Digital Twin

Cheat sheet: What is Digital Twin?

Share this post:

Ready to start the New Year off with one of the most interesting IoT trends for 2018? Then welcome to the cheat sheet series: your no-jargon guide to all things IoT. In this installment, subject matter expert Matthew Mikell gives us the low down on digital twin.

Digital twin: the background

When we design machines for a connected world, the traditional engineer’s toolbox can look rather empty. We need a new set of manufacturing and construction tools to meet the new realities of software-driven products fueled by digital disruption.

Thankfully, the advent of digital twins offers engineers a technological leap ‘through the looking glass’ into the very heart of their physical assets. Digital twins give us a glimpse into what is happening, or what can happen, with physical assets now and far into the future.

Digital twin in a nutshell

Want a definition you can memorize? Try this on for size:

The digital twin is the virtual representation of a physical object or system across its life-cycle. It uses real-time data and other sources to enable learning, reasoning, and dynamically recalibrating for improved decision making.”  

In plain English, this just means creating a highly complex virtual model that is the exact counterpart (or twin) of a physical thing. The ‘thing’ could be a car, a tunnel, a bridge, or even a jet engine. Connected sensors on the physical asset collect data that can be mapped onto the virtual model. Anyone looking at the digital twin can now see crucial information about how the physical thing is doing out there in the real world.

What this means is that a digital twin is a vital tool to help engineers understand not only how products are performing, but how they will perform in the future. Analysis of the data from the connected sensors, combined with other sources of information, allows us to make these predictions.

With this information, organizations can learn more, faster, and break down old boundaries surrounding product innovation, complex life-cycles, and value creation.

Digital twins help manufacturers and engineers accomplish a great deal, like:

  • Visualizing products in use, by real users, in real-time
  • Building a digital thread, connecting disparate systems and promoting traceability
  • Refining assumptions with predictive analytics
  • Troubleshooting far away equipment
  • Managing complexities and linkage within systems-of-systems

Let’s look at some of these in more detail.

Use cases for digital twin: an engineer’s view

Let’s look at an example of digital twins in action. And since the primary users of digital twins are engineers, let’s use their perspective.

An engineer’s job is to design and test products – whether cars, jet engines, tunnels or household items – with their complete life-cycle in view. In other words, they need to ensure that the product they are designing is suitable for purpose, can cope with wear and tear, and will respond well to the environment in which it will be used.

An engineer testing a car braking system, for example, would run a computer simulation to understand how the system would perform in various real-world scenarios. This method has the advantage of being a lot quicker and cheaper than building multiple physical cars to test. But there are still some shortcomings.

First, computer simulations like the one described above are limited to current real world events and environments. They can’t predict how the car will react to future scenarios and changing circumstances. Second, modern braking systems are more than mechanics and electrics. They’re also comprised of thousands of lines of code.

This is where digital twin and the IoT come in. A digital twin uses data from connected sensors to tell the story of an asset all the way through its life-cycle. From testing to use in the real world. With IoT data, we can measure specific indicators of asset health and performance, like temperature and humidity, for example. By incorporating this data into the virtual model, or the digital twin, engineers have a full view into how the car is performing, through real-time feedback from the vehicle itself.

The value of digital twin: understanding product performance

Digital twins give manufacturers and businesses an unprecedented view into how their products are performing. A digital twin can help identify potential faults, troubleshoot from afar, and ultimately, improve customer satisfaction. It also helps with product differentiation, product quality, and add-on services, too.

If you can see how customers are using your product after they’ve bought it, you can gain a wealth of insights. That means you can use the data to (if warranted), safely eliminate unwanted products, functionality, or components, saving time and money.

Unprecedented control over visualization, from afar

There are other advantages, too. One of the major ones is that digital twins afford engineers a detailed, intricate view of a physical asset that might be far away. With the twin, there’s no need for the engineer and the asset to be in the same room, or even the same country.

Imagine, for example, a mechanical engineer in Seattle using digital twin to diagnose a jet engine sitting in the hanger of O’Hare airport. Or engineers visualizing the entire length of the Channel Tunnel from Calais. Thousands of sensors in a dozen modalities, like sight, sound, vibration, altitude and so forth, mean an engineer can ‘twin’ a physical thing from almost anywhere in the world. That means an unprecedented clarity and control over visualization.

IBM’s work with digital twin

IBM has been doing a lot of work with digital twin technologies. Just this year, we announced new lab services for Maximo, bringing Augmented Reality (AR) into asset management. The IBM lab service ‘turns on’ many visual and voice (Natural Language Processing) features for your workforce. This enables you to see your assets in a new dimension and get instant access to critical data. You can then feed those insights back to others using an AR helmet with voice/video in the visor. This makes ‘interacting’ the next evolution of working.

The future of cognitive digital twin

Digital twin is already helping organizations stay ahead of digital disruption by understanding changing customer preferences, customizations and experiences. It means businesses can deliver products more rapidly, with higher quality, from the components, to the code. Yet the promise of digital twin can still go further.

The use of cognitive computing increases the abilities and scientific disciplines in the digital twin. Technologies and techniques such as Natural Language Processing (NLP), machine learning, object/visual recognition, acoustic analytics, and signal processing are just a few of features augmenting traditional engineering skills. For example, using cognitive to improve testing a digital twin can determine which product tests should be run more frequently and which should be retired. Or cognitive sensing can improve what/when data from sensors is relevant for deeper analysis. Cognitive digital twins can take us beyond human intuition to design and refine future machines. No more “one-size-fits-all” model, but instead, machines are individually customized. That’s because cognitive digital twin is not just about what we are building, but for whom.

Further resources

If you’d like to learn more about digital twin, you might enjoy these resources:

Watson Internet of Things - Portfolio Marketing Manager

Add Comment
No Comments

Leave a Reply

Your email address will not be published.Required fields are marked *

More Digital Twin stories
By Matthew Mikell on February 6, 2018

How Digital Twins foster innovation in IoT-enabled environments

Dynamic digital representations, or Digital Twins, are rapidly changing the way industries design, build and operate their products and processes. Gartner predicts, “by 2021, half of large industrial companies will use Digital Twins, resulting in those organizations gaining a 10 percent improvement in effectiveness.” Powered by the Cloud, IoT, and AI, Digital Twins enrich complex […]

Continue reading

By Matthew Mikell and Jen Clark on January 4, 2018

Cheat sheet: What is Digital Twin?

Ready to start the New Year off with one of the most interesting IoT trends for 2018? Then welcome to the cheat sheet series: your no-jargon guide to all things IoT. In this installment, subject matter expert Matthew Mikell gives us the low down on digital twin. Digital twin: the background When we design machines […]

Continue reading

By Matthew Mikell on December 19, 2017

Digital Twin of the Month: How turbines are taking over Texas

Our digital twin story this month is that of a wind turbine, used around the world to develop clean and sustainable energy; on some days it might even be free. During October storms in Germany these turbines “generated enough wind power at the weekend to give consumers free energy,” meaning costs fell below zero where producers had to […]

Continue reading