The future of RPA requires improved signal intelligence, dynamic feedback loops and richer contextual relevance.

Success requires every RPA leader to consider where and when to apply analytics, automation and artificial intelligence (AI) in their design. The brands and organizations that can improve decision velocity will succeed in anticipating customer needs, delivering on brand promise and reducing regulatory and compliance risk.

Learn how future leaders can start their journey in the 3A’s of RPA — analytics, automation and AI:

The massive evolution from RPA to intelligent autonomous applications has begun

The robotic process automation (RPA) market has helped many clients increase speed, deliver higher accuracy, achieve greater levels of consistency, reduce costs, provide scale and improve quality. Constellation Research estimates the market size in 2021 to achieve $2.2B in revenue, with a CAGR of 18.8% and growth to $5.07B in 2026. 

RPA is a transactional system technology that enables automation of business processes using software robots (“bots”). RPA tools watch users and then repeat similar tasks in the graphical user interface (GUI). RPA is different than workflow automation tools because those are explicit rules and actions written to automate actions in an unintelligent manner. 

RPA tools have reached their limit in terms of capability because transactional automation requires a large overhead of management. Simply put, transactional automation is hard to manage. Hence, a new class of enterprise apps known as autonomous applications have emerged to deliver intelligent automation, cognitive capabilities and artificial intelligence for organizations in business functions like finance, supply chain, customer experience, human resources and planning.

AI and ML power the future of autonomous enterprises

The reality is that traditional transactional applications have run their course. The pressure to reduce margins, technical debt and investment in core systems creates tremendous incentives for the automated enterprise. Customers seek cognitive-based approaches to build the true foundation for automation and artificial intelligence — driven precision decisions. The benefits include less staffing, reduced errors, smarter decisions and security at scale. The quest for an autonomous enterprise starts with a desire to consider what decisions require intelligent automation versus human judgment. These applications cannot rely on hard-coded rules to succeed. They must take a cognitive approach, apply AI and machine-learning (ML) techniques and become autonomous.

Vendors from multiple fronts intend to deliver on this promise. Legacy enterprise resource planning providers, cloud vendors, business process management solutions, robotic process automation products, process-mining vendors and IT services firms with software solutions attempt to compete with pure-play vendors for both mind share and market dominance in this market, which Constellation Research expects to hit $10.35 billion by 2030. Constellation believes every enterprise will design for self-driving, self-learning and self-healing sentience.

Learn more

Ready to automate? Explore “RPA: A no-hype buyer’s guide” and sign up for the no-cost, IBM Robotic Process Automation software trial.

Categories

More from

Debunking observability myths – Part 6: Observability is about one part of your stack

3 min read - In our blog series, we’ve debunked the following observability myths so far: Part 1: You can skip monitoring and rely solely on logs Part 2: Observability is built exclusively for SREs Part 3: Observability is only relevant and beneficial for large-scale systems or complex architectures Part 4: Observability is always expensive Part 5: You can create an observable system without observability-driven automation Today, we're delving into another misconception about observability—the belief that it's solely applicable to a specific part of your stack or…

Discovery to delivery: Transform the shopper’s journey

3 min read - The relevance of a promise The fundamental principle of commerce is the concept of a “promise.” A promise of accuracy in product detail, product capabilities, quality, price and delivery. The promise of accuracy in inventory—or, more importantly, in the availability of inventory—is very important when there are competing demands for the same unit of inventory and unpredictable disruptions to sources of supply. It becomes very challenging to uphold the promise when so much is changing in the processes that trigger…

Open source large language models: Benefits, risks and types

6 min read - Large language models (LLMs) are foundation models that use artificial intelligence (AI), deep learning and massive data sets, including websites, articles and books, to generate text, translate between languages and write many types of content. There are two types of these generative AI models: proprietary large language models and open source large language models. https://www.youtube.com/watch?v=5sLYAQS9sWQ In this video, Martin Keen briefly explains large language models, how they relate to foundation models, how they work and how they can be used…

IBM Cloud VMware as a Service introduces multitenant as a new, cost-efficient consumption model

4 min read - Businesses often struggle with ongoing operational needs like monitoring, patching and maintenance of their VMware infrastructure or the added concerns over capacity management. At the same time, cost efficiency and control are very important. Not all workloads have identical needs and different business applications have variable requirements. For example, production applications and regulated workloads may require strong isolation, but development/testing, training environments, disaster recovery sites or other applications may have lower availability requirements or they can be ephemeral in nature,…