AI Conversazionale
pittogramma cloud
AI Conversazionale

Scopri l'AI conversazionale e come aiuta le organizzazioni a coinvolgere i clienti e a fornire servizi.

Prodotti in evidenza

IBM Watson Assistant

IBM Watson Discovery


Cos'è l'AI conversazionale?

L'AI (artificial intelligence) Conversazionale si riferisce a tecnologie, come chatbot o agenti virtuali, con cui gli utenti possono parlare. Queste tecnologie utilizzano grandi volumi di dati, l'apprendimento automatico e l'elaborazione del linguaggio naturale per aiutare a imitare le interazioni umane, riconoscere input vocali e testuali e tradurne i significati in varie lingue.


Componenti dell'AI conversazionale

L'AI Conversazionale combina  l'elaborazione  del linguaggio naturale (NLP) con l'apprendimento automatico. I processi  NLP  fluiscono in un ciclo di feedback costante con i processi di apprendimento automatico  per migliorare continuamente gli algoritmi di AI. L'AI conversazionale  dispone di componenti di principio che le consentono di elaborare, comprendere e generare risposte in modo naturale.

L'apprendimento automatico (machine learning, ML) è un sottocampo dell'AI, costituito da un insieme di algoritmi, funzionalità e set di dati che si migliorano continuamente con l'esperienza. Man mano che l'input cresce, la macchina della piattaforma AI migliora nel riconoscere i modelli e li utilizza per fare previsioni.

L'elaborazione del linguaggio naturale rappresenta l'attuale metodo di analisi del linguaggio con l'aiuto dell' apprendimento automatico  utilizzato nell'AI conversazionale. Prima dell'apprendimento automatico, l'evoluzione delle metodologie di elaborazione del linguaggio è passata dalla linguistica alla linguistica computazionale all'elaborazione statistica del linguaggio naturale. In futuro, l'apprendimento profondo farà progredire ulteriormente le capacità di elaborazione del linguaggio naturale dell'AI conversazionale .

L'NLP si compone di quattro fasi: generazione dell'input, analisi dell'input, generazione dell'output e apprendimento per rafforzamento. Dati non strutturati trasformati in un formato leggibile da un computer, che vengono poi analizzati per generare una risposta adeguata. Gli algoritmi di ML sottostanti migliorano nel tempo, attraverso l'apprendimento, la qualità della risposta. Questi quattro passaggi della NLP possono essere ulteriormente suddivisi come riportato di seguito:

  • Generazione dell'input:  Gli utenti forniscono input tramite un sito Web o un'app; il formato dell'input può essere vocale o testuale.
  • Analisi dell'input: Se l'input è basato su testo, la soluzione  dell'app di  AI  Conversazionale utilizzerà la comprensione del  linguaggio naturale (natural language understanding, NLU) per decifrare il significato dell'input e ricavarne l'intenzione. Tuttavia, se l'input è basato sul parlato, utilizzerà una combinazione di riconoscimento vocale automatico (automatic speech recognition, ASR) e l'NLU per analizzare i dati.
  • Gestione del dialogo: Durante questa fase, la generazione del linguaggio naturale (Natural Language Generation, NLG), un componente della NLP, formulerà una risposta.
  • Apprendimento per rafforzamento:  Infine, gli algoritmi di apprendimento automatico perfezionano le risposte nel tempo per garantire l'accuratezza.

Come creare l'AI conversazionale

L'AI conversazionale inizia considerando come i potenziali utenti potrebbero voler interagire con il prodotto e le domande principali che potrebbero avere. È quindi possibile utilizzare strumenti di AI conversazionale per indirizzarli alle informazioni pertinenti. In questa sezione, esamineremo i modi per iniziare a pianificare e creare un'AI conversazionale.


1. Definisci un elenco delle domande frequenti (FAQ) per gli utenti finali
 

Le domande frequenti sono alla base del processo di sviluppo dell'AI conversazionale. Ti aiutano a definire le principali esigenze e preoccupazioni dei tuoi utenti finali, il che, a sua volta, allevierà parte del volume di chiamate per il tuo team di supporto. Se non disponi di un elenco di domande frequenti per il tuo prodotto, collabora con il tuo team che si occupa del successo dei clienti per determinare l'elenco appropriato di domande su cui l'AI conversazionale può risultare d'aiuto. 

