Automotive

Cars that see: when your car “gets” you

Share this post:

“What’s on your mind?” is the question we ask our colleagues and friends when we notice that they’re deep in thought.  We humans naturally read each other’s thoughts using body language and facial expressions. That allows us to help each other by sharing common concerns and working together to solve problems. What if your car could read your facial expression? Could it help you and your fellow drivers to be more safe?

The IBM Ireland Innovation Exchange is working with partners, including Vicomtech-IK4 and Honda Research Institute Europe in VI-DAS. With project funding by the European Union via the Horizon 2020, they’re exploring how computer vision, in-vehicle edge computing and vehicle-to-vehicle communications can all help improve the understanding of risky road conditions by both drivers and automated vehicles.

How your car “sees”

VI-DAS aims to bring a 720-degree view to support the driving process handover between a human driver and an automated driving system. The 720-degree concept is based on using computer vision to sense the outside world, 360-degree around the car. For example, it can sense pedestrians, bicyclists, other cars and road signs. It also encompasses a 360-degree view of the car interior, focusing mainly on the driver and potential distractions.

Computer vision technology has reached a stage where detailed driving behavior can be extracted from images that capture your facial expressions and body language as you drive. These can be analyzed in real time using machine learning to allow your car to understand things like where on the road you’re looking or if you’re checking your side mirrors. It can even detect improper phone usage, then evaluate immediate risks in the driving situation. When this technology is combined with vehicle-to-vehicle communications, the system(s) can alert you and your car when drivers around you are distracted and not paying adequate attention to driving conditions.

Understanding driver behavior

Knowing a driver’s cognitive awareness in real time is a requirement for the safe transfer of control between human drivers and higher-level automated driving systems. When transferring control back to the driver, the vehicle assistant will need to verify that the driver’s hands are on the steering wheel. It must also confirm that the driver is looking at the road ahead and is aware of the immediate road risks.

Vicomtech-IK4 are applying computer vision to record cues like the driver’s eye movements, gaze direction or emotional states. These can then be fused with vehicle driving performance to construct a comprehensive profile of a driver’s behavior. Honda Research Institute Europe is analyzing driving situations from the driver’s perspective. They’re doing this to estimate the situational risk factors and evaluate the best behavior options available to both driver and vehicle to alleviate risks in specific situations.

IBM is exploring how all the information gathered about driver behavior and driver risk awareness can be correlated with the exterior environmental information. They’re using road conditions and similar information gathered from other cars on the road, to provide drivers with a detailed history of their behavior. This information can be combined and analyzed through cloud services. Using this analysis will help uncover insights for drivers. Ultimately, the ability to monitor the operation of vehicles requires a scalable solution like IBM IoT for Automotive, which also offers pre-packaged services to track and score driver behavior as well as contextual mapping that provides real-time road conditions.

What this means for tomorrow’s drivers

All this data can change the driving experience. For example, a system based on eye-gaze detection could make you aware of the advanced driver-assistance systems (ADAS) alerts provided to you via various human-machine interfaces (HMIs), that you may not be fully using while driving. Gathering such insights from a larger population allows OEMs to improve the HMIs by understanding which drivers aren’t benefiting from them. And facial expression detection could provide important insights about specific locations that have proved difficult for a driver to maneuver. This could be a particular highway merge or lane change that produce high stress levels and emotional changes. Once the system(s) learn a driver’s routines, it/they can offer insights into how other, less stressed drivers have managed that same situation.

Creating a complete driving picture

There also is an opportunity to develop a collective driving assistant that combines all individual driver safety insights, gathered from you and others, with contextual information such as weather or accidents. This data can then be correlated with the detailed road network map to identify patterns of anomalous driver behavior experienced by many drivers. Or it could highlight issues with how the road layout is set, such as misplaced traffic signs.

This would allow individual drivers to learn how their behavior compares to others. That means you could improve your cognitive awareness when similar road scenarios occur. Not just the drivers — safety authorities reading anonymized samples of such driver behavior insights will learn where and why critical situations or accidents ensue. They could learn if they’re caused by poorly designed roads, and they could even know whether a new billboard distracted drivers to the point that they didn’t notice a specific traffic sign.

IBM is exploring information that is collaboratively gathered and transferred from vehicles to the cloud using Watson IoT. There, it can be visualized to show actual driving scenarios in which all drivers’ gazes are shown on a map. Presenting this information from multiple cars can help determine appropriate speed limits and road planning. And it also helps drivers share and learn gaps in their own contextual awareness.

The research and activities described in this article include work that IBM Ireland  and partners are working on as part the VI_DAS project. More on VI-DAS project and the activities of project partners can be found at http://vi-das.eu.

This project aligns with IBM’s broader initiative demonstrating that monitoring driver behavior and understanding drivers can lead to innovative safety solutions. Find out more at our “Cars that Care” site.

And find more details on IBM IoT for Automotive visit our IBM Marketplace site.

About the authors:

Dr. Cristian Olariu is a Research Engineer at IBM’s Innovation Exchange in Dublin, Ireland. There, his main research focus is on wireless access technologies for time-critical applications, with an emphasis on automotive scenarios. He has a proven track record in wireless networking, cellular network architectures, software-defined networks and service provisioning for time-critical applications.

LinkedIn

cristian.olariu@ie.ibm.com

Gary Thompson is a Solution Architect and Technical Manager at IBM’s Innovation Exchange team, Dublin, Ireland. He is currently working on automotive projects that focus on V2X communications and cloud infrastructures to support ADAS development. Gary has a technical interest in data management and information modelling methods that enable a better understanding, application and governance between all stakeholders in the connected car ecosystem.

LinkedIn

gary.n.thompson@ie.ibm.com

Add Comment
No Comments

Leave a Reply

Your email address will not be published.Required fields are marked *

More Uncategorized Stories
By Chris O'Connor on December 14, 2017

Top 5 IoT trends transforming business in 2018

What a year! 2017 brought us transformation and excitement in the Internet of Things (IoT) space. It’s been a true transformation. We’ve seen almost every industry invest in IoT, and leading industries are quickly moving to implement IoT solutions that drive the bottom line. Consumer products, like wearables and connected electronics, are certainly a large […]

Continue reading

By Kal Gyimesi on November 29, 2017

Developing IoT-enabled vehicles: a tsunami of change (part 1)

A far-reaching transition is underway in the world of complex product engineering. Entirely new development systems, agile methods and the introduction of cognitive, AI-driven analytics are dramatically improving how IoT-enabled vehicles are brought to market and updated through their lifecycle. Consumers want the connected products they interact with to not only work flawlessly, but to […]

Continue reading

By Wired Brand Lab on November 1, 2017

Autonomous vehicles – Watson IoT helps pave an industry revolution

Even the largest and most forward-looking auto manufacturers today were built around the economics of the 20th century, not the 21st. They followed the codes of Detroit and Tokyo more than those of Silicon Valley. But everyone knew disruption was coming—it was just a matter of when. So when companies like Google, Uber and Tesla […]

Continue reading

By Wired Brand Lab on November 1, 2017

Connected vehicles technology comes to life with IBM Watson IoT

The driverless revolution in the auto industry is already buzzing along city streets around the world, in a variety of tests and trials—and not just for cars, but for 18-wheel delivery trucks loaded with beer. Yet the excitement surrounding the emergence of autonomous connected vehicles tends to overshadow another tech revolution underway: the addition of […]

Continue reading