What is supply chain analytics?
Analytics that can affect quality, delivery, customer experience — and ultimately, profitability
IBM Planning Analytics for supply chain planning Read the IDC report: Path to a Thinking Supply Chain
Man using computer
How does supply chain analytics work?

Analytics represent the ability to make data-driven decisions, based on a summary of relevant, trusted data, often using visualization in the form of graphs, charts and other means.

Supply chains typically generate massive amounts of data. Supply chain analytics helps to make sense of all this data — uncovering patterns and generating insights.

Related solutions

Explore supply chain collaboration tools

Explore IBM Planning Analytics for Supply Chain Planning

What are the types of supply chain analytics?

Different types of supply chain analytics include:

Descriptive analytics

Provides visibility and a single source of truth across the supply chain, for both internal and external systems and data.

Predictive analytics

Helps an organization understand the most likely outcome or future scenario and its business implications. For example, by using predictive analytics, you can project and mitigate disruptions and risks.

Prescriptive analytics

Helps organizations solve problems and collaborate for maximum business value. Helps businesses collaborate with logistic partners to reduce time and effort in mitigating disruptions.

Cognitive analytics

Helps an organization answer complex questions in natural language — in the way a person or team of people might respond to a question. It assists companies to think through a complex problem or issue, such as “How might we improve or optimize X?”

Applying cognitive technologies

Supply chain analytics is also the foundation for applying cognitive technologies, such as artificial intelligence (AI), to the supply chain process. Cognitive technologies understand, reason, learn and interact like a human, but at enormous capacity and speed.

This advanced form of supply chain analytics is ushering in a new era of supply chain optimization. It can automatically sift through large amounts of data to help an organization improve forecasting, identify inefficiencies, respond better to customer needs, drive innovation and pursue breakthrough ideas.

Why is supply chain analytics important?

Supply chain analytics can help an organization make smarter, quicker and more efficient decisions. Benefits include the ability to:

Reduce costs and improve margins

Access comprehensive data to gain a continuous integrated planning approach and real-time visibility into the disparate data that drives operational efficiency and actionable insights.

Better understand risks

Supply chain analytics can identify known risks and help to predict future risks by spotting patterns and trends throughout the supply chain.

Increase accuracy in planning

By analyzing customer data, supply chain analytics can help a business better predict future demand. It helps an organization decide what products can be minimized when they become less profitable or understand what customer needs will be after the initial order.

Achieve the lean supply chain

Companies can use supply chain analytics to monitor warehouse, partner responses and customer needs for better-informed decisions.

Prepare for the future

Companies are now offering advanced analytics for supply chain management. Advanced analytics can process both structured and unstructured data, to give organizations an edge by making sure alerts arrive on time, so they can make optimal decisions. Advanced analytics can also build correlation and patterns among different sources to provide alerts that minimize risks at little costs and less sustainability impact.



As technologies such as AI become more commonplace in supply chain analytics, companies may see an explosion of further benefits. Information not previously processed because of the limitations of analyzing natural language data can now be analyzed in real time. AI can rapidly and comprehensively read, understand and correlate data from disparate sources, silos and systems.

It can then provide real-time analysis based on interpretation of the data. Companies will have far broader supply chain intelligence. They can become more efficient and avoid disruptions — while supporting new business models.

Key features of effective supply chain analytics

The supply chain is the most obvious face of the business for customers and consumers. The better a company can perform supply chain analytics, the better it protects its business reputation and long-term sustainability.


In The Thinking Supply Chain, IDC’s Simon Ellis identifies the five “Cs” of the effective supply chain analytics of the future:


Key features of effective supply chain optimization include:


Being able to access unstructured data from social media, structured data from the Internet of Things (IoT) and more traditional data sets available through traditional ERP and B2B integration tools.


Improving collaboration with suppliers increasingly means the use of cloud-based commerce networks to enable multi-enterprise collaboration and engagement.


The supply chain must harden its systems from cyber-intrusions and hacks, which should be an enterprise-wide concern.

Cognitively enabled

The AI platform becomes the modern supply chain’s control tower by collating, coordinating and conducting decisions and actions across the chain. Most of the supply chain is automated and self-learning.


