
© Copyright IBM Corporation 2014.

IBM Operational Decision Manager
Version 8.6.0

Patterns for Operational Decision Management in
Streams

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 2

This edition applies to version 8, release 6, modification 0 of Operational Decision

Manager and to all subsequent releases and modifications until otherwise indicated in

new editions.

© Copyright IBM Corporation 2014.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM Corp.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 3

Title:

Patterns for Operational Decision Management in Streams.

Abstract:

With the advent of mobile, cloud and big data processing, businesses need to respond

quickly to emerging risks and opportunities as part of a smarter decision-making process.

This article looks at patterns that allow Operational Decision Management decisions to be

integrated into Big Data streams processing to improve the business insights and

situational awareness used to produce actionable responses in business solutions.

A retail scenario illustrates how IBM Operational Decision Manager can be integrated

into InfoSphere streams to help analyse customer book buying behaviour and thus

improve the chance of a successful order.

Recommended practices are described so that solution architects and integrators

understand how these products can be used together. While the article describes many of

the key installation, configuration and development tasks for a solution, administrators,

analysts and rule developers should refer to the appropriate product documentation.

Authors: Duncan Clark, Katherine Tsui, Gavin Willingham, Lucinda Croft, Peter

Seddon

Technology:

Operational Decision Manager 8.6

Infosphere Streams 3.2.1

Level: Beginner/Intermediate

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 4

Contents
Decision Management Integration patterns overview .. 8

Overview ... 8

Article Scope ... 8
Figure 1. High level operational view... 9

Solution Context ... 9
Figure 2. Solution context diagram .. 10

1. Operational Decision Manager decision services ... 11
2. Decision service integration using an Enterprise Service Bus.............................. 11
3. Making insightful decisions as part of smarter processes 12
4. Leveraging 360 degree insight and predictive analytics in decision services 12
5. Applying rules based decisions in Big Data and streams based processing 13

6. Situational awareness and action .. 13
7. Decision service monitoring, simulation and improvement 13

Infosphere Streams Integration Overview .. 14
Figure 3 Overview of typical streams integration... 14
Figure 4 Typical integration of Streams with IBM Operational Decision Manager 16

Article Overview ... 16
Business Scenario and Information models .. 17

Classification Pattern. ... 17
Book Click Decision Service .. 17

Filtering Pattern. ... 17
Annex: Installation and Configuration.. 17

Business scenario and information model .. 17
Scenario overview ... 18

Figure 2.1. Scenario Overview ... 18
Information Model Overview ... 19

Table 2.1 BookClick input attributes .. 20
Table 2.2 BookClick response attributes .. 20

Simple (unstructured) ODM Information Models .. 20
Figure 2.2 Simple (Non-structured) Variables .. 21

Figure 2.3 Simple Parameter Business Object Model .. 22
Figure 2.4 Configuring a Domain for enumerated values .. 23
Figure 2.5 Defining Domain Members ... 24

Figure 2.6 Providing Utility operations in the vocabulary 25
Structured ODM Information Models .. 25

Figure 2.7 Structured Variables .. 25
Figure 2.8 Book Java XOM and BOM ... 26
Figure 2.9 Book Event Schema .. 26
Figure 2.10 BookEvent BOM ... 27

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 5

Figure 2.11 Adding operations to a BOM .. 28

Figure 2.12 Defining operation behaviour using BOM to XOM Mapping 29
Streams Information models ... 29

Figure 2.13 BookClickIn Stream information model ... 30

Figure 2.14 ClassifiedBookClicks Stream information model 30
Table 2.3 Representation and Java object type for rstring and ustring 31

Classification Pattern .. 31
Classification Pattern Streams Application .. 31

Figure 3.1. Classification Pattern application ... 32

CSVIn FileSource operator ... 32
Figure 3.2 BookClickIn Output stream schema .. 32

Rules ODMRulesetExecutor Operator ... 32
Figure 3.3 Rules (ODMRulesetExecutor) configuration parameters 33

BookClickClassification Ruleset .. 33
Figure 3.4 BookClickClassification Decision Operation signature 34

Figure 3.5 Classification Ruleflow ... 35
Figure 3.6 Initial Action ... 35

Figure 3.7 ClassificationDT Decision Table .. 36
Figure 3.8 AuthorOfTheMonthOffer rule ... 36
Figure 3.9 ClassifiedBookClicks Output stream schema ... 37

