February 16, 2021 By Elpida Tzortzatos 3 min read

Artificial intelligence (AI) is a profoundly transformative technology because of its broad applicability to many use cases. It already impacts our personal lives, and it is changing the way we work and do business. In this blog we’ll examine AI and its role for clients running IBM Z and IBM LinuxONE workloads. We will cover principles of the IBM Z AI strategy and developments underway around IBM Z’s role as a world-class inference platform. We are developing a blog series to describe key elements of AI on IBM Z and how clients can tap into these capabilities for their next-generation AI applications.

Our mission is to provide a comprehensive and consumable AI experience for operationalizing AI on Z, and this includes the goal of building inference capabilities directly into the platform. Following the IBM AI ladder inference is part of the Analyze/Infuse rungs. Inference refers to the point when a model is deployed for production and is used by the application to make business predictions.

IBM’s design goal is to enable low latency inference for time-sensitive work such as in-transaction inference and other real-time or near-real-time workloads. One example is fraud detection; for banks and financial markets, accurate detection of fraud can result in significant savings. IBM is architecting optimizations in software and hardware to meet these low latency goals and to enable clients to integrate AI tightly with IBM Z data and core business applications that reside on Z. These technologies are designed to enable clients to embed AI in their applications with minimal application changes.

Target use cases include time sensitive cases with high transaction volumes and complex models, typically requiring deep learning. In these transactional use cases, a main objective is to reduce latency for faster response time, delivering inference results back to the caller at a high volume and speed.

Train anywhere and deploy on Z

IBM recognizes that the AI training landscape is quite different from the inference one. Training is the playground of data scientists who are focused on improving model accuracy. Data scientists use platforms that may be ideal for training but are not necessarily efficient for deploying models. Our approach enables clients to build and train models on the platform of their choice (including on premises or Z in a hybrid cloud), leveraging any investments they have made. They can then deploy those models to an environment that has transactional and data affinity to the use case – such as transactional processing on Z. That is the heart of our “train anywhere, deploy on Z” strategy.

To enable this strategy, IBM is architecting solutions to enable model portability to Z without requiring additional development efforts for deployment. We are investing in ONNX (Open Neural Network Exchange) technology, a standard format for representing AI models allowing a data scientist to build and train a model in the framework of choice without worrying about the downstream inference implications. To enable deployment of ONNX models, we provide an ONNX model compiler that is optimized for IBM Z. In addition to this, we are optimizing key open-source frameworks such as TensorFlow (and TensorFlow Serving) for use on IBM Z.

To summarize, our mission is to enable clients to easily deploy AI workloads on IBM Z and LinuxONE in order to deliver faster business insights while driving more value to the business. We are enhancing IBM Z as a world-class inference platform. We aim to help clients accelerate deployment of AI on Z by investing in seamless model portability, in integration of AI into Z workloads, and in operationalizing AI with industry leading solutions such as IBM Cloud Pak for Data for more flexibility and choice in hybrid cloud deployments. We will explore several AI technologies in future blog posts around open source, ONNX, and TensorFlow, Cloud Pak for Data and more. Stay tuned to our journey to AI in this blog series.

>> Accelerate your journey to AI here.

Was this article helpful?

More from Artificial intelligence

Optimize your call center operations with new IBM watsonx assistants features

5 min read - Everyone has had at least one bad experience when dialing into a call center. The robotic audio recording, the limited menu options, the repetitive elevator music in the background, and the general feeling of time wasted are all too familiar. As customers try to get answers, many times they find themselves falling into the infamous spiral of misery, searching desperately to speak to a live agent. While virtual assistants, mobile applications and digital web interfaces have made self-service options in…

IBM, with flagship Granite models, named a strong performer in The Forrester Wave™: AI Foundation Models for Language, Q2 2024

6 min read - As enterprises move from generative artificial intelligence (gen AI) experimentation to production, they are looking for the right choices when it comes to foundation models with an optimal mix of attributes that yield trusted, performant and cost-effective gen AI. Businesses recognize that they cannot scale gen AI with foundation models they cannot trust. We are pleased to announce that IBM, with its flagship Granite family of models, has been named a strong performer in the Forrester Wave™: AI Foundation Models…

Scale enterprise gen AI for code generation with IBM Granite code models, available as NVIDIA NIM inference microservices

3 min read - Many enterprises today are moving from generative AI (gen AI) experimentation to production, deployment and scaling. Code generation and modernization are now among the top enterprise use cases that offer a clear path to value creation, cost reduction and return on investment (ROI). IBM® Granite™ is a family of enterprise-grade models developed by IBM Research® with rigorous data governance and regulatory compliance. Granite currently supports multilingual language and code modalities. And as of the NVIDIA AI Summit in Taiwan this…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters