June 29, 2022 By Mandy Long 2 min read

IBM is pleased to announce the latest release of IBM Cloud Pak® for Watson AIOps — version 3.4 — available as of June 30, 2022.

IBM Cloud Pak for Watson AIOps version 3.4 release focuses on improvements that continue to bring together our powerful IT Automation portfolio and provides enhancements to our scalability.

Additionally, we’ve added a new connector to our network monitoring product, IBM SevOne Network Performance Management (NPM), to help network data flow to Cloud Pak for Watson AIOps to detect incidents and achieve proactive incident resolution stemming from customers’ network environments. This helps users in the midst of an IT incident go from finger-pointing in the war-room to clearly and quickly locating failures for prompt resolution. Finally, Cloud Pak for Watson AIOps will feature new improvements to Infrastructure Automation, and it will now provide support for Red Hat Virtualization 4.4 and the System Z (in addition to the integration with Turbonomic), to ensure clients leverage existing deployments and increase ROI with proactive AIOps capabilities.

New features

Integration with IBM SevOne NPM

Cloud Pak for Watson AIOps v3.4 and the new connector with IBM SevOne NPM allow companies to add an additional tool on their journey to AIOps. In the past few years, the focus of the shift from IT Operations to AIOps has been application-centric. Today, with the launch of v3.4 of Cloud Pak for Watson AIOps, this application-centric approach shifts to full-stack observability through integration with the dynamic network monitoring and alerting capabilities from IBM SevOne NPM.

Enterprise scaling updates

According to the IDC, 80% of organizations estimate that they have over 1,000 applications in their portfolio, which means that now, more than ever, scalability is an essential part of AIOps. IBM Cloud Pak for Watson AIOps v3.4 delivers on the promise to serve organizations with dozens or thousands of applications with improvements to a few of our key features:

  • New ways of viewing events/alerts, relevant information and associated runbooks that can be used with existing Netcool components (e.g., Netcool/OMNIbus, Netcool/Impact) deployed in production.
  • The ability to investigate multiple metrics at one time.
  • Improvements to change-risk model performance using data profiling, data selection and user feedback.
  • The ability to create custom event, topology and metric data collectors.
  • Improvements to scalability, upgradeability, backup and restore and geo-redundancy.

Overall, our solution generates trusted opinions, insights and actions that enable users to consolidate and prioritize their work. Users spend less time identifying issues and can now allocate more time to innovation.

Learn more

To learn more, visit our IBM Cloud Pak for Watson AIOps page, and learn all about our product features with our product tour.

More from Artificial intelligence

How a company transformed employee HR experience with an AI assistant

3 min read - IBM Build Partner Inspire for Solutions Development is a regional consulting firm that provides enterprise IT solutions across the Middle East. Jad Haddad, Head of AI at Inspire for Solutions Development has embraced the IBM watsonx™ AI and data platform to enhance the HR experience for its 450 employees. Next-gen HR for a next-gen workforce As a new generation of digital natives enters the workforce, we are seeing new expectations around the employee experience. Gen Z employees prefer an HR…

Advance your enterprise Journey to Hybrid Cloud and AI powered by AIOps on Z

2 min read - Thanks to rising costs, skills shortages and ever-growing security threats, businesses must adapt quickly to shifts in demand patterns brought on by a digital workforce and rapidly changing buyer behavior. That requires putting extra emphasis on the resiliency and performance of your business processes and supporting applications. For larger IT organizations with increasingly hybrid and complex application landscapes that often include IBM Z®, it’s essential to take a comprehensive approach to IT operations. The challenge becomes “How do you effectively sift through terabytes of…

How IBM and the Data & Trust Alliance are fostering greater transparency across the data ecosystem

2 min read - Strong data governance is foundational to robust artificial intelligence (AI) governance. Companies developing or deploying responsible AI must start with strong data governance to prepare for current or upcoming regulations and to create AI that is explainable, transparent and fair. Transparency about data is essential for any organization using data to drive decision-making or shape business strategies. It helps to build trust, accountability and credibility by making data and its governance processes accessible and understandable. However, this transparency can be…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters