Data di pubblicazione: 21 marzo 2024
Collaboratori: Amanda McGrath, Alexandra Jonker
La previsione del carico è il processo di previsione della quantità di elettricità necessaria in un dato momento e di come tale domanda influenzerà la rete pubblica. Viene utilizzato per garantire che sia disponibile una potenza sufficiente per soddisfare le esigenze di consumo evitando sprechi e inefficienze.
La previsione del carico elettrico è fondamentale per la pianificazione operativa dei sistemi di alimentazione ed è fondamentale per evitare interruzioni. Le previsioni di carico possono variare dal breve termine (ore o giorni a venire) al lungo termine (mesi o anni a venire). L'accuratezza di queste previsioni ha un impatto diretto sui costi e sull'affidabilità dell'intero sistema energetico. La previsione del carico è anche una componente di una previsione energetica più ampia, che include previsioni per la disponibilità e il prezzo di combustibili come petrolio e gas, nonché fonti di energia rinnovabile.
In questa pubblicazione, abbiamo deciso di riportare le linee guida per assisterti nel tuo approccio alla rendicontazione ESG.
Una previsione accurata del carico garantisce una fornitura di energia elettrica sufficiente per soddisfare la domanda in un dato momento, mantenendo così l'equilibrio e la stabilità della rete elettrica. Questa affidabilità comporta una maggiore efficienza e un risparmio sui costi. La previsione del carico consente alle utility di gestire meglio le risorse attraverso programmi di risposta alla domanda, che spostano l'utilizzo incentivando i consumatori a ridurre il consumo di elettricità durante i periodi di maggiore consumo. E questo tipo di previsione della domanda può aiutare le utility a evitare i costi aggiuntivi associati alla produzione di una quantità eccessiva o insufficiente di elettricità.
I dati di previsione del carico possono essere utilizzati anche nelle decisioni di pianificazione strategica come l'espansione della capacità, lo sviluppo dell'infrastruttura e la pianificazione della manutenzione. Ad esempio, questi dati possono evidenziare l'ubicazione ottimale di nuove centrali elettriche o linee di trasmissione, garantendo che la domanda futura possa quindi essere soddisfatta. Nei mercati dell'energia elettrica deregolamentati, i dati di previsione del carico possono anche aiutare i partecipanti al mercato a elaborare strategie di offerta informate, gestire i contratti energetici e mitigare i rischi.
Esistono diversi metodi utilizzati nella previsione del carico, ognuno dei quali analizza i dati storici del carico e altri input pertinenti per generare previsioni per diversi orizzonti temporali.
Questo copre un periodo fino a una settimana e si affida in modo significativo alle previsioni meteo e ai dati di carico recenti. La previsione del carico a breve termine, comprese le previsioni del giorno prima, è particolarmente importante per la gestione della rete elettrica in tempo reale, poiché consente agli operatori di sistema di prendere decisioni sul momento su quanta energia generare e dove indirizzarla. L'accuratezza è fondamentale in questo contesto, poiché anche piccoli errori nelle previsioni possono portare a uno spreco di energia o a un sovraccarico delle linee elettriche.
Varia da una settimana a un anno e si usa per la programmazione della manutenzione e la gestione della riserva di carburante. Considera le variazioni stagionali del consumo di elettricità e le interruzioni programmate.
In genere si tratta di un periodo di oltre un anno e tiene conto di fattori quali i cambiamenti demografici, la crescita economica e l'impatto della politica energetica. La previsione del carico a lungo termine si concentra sulla pianificazione e sull'ottimizzazione del sistema, aiutando i servizi pubblici a prendere decisioni su dove investire in nuova capacità di generazione di energia e su come bilanciare diverse fonti di energia, come le energie rinnovabili e i combustibili fossili tradizionali.
I metodi di previsione del carico iniziano con la raccolta dei dati di carico cronologici. Ciò include i dati relativi ai numerosi fattori che possono influenzare l'uso dell'elettricità, compresi i dati meteorologici (temperatura, umidità, velocità del vento), l'ora del giorno, le variabili del calendario (stagioni, festività, giorni feriali rispetto al fine settimana) e i fattori demografici (densità di popolazione, attività economica). La previsione del carico tiene conto di tutti questi set di dati per creare un quadro completo della domanda di energia.
Una volta raccolti i dati, viene sviluppato un modello di previsione. Di seguito sono riportati alcuni esempi di modelli utilizzati per la previsione del carico:
Il modello di previsione viene addestrato utilizzando una parte dei dati cronologici e testato per la convalida. Le metriche delle prestazioni, come l'errore percentuale assoluto medio (MAPE), vengono utilizzate per valutare l'accuratezza delle previsioni.