Classification Pattern Summary and Execution .. 37
Listing 3.1 ClassificationPattern application SPL listing ... 37

Listing 3.2 bookClicksIn.txt Sample input stream in csv format 38
Listing 3.3 classifiedBookClicksOut.txt Sample output stream in csv format 39

Filtering Pattern .. 39

Filtering Pattern Streams Application ... 39

Figure 4.1 Filtering Pattern application .. 40
Beacon operator (BeaconIn) ... 41

Figure 4.2 Beacon configuration to generate stream data ... 41

ODMRulesetExecutor (Rules) .. 42
Figure 4.3 Rules (ODMRulesetExecutor) configuration parameters 42

Ruleset Executor Handler mapping to ruleset parameters .. 43
Figure 4.4 Input stream and Book Java class .. 44

Listing 4.1 BookClickExecutionHandler and BookClickMapping registration Java

listing... 44
BookClickFilter Ruleset.. 45

Figure 4.5 BookClickFilter Decision Operation signature 45
Figure 4.6 Filter Ruleflow... 46

Figure 4.7 FilterEvent Action Rule ... 47
Ruleset Executor Handler mapping to FileSink: CSVOut .. 47

Listing 4.2 Default mapping from ruleset parameters to tuples 48
Ruleset Executor Handler mapping to FileSink: EventOut .. 48

Listing 4.3 Checking for event parameter existence before mapping 48
Listing 4.4 Mapping bookEvent from ruleset parameter to XML 49
Listing 4.5 Mapping bookEvent from ruleset parameter to String 49

JMSOut : JMSSink ... 50

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 6

Figure 4.8 JMSSink parameters .. 51

Listing 4.5 JMS connection configuration in connections.xml 51
Ruleset Execution Error handling through FileSink: Error .. 52

Figure 4.9 Error port schema .. 53

Listing 4.8 Optional error output port attributes ordering .. 53
FilteringPattern Listing ... 53

Listing 4.9 FilteringPattern application SPL listing ... 53
Filtering Pattern Execution ... 55

Listing 4.10 filteredBookClicksOut.txt Sample output stream in csv format........... 55

Listing 4.11 filteredBookEventsOut.txt Sample output tuples in xml format 56
Figure 4.10 JMS message browsing in MQ Explorer ... 57
Listing 4.12 JMS Message for xml message_class ... 57
Listing 4.13 JMS Message for wbe message_class .. 58

Summary ... 58
Conclusion .. 58

Annex A: Installation and Configuration of InfoSphere Streams 3.2.1 with IBM

Operational Decision Manager ... 58

InfoSphere Streams installation and configuration overview 59
InfoSphere Streams Installation .. 59
InfoSphere Streams Configuration ... 59

InfoSphere Streams Studio Configuration .. 60
Figure A.1 Remote connection configuration for Streams Studio 62

Figure A.2 InfoSphere Streams install location details .. 63
Configuring IBM Operational Decision Manager in a Streams Environment 63

Installing Decision Server on Tomcat and Derby ... 64

Configuring Streams Studio to use the Rules Toolkit .. 64

Figure A.3 Steams Explorer showing Rules Toolkit location 65
Building and running the Rules Toolkit sample applications 65

Figure A.4 Importing the toolkit into the workspace .. 66

Figure A.5 Project explorer after import of Rules toolkit. .. 67
Figure A.6 Creating a build configuration .. 68

Figure A.7 Standalone build configuration ... 69
Figure A.8 Creating a new run configuration ... 70

Figure A.9 Run Configuration editor. ... 70
Figure A.10 SimpleRuleEvaluation sample execution results 71
Figure A.11 Ignored File Patterns in Unix Remote Projects 72

Running SPL Applications using Dynamically Deployed Rulesets 72
Table A.1 Ruleset Executor configuration parameters ... 73

Figure A.12 ODM Operator node remote repository configuration 74
Figure A.13 DatabaseDeploymentAndRuleRefresh sample Input source 75

Figure A.14 Sample rule defining maximum loan amount....................................... 75
Figure A.15 Output from Data Sink as ruleset update is deployed 76
Figure A.16 Ruleset execution statistics in Rule Execution Server console 76

Annex B: Configuring MQ and JMS for streams event handling on Linux 77
Installing MQ .. 77

Configuring MQ with a Queue Manager .. 77

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 7

Configuring streams to recognize MQ .. 78

Notices .. 80
Trademarks ... 83

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 8

Decision Management Integration patterns overview

Overview

Business Rule Management systems have been evolving over many years to provide a

means of automating frequently occurring decisions that are required to make day-to-day

operations run effectively. These decisions ensure that customers are treated

consistently, that the right price is offered or that the most effective offer is made.

