예측 분석은 통계 모델링, 데이터 마이닝 기술, 머신 러닝과 결합된 과거 데이터를 사용하여 미래의 결과를 예측하는 고급 분석의 한 분야입니다.
기업은 예측 분석을 사용하여 이 데이터에서 패턴을 찾아 위험과 기회를 식별합니다. 예측 분석은 종종 빅데이터 및 데이터 과학과 연관됩니다.
오늘날 기업들은 로그 파일부터 이미지와 동영상에 이르기까지 수많은 데이터를 보유하고 있으며, 이 모든 데이터는 조직 내 여러 데이터 리포지토리에 분산되어 있습니다. 데이터 과학자는 이러한 데이터에서 인사이트를 얻기 위해 딥 러닝과 머신 러닝 알고리즘을 사용하여 패턴을 찾고 향후 이벤트에 대한 예측을 합니다. 이러한 통계 기법에는 로지스틱 및 선형 회귀 모델, 신경망, 의사 결정 트리 등이 있습니다. 이러한 모델링 기술 중 일부는 초기 예측 학습을 사용하여 추가적인 예측 인사이트를 얻습니다.
업계 뉴스레터
Think 뉴스레터를 통해 AI, 자동화, 데이터 등 가장 중요하고 흥미로운 업계 동향에 대한 최신 소식을 받아보세요. IBM 개인정보 보호정책을 참조하세요.
구독한 뉴스레터는 영어로 제공됩니다. 모든 뉴스레터에는 구독 취소 링크가 있습니다. 여기에서 구독을 관리하거나 취소할 수 있습니다. 자세한 정보는 IBM 개인정보 보호정책을 참조하세요.
예측 분석 모델은 과거 데이터를 평가하고, 패턴을 발견하고, 추세를 관찰하고, 해당 정보를 사용하여 미래 추세를 예측하도록 설계되었습니다. 널리 사용되는 예측 분석 모델에는 분류, 클러스터링 및 시계열 모델이 포함됩니다.
클러스터링 모델은 비지도 학습에 속합니다. 이는 유사한 속성을 기반으로 데이터를 그룹화합니다. 예를 들어, 전자 상거래 사이트에서는 이 모델을 사용하여 공통 기능을 기반으로 고객을 유사한 그룹으로 구분하고 각 그룹에 대한 마케팅 전략을 개발할 수 있습니다. 일반적인 클러스터링 알고리즘에는 K-평균 클러스터링, 평균 시프트 클러스터링, 잡음이 있는 애플리케이션의 밀도 기반 공간 클러스터링(DBSCAN), 가우스 혼합 모델(GMM)을 사용한 기대 최대화(EM) 클러스터링, 계층적 클러스터링 등이 있습니다.
시계열 모델은 일별, 주별, 월별 등과 같은 특정 시간 빈도에서 다양한 데이터 입력을 사용합니다. 계절성, 추세 및 주기적 동작에 대한 데이터를 평가하기 위해 종속 변수를 시간에 따라 플롯하는 것이 일반적이며, 이는 특정 변환 및 모델 유형이 필요함을 나타낼 수 있습니다. 자기회귀(AR), 이동 평균(MA), ARMA 및 ARIMA 모델은 모두 자주 사용되는 시계열 모델입니다. 예를 들어, 콜 센터는 시계열 모델을 사용하여 하루 중 다양한 시간에 시간당 수신되는 전화 수를 예측할 수 있습니다.
예측 분석은 다양한 비즈니스 문제에 대해 다양한 산업 전반에 걸쳐 배포될 수 있습니다. 다음은 예측 분석이 실제 상황에서 의사 결정에 어떻게 영향을 미칠 수 있는지 보여주는 몇 가지 업계 사용 사례입니다.
과거 패턴을 기반으로 예상되는 사항을 파악하는 조직은 재고, 인력, 마케팅 캠페인 및 기타 대부분의 운영 측면을 관리할 때 비즈니스 이점을 누릴 수 있습니다.
기업이 성공하려면 데이터를 활용하여 고객 충성도를 높이고 비즈니스 프로세스를 자동화하며 AI 기반 솔루션으로 혁신을 이루어야 합니다.
IBM Consulting을 통해 엔터프라이즈 데이터의 가치를 실현하여 비즈니스 이점을 제공하는 인사이트 중심의 조직을 구축하세요.
더 나은 의사 결정을 위한 AI 기반 인사이트인 Cognos Analytics 12.0을 소개합니다.