Most organizations today are preparing for a world of pervasive AI. This evolution requires business and technical leaders to equip their organizations with a solid understanding of new technological capabilities, technical skills to leverage new technologies, and vision focused on new approaches to traditional IT workflows. But a lack of AI skills is among the top barriers for AI adoption. Though expert data scientists and AI practitioners are graduating from universities in record numbers, organizations still experience significant difficulties finding and attracting good talent, which makes AI upskill programs a priority.
Every business will eventually become an AI business. And every business knows it needs to upskill its employees for AI. However, organizations struggle to determine what upskilling for AI means, and the specific actions they must take to develop those skills. What does it mean for an organization to be upskilled for the world of AI? Watch this presentation for comprehensive guidance.
AI is not monolithic. It is not defined by one set of skills, nor by a single role in the organization.
Some skills are relatively simple and foundational and must be developed extensively across the organization. Others are more complex, centered among smaller groups of higher-skilled professionals. It is critical to learn how multiple roles with multiple skill sets align and orchestrate their work in a unified framework focused on end results.
Organizations developing programs to upskill their employees should focus on skills progression starting with foundational elements for all and going deeper into levels of more complex specialization for specific roles. We see this progression of skills structured in three main levels: AI literacy, contextual AI knowledge, and AI solution building capabilities.
These are the skills that should be developed extensively throughout the organization, focusing on the conceptual understanding of data, the ability to interact with tools that enable or are driven by AI, and the ability to identify opportunities for AI in the organization.
These should target both technical and non-technical professionals who should be able to:
The next level of skills requires embracing AI technology capabilities and infusing them into other domains. The focus is to develop domain strategies using AI technologies, managing inputs and using outputs of prebuilt AI models. At this stage some skills should be developed across technical and nontechnical teams, with others in development, data engineering and data scientist.
Organizations need practitioners who can:
The next level of skills focuses on building AI solutions and developing the skills needed to manage an end-to-end AI production process. The data science role is the heart of the AI production cycle, with other business and technical stakeholders playing significant roles at different stages. Data scientists and their allied stakeholders typically:
The enormous opportunities and benefits artificial intelligence can bring to an organization require skills development programs designed to ensure consistency and intentional outcomes. A prescriptive approach to AI skills development is critical for success.
To learn more, check out our AI skills development programs.
We surveyed 2,000 organizations about their AI initiatives to discover what's working, what's not and how you can get ahead.
IBM® Granite™ is our family of open, performant and trusted AI models tailored for business and optimized to scale your AI applications. Explore language, code, time series and guardrail options.
Access our full catalog of over 100 online courses by purchasing an individual or multi-user subscription today, enabling you to expand your skills across a range of our products at a low price.
Led by top IBM thought leaders, the curriculum is designed to help business leaders gain the knowledge needed to prioritize the AI investments that can drive growth.
Want to get a better return on your AI investments? Learn how scaling gen AI in key areas drives change by helping your best minds build and deliver innovative new solutions.
Learn how to confidently incorporate generative AI and machine learning into your business.
Dive into the three critical elements of a strong AI strategy: creating a competitive edge, scaling AI across the business and advancing trustworthy AI.