Business decisions are often based around policies on how an organization should

conduct its business to better meet business goals or to conform to regulations.

IBM Operational Decision Manager allows organizations to capture these decisions in

order to automate them as decision services. These services can then be used to improve

the straight through processing and increase effectiveness and operations efficiency

consistently across the organization.

Traditional approaches focused on recording and manipulating records using

synchronous decision services to define the actionable response as part of a well-defined

process. With the advent of mobile, cloud and big data processing, businesses need to

respond to emerging risks and opportunities at the earliest actionable moment within a

smarter decision-making process.

Risk or opportunity can be considered by asynchronously accumulating information as a

basis for identifying the situations and context in which the action needs to be taken.

While the reasons for actions in traditional approaches are obvious and may be defined

explicitly in the rules, this new approach is much more subtle, evolves over time and

requires the use of insights provided from analytics, big data in order to make an effective

response.

Article Scope

This article is one of a series of articles that look at patterns that allow business insights

and situational awareness provided by big data and analytics to be combined with

Operational Decision Management to produce actionable responses in business solutions.

Figure 1 shows the overall concepts that are discussed in these articles.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 9

Figure 1. High level operational view

In figure 1 you can see how the insight derived from data and analytics allows the

behaviour of solutions to be understood and policies to be discovered and defined.

Operational Decision Management rules and pattern matching techniques can then be

used with the information coming out of the analytics to establish the 360 degree view of

current evolving situations and thus trigger actionable responses at the earliest

opportunity. Processes and traditional decision services can then be used with this

improved context information to optimize the response to the situation.

Solution Context

This section describes the key product components and integration points that can be

combined to produce these actionable insight solutions. The patterns that will be covered

by this series of articles are:

 Patterns for integrating operational decisions into Smarter Processes – shows the

basic patterns for integrating operational decisions into solutions

 Patterns for operational and analytical decision management in Smarter Processes

- shows how operational decisions and predictive analytics can be leveraged in

solution

 Patterns for integrating operational decisions into streams and Big Data solutions

(this article) - shows how operational decisions can be leveraged as part of an

analytical insight solution

 Patterns for actionable insight shows how IBM Operational Decision Manager

Advanced can be integrated into these solutions

Figure 2 shows the overall solution context and integration points between the products

and components in these patterns.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 10

Figure 2. Solution context diagram

Figure 2 shows five main areas of actionable insight solutions.

 Systems of Record (SoR) - provide the internal systems (databases, transaction

processing systems) that perform the main business of the organization. These

systems are exposed through services, messaging infrastructures or Enterprise

Service Bus’s to:

 Systems of Engagement (SoE/IoT) – provide the multichannel access for the

business solutions to partners and customers. This area is growing very fast

supported by Mobile, Cloud and the Internet of Things (IoT) and is also

generating large amounts of information that can be leveraged by:

 Data – provides the means to assimilate and gain insight from the large amounts

of data held in Big Data repositories (Hadoop, Big Insights – data at rest) or

streams of information coming from sensors or social applications (data in

motion). Analysis of this data provides:

 Insight – captured as predictive models or policies (rules) specified according to

what business analysts have learnt from their solutions. This Insight is then

leveraged to realize:

 Action – where the emerging situation can be used to trigger processes and tasks

at the appropriate time, making decisions based on up-to-date, complete and

precise information.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 11

Figure 2 also highlights the key integration points between IBM Operational Decision

Manager and other products / components used in an actionable insight solution.

The following integration points are covered in other articles:

1. Operational Decision Manager decision services where the policies defining what

people know can be expressed as rules and automated.

2. Decision service integration using an Enterprise Service Bus where the decisions can

be turned into actions in the context of the business solution.

