Quantum Computing

The Future is Quantum

Share this post:

IBM 50Q System: An IBM cryostat wired for a 50 qubit system.

Some of the most important technical advances of the 20th century were enabled by decades of fundamental scientific exploration, whose initial purpose was simply to extend human understanding. When Einstein discovered relativity, he had no idea that one day it would be an important part of modern navigation systems. Such is the story of quantum science.

We have come a long way since the earliest days of quantum information theory, when IBM Fellow Charlie Bennett and the other quantum information science pioneers created the foundations that have given rise to a thriving scientific community. Today, this same community has made enough progress that the earliest real systems, which are able to implement theoretical predictions, are being built before our eyes.

For the rest of this incredible story, visit: IBM Research Blog


nmc

Quantum information science is an area of study based on the idea that information science depends on quantum effects in physics.

Comments are closed.

More Quantum Computing Stories

Getting the World Quantum Ready

The world took a big leap forward toward quantum computing readiness, today. A dozen international organizations representing Fortune 500 companies, academia, and the government joined the newly minted IBM Q Network. Together, we are committed to exploring scientific and commercial applications of quantum computing, leveraging IBM’s recently-announced 20-qubit commercial system – and, soon, our next-generation […]

Continue reading

The Chip Innovation of ’97 that Spurred Even Greater Scale & Speed

Twenty years ago, after riding high on a microprocessor architecture that launched and sustained the PC revolution, the industry faced considerable new hurdles – specifically with the microchip’s speed and scale. Any company that manufactured a device with a chip inside of it needed something new to help them keep up with the incredible demand for […]

Continue reading

Breaking Through a Major Quantum Barrier

Quantum computing is at the threshold of tackling important problems that cannot be efficiently or practically computed by other, more classical means. Getting past this threshold will require us to build, test and operate reliable quantum computers with 50 or more qubits. Achieving this potential will require major leaps forward in both science and engineering. […]

Continue reading