IBM SPSS Data Preparation
Optimieren Sie die Datenaufbereitung, damit Sie schneller Analysen durchführen und genauere Schlussfolgerungen ziehen können. Testen Sie diese Funktion im Rahmen einer SPSS-Testversion mit vollem Funktionsumfang.
SPSS Statistics kostenlos testen
Produktbildschirm, optimieren Sie die Datenaufbereitung für eine schnellere Analyse
Was kann SPSS Data Preparation für Ihr Unternehmen leisten?

IBM SPSS Data Preparation bietet fortschrittliche Techniken zur Optimierung der Datenaufbereitung, damit Sie schneller genauere Datenanalyseergebnisse erhalten. Wählen Sie aus automatischen Datenaufbereitungsverfahren für schnelle Ergebnisse oder entscheiden Sie sich für andere Methoden zur Aufbereitung anspruchsvollerer Datasets. Erkennen Sie verdächtige oder ungültige Fälle, Variablen und Datenwerte ganz einfach. Betrachten Sie Muster fehlender Daten, fassen Sie unterschiedlich verteilte Variablen zusammen und arbeiten Sie genauer mit Algorithmen, die für nominale Attribute entwickelt wurden.

Dieses Modul ist in der SPSS Professional-Edition für On-Premise-Versionen und in der Base-Edition für Abonnementpläne enthalten.

 

Hauptmerkmale
Registerkarte für die Variablen

Das Dialogfeld „Daten validieren“ dient zur Validierung Ihrer Daten. Die Registerkarte „Variablen“ zeigt die Variablen in Ihrer Datei an. Beginnen Sie mit der Auswahl der gewünschten Variablen und verschieben Sie diese in die Liste mit den Analysevariablen.


Grundlegende Prüfungen

Sie können grundlegende Prüfungen bestimmen, die auf Variablen und Fälle in Ihrer Datei angewendet werden sollen. Sie können zum Beispiel Berichte erstellen, die Variablen mit einem hohen Anteil an fehlenden Werten oder leeren Fällen aufzeigen.


Standard- und benutzerdefinierte Regeln

Wenden Sie Regeln auf einzelne Variablen an, die ungültige Werte identifizieren – Werte außerhalb eines gültigen Bereichs oder fehlende Werte. Sie können auch eigene Regeln und Regeln für mehrere Variablen erstellen oder vordefinierte Regeln anwenden.

Empfehlungen

Die automatisierte Datenaufbereitung gibt Empfehlungen aus und ermöglicht es den Benutzern, die Empfehlungen genauer zu untersuchen.


Daten automatisch in einem einzigen Schritt vorbereiten

Die manuelle Datenaufbereitung ist ein komplexer und zeitaufwändiger Prozess. Wenn Sie schnell Ergebnisse benötigen, hilft Ihnen das ADP-Verfahren, Qualitätsfehler zu erkennen und zu korrigieren und fehlende Werte in einem einzigen Schritt effizient zu ergänzen. Die ADP-Funktion erstellt einen leicht verständlichen Bericht mit umfassenden Empfehlungen und Visualisierungen, mit denen Sie die richtigen Daten für Ihre Analyse bestimmen können.


Zusätzliche Optionen für die Datenaufbereitung

Führen Sie automatische Datenprüfungen durch und verabschieden Sie sich von zeitaufwändigen, mühsamen manuellen Prüfungen, indem Sie das Verfahren zur Datenvalidierung verwenden. Mit dieser Methode können Sie Regeln anwenden, um Datenprüfungen auf der Grundlage der Messgröße jeder Variable durchzuführen – egal ob kategorial oder fortlaufend. Bestimmen Sie dann die Gültigkeit der Daten und entfernen oder korrigieren Sie verdächtige Fälle nach Ihrem Ermessen vor der Analyse.


Zugriff auf eine Reihe von Funktionen

SPSS Data Preparation enthält Funktionen wie Datenvalidierung, automatisierte Datenaufbereitung, optimales Binning und Identifizierung von ungewöhnlichen Fällen.

Dokumentation lesen

Einteilung in Klassen oder Festlegung von Trennwerten für metrische Variablen

Mit dem Verfahren zum optimalen Binning können Sie Algorithmen, die für nominale Attribute entwickelt wurden (wie z. B. Naive Bayes und Logit-Modelle) genauer verwenden. Optimales Binning ermöglicht es Ihnen, metrische Variablen in Klassen einzuteilen oder Trennwerte dafür festzulegen.


Auswahl aus drei Arten des optimalen Binnings

Wählen Sie eine dieser Arten des optimalen Binnings für die Vorverarbeitung von Daten vor der Modellerstellung:

1) Unüberwacht: Teilen Sie Variablen in gleicher Anzahl in Klassen ein.
2) Überwacht: Berücksichtigen Sie die Zielvariable bei der Festlegung der Trennwerte. Diese Methode ist genauer als die unüberwachte, allerdings auch rechenintensiver.
3) Hybridansatz: Kombinieren Sie die unüberwachte mit der überwachten Methode. Diese Methode ist besonders bei einer großen Anzahl von unterschiedlichen Werten nützlich.

Technische Details
So kaufen Sie SPSS Data Preparation
  • Für On-Premise-Versionen: Kaufen Sie die Professional-Edition
  • Für Abonnementpläne: Kaufen Sie die Base-Edition
Vollständige Liste der Softwarevoraussetzungen anzeigen

Hardwarevoraussetzungen
  • Prozessor: 2 GHz oder schneller
  • Bildschirmauflösung: 1024*768 oder höher
  • Speicher: 4 GB RAM erforderlich, 8 GB RAM oder mehr empfohlen
  • Speicherplatz: 2 GB oder mehr
Vollständige Liste der Hardwarevoraussetzungen anzeigen

Machen Sie den nächsten Schritt
SPSS Statistics kostenlos testen Produkte und Preise vergleichen
Weitere Erkundungsmöglichkeiten Dokumentation Community