3. Making insightful decisions as part of smarter processes where the flow of process

activities and tasks can be automated according to the decisions.

4. Leveraging 360 degree insight and predictive analytics in decision services allowing a

more accurate decision at the time the decision is made.

This article concentrates on:

5. Applying rules based decisions in Big Data streams based processing

The following integration points will be described in other articles:

6. Situational Awareness and Action using Operational Decision Manager Advanced

7. Decision service monitoring, simulation and improvement

Each numbered integration point is now described in more detail in the following

sections.

1. Operational Decision Manager decision services

The starting point for this series of articles is the synchronous decision service

capabilities provided by IBM Operational Decision Manager. These can be integrated

into applications or processes using the patterns described in this series of articles. The

behavior of the decision services can be controlled by the business and evolved using

rules and decision tables to meet the evolving policies. It is not the intention to describe

the detailed capabilities of IBM Operational Decision Manager but it is important to

understand the underlying principles shared across the integration patterns.

Readers should refer to the IBM Operational Decision Manager Knowledge Center for

further information about IBM Operational Decision Manager.

2. Decision service integration using an Enterprise Service Bus

IBM Integration Bus provides a flexible environment for implementing both Event and

Enterprise Service Buses. This integration point shows how IBM Integration Bus can

virtualize decision services or event based interactions as well as leveraging other sources

of information used in the decision making process.

Customers also require well defined APIs for exposing their decision services to the

broader Systems of Engagement (SoE) or Internet of Things (IoT). These environments

now require REST / JSON services for use from mobile devices or from applications on

the cloud. The information needed to make the decisions is drawn from a wide variety of

sources and formats across the cloud based ecosystem requiring flexible yet robust

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/kc_welcome.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 12

decision service API management based on these underlying virtualized decision

services.

Readers should refer to the IBM Integration Bus Knowledge Center for further

information about IBM Integration Bus.

3. Making insightful decisions as part of smarter processes

Insight from “what your data knows” and “what your organization knows” drives the

“action” in actionable insights. These policies and insight are used in decision making

through the decision services or other pattern matching techniques. The decisions made

influence the actions taken by the organization as part of their day-to-day activities and

processes.

Insight can be used in two key areas in smarter processes:

 Deciding when to act – situations that start, progress or cause an exception path to

be adopted in a process.

 Making an insightful decision to decide on the next activities to undertake within

the process.

This combination of situational awareness and insightful decisions is what allows the

actions to be taken in the business moment.

Readers should refer to the IBM Business Process Manager Knowledge Center for further

information about IBM Business Process Manager..

4. Leveraging 360 degree insight and predictive analytics in decision
services

Big Data and analytics are now able to provide deep insights and 360 degree information

about entities (e.g. customers, products) that are important to the business. Predictive

models based on historical analytics then allow predictions to be made of future customer

behavior allowing decisions to be made with the advantage of “hindsight” and thus the

business outcome optimized.

Big Data and analytics not only provides insight into the behaviors of customers and the

potential market but also allows the overall performance and trends of the business to be

monitored and visualized through dashboards and reports. Using this business status

information allows situations to be detected at an early stage and corrective action

applied before KPIs degrade.

Consumers of decision services want to consider the latest situational awareness and

predictive analytics when making decisions. This information is not directly available to

those consumers and has to be drawn either from the cashed situational state or directly

from the analytics. Virtualization techniques such as IBM Integration Bus, API

Management or even the integration services in Business Process Manager can be used to

ensure that the decision leverages this evolving insight.

http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/mapfiles/help_home_msgbroker.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSFPJS_8.5.5/com.ibm.wbpm.main.doc/kc-homepage-bpm.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 13

Readers should refer to the IBM SPSS Collaboration and Deployment Services

Information Center for further information on the IBM SPSS Analytics product.

5. Applying rules based decisions in Big Data and streams based
processing

Social computing and the Internet of Things are leading to massive quantities of

information being made available to organizations. To analyze and process this

information, technologies such as streams processing (processing data-in-motion) and

Hadoop (processing data-at-rest) are applying massively parallel processing close to the

data. The use of decision services whose behavior can be configured by the business to

classify and filter this information using rules is becoming more and more important to

identify emerging situations that require attention. This article concentrates on how ODM

is integrated with InfoSphere streams.