Ad esempio, supponiamo il caso di una banca. L'elenco di partenza delle domande frequenti potrebbe essere:

  • Come posso accedere al mio conto?
  • Dove posso trovare il mio numero di conto e le coordinate bancarie?
  • Quando arriverà la mia carta di debito?
  • Come faccio ad attivare mia carta di debito?
  • Come posso ordinare gli assegni?
  • Come posso parlare con un banchiere locale?

Nel tempo sarà sempre possibile aggiungere nuove domande, quindi inizia con un piccolo gruppo di domande in modo da definire un prototipo per il processo di sviluppo di un'AI conversazionale.


2. Utilizza le domande frequenti per sviluppare degli obiettivi nel tuo strumento di AI conversazionale
 

Le tue domande frequenti costituiscono la base degli obiettivi, o degli intenti, espressi all'interno dell'input dell'utente, come l'accesso a un conto. Una volta delineati i tuoi obiettivi, puoi inserirli come intenti in uno strumento di AI conversazionale competitivo, come Watson Assistant.

Da qui, dovrai istruire la tua AI conversazionale sui modi in cui un utente può esprimere o chiedere questo tipo di informazioni. Se prendiamo l'esempio di "come accedere al mio account", potresti pensare ad altre frasi che gli utenti potrebbero utilizzare quando parlano con un rappresentante dell'assistenza, ad esempio "come accedere", "come reimpostare la password", "registrarmi per un conto”, e così via.

Se non sei sicuro di altre frasi che i tuoi clienti potrebbero usare, potresti considerare di confrontarti con i tuoi team di analisi e supporto. Se i tuoi strumenti di analisi del chatbot sono stati impostati in modo appropriato, i team di analisi possono estrarre i dati web e risalire ad altre domande partendo dai dati di ricerca del sito. In alternativa, possono anche analizzare i dati di trascrizione delle conversazioni tramite chat web e call center. Se i tuoi team di analisi non sono impostati per questo tipo di analisi, anche i tuoi team di supporto possono fornire informazioni preziose sui modi comuni in cui i clienti formulano le loro domande.


3. Utilizza gli obiettivi per capire ed estrarre nomi e parole chiave rilevanti
 

Pensa ai nomi o alle entità che circondano i tuoi intenti. In questo esempio, ci siamo concentrati sul conto bancario di un utente. Di conseguenza, ha senso creare un'entità collegata alle informazioni del conto bancario.

In questa categoria di informazioni potrebbe rientrare un certo numero di valori, come "nome utente", "password", "numero di conto" e così via.

Per comprendere le entità collegate agli intenti dell'utente specifico, puoi utilizzare le stesse informazioni che sono state raccolte dagli strumenti o dai team di supporto per sviluppare obiettivi o intenti. Questi nomi precederanno o seguiranno la domanda principale.


4. Unisci il tutto per creare un dialogo significativo con il tuo utente
 

Tutti questi elementi contribuiscono a creare una conversazione con il tuo utente finale. Gli intenti consentono a una macchina di decifrare ciò che l'utente sta chiedendo e le entità agiscono come un modo per fornire risposte pertinenti. Ad esempio, potresti immaginare che il dialogo tra un'AI conversazione e un utente che ha dimenticato una password si svolga come segue:

Insieme, obiettivi e nomi (o intenti ed entità come IBM ama chiamarli) collaborano per costruire un flusso di conversazione logico basato sulle esigenze dell'utente. Se sei pronto per iniziare a creare la tua AI conversazionale, puoi provare gratuitamente  Watson Assistant Lite di IBM . 


Use cases per l'AI conversazionale

Quando le persone pensano all'AI conversazionale, spesso, per i loro servizi di assistenza clienti e per l'implementazione omnicanale, vengono in mente chatbot online e assistenti vocali. La maggior parte delle app di  AI conversazionale dispongono di analisi approfondite integrate nel programma di  backend, che aiutano a garantire esperienze di conversazione simili a quelle umane. 

