Structured query language (SQL) is commonly referenced in relation to NoSQL. To better understand the difference between NoSQL and SQL, it may help to understand the history of SQL, a programming language used for retrieving specific information from a database.
Before relational databases, companies used a hierarchical database system with a tree-like structure for the data tables. These early database management systems (DBMS) enabled users to organize large quantities of data. However, they were complex, often proprietary to a particular application, and limited in the ways in which they could uncover within the data. These limitations eventually led to the development of relational database management systems, which arranged data in tables. SQL provided an interface to interact with relational data, allowing analysts to connect tables by merging on common fields.
As time passed, the demands for faster and more disparate use of large data sets became increasingly more important for emerging technology, such as e-commerce applications. Programmers needed something more flexible than SQL databases (i.e. relational databases). NoSQL became that alternative.
While NoSQL provided an alternative to SQL, this advancement by no means replaced SQL databases. For example, let's say that you are managing retail orders at a company. In a relational model, individual tables would manage customer data, order data and product data separately, and they would be joined together through a unique, common key, such as a Customer ID or an Order ID. While this is great for storing and retrieving data quickly, it requires significant memory. When you want to add more memory, SQL databases can only scale vertically, not horizontally, which means your ability to add more memory is limited to the hardware you have. The result is that vertical scaling ultimately limits your company’s data storage and retrieval.
In comparison, NoSQL databases are non-relational, which eliminates the need for connecting tables.Their built-in sharding and high availability capabilities ease horizontal scaling. If a single database server is not enough to store all your data or handle all the queries, the workload can be divided across two or more servers, allowing companies to scale their data horizontally.
While each type of database has its own advantages, companies commonly utilize both NoSQL and relational databases in a single application. Today’s cloud providers can support SQL or NoSQL databases. Which database you choose depends on your goals.
For a deeper dive into the differences between the two options, see "SQL vs. NoSQL Databases: What's the Difference?"