Readers should refer to the IBM Infosphere Streams Knowledge Center and IBM

InfoSphere BigInsights Knowledge Center for further information.

6. Situational awareness and action

Situational awareness means knowing when to act – by bringing together analytic insight

and rules to describe the situations – combinations of past events that happened, events

that didn’t happen, current state, and predictions that demand immediate attention.

Just in time awareness of risk and opportunity – the ability to detect any situation

immediately upon receipt of the information that “concludes” the situation – is the bridge

from insight to action, and triggers action customized to individual risks and

opportunities. In the general case, action is process – a straight through orchestration,

workflow or case management response to the situation.

7. Decision service monitoring, simulation and improvement

The key goal of decision services and complex rule based event processing is to allow the

business to express and manage the required behavior of their solutions using rules. By

monitoring and analyzing the behavior of the business in response to the decisions,

organizations can understand how the rules and policies that are used in the decisions

affect the business.

Once organizations have this insight on how their decision making affects the business,

they can start to optimize their business by careful change management of those rules and

policies. Simulation of decision making based on historic data records is often used to

evaluate the effectiveness of new policies requiring close integration between data,

decision management and KPIs and dashboards.

http://pic.dhe.ibm.com/infocenter/spsscads/v6r0m0/index.jsp
http://pic.dhe.ibm.com/infocenter/spsscads/v6r0m0/index.jsp
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.homepage.doc/doc/kc-homepage.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.im.infosphere.biginsights.welcome.doc/doc/welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.im.infosphere.biginsights.welcome.doc/doc/welcome.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 14

Infosphere Streams Integration Overview

Streams applications process large volumes of moving data in data streams and are

created by using the Streams Processing Language (SPL). In this integration pattern we

will start with a typical streams solution as shown in Figure 3.

Figure 3 Overview of typical streams integration

In the diagram above there are five key interactions taking place within an Infosphere

Streams environment:

1. You can use the Streams Processing Language (SPL) to define data sources for

most devices, sensors, or application systems. To simplify application

development, you can use the predefined adapters or toolkits that are included

with the product. This results in streams of similar information arriving from

disparate sources. A data stream is a running sequence of tuples which can

encompass both structured and unstructured data.

2. Streams processing provides the technology for "real-time" analytics for this

“data-on-motion”. This allows a wide range of characterization and filtering of the

data as well as advanced analytics through the use of SPSS, R, Time-series

analysis or other toolkits or operators. This article describes how the rules toolkit

(and ODM) can be used in these streams applications.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 15

3. The Streaming Processor is arranged as a distributed pipeline of processing nodes

and operators. The main components of SPL applications are tuples, data streams,

operators, processing elements (PEs), and jobs. By combining operators and

streams together into a streams application and deploying that application across

multiple machines (processing elements), a very high performance processing

pipeline can be developed.

4. Whenever an operator receives a tuple from an input stream, the operator

produces modified tuples on output streams. Toolkits are packages of SPL

artifacts that are designed for specific business environments or activities. The

Rules toolkit allows ODM rulesets to be executed as an operator in the stream.

This allows the stream tuples to be classified or filtered by the rules to identify

tuples (or events) of significance in other decision making systems. This would

include ODM Decision Server Insights that would allow these more significant

events to be interpreted in a broader longer-term context.

5. The resulting streams data can be consumed in many ways with the toolkits or fed

into other products such as Hadoop, BI or other data warehouse technologies for

doing deeper data-at-rest analytics, and looking more at historical results. This

data at rest insight can be leveraged as scoring services or encoded as rules and

brought back into the real-time decision making process making the insight

immediately actionable.

The Ruleset Executor Node can be configured in the streams as shown in figure 3. Each

Ruleset Executor Node works with an embedded JSE Rule Execution Server deployed

onto the Java Virtual Machine in the Streams Node. It is often the case that a streams

topology will need to support different streams using different rulesets with potentially

different owners. Figure 4 below shows how the ruleset management fits in with the

streams architecture

http://pic.dhe.ibm.com/infocenter/streams/v3r2/topic/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/tlkt-container.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 16

Figure 4 Typical integration of Streams with IBM Operational Decision
Manager

The streams tooling allows jobs to be defined that process the information through a

number of operators including the Ruleset Executor operator. The ruleset executor

operator requires a JSE Rule Execution Server to be deployed on the JVM of each node

(machine) that the operator will run on (N1-N3). The operators can be configured to

download their rulesets from separate Decision Server repositories. This allows the

rulesets for different customers to be isolated if required.

