Internet of Things (IoT)

Donner aux data scientists les outils pour s’exprimer dans l’IoT

Share this post:

Sans outils analytiques, la vraie valeur de l’Internet des Objets ne peut émerger. Grâce à la plateforme IoT d’IBM, les data scientists disposent des instruments pour développer leurs modèles et tirer parti de Watson.

Avec l’Internet des Objets (IoT, pour Internet of Things), un des enjeux est bien sûr de savoir gérer les problématiques liées aux réseaux, aux capteurs, à l’acquisition des données, etc. Mais la valeur ajoutée de l’IoT se situe dans l’exploitation de toutes les données ainsi récupérées. Le premier niveau d’utilisation est simple : générer des alertes sur des seuils de température ou lorsqu’un réservoir est vide, par exemple. Aller plus loin suppose d’ajouter des outils analytiques : c’est ce que propose IBM avec le composant IBM Watson IoT Platform Analytics Service, disponible sur IBM Cloud.

 

Corrélation des données

Exploiter Analytics Service nécessite dans un premier temps de préparer les données en amont, de les formater, pour qu’elles puissent être utilisées dans la durée par les applicatifs. Si une sonde de température indiquant sa valeur en degré Celsius est remplacée par un modèle l’affichant en Kelvin, le traitement mis en oeuvre ne doit pas nécessiter de changements. La plateforme stocke au format brut l’ensemble des données qui arrivent des capteurs afin de pouvoir réintégrer certaines données (avec leur historique) si elles s’avèrent précieuses. Si le data scientist – c’est une de ses fonctions – doit appliquer des filtres pour collecter les données qui lui sont nécessaires, il est cependant intéressé par ces données brutes qui lui permettent d’identifier des corrélations. Cette étape de détection permet ainsi au data scientist de choisir le bon modèle pour effectuer l’analyse la plus adaptée aux exigences des cas d’usage.

Si toutes les données issues des devices sont conservées, elles ne sont pas stockées sur les mêmes architectures que les données filtrées. Ces dernières doivent être accessibles pour des traitements en quasi-temps réel, leur coût de stockage est donc plus élevé, ce qui rend indispensable l’étape de filtrage. D’autant que la taille des données est très variable : une machine outil dans un système Scada envoie des informations lourdes et à une fréquence très élevée, contrairement à un capteur de température utilisant un réseau de communication Low Range par exemple.

 

Des modèles d’analyse à inventer

Le composant Analytics Service contient par défaut de multiples modèles d’analyse. Typiquement, ils permettent d’évaluer une tendance afin d’anticiper une panne par exemple, ou de prévoir qu’une cuve sera bientôt vide. Surtout, grâce à ce module, le data scientist peut définir et tester de nouveaux modèles – à base de statistiques, de machine learning, etc. – et s’en servir pour livrer aux utilisateurs finaux des tableaux de bord avec les indicateurs utiles à leur métier (anticipation de panne, optimisation des processus…).

L’objectif est donc de fournir au data scientist tout ce dont il a besoin pour définir le bon modèle analytique en fonction du cas d’usage. Dans certains cas, la notion de preuve intervient. Autrement dit, prédire une panne ne suffit pas, il faut pouvoir expliquer pourquoi cette panne va se produire (en cas d’audit, par exemple). Dans d’autres cas, cette notion de traçabilité n’est pas indispensable et un autre modèle, plus simple et plus rapide, pourra être mis en oeuvre.

Autre facteur qui influe sur le choix d’un modèle analytique : la réaction au changement. Par exemple, si un bruit inhabituel apparaît sur une machine, certains modèles d’analyse de bruits seront certes plus efficaces en temps normal, mais exigeront plus de temps d’analyse.

Cette couche Analytics Service intéressera également les partenaires de l’entreprise. Un business partner pourra monter un cas d’usage spécifique par rapport à un marché de niche, en créant ses propres modèles d’analyse, sans devoir se préoccuper de la gestion de la plateforme IoT. Il récupère ainsi les informations qui l’intéressent, et peut se consacrer au développement de son application.

Le composant Analytics service est une option d’IBM Watson IoT platform qui permet à nos clients d’intégrer leurs propres modèles pour traiter leur cas d’usage. Certains clients cependant préfèrent mettre en place des applications verticales. IBM propose également des solutions verticalisées, comme IBM TRIRIGA Building Insights, qui embarque des modèles analytiques spécifiques à la gestion des bâtiments (Optimisation des flux énergétiques, Rationalisation de l’occupation des locaux, Gestion des assets).

Pour en savoir plus, visitez la page « Transformation numérique et Internet des Objets »

 

Field Application Engineer, IBM Watson IoT

More Internet of Things (IoT) stories
4 mai 2021

Les femmes leaders en Intelligence Artificielle

Le pourcentage de femmes dans les postes de direction a reculé par rapport à 2019. En Intelligence Artificielle, elles représentent seulement 26% des effectifs. Et pourtant, il est reconnu que l’inclusion et l’égalité des sexes génèrent de meilleurs résultats pour les entreprises. « L’efficacité de la mixité est prouvée et nos entreprises en sont convaincues » rappelle Patricia […]

Continue reading

28 avril 2021

Ressources pour se former à enseigner et pratiquer la Data Science

La Data Science est une des compétences les plus demandées sur le marché de l’emploi, tant pour les profils « Business » que pour les techniciens et ingénieurs. De nombreuses formations intègrent cette notion dans leurs cursus. Cependant, les établissements manquent d’enseignants compétents et d’outils pour former leurs étudiants. Voici un panorama des ressources à la disposition […]

Continue reading

16 avril 2021

Construire, moderniser, sécuriser et opérer votre IT avec IBM IS

  Le « Move to Cloud » et l’intégration d’environnements hybrides De nouveaux rôles clés émergent pour accélérer l’innovation en entreprise tout en maîtrisant les coûts. L’usage du Cloud en entreprise représente, en effet, une opportunité extraordinaire d’innovation. Mais aussi une menace sur l’intégrité, le contrôle des données et la gestion des assets informatiques. « Le « Move to […]

Continue reading