AI

IBM Research AI: Advancing AI for industry and society

IBM 5 in 5: Radically Accelerating the Process of Discovery will Enable Our Sustainable Future

This year’s IBM "5 in 5" predictions focus on accelerating the discovery of new materials to enable a more sustainable future. In line with the United Nation’s global call-to-action through its Sustainable Development Goals, IBM researchers are working to speed up the discovery of new materials that will address significant worldwide problems.

Continue reading

Using machine learning to solve a dense hydrogen conundrum

Hydrogen is the simplest element in the universe, yet its behavior in extreme conditions such as very high pressure and temperature is still far from being well understood. Dense hydrogen constitutes the bulk of the content of giant gas planets and brown dwarf stars and it’s a material of interest for both fundamental physics and […]

Continue reading

Gauteng Province Launches COVID-19 Dashboard Developed by IBM Research, Wits University and GCRO – Now Open to the Public

The Gauteng Province has been using data and cloud technologies to monitor and respond to Covid-19, and now they are sharing access with the public. As of 20 August the Gauteng Province in South Africa has 33% of the national cases for COVID-19 with 202,000 confirmed cases — and the numbers continue to rise. To address […]

Continue reading

RoboRXN: Automating Chemical Synthesis

For most of us, chemistry is a distant childhood memory that takes us back to our school days where we got to experiment with chemical reactions. I mean who didn’t love the school science fair? It was the one occasion we were allowed to make a mess in the kitchen by mixing baking soda, vinegar, […]

Continue reading

IBM Research AI at KDD 2020

At KDD 2020, IBM Research AI presents work that explores topics ranging from healthcare to forecasting, human-centered explainability, optimization, graph representation and automated machine learning.

Continue reading

IBM Federated Learning – machine learning where the data is

IBM Research recently announced the community edition of a framework for federated learning.

Continue reading

IBM Research and The Michael J. Fox Foundation Develop Modeling Methodology to Help Understand Parkinson’s Disease Using Machine Learning

In collaboration with The Michael J. Fox Foundation for Parkinson’s Research, our team of researchers at IBM is aiming to develop improved disease progression models that can help clinicians understand how the disease progresses in relation to the emergence of symptoms, even when those patients are taking symptom-modifying medications.

Continue reading

AI Could Help Enable Accurate Remote Monitoring of Parkinson’s Patients

In a paper recently published in Nature Scientific Reports, IBM Research and scientists from several other medical institutions developed a new way to estimate the severity of a person’s Parkinson’s disease (PD) symptoms by remotely measuring and analyzing physical activity as motor impairment increased. Using data captured by wrist-worn accelerometers, we created statistical representations of […]

Continue reading

Image Captioning as an Assistive Technology

IBM Research's Science for Social Good team recently participated in the 2020 VizWiz Grand Challenge to design and improve systems that make the world more accessible for the blind.

Continue reading

Reducing Speech-to-Text Model Training Time on Switchboard-2000 from a Week to Under Two Hours

Published in our recent ICASSP 2020 paper in which we successfully shorten the training time on the 2000-hour Switchboard dataset, which is one of the largest public ASR benchmarks, from over a week to less than two hours on a 128-GPU IBM high-performance computing cluster. To the best of our knowledge, this is the fastest training time recorded on this dataset.

Continue reading

IBM & MIT Roundtable: Solving AI’s Big Challenges Requires a Hybrid Approach

At IBM Research’s recent “The Path to More Flexible AI” virtual roundtable, a panel of MIT and IBM experts discussed some of the biggest obstacles they face in developing artificial intelligence that can perform optimally in real-world situations.

Continue reading