December 18, 2019 By Ritesh Gupta 3 min read

High-quality data is the core requirement for any successful, business-critical analytics project. It is the key to unlock and generate business value and deliver insights in a timely fashion. However,  stakeholders across the board are responsible for data delivery, quickly evolving requirements, and processes. Their preference towards technology is deflating traditional methods of responding to inconsistent data and consequently disappointing users. Some common roadblocks include:

  • Teams spend more time identifying data pipeline and code inconsistency issues due to older code or incorrect connection and metadata information, infrastructure or operations-related challenges, or resolving technical dependencies across stakeholders compared to the time spent focusing on data delivery
  • Manual processes lead to long response times, frequent errors, inconsistent data, and poor repeatability needed to support multiple teams continuously
  • Siloed processes stemming from on-demand economies are leading to unusable data or unpredictable results

This is where the DataOps practice and methodology come into play. While many have defined what DataOps means, only a handful have tried to provide a deeper inside look at the holistic toolchain requirements. The tooling to directly and indirectly support DataOps needs can be broken down to five steps, leveraging existing analytics tools along with toolchain components meant to address source control management, process management, and efficient communication among groups to deliver a reliable data pipeline.

  1. Use source control management: A data pipeline is nothing but source code responsible for converting raw content into useful information. We can automate the data pipeline end-to-end, producing a source code which can be consumed in reproducible fashion. A revision control tool (like GitHub) helps to store and manage all of the changes to code and configuration to minimize inconsistent deployment.
  2. Automate DataOps process and workflow: For DataOps methodology to be successful, automation is the key and requires a data pipeline designed with run-time flexibility. Key requirements to achieve this are automated data curation services, metadata managementdata governance, master data management, and self-service interaction.
  3. Add data and logic tests: To be certain that the data pipeline is functioning properly, testing of inputs, outputs, and business logic must be applied. At each stage, the data pipeline is tested for accuracy or potential deviation along with errors or warnings before they are released to have consistent data quality.
  4. Work without fear with consistent deployment: Data analytics professionals dread the prospect of deploying changes that break the current data pipeline. This can be addressed with two key workflows, which later integrate in production. First, the value pipeline creates continuous value for organizations. Second, the innovation pipeline takes the form of new analytics undergoing development which are later added to the production pipeline.
  5. Implement communication and process management: Efficient and automated notifications are critical within a DataOps practice. When changes are made to any source code; or when a data pipeline is triggered, failed, completed or deployed, the right stakeholders can be notified immediately. Tools to enable cross-stakeholder communications are also part of the toolchain (think Slack or Trello).

The key takeaway from this article is this: a holistic approach to the DataOps toolchain is critical for success. Organizations that focus on one element at the expense of others are unlikely to realize the benefits from implementing DataOps practices.

Learn about the IBM DataOps Program

The shift to adopt DataOps is real. According to a recent survey, 73 percent of companies plan to Invest in DataOps. IBM is here to help you on your path to a DataOps practice with a prescriptive methodology, leading technology, and the IBM DataOps Center of Excellence, where experts work with you to customize an approach based on your business goals and identify the right pilot projects to drive value for your executive team.

Accelerate your DataOps learning and dive deeper into the methodology and toolchain by reading the whitepaper Implementing DataOps to deliver a business-ready data pipeline.

Was this article helpful?

More from Cloud

IBM Tech Now: April 8, 2024

< 1 min read - ​Welcome IBM Tech Now, our video web series featuring the latest and greatest news and announcements in the world of technology. Make sure you subscribe to our YouTube channel to be notified every time a new IBM Tech Now video is published. IBM Tech Now: Episode 96 On this episode, we're covering the following topics: IBM Cloud Logs A collaboration with IBM and Anaconda IBM offerings in the G2 Spring Reports Stay plugged in You can check out the…

The advantages and disadvantages of private cloud 

6 min read - The popularity of private cloud is growing, primarily driven by the need for greater data security. Across industries like education, retail and government, organizations are choosing private cloud settings to conduct business use cases involving workloads with sensitive information and to comply with data privacy and compliance needs. In a report from Technavio (link resides outside, the private cloud services market size is estimated to grow at a CAGR of 26.71% between 2023 and 2028, and it is forecast to increase by…

Optimize observability with IBM Cloud Logs to help improve infrastructure and app performance

5 min read - There is a dilemma facing infrastructure and app performance—as workloads generate an expanding amount of observability data, it puts increased pressure on collection tool abilities to process it all. The resulting data stress becomes expensive to manage and makes it harder to obtain actionable insights from the data itself, making it harder to have fast, effective, and cost-efficient performance management. A recent IDC study found that 57% of large enterprises are either collecting too much or too little observability data.…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters