预测性分析是高级分析的一个分支,它使用历史数据与统计建模、数据挖掘技术和机器学习相结合,对未来结果进行预测。
预测性分析模型旨在评估历史数据、发现模式、观察趋势,并利用这些信息预测未来趋势。常用的预测性分析模型包括分类模型、聚类分析和时序模型。
聚类模型属于无监督学习。它们根据相似的属性对数据进行分组。例如,电子商务网站可以利用该模型,根据共同特征将客户分成类似的群体,并针对每个群体制定营销策略。常见的聚类算法包括 K-均值聚类、均值移动聚类、基于密度的带噪声应用空间聚类 (DBSCAN)、使用高斯混合模型 (GMM) 的期望最大化 (EM) 聚类以及分层聚类。
时间序列模型使用特定时间频率的各种数据输入,例如每日、每周、每月等。通常绘制随时间变化的因变量来评估数据的季节性、趋势和周期性行为,以指示是否需要特定的转换和模型类型。自回归 (AR)、移动平均 (MA)、ARMA 和 ARIMA 模型都是常用的时间序列模型。例如,客户服务中心可以使用时间序列模型来预测一天中不同时间每小时会接到多少个电话。
可在各行各业部署预测性分析,解决不同的业务问题。以下是一些行业用例,说明预测性分析如何为现实情况下的决策提供信息。
根据以往模式进行未来预测的组织在管理库存、员工队伍、营销活动和大多数其他运营方面具有业务优势。
企业要想蓬勃发展,就必须利用数据建立客户忠诚度,实现业务流程自动化,并利用 AI 驱动的解决方案进行创新。
通过 IBM Consulting 发掘企业数据的价值,建立以洞察分析为导向的组织,实现业务优势。
推出 Cognos Analytics 12.0,人工智能驱动洞察分析可以更好地做出决策。