Analytics capabilities must be scaled with data in real time. Insights will be comprehensive and fast. Latency is unacceptable in the supply chain of the future.

Evolution of supply chain analytics

In the past, supply chain analytics was limited mostly to statistical analysis and quantifiable performance indicators for demand planning and forecasting. Data was stored in spreadsheets that came from different participants within the supply chain.

By the 1990s, companies were adopting Electronic Data Interchange (EDI) and Enterprise Resource Planning (ERP) systems to connect and exchange information among supply chain partners. These systems provided easier access to data for analysis, along with assisting businesses in their designing, planning and forecasting.

In the 2000s, businesses began turning to business intelligence and predictive analytic software solutions. These solutions helped companies gain a more in-depth knowledge of how their supply chain networks were performing, how to make better decisions and how to optimize their networks.

The challenge today concerns how companies can best use the huge amounts of data generated in their supply chain networks. As recently as 2017, a typical supply chain accessed 50 times more data than just five years earlier.¹ However, less than a quarter of this data was being analyzed. Further, while approximately 20% of all supply chain data is structured and can be easily analyzed, 80% of supply chain data is unstructured or dark data.² Today’s organizations are looking for ways to best analyze this dark data.

Studies are pointing to cognitive technologies or artificial intelligence as the next frontier in supply chain analytics. AI solutions go beyond information retention and process automation. AI software can think, reason and learn in a human-like manner. AI can also process tremendous amounts of data and information — both structured and unstructured data — and provide summaries and analyses of that information in an instant.

IDC estimates that by 2020, 50% of all business software will incorporate some cognitive computing functions.³ AI not only provides a platform for powerfully correlating and interpreting data from across systems and sources — it also allows organizations to analyze supply chain data and intelligence in real time. Coupled with emerging blockchain technologies, companies in the future will be able to proactively forecast and predict events.

Using software for supply chain analytics

With supply chain analytics becoming so complicated, many types of software have been developed to optimize supply chain performance. Software products cover the gamut — from supplying timely and accurate supply chain information to monitoring sales.

For example, IBM has developed many software products to increase the effectiveness of supply chain analytics, with some of the software even using AI technologies. With AI capabilities, supply chain software can actually learn an ever-fluctuating production flow and can even anticipate the need for changes.

Case studies and blogs about supply chain analytics

Explore IBM blogs and real-world client experiences demonstrating the impact of supply chain analytics.

Lenovo uses IBM Sterling Supply Chain Insights with Watson

Shrinks its average response time to supply chain disruptions from days to minutes — up to 90% faster than before.

Data analytics for a smarter supply chain

How can you apply data analytics to improve your operations and outcomes?

Read the blog post
Explore supply chain control towers What is a supply chain control tower?

Learn the types, benefits and advantages of a modern control tower.

Control towers take center stage

Learn why smarter control towers are now the performance nerve center for supply chains.

IDC Technology Spotlight

IDC shares how supply chain control towers have become critical to provide the speed and agility necessary for true resiliency.

Related solutions
Supply chain collaboration

Provides a view of all relevant transactions from a single dashboard — the software can quickly pinpoint and assess issues without IT involvement.

Explore IBM Sterling Supply Chain Business Network
Supply chain planning analytics

Helps companies to automate planning, budgeting, forecasting and analysis processes to drive efficiency and create timely, reliable plans

Explore IBM Planning Analytics for Supply Chain Planning
Supply chain analytics resources The future is here

Learn how AI is helping to build smarter supply chains. (2 MB)

Gain visibility and detect anomalies across your B2B transactions.

Smarter supply chain control towers

See why intelligent control towers can improve supply chain visibility.

Read IBM Research Publications

We're designing models to help make supply chains more responsive, intelligent, sustainable, and automated. Check out the latest from IBM research today.


¹ “The Path to a Thinking Supply Chain,” Simon Ellis, John Santagate, IDC Technology Spotlight, Aug 2018.

² “The AI journey: Artificial intelligence and the supply chain (PDF, 2 MB),” IBM Watson Supply Chain.

³ “Creating a thinking supply chain for the cognitive era,” Matt McGovern, Watson Customer Engagement, 27 Mar 2017.