The central processing unit (CPU) is the computer’s brain. It handles the assignment and processing of tasks and manages operational functions that all types of computers use.
CPU types are designated according to the kind of chip that they use for processing data. There’s a wide variety of processors and microprocessors available, with new powerhouse processors always in development. The processing power CPUs provide enables computers to engage in multitasking activities. Before discussing the types of CPUs available, we should clarify some basic terms that are essential to our understanding of CPU types.
There are numerous components within a CPU, but these aspects are especially critical to CPU operation and our understanding of how they operate:
In addition to the above components, modern CPUs typically contain the following:
CPUs use a type of repeated command cycle that’s administered by the control unit in association with the computer clock, which provides synchronization assistance.
The work a CPU does occurs according to an established cycle (called the CPU instruction cycle). The CPU instruction cycle designates a certain number of repetitions, and this is the number of times the basic computing instructions will be repeated, as enabled by that computer’s processing power.
The three basic computing instructions are as follows:
Basic attempts to generate faster processing speeds have led some computer owners to forego the usual steps involved in creating high-speed performance, which normally require the application of more memory cores. Instead, these users adjust the computer clock so it runs faster on their machine(s). The “overclocking” process is analogous to “jailbreaking” smartphones so their performance can be altered. Unfortunately, like jailbreaking a smartphone, such tinkering is potentially harmful to the device and is roundly disapproved by computer manufacturers.
CPUs are defined by the processor or microprocessor driving them:
Although several companies manufacture products or develop software that supports CPUs, that number has dwindled down to just a few major players in recent years.
The two major companies in this area are Intel and Advanced Micro Devices (AMD). Each uses a different type of instruction set architecture (ISA). Intel processors use a complex instruction set computer (CISC) architecture. AMD processors follow a reduced instruction set computer (RISC) architecture.
While the term “graphics processing unit” includes the word “graphics,” this phrasing does not truly capture what GPUs are about, which is speed. In this instance, its increased speed is the cause of accelerating computer graphics.
The GPU is a type of electronic circuit with immediate applications for PCs, smartphones and video game consoles, which was their original use. Now GPUs also serve purposes unrelated to graphics acceleration, like cryptocurrency mining and the training of neural networks.
The quest for computer miniaturization continued when computer science created a CPU so small that it could be contained within a small integrated circuit chip, called the microprocessor. Microprocessors are designated by the number of cores they support.
A CPU core is “the brain within the brain,” serving as the physical processing unit within a CPU. Microprocessors can contain multiple processors. Meanwhile, a physical core is a CPU built right into a chip, but which only occupies one socket, thus enabling other physical cores to tap into the same computing environment.
Computing would be a vastly limited activity without the presence of output devices to execute the CPU’s sets of instruction. Such devices include peripherals, which attach to the outside of a computer and vastly increase its functionality.
Peripherals provide the means for the computer user to interact with the computer and get it to process instructions according to the computer user’s wishes. They include desktop essentials like keyboards, mice, scanners and printers.
Peripherals are not the only attachments common to the modern computer. There are also input/output devices in wide use and they both receive information and transmit information, like video cameras and microphones.
Several issues are impacted by power consumption. One of them is the amount of heat produced by multi-core processors and how to dissipate excess heat from that device so the computer processor remains thermally protected. For this reason, hyperscale data centers (which house and use thousands of servers) are designed with extensive air-conditioning and cooling systems.
There are also questions of sustainability, even if we’re talking about a few computers instead of a few thousand. The more powerful the computer and its CPUs, the more energy will be required to support its operation—and in some macro-sized cases, that can mean gigahertz (GHz) of computing power.
The most profound development in computing since its origins, artificial intelligence (AI) is now impacting most if not all computing environments. One development we’re seeing in the CPU space is the creation of specialty processors that have been built specifically to handle the large and complex workloads associated with AI (or other specialty purposes):
Transistors are hugely important to electronics in general and to computing in particular. The term is a mix of “transfer resistance” and typically refers to a component made of semiconductors used to limit and/or control the amount of electrical current flowing through a circuit.
In computing, transistors are just as elemental. The transistor is the basic building unit behind the creation of all microchips. Transistors help comprise the CPU, and they’re what makes the binary language of 0s and 1s that computers use to interpret Boolean logic.
Computer scientists are always working to increase the output and functionality of CPUs. Here are some projections about future CPUs:
Companies expect a lot from the computers they invest in. In turn, those computers rely upon having a CPUs with enough processing power to handle the challenging workloads found in today’s data-intensive business environment.
Organizations need workable solutions that can change as they change. Smart computing depends upon having equipment that capably supports your mission, even as that work evolves. IBM servers offer strength and flexibility, so you can concentrate on the job at hand. Find the IBM servers you need to get the results your organization relies upon—both today and tomorrow.
Discover how a hybrid cloud infrastructure can power your AI strategy. Learn from IBM experts how to transform existing technology into an agile, AI-ready system, driving innovation and efficiency across your business operations.
Explore how hybrid cloud solutions can optimize your AI-driven business operations. Learn from case studies and featured solutions to see how companies are using IBM’s hybrid cloud to achieve greater efficiency, scalability and security.
Learn about the key differences between infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). Explore how each cloud model provides varying levels of control, scalability and management to meet different business needs.
Discover the hidden costs of scaling generative AI and learn from experts how to make your AI investments more efficient and impactful.
Learn the fundamentals of IT management, including why it's critical for modern organizations and key features that ensure smooth, efficient operations across technology systems.
Discover a range of tutorials and resources to help you manage and support IT infrastructure, from server management to cloud integration, storage systems and network security.
Virtualize your storage environment and manage it efficiently across multiple platforms. IBM Storage Virtualization helps reduce complexity while optimizing resources.
Accelerate the impact of AI across the enterprise with a more intentional hybrid cloud.
Find the right cloud infrastructure solution for your business needs and scale resources on demand.