Bring light to the black box

watsonx.governance logo

It is well known that Artificial intelligence (AI) has progressed, moving past the era of experimentation to become business critical for many organizations. Today, AI presents an enormous opportunity to turn data into insights and actions, to help amplify human capabilities, decrease risk and increase ROI by achieving break through innovations.

While the promise of AI isn’t guaranteed and may not come easy, adoption is no longer a choice. It is an imperative. Businesses that decide to adopt AI technology are expected to have an immense advantage, according to 72% of decision-makers surveyed in a recent IBM study. So what is stopping AI adoption today?

There are 3 main reasons why organizations struggle with adopting AI: a lack of confidence in operationalizing AI, challenges around managing risk and reputation, and scaling with growing AI regulations.

The latest AI trends, brought to you by experts

Get curated insights on the most important—and intriguing—AI news. Subscribe to our weekly Think newsletter. See the IBM Privacy Statement.

Thank you! You are subscribed.

Your subscription will be delivered in English. You will find an unsubscribe link in every newsletter. You can manage your subscriptions or unsubscribe here. Refer to our IBM Privacy Statement for more information.

A lack of confidence to operationalize AI

Many organizations struggle when adopting AI. According to Gartner (link resides outside of ibm.com), 54% of models are stuck in pre-production because there is not an automated process to manage these pipelines and there is a need to ensure the AI models can be trusted. This is due to:

  • An inability to access the right data
  • Manual processes that introduce risk and make it hard to scale
  • Multiple unsupported tools for building and deploying models
  • Platforms and practices not optimized for AI

Well-planned and executed AI should be built on reliable data with automated tools designed to provide transparent and explainable outputs. Success in delivering scalable enterprise AI necessitates the use of tools and processes that are specifically made for building, deploying, monitoring and retraining AI models.

AI Academy

Uniting security and governance for the future of AI

While grounding the conversation in today’s newest trend, agentic AI, this AI Academy episode explores the tug-of-war that risk and assurance leaders experience between governance and security. It’s critical to establish a balance and prioritize a working relationship for both to achieve better, more trustworthy data and AI your organization can scale.

Challenges around managing risk and reputation

Customers, employees and shareholders expect organizations to use AI responsibly, and government entities are starting to demand it. Responsible AI use is critical, especially as more and more organizations share concerns about potential damage to their brand when implementing AI. Increasingly we are also seeing companies making social and ethical responsibility a key strategic imperative.

Scaling with growing AI regulations

With the increasing number of AI regulations, responsibly implementing and scaling AI is a growing challenge, especially for global entities governed by diverse requirements and highly regulated industries like financial services, healthcare and telecom. Failure to meet regulations can lead to government intervention in the form of regulatory audits or fines, mistrust with shareholders and customers, and loss of revenues.

The solution: IBM watsonx.governance

Coming soon, watsonx.governance is an overarching framework that uses a set of automated processes, methodologies and tools to help manage an organization’s AI use. Consistent principles guiding the design, development, deployment and monitoring of models are critical in driving responsible, transparent and explainable AI. At IBM, we believe that governing AI is the responsibility of every organization, and proper governance will help businesses build responsible AI that reinforces individual privacy. Building responsible AI requires upfront planning, and automated tools and processes designed to drive fair, accurate, transparent and explainable results.

Watsonx.governance is designed to help businesses manage their policies, best practices and regulatory requirements, and address concerns around risk and ethics through software automation. It drives an AI governance solution without the excessive costs of switching from your current data science platform.

This solution is designed to include everything needed to develop a consistent transparent model management process. The resulting automation drives scalability and accountability by capturing model development time and metadata, offering post-deployment model monitoring, and allowing for customized workflows.

Built on three critical principles, watsonx.governance helps meet the needs of your organization at any step in the AI journey:

1. Lifecycle governance: Operationalize the monitoring, cataloging and governing of AI models at scale from anywhere and throughout the AI lifecycle

Automate the capture of model metadata across the AI/ML lifecycle to enable data science leaders and model validators to have an up-to-date view of their models. Lifecycle governance enables the business to operate and automate AI at scale and to monitor whether the outcomes are transparent, explainable and mitigate harmful bias and drift. This can help increase the accuracy of predictions by identifying how AI is used and where model retraining is indicated.

2. Risk management: Manage risk and compliance to business standards, through automated facts and workflow management

Identify, manage, monitor and report risks at scale. Use dynamic dashboards to provide clear, concise customizable results enabling a robust set of workflows, enhanced collaboration and help to drive business compliance across multiple regions and geographies.

3. Regulatory compliance: Address compliance with current and future regulations proactively

Translate external AI regulations into a set of policies for various stakeholders that can be automatically enforced to address compliance. Users can manage models through dynamic dashboards that track compliance status across defined policies and regulations.

Ready to explore more?

Simplify data governance, risk management and regulatory compliance with IBM OpenPages. Learn more about how IBM is driving responsible AI (RAI) workflows.

Learn about the team of IBM experts who can work with you to help build trustworthy AI solutions at scale and speed across all stages of the AI lifecycle.

 

Author

Heather Gentile

Director of Product, watsonx.governance Risk and Compliance

IBM

Related solutions
IBM watsonx.governance

Govern generative AI models from anywhere and deploy on the cloud or on premises with IBM watsonx.governance.

Discover watsonx.governance
AI governance solutions

See how AI governance can help increase your employees’ confidence in AI, accelerate adoption and innovation, and improve customer trust.

Discover AI governance solutions
AI governance consulting services

Prepare for the EU AI Act and establish a responsible AI governance approach with the help of IBM Consulting.

Discover AI governance services
Take the next step

Direct, manage and monitor your AI with a single portfolio to speed responsible, transparent and explainable AI.

Explore watsonx.governance Book a live demo