Una volta convalidato e messo a punto, il modello è in grado di generare previsioni di carico future. Queste previsioni possono quindi essere utilizzate per la pianificazione operativa, la gestione energetica e altre attività decisionali. Si tratta di un processo continuo e adattivo: man mano che diventano disponibili nuovi dati, i modelli in genere richiedono aggiornamenti o riaddestramento per rimanere accurati.
La previsione del carico può essere preziosa, ma ha i suoi limiti. Uno dei problemi principali è la crescente complessità della rete elettrica, che ora include risorse energetiche distribuite (DER) come pannelli solari e veicoli elettrici. Queste risorse possono essere difficili da prevedere e integrare nei modelli di previsione del carico, richiedendo nuove metodologie e funzioni di input.
Un'altra sfida è la necessità di previsioni meteo accurate, in quanto le condizioni meteorologiche possono avere un impatto significativo sulla domanda di energia. I miglioramenti nella tecnologia delle previsioni meteorologiche hanno contribuito ad affrontare questo problema, ma c’è ancora spazio per miglioramenti.
Consentendo operazioni del sistema energetico più efficienti, flessibili e intelligenti, la previsione del carico è uno strumento fondamentale per la sostenibilità. Può contribuire alla sostenibilità in diversi modi:
Una previsione accurata del carico è fondamentale per integrare nella rete fonti di energie rinnovabili come l'energia eolica e solare. Queste fonti sono intermittenti, e quindi la loro produzione dipende dalle condizioni meteorologiche e dall'ora del giorno. Prevedendo accuratamente la domanda di elettricità, le utility possono pianificare meglio le fluttuazioni e massimizzare l'utilizzo. Ciò può aiutare a ridurre le emissioni complessive di gas a effetto serra riducendo al minimo la dipendenza dalla generazione di energia a combustibile fossile.
Previsioni accurate consentono alle aziende elettriche di gestire i propri sistemi di distribuzione in modo più efficiente, in base al carico giornaliero oppure orario, riducendo così gli sprechi energetici e ottimizzando la fornitura energetica complessiva. Ad esempio, le aziende possono utilizzare le informazioni per programmare la manutenzione o altri tempi di inattività per i periodi di minore domanda.
Questi programmi incentivano le persone a ridurre o spostare il consumo di energia durante i periodi di picco di carico, contribuendo a bilanciare domanda e offerta senza dover portare online ulteriori fonti di generazione, potenzialmente meno sostenibili.
Una previsione accurata del carico è fondamentale per reti più intelligenti e flessibili e per i futuri sistemi energetici. Consentirà strategie di gestione della rete più sofisticate in grado di accogliere risorse energetiche distribuite, veicoli elettrici e altre nuove tecnologie.
I progressi tecnologici, in particolare nel machine learning e nell'AI, offrono funzionalità di previsione del carico notevolmente migliorate. Queste tecnologie sono in grado di gestire set di dati di grandi dimensioni, apprendere dai modelli storici e adattarsi alle nuove tendenze, migliorando l'accuratezza complessiva delle previsioni.
Nel clima odierno, le aziende sono sempre più vulnerabili ai danni agli asset legati al clima e alle sfide operative. Ecco come la nostra piattaforma SaaS può aiutarti.
Scopri come le aziende stanno creando le previsioni meteorologiche più accurate al mondo, che consentono loro di pianificare in modo più efficace i programmi di generazione e gestione dell'energia.
Potenzia il tuo percorso di sostenibilità e l'efficienza della gestione dell'energia tracciando un percorso sostenibile e redditizio con soluzioni e piattaforme aperte e basate su AI e una profonda esperienza di IBM nel settore.
Questo sistema di rete fissa integrato consente la comunicazione bidirezionale tra utenze e clienti, oltre al monitoraggio del consumo di elettricità, gas e acqua in tempo reale.
La nuova intelligenza digitale aiuta i fornitori di energia a passare all’energia pulita e a ridurre le emissioni di carbonio. Ecco come consente anche alle aziende e ai consumatori di assumere il controllo.
La gestione dell’energia consiste nel monitoraggio, controllo e ottimizzazione proattivi e sistematici del consumo energetico di un’organizzazione per preservare l’uso e ridurre i costi.
Questo sistema aggrega i dati provenienti da diverse fonti in un unico luogo per supportare l’analisi, l’estrazione dei dati, l’AI e la machine learning.
Questi dispositivi digitali misurano in tempo reale i consumi di elettricità, gas o acqua per gestire in modo più efficace la misurazione dell’energia.
Queste reti elettriche su piccola scala funzionano in modo indipendente per generare elettricità per un’area localizzata, offrendo affidabilità ed efficienza.