In recent years, the banking industry has witnessed a digital transformation, marked by a proliferation of features within mobile apps. However, the pursuit of adding more capabilities has reached a plateau, leading to a pivotal shift.
The era of the feature war is over. This evolution is no longer merely about incorporating additional functionalities; rather, it centres on tailoring the banking experience to individual needs and preferences making way for a new wave driven by hyper-personalised and proactive banking services, a move critical for enhancing customer satisfaction, engagement and most importantly customer loyalty.
While the concept of personalisation has been on the horizon for decades, the banking industry faces several challenges hindering widespread adoption:
To deliver personalisation at pace, three building blocks have to be in place, Customer Data Platform, a Personalisation AI Brain, and Customer interaction framework.
A. Customer Data Platform: The foundation of personalisation lies in clean and comprehensive enterprise-wide data, with clear lineage. This consolidated data, often referred to as Customer 360, encompasses static customer master data, transaction data, interaction and complaints data (including audio transcripts), and external/social media data.
B. Personalisation AI Brain: In this area we see a multi-model solution emerging, with different use cases requiring different AI/analytics. Recent strides in Generative AI provides very powerful additional models for harnessing the information in more unstructured data.
The analytics use cases can be broadly classified into two types:
i. Batch Processes for Complex pattern recognition: Involves very large number of parameters and extensive historical data, demanding computational effort in pre-processing the “learning”. Examples include pre-approved loans where the output of batch analytics is the approved limit on the loan per customer, ready to serve upon the customer’s login.
ii. Real-time Analytics for Timely Alerts: Triggered by an event, providing timely alerts or nudges, but with less computational effort often requiring less “AI” but more deterministic logic. Examples include alerts like “you are one transaction away from your reward” or notifications about the receipt of a salary credit or even a potential fraudulent transaction.
C. The final foundational block is the framework for managing the way the output of any analytics is surfaced to the customer. This includes a push notification messaging system, an in-app clickable notification, or a clickable banner in the mobile app. Such a system dynamically handles the prioritization of messages, respecting customer preferences regarding the type of messages, channels, and timing. It also considers factors like the repetition of messages and ensures that any call-to-action hyperlinks to the right location for the action, complete with appropriate auto-population of data.
The work IBM Consulting has been doing with various banks can be classified into three primary approaches to establish a robust personalisation platform:
This is still a nascent area for banks. In 2024, we will see some personalisation examples go live from neo-banks or high street banks who have in the past invested in a unified data platform, while others might be restricted to prioritising niche use cases where they have the data.
As banks navigate these building blocks and approaches, the promise of a more tailored, engaging, and proactive banking experience awaits their customers.