Providing a Decision Server to manage rulesets also means that updated rulesets can be

deployed from Decision Center according to governance best practices. It also means

that the JSE RES’s embedded in the streams can be monitored and managed from the

Decision Server console. For a streams application that is running with very low latency,

it would not normally be appropriate to use a decision warehouse so the decision server

would mainly be used for testing, simulation and managing deployed rulesets.

Article Overview

The remainder of this article describes the following aspects of ODM and streams

integration

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 17

Business Scenario and Information models

This describes the example retail scenario that illustrates how IBM Operational Decision

Manager can be integrated into Infosphere streams to help analyse customer book buying

behaviour and thus improve the chance of a successful order. The section also describes

the information models used in the scenario by both the streams application and OBM

Operational Decision Manager.

Classification Pattern.

This section describes how an ODM JSE Rule integration server (RES) can be embedded

into a streams operator allowing the stream processing to be configured dynamically by

rules. In this case the stream contains the individual customer actions when building up a

book order including viewing, adding or removing a book from the order. The rules

classify each tuple in the stream which can then be used in later streams analytics

processing.

Book Click Decision Service

This section describes how to develop an ODM decision service to be used in streams

processing. The section starts by describing how to support the simple flat object model

provided in the Classification pattern and goes on to describe how to structure and write

rules that can leverage more sophisticated hierarchical object models that can be

integrated into streams as described in the filtering pattern.

Filtering Pattern.

This pattern describes how an ODM JSE Rule execution server (RES) can be embedded

into a streams operator allowing the stream processing to be configured dynamically by

rules. In this case the Rule executor operator uses the rules to identify and filter certain

tuples of interest. This pattern shows how to use custom mapping between ruleset

parameters and the streams allowing the operator to provide events on a separate port that

can then be routed to other systems for action.

Annex: Installation and Configuration

This section provides an overview of installing and configuring IBM InfoSphere streams

with IBM Operational Decision Manager to support the use of business rules with

streams applications. The tutorial is based on the use of the InfoSphere Streams Quick

Start Edition which is available for non-production environments as a VMWare Image or

as a native Linux install. The version used for this tutorial is v3.2.1. This section also

includes instructions on running the ODM samples provided with IBM InfoSphere

streams and configuring the JMS messaging toolkit to work with WebSphere MQ.

Business scenario and information model
This section describes a simplified retail scenario that illustrates how IBM Operational

Decision Manager can be integrated with a range of other IBM products across the

http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmistvi
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmisqse
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS214-083

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 18

Smarter Process, Connectivity and Analytics portfolios. The goal of the scenario is to

perform discounted pricing of books based on emerging customer characteristics. In this

article we extend this scenario to examine how we can use IBM InfoSphere Streams with

IBM Operational Decision Manager to help analyze individual customer web clicks

Scenario overview

The scenario is based around a book retail organization. The organization provides their

customers with a number of channels to buy their products. Products can be discounted

based on the quantity of products being bought, the loyalty of the customer and any

marketing plays that are being exercised. The main scenario described in previous

articles focusses on the interactions between Operational and Analytical Decision

management within a solution that could be based either on an IBM Integration Bus

message flow or as part of a Business Process Management book order process.

In this article the scenario focusses on the click stream analysis that leads up to the

customer requesting a quote.

A high-level overview of the solution is shown in figure 2.1 below:

Figure 2.1. Scenario Overview

In this scenario, customers browse through a number of web sites selecting books to add

to a shopping basket. Each click that a customer makes (view a book, add a book to the

basket, remove a book from basket etc.) is routed into a stream using a “book click”

source node. Each book click contains key information about the customer and the book

being viewed together with basic information about the state of the shopping basket.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 19

This stream is then passed to an ODM operational decision that uses rules to classify each

click so that it can be passed to analytics to better understand the buying patterns of

customers. In addition, some clicks may imply a need for more detailed action – for

example if a customer has a high value shopping basket – where the organization might

want to start providing offers to close the deals. In this case the rules can be used to

create a new event tuple that can be sent through a filtered events stream and routed into

another system (such as ODM Advanced Insights) that allows the sequence of actions of

that customer to be analyzed and appropriate actionable responses taken.

