In our previous blog, we identified the three layers to network data monetization. These were the data layer, the analytics layer and the automation layer. To address the network data value tree successfully, we must address the complexities of these three layers, which are essential for automated operations in telco. In the next part we will discuss the complexities of each of the layers.
As a recap, we identified the three layers of complexity on the way towards automated operations:
The main idea behind the data layer is data democratization. Data democratization is based on two concepts. First, collected data should never be monopolized by the entity that collected it. Second, everyone in the CSP’s organization must be able to leverage the data, irrespective of their technical know-how (of course with the prerequisite that the data access policies allow the access). The analytics layer comes on top of the data layer. It is initially an empty but pluggable layer, with management capabilities, that can host analytics functions as data consumers and providers of actionable insights. Finally, the top layer is the automation layer. It hosts various functions that consume actionable insights from the analytics layer to automate operation and optimization processes in the network.
Below are some common examples of foundational use cases:
While these use cases are common in demand, the implementation may be challenging.
Examples of aspirational use cases:
To deliver successful network analytics projects, it is important to focus on the value that you want to drive, while not forgetting the essential enablers.
Many network analytics projects struggle because of the poor accessibility and understanding of the network data by data scientist. Once the data issue has been overcome, the possible lack of automation capabilities may prevent the monetization of the insights derived.
A good starting point is a holistic Network Data Assessment, covering all three layers:
The IBM approach for this assessment is vendor agnostic; this means we can work with IBM Technology components, as well as with technology components from other suppliers and hyperscalers.
The IBM Garage approach can help you to optimize the value from your current capabilities. Together with your stakeholders, we can help you create the Network Data Value Tree and establish a roadmap to drive more value from your network data, addressing the complexities in each of the three layers (data, analytics and automation) at the same time in an incremental way.
Want to learn more? Contact us at Maja.Curic@ibm.com and chris.van.maastricht@nl.ibm.com.