L'analisi della regressione lineare viene utilizzata per prevedere il valore di una variabile in base al valore di un'altra variabile. La variabile che si desidera prevedere è chiamata variabile dipendente. La variabile che si utilizza per prevedere il valore dell'altra variabile è chiamata variabile indipendente.
Questa forma di analisi stima i coefficienti dell'equazione lineare, coinvolgendo una o più variabili indipendenti che meglio prevedono il valore della variabile dipendente. La regressione lineare si inserisce su una linea retta o una superficie che riduce al minimo le discrepanze tra i valori di output previsti e quelli effettivi. Esistono semplici calcolatori di regressione lineare che utilizzano un metodo dei "minimi quadrati" per scoprire la linea più adatta per un insieme di dati abbinati. Quindi si stima il valore di X (variabile dipendente) da Y (variabile indipendente).
Scopri la potenza dell'integrazione di una strategia data lakehouse nella tua architettura dei dati, compresi i miglioramenti per scalare l'AI e le opportunità di ottimizzazione dei costi.
Registrati per ricevere il report IDC
È possibile eseguire la regressione lineare in Microsoft Excel o utilizzare pacchetti software statistici come IBM SPSS Statistics che semplificano notevolmente il processo di utilizzo delle equazioni di regressione lineare, dei modelli di regressione lineare e delle formule di regressione lineare. SPSS Statistics può essere utilizzato in tecniche come la regressione lineare semplice e la regressione lineare multipla.
È possibile eseguire il metodo di regressione lineare in una varietà di programmi e ambienti, tra cui:
I modelli di regressione lineare sono relativamente semplici e forniscono una formula matematica di facile interpretazione in grado di generare previsioni. La regressione lineare può essere applicata a varie aree del business e degli studi accademici.
Scoprirai che la regressione lineare viene utilizzata in tutti i campi, dalle scienze biologiche, comportamentali, ambientali e sociali al business. I modelli di regressione lineare sono diventati un metodo collaudato per prevedere il futuro in modo scientifico e affidabile. Poiché la regressione lineare è una procedura statistica consolidata da tempo, le proprietà dei modelli di regressione lineare sono ben comprese e possono essere addestrate molto rapidamente.
I leader aziendali e delle organizzazioni possono prendere decisioni migliori utilizzando le tecniche di regressione lineare. Le organizzazioni raccolgono grandi quantità di dati e la regressione lineare le aiuta a utilizzarli per gestire meglio la realtà, invece di affidarsi all'esperienza e all'intuizione. Puoi prendere grandi quantità di dati non elaborati e trasformarli in informazioni utilizzabili.
Puoi anche utilizzare la regressione lineare per fornire insight migliori scoprendo modelli e relazioni che i tuoi colleghi di lavoro potrebbero aver visto in precedenza e pensato di aver già compreso. Ad esempio, l'esecuzione di un'analisi dei dati di vendita e acquisto può aiutarti a scoprire modelli di acquisto specifici in giorni o orari specifici. Gli insight raccolti dall'analisi di regressione possono aiutare i leader aziendali a prevedere i momenti in cui i prodotti della loro azienda saranno molto richiesti.
Presupposti da considerare per il successo dell'analisi della regressione lineare:
Prima di tentare di eseguire la regressione lineare, è necessario assicurarsi che i dati possano essere analizzati utilizzando questa procedura. I tuoi dati devono superare l'esame per quanto riguarda alcuni presupposti obbligatori.
Ecco come verificare la presenza di questi presupposti:
Si può anche utilizzare l'analisi di regressione lineare per cercare di prevedere le vendite totali annue di un/a addetto/a alle vendite (la variabile dipendente) da variabili indipendenti quali l'età, la formazione e gli anni di esperienza.
Variazioni nei prezzi spesso incidono sul comportamento dei consumatori, e la regressione lineare può aiutare ad analizzare come. Ad esempio, se il prezzo di un determinato prodotto continua a cambiare, puoi utilizzare l'analisi di regressione per vedere se il consumo diminuisce all'aumentare del prezzo. Cosa succede se il consumo non diminuisce in modo significativo con l'aumento del prezzo? A che punto di prezzo gli acquirenti smettono di acquistare il prodotto? Queste informazioni sarebbero molto utili per i leader di un'azienda di vendita al dettaglio.
Le tecniche di regressione lineare possono essere utilizzate per analizzare il rischio. Ad esempio, una compagnia di assicurazioni potrebbe avere risorse limitate con le quali indagare sulle richieste di risarcimento assicurativo da parte dei proprietari di case; con la regressione lineare, il team della compagnia può costruire un modello per la stima dei costi delle richieste di risarcimento. L'analisi potrebbe aiutare i leader aziendali a prendere importanti decisioni di business su quali rischi correre.
La regressione lineare non è sempre una questione di business. È importante anche nello sport. Ad esempio, potresti chiederti se il numero di partite vinte da una squadra di basket in una stagione è collegato al numero medio di punti che la squadra mette a segno in ogni partita. Un grafico a dispersione indica che queste variabili sono correlate linearmente. Anche il numero di partite vinte e il numero medio di punti segnati dall'avversario sono correlati linearmente. Queste variabili hanno una relazione negativa. Quando il numero di partite vinte aumenta, il numero medio di punti segnati dall'avversario diminuisce. Con la regressione lineare, è possibile creare un modello della relazione tra queste variabili. Un modello valido potrà essere utilizzato per prevedere quante partite saranno vinte dai vari team.
Promuovi la ricerca e l'analisi con questa soluzione veloce e potente.
Studenti, docenti e ricercatori ottengono un accesso a costi accettabili al software di predictive analytics.
Questa collaudata soluzione di analytics self-service consente di combinare e abbinare i propri dati e creare visualizzazioni efficaci.
Scopri come trasformare la matematica in codice, quindi esegui il codice su un set di dati per ottenere previsioni sui nuovi dati.
Creazione e convalida di modelli di regressione lineare con R.