This article describes the integration between streams and ODM using the decision

service capabilities provided in version 8.6. As an example we describe a

BookClickDecisionService decision service that provides two operations (rulesets):

 BookClickClassification uses simple flat input and output parameters that map to

each field in the tuple. The rules in this operation are those described in the

Classification pattern and basically classify each tuple as it passes throyugh the

rule operator..

 BookClickFilter provides a more complex set of parameters that use both a Java

XOM and hierarchical xml parameters. This requires mapping of the tuple fields

into hierachical object models. It also shows how different output parameters

from the rules can be fed to different streams.

These two patterns share a common information model but use different mapping

techniques between the streams representations and the way the information is referenced

in the rules.

The Classification pattern uses a very simple mapping approach passing each attribute

over a single simple type (or list of simple types). This style of mapping can be

supported by the Rule Executor Operator without the need for any customization code.

Any mapping to structured business objects needs to be performed in the ruleset as part

of the operation ruleflow.

The Filtering pattern extends this approach to perform the mapping to Java classes in the

Ruleset Executor Operator using custom plugin code. This allows more complex stream

structures to be supported and mapped directly to executable object models within ODM

avoiding serialization and delivering higher performance. The filtering pattern also shows

how to support the use of schema based eXecution Object Models and mapping different

return parameters to different streams.

Information Model Overview

This section describes the structure of the information being processed in the solution.

The streams are processing customer clicks on a web site or application which contain

information about the click that they take and the state of their order.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 20

Each field is tabulated below to describe its purpose in the scenario.

Table 2.1 BookClick input attributes

Attribute ODM type Description

customerID String Identifier of the customer

clickAction String (ClickActionType) Action taken by this click VIEW, ADD,

REMOVE, ORDER

clickTimestamp Date Timestamp of the click

isbn String Book ISBN

title String Book title

author String Book author

price BigDecimal (in Class

Book)

Book list price on website

basketValue BigDecimal Value of shopping basket

items List<String> List of book isbn numbers in basket

book Book Book object passed as a Java class

The streams application then passes this information to the Ruleset Executor Operator

which then invokes an ODM Ruleset which then generates a response stream.

This response stream extends the incoming stream with two new attributes provided from

the rules that describe the classification and rationale as shown in table 2.2.

Table 2.2 BookClick response attributes

Attribute ODM Type Description

basketValue BigDecimal Value of shopping basket

items Vector<String> List of book isbn numbers in basket

classification String

(BookClassification)

Classification provided by the rules:

BROWSING, FILLINGBASKET,

VALUEBASKET, OFFERBASKET,

PLACEORDER

rationale String Textual rationale for the classification

bookEvent XML BookEvent Object XML representation of filtered event

The information required for the decisions is represented in ODM through variables that

can either be simple types (as shown in the tables) or complex types represented in a

Business Object Model. The next section describes how this can be represented in ODM.

Simple (unstructured) ODM Information Models

When using simple flat information models, the book click fields are held in ODM

variable sets and can be mapped to and from the parameters passed into the ruleset at

execution time. A simple variable set containing flat unstructured data is show below in

figure 2.2.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 21

Figure 2.2 Simple (Non-structured) Variables

When using simple variables the streams ODM Ruleset Executor operator can provide

automatic mapping to the attributes in the streams. The Name field has to correspond to

name of the attribute in the stream and automatic mapping will be performed by the

Ruleset Operator using the corresponding Type mapping.

The verbalization defines how the variables will appear to the rules. Note that the isbn,

title, author and price variables do not have a verbalization and are not directly accessible

from the rules. These variables (when present) will be used to construct a book object as

described later.

For each variable ensure that the name matches the attibute name used in streams. This

means that the variable can be mapped automatically. You should also ensure that the

Type corresponds to the mapped typed used in streams. See the Data type conversions

between ODM and InfoSphere Streams section in the InfoSphere streams knowledge

center for a more detailed description of the conversions provided by the ODM Ruleset

Executor operator.

Any variables that are going to be provided back to the streams should also be initialized.

Failure to do this may result in null pointer exceptions when the rules execute. In this

case the classification and rationale fields are initialized. You may also like to create and

initialize any local variables that ease the decision making flow and design.

