Recent years have seen a remarkable surge in AI adoption, with businesses doubling down. According to the IBM® Global AI Adoption Index, about 42% of enterprise-scale companies surveyed (> 1,000 employees) report having actively deployed AI in their business. 59% of those companies surveyed that are already exploring or deploying AI say they have accelerated their rollout or investments in the technology. Yet, amidst this surge, navigating the complexities of AI implementation, scalability issues and validating the trustworthiness of AI continue to be significant challenges that companies still face.
A robust and scalable environment is crucial to accelerating client adoption of AI. It must be capable of converting ambitious AI use cases into reality while enabling real-time AI insights to be generated with trust and transparency.
Machine Learning for IBM® z/OS® is an AI platform tailor-made for IBM z/OS environments. It combines data and transaction gravity with AI infusion for accelerated insights at scale with trust and transparency. It helps clients manage their full AI model lifecycles, enabling quick deployment co-located with their mission-critical applications on IBM Z without data movement and minimal application changes. Features include explainability, drift detection, train-anywhere capabilities and developer-friendly APIs. For more details, go to the IBM Machine Learning for z/OS product page.
Machine Learning for IBM z/OS can serve various transactional use cases on IBM z/OS. Top use cases include:
Machine Learning for IBM z/OS with IBM Z can also be used as a security-focused on-prem AI platform for other use cases where clients want to promote data integrity, privacy and application availability. The IBM z16 systems, with GDPS®, IBM DS8000® series storage with HyperSwap® and running a Red Hat® OpenShift® Container Platform environment, are designed to deliver 99.99999% availability.
Necessary components include IBM z16; IBM z/VM V7.2 systems or above collected in a Single System Image, each running RHOCP 4.10 or above; IBM Operations Manager; GDPS 4.5 for management of data recovery and virtual machine recovery across metro distance systems and storage, including Metro Multisite workload and GDPS Global; and IBM DS8000 series storage with IBM HyperSwap. A MongoDB v4.2 workload was used. Necessary resiliency technology must be enabled, including z/VM Single System Image clustering, GDPS xDR Proxy for z/VM and Red Hat OpenShift Data Foundation (ODF) 4.10 for management of local storage devices. Application-induced outages are not included in the preceding measurements. Results might vary. Other configurations (hardware or software) might provide different availability characteristics.
Machine Learning for IBM z/OS is now generally available from IBM and certified Business Partners.
In addition, IBM offers a no-charge AI on IBM Z and LinuxONE Discovery Workshop. This workshop is a great starting point and can help you evaluate potential use cases and define a project plan. This workshop can help you accelerate your journey and adoption of AI with Machine Learning for IBM z/OS.