We live in a data-driven age, where the organizations that use data to make smarter decisions and respond faster to changing needs are more likely to come out on top. You can see this data at work in new service offerings (such as ride-sharing apps) as well as the powerhouse systems that drive retail (both e-commerce and in-store transactions).
Within the data science field, there are two types of data processing systems: online analytical processing (OLAP) and online transaction processing (OLTP). The main difference is that one uses data to gain valuable insights, while the other is purely operational. However, there are meaningful ways to use both systems to solve data problems.
The question isn’t which to choose, but how to make the best use of both processing types for your situation.
Online analytical processing (OLAP) is a system for performing multi-dimensional analysis at high speeds on large volumes of data. Typically, this data is from a data warehouse, data mart or some other centralized data store. OLAP is ideal for data mining, business intelligence and complex analytical calculations, as well as business reporting functions like financial analysis, budgeting and sales forecasting.
The core of most OLAP databases is the OLAP cube, which allows you to quickly query, report on and analyze multidimensional data. What’s a data dimension? It’s simply one element of a particular dataset. For example, sales figures might have several dimensions related to region, time of year, product models and more.
The OLAP cube extends the row-by-column format of a traditional relational database schema and adds layers for other data dimensions. For example, while the top layer of the cube might organize sales by region, data analysts can also “drill-down” into layers for sales by state/province, city and/or specific stores. This historical, aggregated data for OLAP is usually stored in a star schema or snowflake schema.
The following graphic shows the OLAP cube for sales data in multiple dimensions — by region, by quarter and by product:
Online transactional processing (OLTP) enables the real-time execution of large numbers of database transactions by large numbers of people, typically over the Internet. OLTP systems are behind many of our everyday transactions, from ATMs to in-store purchases to hotel reservations. OLTP can also drive non-financial transactions, including password changes and text messages.
OLTP systems use a relational database that can do the following:
Many organizations use OLTP systems to provide data for OLAP. In other words, a combination of both OLTP and OLAP are essential in our data-driven world.
The main distinction between the two systems is in their names: analytical vs. transactional. Each system is optimized for that type of processing.
OLAP is optimized for conducting complex data analysis for smarter decision-making. OLAP systems are designed for use by data scientists, business analysts and knowledge workers, and they support business intelligence (BI), data mining and other decision support applications.
OLTP, on the other hand, is optimized for processing a massive number of transactions. OLTP systems are designed for use by frontline workers (e.g., cashiers, bank tellers, hotel desk clerks) or for customer self-service applications (e.g., online banking, e-commerce, travel reservations).
Choosing the right system for your situation depends on your objectives. Do you need a single platform for business insights? OLAP can help you unlock value from vast amounts of data. Do you need to manage daily transactions? OLTP is designed for fast processing of large numbers of transactions per second.
Note that traditional OLAP tools require data-modeling expertise and often require cooperation across multiple business units. In contrast, OLTP systems are business-critical, with any downtime resulting in disrupted transactions, lost revenue and damage to your brand reputation.
Most of the time, organizations use both OLAP and OLTP systems. In fact, OLAP systems may be used to analyze data that leads to business process improvements in OLTP systems.
Online processing systems are behind the business decisions and data transactions that power our everyday lives. To learn more about the database systems used with OLAP and OLTP, we encourage you to explore the Learn Hub articles on these topics. We also recommend checking out the IBM content on relational databases and their use cases for OLTP, IoT solutions and data warehousing for OLAP.
To learn more about integrating data for faster querying and more intuitive insights, read our ebook on IBM Db2: The AI Database.