Data observability is about truly understanding the health of your data and its state across your data ecosystem. It includes a variety of activities that go beyond traditional monitoring, which only describes a problem. Data observability can help identify, troubleshoot and resolve data issues in near-real time.
Utilizing data observability tools is essential for getting ahead of bad data issues, which sit at the heart of data reliability. These tools enable automated monitoring, triage alerting, tracking, comparisons, root cause analysis, logging, data lineage and service level agreement (SLA) tracking, all of which work together to help practitioners understand end-to-end data quality—including data reliability.
Implementing a data observability solution is especially important for modern data teams, where data is used to gain insights, develop machine learning models and drive innovation. It ensures that data remains a valuable asset rather than a potential liability.
Data observability needs to be infused consistently throughout the end-to-end data lifecycle. That way, all data management activities involved are standardized and centralized across teams for a clear and uninterrupted view of issues and impacts across the organization.
Data observability is the natural evolution of the data quality movement, which is making the practice of data operations (DataOps) possible.