Gli esperti considerano  le attuali applicazioni dell'AI conversazionale un'AI debole, poiché sono focalizzate sulla gestione di un campo di attività molto ristretto. L'IA solida, che è ancora un concetto teorico, si concentra su una coscienza simile a quella dell'uomo che può risolvere vari compiti e risolvere un'ampia gamma di problemi.

Nonostante il suo obiettivo ristretto, l'AI conversazionale è una tecnologia estremamente redditizia per le aziende, che le aiuta a diventare più redditizie. Mentre un chatbot AI è la forma più popolare di AI conversazionale, ci sono ancora molti altri casi d'uso in tutta l'azienda. Alcuni esempi includono:

  • Assistenza clienti online:  I  chatbot  online stanno sostituendo gli  agenti umani nel percorso di comunicazione del cliente. Rispondono a domande frequenti sugli argomenti, come la spedizione, o forniscono consigli personalizzati, eseguendo il cross-selling di prodotti o consigliando le taglie per gli utenti, cambiando il modo in cui pensiamo al coinvolgimento del cliente nei  siti web e sulle piattaforme di social media . Degli esempi includono i bot di  messaggistica  sui siti di  e-commerce  con gli  agenti virtuali , le app di messaggistica, come Slack e Facebook Messenger, e le attività solitamente effettuate da  assistenti virtuali  e  assistenti vocali .
  • Accessibilità:  Le aziende possono diventare più accessibili riducendo le barriere all'ingresso, in particolare per gli utenti che utilizzano tecnologie assistive. Le funzionalità comunemente utilizzate di AI Conversazionale per questi gruppi sono la  dettatura vocale e la traduzione linguistica.
  • Processi HR Molti processi delle risorse umane possono essere ottimizzati utilizzando l'AI conversazionale, come la formazione dei dipendenti, i processi di onboarding e l'aggiornamento delle informazioni sui dipendenti.
  • Assistenza sanitaria:  L'AI conversazionale  può rendere i servizi di assistenza sanitaria più accessibili e convenienti per i pazienti, migliorando anche l' efficienza operativa  e snellendo il processo amministrativo, come l'elaborazione delle richieste.
  • Dispositivi Internet of things (IoT):  La maggior parte delle famiglie ora ha almeno un dispositivo IoT, dagli altoparlanti Alexa agli smartwatch fino ai telefoni cellulari. Questi dispositivi utilizzano il  riconoscimento vocale automatizzato per interagire con gli utenti finali. Tra le applicazioni più popolari vi sono Amazon Alexa, Apple Siri e  Google Home.
  • Software informatico:  Molte attività in un ambiente d'ufficio sono semplificate dall' AI conversazionale, come il completamento automatico della ricerca quando si cerca qualcosa su  Google  e il controllo ortografico.

Sebbene la maggior parte dei  chatbot  AI e delle app attualmente disponga di rudimentali capacità di risoluzione dei problemi, possono ridurre i tempi e migliorare l'efficienza dei costi su interazioni ripetitive di assistenza ai clienti, liberando risorse del personale che potranno concentrarsi su interazioni con i clienti più coinvolte. Nel complesso, le app di AI conversazionale sono state in grado di replicare bene le esperienze di  conversazione umane, portando a tassi più elevati di soddisfazione del cliente.


Vantaggi dell'AI conversazionale

L'AI conversazionale è una soluzione conveniente per molti processi aziendali. Di seguito sono riportati alcuni esempi dei vantaggi legati all'utilizzo AI conversazionale.


Efficienza dei costi
 

Il personale di un servizio clienti può essere piuttosto costoso, soprattutto se cerchi di rispondere alle domande al di fuori del normale orario d'ufficio. Fornire assistenza ai clienti tramite interfacce di conversazione può ridurre i costi aziendali relativi a stipendi e formazione, in particolare per le piccole o medie imprese. I chatbot e gli assistenti virtuali possono rispondere istantaneamente, fornendo disponibilità 24 ore su 24 ai potenziali clienti.

