主页 Data Fabric 解决方案
如果采用 Data Fabric 架构来指导决策会怎样?

探索指南 阅读用例
您面临哪些数据挑战?

您的员工需要做出数据驱动的决策,但数据往往分散在多个孤岛中。通过深入了解组织的需求和用例,可以设计一个数据架构,为团队提供支持,并在整个生态系统中发挥作用。

有哪些最常见的数据用例和挑战?数据整合、数据治理、数据可观测性、数据目录、数据编排和 Master Data Management。详细了解每项用例和挑战,以及现代数据架构(例如 Data Fabric)如何帮助塑造和统一数据驱动型企业。

IBM 收购领先的实时数据集成公司 StreamSets
最新消息 公告

IBM 推出 Data Product Hub 以实现企业范围内的数据共享

IBM® Cloud Pak for Data 5.0 现已推出新功能,可简化数据共享、数据集成和治理

客户使用详情
数据集成 在多云环境中连接不同来源的数据,并随时随地将其交付给团队。 了解有关数据集成的更多信息

数据治理 为高质量、受保护数据的自助服务访问创建业务就绪型数据基础。 了解有关数据治理的更多信息

数据可观察性 Databand 连续数据可观察性平台有助于更早地检测数据事件,更快地解决这些问题,并为企业提供更可信的数据。 深入了解 IBM® Databand

Master Data Management 提供主数据及其关系的准确视图,以更快获得洞察分析并提高数据质量。 了解有关 Master Data Management 的更多信息

Data Fabric 架构对企业 AI 至关重要

企业 AI 需要建立在正确数据基础上的可信数据。客户可以借助 IBM Data Fabric,使用数据整合和数据治理功能为 AI 构建适当的数据基础架构,以获取、准备和整理数据,然后 AI 构建者即可使用 watsonx.aiwatsonx.data 轻松访问相关数据。利用 IBM DataStage 作为首要的摄取解决方案来填充 watsonx.data 湖仓一体。

 

阅读此博客,了解 IBM Data Fabric 为何对成功实施 AI 至关重要。
现代 Data Fabric 架构如何能帮助塑造数据驱动型企业?

Data Fabric 是一种架构方法,旨在简化数据访问并促进组织独特工作流程的自助数据消费。端到端 Data Fabric 的功能包括数据匹配、可观察性、主数据管理、数据质量、实时数据集成等,所有这些均可在不淘汰或替换当前技术堆栈的情况下实现。无论是简化数据生产者的日常工作,还是为数据工程师、数据科学家和业务用户提供数据自助服务访问权限,Data Fabric 均可准备并提供洞察分析所需的数据,并制定更明智的决策。

IBM 的 Data Fabric 可为组织提供可信赖的数据基础,支持客户自动执行数据发现,丰富和保护数据治理和质量功能,并采用各种数据集成方式为 AI 工作流程提供可靠的数据。这种架构可组合,可支持 IBM 满足客户在数据旅程各个阶段的需求。

Data Fabric 架构成功案例 提升业务管道

借助统一的数据和 AI 平台,IBM 全球首席数据办公室在三年内将其业务管道提升至 50 亿美元。

阅读案例
加速创新

卢森堡科技研究所建立了一个先进平台,能够更快地交付数据,为企业和研究人员提供支持。

阅读案例
客户至上

印度国家银行设计了一个具备更快速安全数据整合功能的智能平台,从而彻底改变客户体验。

阅读案例
Data Fabric 架构关键要素 强化知识图谱

提供关于数据处理和自动化通用业务理解的抽象层,以根据洞察分析采取行动。

智能整合

在数据策略的驱动下,通过一系列整合方式对非结构化数据进行提取、采集、流式传输、虚拟化和转换,以最大限度地提高性能,同时尽量缩减存储空间和成本。

自助式数据使用

支持自助式消费的交易平台,让用户可以查找、协作并获取高质量数据。

统一数据生命周期

端到端生命周期管理,用于组合、构建、测试、优化和部署 Data Fabric 架构的各种功能。

多模式治理

统一定义和实施数据策略、数据治理、数据安全和数据管理,打造业务就绪型数据管道。

AI 和混合云就绪

专门为混合云环境打造的 AI 融合可组合架构。

Data Fabric 背后的技术 各组织可以利用 IBM Cloud Pak for Data 平台,在一个统一的平台中体验 Data Fabric 的优势,该平台可将各种混合多云环境中的所有数据运用于人工智能和数据分析。 了解 IBM Cloud Pak for Data 提供优质数据领域的行业领导者

了解 IBM 为何在 2024 年 Gartner 增强数据质量解决方案魔力象限中被评为领导者。

阅读 Gartner 报告
以数据整合著称

IBM 在《2023 年 Gartner 数据整合工具魔力象限》报告中连续第 18 年被评选为行业领导者。

下载报告
利用 Data Fabric 重塑业务优势

Data Fabric 架构可在混合多云环境中提供已治理数据,从而推动创新和增长。

观看网络研讨会 (23:56)
获取精选时事通讯,了解技术、业务和行业意见领袖的最新动向

常见问题解答

Data Fabric 架构和数据网格可以并存。Data Fabric 架构通过自动执行创建数据产品和管理数据产品生命周期所需的多种任务,提供实施和充分利用数据网格所需的功能。可以利用 Data Fabric 架构基础的灵活性实施数据网格,继续利用以用例为中心的数据架构,无论您的数据是位于企业内部还是云端。

阅读: Data Fabric 架构支持实施数据网格的三种途径

数据虚拟化是实现 Data Fabric 架构方法的技术之一。数据虚拟化工具并非使用标准的提取、转换、加载 (ETL) 流程,以实体方式从各种本地部署和云端来源迁移数据,而是连接到不同的数据源,仅整合所需的元数据并创建虚拟数据层,使用户可以实时使用源数据。
持续累积的数据令组织难以获取信息。这些数据蕴藏着未知的洞察分析,从而导致知识缺口。
组织可以借助 Data Fabric 架构中的数据虚拟化功能,在不移动数据的情况下从源头获取数据,通过更迅速准确的查询帮助缩短实现价值的时间。

数据管理工具始于数据库,随着更复杂业务问题的出现,逐渐发展为涵盖各种云端和本地部署的数据仓库和数据湖。但是,企业始终受限于在性能和成本效率低下的数据仓库和数据湖中运行工作负载,并受制于其运行分析和 AI 用例的能力。新开源技术的出现,以及减少数据重复和复杂 ETL 管道的需求,催生了一种全新的架构方法,即湖仓一体。它具备数据湖的灵活性、数据仓库的性能和结构,并共享元数据和内置治理、访问控制和安全性。但是,为了在整个组织内继续获取所有这些经过优化并由湖仓一体进行本地管理的数据,需要 Data Fabric 来简化数据管理,并在全球范围内实施访问。Data Fabric 有助于优化数据潜力,促进数据共享,并通过自动整合数据、嵌入治理和促进自助式数据消费等存储库无法实现的方式,加快实施数据计划。

Data Fabric 架构是此类工具发展的下一步。凭借此架构,企业可以继续使用已投资的不同数据存储,同时简化数据管理。

立即开始

深入了解 Data Fabric 解决方案免费试用

数据整合试用 数据治理试用 预约 Databand 实时演示 预约数据治理实时演示 Master Data Management 试用