To put these capabilities to the test, the company worked with its transformation partner to implement the IBM Process Mining solution as a proof of concept (PoC). Using live data from the company’s ERP system, the solution’s algorithms almost instantly laid bare the process deviations that threatened to complicate its automation efforts.
Looking at the graphs and flow charts generated by the model, the process owner and her team saw that fully half of its key order creation processes—including line creation and delivery activities—were manual and thus noncompliant. What’s more, the process scan revealed a high incidence of reworking in these activities resulting from human error. In addition to dragging out the procurement cycle, these process flaws had increased costs by roughly USD 250,000 annually.
Informed by these insights, the company implemented automation tools within both activities. By automating 75% of delivery activity, the company was able to sharply reduce order reworking, while reducing associated costs by roughly USD 60,000. Comparable automation on line creation activities shortened lead times by three days, representing costs savings of USD 50,000.
Like most companies in the midst of digital transformation, this firm is guided by an overarching vision of making its processes more agile, efficient and cloud-based. To the process owner, the fact that her company is taking a data-driven approach to the specifics of process automation decisions—knowing where the pain points are and how to best address them—makes a big difference in terms of efficacy. “The process transparency we’ve gained through the IBM solution has had a game-changing impact on the automation decisions we’ve made around procure-to-pay,” she notes. “As our broader transformation continues to unfold, we see data-driven decision-making as central to our success.”