Le conversazioni umane possono anche portare a risposte incoerenti ai potenziali clienti. Poiché la maggior parte delle interazioni con il supporto sono ripetitive e di ricerca di informazioni, le aziende possono programmare l'AI conversazionale per gestire vari casi d'uso, garantendo completezza e coerenza. Ciò crea continuità all'interno dell'esperienza del cliente e consente a risorse umane preziose di essere disponibili per domande più complesse.


Aumento delle vendite e coinvolgimento del cliente
 

Con l'adozione dei dispositivi mobili nella vita quotidiana dei consumatori, le aziende devono essere preparate a fornire informazioni in tempo reale ai propri utenti finali. Poiché è possibile accedere agli strumenti di AI conversazionale più facilmente rispetto al personale umano, i clienti possono interagire più rapidamente e frequentemente con le aziende. Questo supporto immediato consente ai clienti di evitare i lunghi tempi di attesa del call center, migliorando nel complesso l'esperienza del cliente. Man mano che la soddisfazione del cliente cresce, le aziende ne riscontreranno l'impatto riflesso in una maggiore fedeltà dei clienti e in ricavi aggiuntivi provenienti da referenze.

Le funzionalità di personalizzazione all'interno dell'AI conversazionale forniscono anche ai chatbot la capacità di fornire consigli agli utenti finali, consentendo alle aziende di vendere in modo incrociato prodotti che i clienti potrebbero non aver inizialmente considerato.


Scalabilità
 

L'AI conversazionale è anche molto scalabile poiché l'aggiunta di un'infrastruttura di supporto per l'AI conversazionale è più economica e veloce rispetto al processo di assunzione e inserimento di nuovi dipendenti. Ciò risulta particolarmente utile quando i prodotti si espandono in nuovi mercati o durante picchi di domanda imprevisti a breve termine, come durante le festività natalizie.

Per saperne di più sui vantaggi dell'AI conversazionale, guarda la nostra serie di webinar Masterclass.


Sfide delle tecnologie AI conversazionale

L'AI conversazionale  è ancora agli inizi e negli ultimi anni è iniziata una sua diffusa adozione aziendale. Come tutti i nuovi progressi tecnologici, ci sono alcune sfide nel passaggio alle applicazioni di AI conversazionale. Alcuni esempi includono:


L'input della lingua
 

L'input della lingua può essere un punto dolente per  l'AI conversazionale, indipendentemente dal fatto che l'input sia sotto forma di testo o voce. Dialetti, accenti e rumori di sfondo influiscono sulla comprensione dell'input grezzo da parte dell'AI. Lo slang e il linguaggio non scritto possono anche generare problemi nell'elaborazione dell'input.

Tuttavia, la sfida più grande per l' AI conversazionale  è il fattore umano nell'input linguistico. Emozioni, tono e sarcasmo rendono difficile per l' AI conversazionale  interpretare il significato previsto dall'utente e rispondere in modo appropriato.


Privacy e sicurezza
 

Siccome l'AI conversazionale dipende dalla raccolta di dati per rispondere alle domande degli utenti, è anche vulnerabile alle violazioni della privacy e della sicurezza. Lo sviluppo di app di AI conversazionale  con elevati  standard di privacy e sicurezza e i sistemi di monitoraggio contribuiranno a creare nel tempo fiducia tra gli utenti finali, aumentando in definitiva l'utilizzo dei chatbot.


Apprensione dell'utente
 

Gli utenti possono essere preoccupati per la condivisione di informazioni personali o sensibili, soprattutto quando si rendono conto che stanno conversando con una macchina anziché con un essere umano. Poiché tutti i tuoi clienti non saranno i esperti, sarà importante educare e socializzare il tuo pubblico di sui vantaggi e sulla sicurezza di queste tecnologie per creare una migliore esperienza del cliente. Ciò può portare a una cattiva  esperienza dell'utente e a prestazioni ridotte dell'AI e negarne gli effetti positivi.

