dei prodotti di analisi e riconoscimento facciale a uso generico di IBM, sottolineando che "IBM si oppone con fermezza e non giustificherà l'utilizzo di qualsiasi tecnologia, compresa quella di riconoscimento facciale offerta da altri vendor, per la sorveglianza di massa, la profilazione razziale, le violazioni dei diritti e delle libertà umane di base o per qualsiasi scopo che non sia coerente con i nostri valori e i Principi di Fiducia e Trasparenza".

Per saperne di più, guardate il blog di politica di IBM, che riporta il suo punto di vista su "Un approccio di regolamentazione di precisione per controllare le esportazioni di tecnologia di riconoscimento facciale."

 

Responsabilità


Dato che non esiste una legislazione significativa per regolamentare le prassi di AI, non esiste un vero meccanismo di implementazione per garantire che sia praticata un'AI etica. Gli attuali incentivi per le aziende a rispettare queste linee guida sono le ripercussioni negative di un sistema di AI non etica sui loro utili. Per colmare questa lacuna, sono emersi dei quadri etici come parte di una collaborazione tra eticisti e ricercatori per governare la creazione e distribuzione di modelli di AI all'interno della società. Tuttavia, al momento, questi servono solo per fornire un orientamento e la ricerca (PDF, 984 KB - link esterno a IBM) mostra che la combinazione di responsabilità distribuita e mancanza di lungimiranza nelle potenziali conseguenze non predispone necessariamente a prevenire danni alla società.


Come stabilire un'etica dell'AI

Dal momento che l'intelligenza artificiale non ha dato vita a macchine morali, i team hanno iniziato ad assemblare quadri e concetti per affrontare alcune delle attuali preoccupazioni etiche e modellare il futuro del lavoro nel campo. Mentre ogni giorno nuovi argomenti vengono inclusi in queste linee guida, c'è un certo consenso intorno alla necessità di implementare quanto segue:

  • Governance: le aziende possono sfruttare la loro struttura organizzativa esistente per aiutare a gestire un'AI etica. Se un'azienda sta raccogliendo dati, probabilmente ha già stabilito un sistema di governance per facilitare la standardizzazione dei dati e la garanzia di qualità. I team interni di regolamentazione e legali stanno probabilmente già collaborando con i team di governance per garantire la conformità con gli enti governativi, e quindi espandere la portata di questo team per includere un'AI etica è un'estensione naturale dei suoi scopi attuali. Questo team può anche gestire la consapevolezza organizzativa e incentivare le parti interessate ad agire in conformità con i valori aziendali e gli standard etici.  
  • Spiegabilità: i modelli di apprendimento automatico, in particolare i modelli di apprendimento profondo, sono spesso chiamati "modelli a scatola nera" perché di solito non è chiaro come un modello arriva a una determinata decisione. Secondo questa ricerca (PDF, 1,8 MB - link esterno a IBM), la spiegabilità cerca di eliminare questa ambiguità intorno all'assemblaggio del modello e ai risultati del modello generando una "spiegazione comprensibile all'uomo che esprime la logica della macchina".  Questo tipo di trasparenza è importante per costruire la fiducia con i sistemi di AI per garantire che gli individui capiscano perché un modello sta arrivando ad una determinata decisione. Se riusciamo a capire meglio il perché, saremo meglio attrezzati per evitare i rischi dell'AI, come il bias e la discriminazione.  

Raggiungere un'AI etica sarà senza dubbio importante per il suo successo. Tuttavia, è importante notare che ha un enorme potenziale di impatto sulla società per il bene. Abbiamo iniziato a vedere questo nella sua integrazione in aree della sanità, come la radiologia. Questa conversazione sull'etica dell'AI serve a garantire che nel nostro tentativo di sfruttare questa tecnologia per il bene, valutiamo adeguatamente il suo potenziale di danno all'interno del suo design.


Organizzazioni di AI etica

Poiché gli standard etici non sono la preoccupazione principale degli ingegneri e degli scienziati di dati nel settore privato, sono emerse diverse organizzazioni per promuovere la condotta etica nel campo dell'intelligenza artificiale. Per coloro che cercano maggiori informazioni, le seguenti organizzazioni e progetti forniscono risorse sull'implementazione dell'AI etica:

  • AlgorithmWatch: questa no-profit si concentra su un algoritmo e un processo decisionale spiegabile e tracciabile nei programmi di IA. Fai clic qui (link esterno a IBM) per ulteriori informazioni.
  • AI Now Institute: questa no-profit presso la New York University ricerca le implicazioni sociali dell'intelligenza artificiale. Fai clic qui (link esterno a IBM) per ulteriori informazioni.
  • DARPA: il Defense Advanced Research Projects Agency (link esterno a IBM) del Dipartimento della Difesa degli Stati Uniti si concentra sulla promozione dell'AI spiegabile e della ricerca sull'AI.
  • CHAI: Il Center for Human-Compatible Artificial Intelligence (link esterno a IBM) è una cooperazione di vari istituti e università per promuovere un'AI affidabile e sistemi benefici dimostrabili.
  • NASCAI: la National Security Commission on Artificial Intelligence (link esterno a IBM) è una commissione indipendente "che considera i metodi e i mezzi necessari per far progredire lo sviluppo dell'intelligenza artificiale, dell'apprendimento automatico e delle tecnologie associate per affrontare in modo completo le esigenze di sicurezza nazionale e di difesa degli Stati Uniti".

