Cognitive Applications Blog

Maximo Visual Inspection | すべてGUIで作るAI画像モデル

記事をシェアする:

– 「プログラミング、データサイエンス人材がいないのでAI活用ができない」
– 「外部のAI開発担当者とのやり取りが大変。なかなか現場のコツがAIに反映されない」
– 「AIモデルに微修正をしたいだけなのに、時間と労力は大きい」

画像AIモデルの構築と現場への導入を断念したお客様が最もよく口にする言葉かもしれません。

IBMのMaximo Visual Inspections(MVI)は、画像認識AIのトレーニング、デプロイ、実行プロセスの大幅な簡素化を実現するツールです。プログラミングやディープ・ラーニングの専門知識不要で、すべてをGUIで、誰でも画像AIモデルを構築できます。
現場の知識がある人が直接AIモデルを作ることができるため、自分たちだけで試行錯誤を繰り返し、クイックに、現場のコツを入れ込んだ画像AIを構築することができます。

…と言っても、なかなか言葉だけでは伝わらないもの。今回はその実態を動画でご覧いただきます。
下記の画像をクリックいただければ、動画再生画面が別途表示されます。


以下は簡易スクリプトです。動画のより深い理解にお役立てください。

– 00:10 | データセットタブでは、データセットを作成、編集、削除、などの管理ができます。ここではデータセットを一つ作り、そこに訓練データの画像を複数追加します。

– 00:15 | 画像を選択しドラッグ&ドロップすることで画像をデータセットにアップロードします。今回は、男性4枚、女性4枚の画像合計8枚をアップロードします。

– 00:30 | オブジェクトラベルを定義します。ヘルメット、マスクに加えて、装着しているかどうかを検査したいため、首から上をHeadとして定義します。

– 00:40 | 訓練画像にオブジェクトラベルを付けます。後で自動ラベル付を利用するため、まずは数枚の画像にオブジェクトラベルを付けます。

– 01:00 | 数枚だけオブジェクトラベルをつけたデータセットで、事前に学習モデルを作成します。そして、事前学習モデルを利用し、残りの画像に自動ラベル付けを行います。

– 01:15 | 一部の画像だけを元とした事前学習モデルを使っているので、自動ラベル付けは完全ではありません。手動で修正していきます。

 

– 01:30 | MVIには、オブジェクトラベルの修正に必要な操作を助けるキーボードショートカットがたくさん用意されています。ズーム、ボックス選択モードとボックス新規作成モードの切り替えなどにはマウス操作は不要です。

– 01:40 | データ拡張を行い、訓練データを増やします。

  •  左右反転画像の生成により、顔画像などのバリエーションを増やすことができます。
  •  上下反転画像の生成は、不揃いな向きで製造ライン上を流れてくる部品の検査に役に立ちます。
  •  明るさや色味を変えた画像の生成は、実際の検査現場の環境の違いを吸収し、推定を安定化させます。

– 02:00 | この例では、8枚の画像から色味、ボカシ、左右反転、などにより176枚まで訓練画像を増やしました。なお、オブジェクトラベルが付与された画像から生成された画像には自動的にオブジェクトラベルが引き継がれます(生成された画像に対するラベル付与は不要)。

– 02:20 | オブジェクト検知系のAIとして学習を開始します。なお、学習オプションの選択画面では、複数のアルゴリズムから選ぶことができます。用途に合わせ、用意されている「パフォーマンス重視型」「精度重視型」などから選ぶことができます。

– 02:40 | 学習済みAIモデルは、MVIのサーバー上にデプロイすることができます。デプロイ済みのAIモデルの画面では、画像ファイルをドラッグ&ドロップすることで、オブジェクト検出ができるかを確認することができます。

– 03:00 | サーバーへのデプロイ後、Web APIに画像を送信すると、JSON形式で検出結果が返ってきます。

– 03:20 | 学習済みモデルはZIPファイルとしてエクスポートする事ができます。エクスポートした学習済みモデルは、別のLinuxサーバー上にインストールしたMVI Edge上にインポートすることで、同様のWeb APIを利用することができます。

– 03:30 | 最後に、オブジェクト検出WebAPIを活用したアプリケーションを紹介します。このアプリケーションでは、Headオブジェクトの中にヘルメットオブジェクトとマスクオブジェクトが存在しているかどうかを計算し、装備品のルールに従っているかどうかを検査します。


 

製品・サービス・技術 情報

 

問い合わせ情報

 

関連記事

四国化工機 | AIもめん豆腐検品システム導入事例

動画で紹介 | プログラミング一切不要! 現場主導で画像認識AIの構築〜導入を

IBM Maximo Application Suiteが成長に寄与する理由


 

More stories

アイデアミキサー・インタビュー | 河野 英太郎(作家、アイデミーCOO、他)後編

Cognitive Applications Blog

  生産性向上は幸せになるための手段  「アイデアミキサー」第6回は、日本IBMへの入社と退社を2回繰り返したというちょっと変わった経歴をお持ちで、現在はアイデミー社の取締役COOを筆頭に、複数の肩書きで活動し ...続きを読む


IBM Maximoで「スマート保安」にアクションプランを

Cognitive Applications Blog

  一足飛びにいかないスマート保安…。でも、ワンストップで実現する方法あります!   経済産業省が、いわゆる「スマート保安」を強力に推進するために、官民トップによる「スマート保安官民協議会」を設置した ...続きを読む


開発ライフサイクルをデジタル変換する4つの方法 | 持続可能な自動車への道のり(後編)

Cognitive Applications Blog

  当記事は『Four ways to digitally transform your development lifecycle through automotive engineering』を日本のお客様 ...続きを読む