To simplify data access and empower users to leverage trusted information, organizations need a better approach that provides better insights and business outcomes faster, without sacrificing data access controls. There are many different approaches, but you’ll want an architecture that can be used regardless of your data estate. A data fabric is an architectural approach that enables organizations to simplify data access and data governance across a hybrid multicloud landscape for better 360-degree views of the customer and enhanced MLOps and trustworthy AI. In other words, the obstacles of data access, data integration and data protection are minimized, rendering maximum flexibility to the end users.
With this approach, organizations don’t have to move all their data to a single location or data store, nor do they have to take a completely decentralized approach. Instead, a data fabric architecture implies a balance between what needs to be logically or physically decentralized and what needs to be centralized.
Thanks to that balance, there is no limitation to the number of purpose-fit data stores that can participate in the data fabric ecosystem. This means you get a global data catalog that serves as an abstraction layer, single source of truth and single point of data access with infused governance.
These six crucial capabilities of a data fabric architecture enable data citizens to use data with greater trust and confidence. Irrespective of what that data is, or where it resides — whether in a traditional datacenter or a hybrid cloud environment, in a conventional database or Hadoop, object store or elsewhere — the data fabric architecture provides a simple and integrated approach for data access and use, empowering users with self-service and enabling enterprises to use data to maximize their value chain.
IBM named a Leader for the 19th year in a row in the 2024 Gartner® Magic Quadrant™ for Data Integration Tools.
Discover why AI-powered data intelligence and data integration are critical to drive structured and unstructured data preparedness and accelerate AI outcomes.
Discover the power of integrating a data lakehouse strategy into your data architecture, including cost-optimizing your workloads and scaling AI and analytics, with all your data, anywhere.
Explore the data leader's guide to building a data-driven organization and driving business advantage.
Dig into the top 5 reasons you should modernize your data integration on IBM Cloud Pak for Data.
Gain unique insights into the evolving landscape of ABI solutions, highlighting key findings, assumptions and recommendations for data and analytics leaders.
Create and manage smart streaming data pipelines through an intuitive graphical interface, facilitating seamless data integration across hybrid and multicloud environments.
Discover IBM Databand, the observability software for data pipelines. It automatically collects metadata to build historical baselines, detect anomalies and create workflows to remediate data quality issues.
Build a trusted data pipeline with a modernized ETL tool on a cloud-native insight platform.