Il punto di vista di IBM sull'etica dell'AI

IBM ha anche stabilito il proprio punto di vista sull'etica dell'AI, creando dei principi di fiducia e trasparenza per aiutare i clienti a capire dove si trovano i suoi valori all'interno della conversazione intorno all'AI. IBM ha tre principi fondamentali che dettano il suo approccio ai dati e all'AI, che sono:

  1. Lo scopo dell'AI è quello di supportare l'intelligenza umana. Questo significa che non cerchiamo di sostituire l'intelligenza umana con l'AI, ma di supportarla. Poiché ogni nuova innovazione tecnologica comporta cambiamenti nella domanda e nell'offerta di particolari ruoli lavorativi, IBM si impegna a sostenere i lavoratori in questa transizione investendo in iniziative globali per promuovere la formazione delle competenze intorno a questa tecnologia.
  2. Dati e insight appartengono al loro autore. I clienti IBM possono stare tranquilli che loro, e solo loro, sono proprietari dei loro dati. IBM non ha fornito e non fornirà al governo l'accesso ai dati dei clienti per qualsiasi programma di sorveglianza, e rimane impegnata a proteggere la privacy dei suoi clienti.
  3. I sistemi AI devono essere trasparenti e spiegabili. IBM ritiene che le aziende tecnologiche devono essere chiare su chi addestra i loro sistemi AI, quali dati sono stati utilizzati in tale formazione e, soprattutto, cosa è stato inserito nelle raccomandazioni degli algoritmi.

IBM ha anche sviluppato una serie di aree di attenzione per guidare l'adozione responsabile delle tecnologie AI. Questi aspetti comprendono:

  • Spiegabilità: un sistema AI dovrebbe essere trasparente, in particolare su ciò che è stato inserito nelle raccomandazioni del suo algoritmo, in quanto rilevante per una varietà di parti interessate e per una varietà di motivi.
  • Equità: ci si riferisce all'equo trattamento di individui, o gruppi di individui, da parte di un sistema di AI. Se calibrata correttamente, l'AI può assistere gli umani nel fare scelte più giuste, contrastando i pregiudizi umani e promuovendo l'inclusività.
  • Robustezza: I sistemi alimentati dall'AI devono essere attivamente difesi dagli attacchi avversari, minimizzando i rischi di sicurezza e garantendo la fiducia nei risultati del sistema.
  • Trasparenza: per rafforzare la fiducia, gli utenti devono essere in grado di vedere come funziona il servizio, valutare la sua funzionalità e comprendere i suoi punti di forza e i suoi limiti.
  • Privacy: i sistemi di AI devono dare priorità e salvaguardare la privacy dei consumatori e i diritti sui dati e fornire garanzie esplicite agli utenti su come i loro dati personali saranno utilizzati e protetti.

Questi principi e aree di interesse costituiscono il fondamento del nostro approccio all'etica dell'AI. Per saperne di più sulle opinioni di IBM sull'etica e l'intelligenza artificiale, leggi qui.

 


AI ethics and IBM

IBM cerca di garantire che i suoi prodotti siano costruiti e utilizzati tenendo conto delle linee guida e dei principi etici. Uno dei prodotti che IBM offre ai suoi clienti è IBM Watson Studio, che migliora la supervisione e il rispetto delle norme etiche dell'IA.

IBM Watson Studio su IBM Cloud Pak for data aiuta a monitorare e gestire modelli per far funzionare un'IA affidabile. Un'organizzazione può visualizzare e tracciare i modelli AI in produzione, convalidare e testare i modelli per mitigare i rischi normativi e aumentare la visibilità del ciclo di vita AI. Registrati per un IBMid e crea il tuo account IBM gratuito oggi stesso.

Per saperne di più sul punto di vista di IBM sull'etica dell'intelligenza artificiale, leggi qui.

 


Soluzioni correlate

IBM Watson Studio

Sviluppa, esegui e gestisci i modelli AI. Prepara i dati e crea modelli su qualsiasi cloud utilizzando la modellazione visiva o il codice open source. Prevedi e ottimizza i risultati.


IBM Cloud Pak for Data

Cloud Pak for Data è una piattaforma di dati aperta ed estensibile che fornisce una struttura di dati per rendere tutti i dati disponibili per l'AI e l'analytics, su qualsiasi cloud.


Etica AI di IBM

L'approccio multidisciplinare e multidimensionale di IBM all'AI affidabile