Inoltre, a volte i chatbot non sono programmati per rispondere all'ampia gamma di richieste degli utenti. Quando ciò accade, sarà importante fornire un canale di comunicazione alternativo per affrontare queste domande più complesse, poiché risulterebbe frustrante per l'utente finale ricevere una risposta errata o incompleta. In questi casi, ai clienti dovrebbe essere data l'opportunità di connettersi con un rappresentante umano dell'azienda.

Infine, l'AI conversazionale  può anche ottimizzare il flusso di lavoro in un'azienda, portando a una riduzione della forza lavoro per una particolare funzione lavorativa. Questo può innescare un attivismo socio-economico, che potrebbe portare a un contraccolpo negativo per un'azienda.


IBM e l'AI conversazionale

IBM Watson® Assistant  è un chatbot AI basato su cloud che risolve i problemi dei clienti al primo colpo. Fornisce ai clienti risposte veloci, coerenti e precise tramite applicazioni, dispositivi o canali. Utilizzando l'AI, Watson Assistant impara dalle conversazioni dei clienti, migliorando la sua capacità di risolvere i problemi al primo colpo, contribuendo ad evitare la frustrazione dovuta ai lunghi tempi di attesa, alle ricerche noiose e ai chatbot inutili. In combinazione con IBM Watson Discovery, puoi migliorare l'interazione degli utenti con le informazioni provenienti da documenti e siti web utilizzando la ricerca con tecnologia AI.

Watson Assistant ottimizza le interazioni chiedendo ai clienti il contesto nel quale si inseriscono le loro dichiarazioni ambigue. Questo elimina la frustrazione di dover riformulare continuamente le domande, offrendo un'esperienza del cliente positiva. Inoltre, Watson Assistant fornisce ai clienti una serie di opzioni in risposta alle loro domande. Se non è in grado di risolvere un problema del cliente particolarmente complesso, può instradare senza alcuna interruzione il cliente a un agente umano, proprio nello stesso canale.

Watson Assistant è progettato per inserirsi nel tuo ecosistema di servizio clienti, integrandosi con le tue piattaforme e i tuoi strumenti, rendendo l'intera esperienza cliente più intelligente e semplice dall'inizio alla fine. Questo fa sì che le interazioni dei tuoi clienti con la tua azienda vengano avvertite più come una relazione significativa, con qualcuno a cui importa davvero e meno come una serie di conversazioni casuali e frammentate con degli sconosciuti.

IBM comprende anche che un'esperienza del cliente non è limitata solo alla conversazione ma riguarda anche la protezione dei dati sensibili. Ecco perché portiamo un'esperienza di altissimo livello nei campi della sicurezza, dell'affidabilità e della conformità nella progettazione di tutti i prodotti Watson. Inoltre, IBM ti aiuta a proteggere il tuo investimento offrendoti la flessibilità di implementare Watson Assistant in ambienti on-premise, in IBM Cloud® oppure con un altro provider cloud a tua scelta tramite IBM Cloud Pak® for Data.

Esegui questa valutazione di 5 minuti per scoprire dove puoi ottimizzare le tue interazioni del servizio clienti con l'AI per aumentare la soddisfazione dei clienti, ridurre i costi e aumentare il fatturato.

Oppure fai clic qui per esplorare Watson Assistant e iniziare a creare oggi. 

Per ulteriori informazioni sull' AI conversazionale, registrati per ottenere l'IBMid e crea il tuo account IBM Cloud.

AI per il servizio clienti Gli utenti di IBM Watson hanno realizzato un ROI del 337% in tre anni. Migliora l'esperienza del cliente con l'AI conversazionale.

Ulteriori informazioni


Soluzioni correlate

Agent virtuale intelligente

IBM Watson Assistant fornisce ai clienti risposte veloci, coerenti e precise su qualsiasi applicazione, dispositivo o canale.


Chatbot AI

Risolvi i problemi dell'assistenza clienti al primo colpo con l'AI.


IBM Watson Discovery

Trova risposte e approfondimenti critici nei tuoi dati aziendali utilizzando la tecnologia di ricerca aziendale basata sull'intelligenza artificiale.