Note also that two of these variables (classification and clickAction) represent domains or

enumerated values and use specific classes (BookClassification and ClickActionType) to

define the possible values that the underlying String can take. This means that the rules

can be constrained to only permit the enumerated values to be used when composing

rules that reference variables typed in this way. This is configured as shown in figure 2.3

below.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/datatype-mapping.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/datatype-mapping.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 22

Figure 2.3 Simple Parameter Business Object Model

This BOM declares two domains that can be used to constrain the values used in the rules

when selecting options for clickActions or classifications. Each domain is specified as a

class extending a java.lang.String and providing static attributes for each enumeration as

shown in figure 2.4.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 23

Figure 2.4 Configuring a Domain for enumerated values

Each domain value need to have an implementation that verbalizes it and provides a retrn

value as shown in figure 2.5 below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 24

Figure 2.5 Defining Domain Members

This approach forces the rules to reference only these explicit values if the string is typed

according to a given domain. When the values used for these domains are very dynamic

and are held in another system (or spreadsheet) it is possible to write integration code

that can synchronize with that source and thus maintain a consistent set of enumerated

values. See the Working with Domains section in the IBM Operational Decision

Manager Knowledge Center for details.

The Business Object model also includes a Util class with a verbalized operation which

allows any object to be expressed as a string using the verbalization: StringValueOf(an

object) . This allows, for example, numbers and dates to be included in a rationale.

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/com.ibm.odm.dserver.rules.designer.author/shared_itoa_config_auth_topics/tpc_rd_bom_domains.html?lang=en

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 25

Figure 2.6 Providing Utility operations in the vocabulary

Structured ODM Information Models

The information in ODM can also be managed through variables with complex types

represented in a Business Object Model. These variables are also held in ODM variable

sets and can be mapped to and from the parameters passed into the ruleset at execution

time. The structured variable set containing structured data variables is show below in

figure 2.7.

Figure 2.7 Structured Variables

These variables are passed to the streams using a complex type which in the case of the

book (bookstor.Book) is based on a Java XOM while the bookEvent

(bookevent.BookEvent) is based on an xml schema and will be passed to streams as an

xml string.

In this example we have the concept of a book which has four attributes and is

implemented as a Java XOM to provide a structured type for the input and output

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 26

parameters. The BOM is shown below in figure 2.8 in Rule Designer showing the details

of the class and the members. This has been based on the Java class illustrated alongside.

Figure 2.8 Book Java XOM and BOM

This allows book objects to be represented as Java objects in the streams mapping and

interpreted directly in the rule engine without any serialization in ODM.

The BookClickFilter ruleset also uses a hierarchical model to represent a BookEvent.

This is based on XML schema and is added as an output parameter so that a book event

can be generated by the rules when further action processing or exceptions occur. All the

information from the input parameters and the output classifications are included in the

book event data. The XML schema is shown below in Figure 2.9.

Figure 2.9 Book Event Schema

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 27

The BookEvent BOM can be generated automatically from the XML schema in Rule

Designer as shown in figure 2.10 below.

Figure 2.10 BookEvent BOM

In this BOM methods have been added to manipulate the items list (addToItemsList,

removeFromItemsList) and we also need to define a method to create a new BookEvent

from the rules. This new member createBookEvent() is added as a static method on the

BookEvent class so that book events can be created in the rules for those book click data

that requires further action. See Figure 2.11 below on using the New button to create a

createBookEvent() member in Rule Designer.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 28

Figure 2.11 Adding operations to a BOM

The new createBookEvent() should be a static method and a BOM to XOM Mapping

needs to be defined which implements the behaviour and instantiates the BookEvent class

hierarchy including the BookType member. The method also needs to be verbalized in

the member verbalization to allow access from rules. The BOM to XOM mapping in the

Rule Designer is shown in Figure 2.12 below in the BOM Member page for

createBookEvent().

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 29

Figure 2.12 Defining operation behaviour using BOM to XOM Mapping

This now completes the information models needed by both patterns.

Streams Information models

This section describes the structure of the streams and how they represent the information

being processed in the solution. Figure 2.13 describes the structure of the BookClick

input stream which corresponds to the book click information coming from the customer

channels.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 30

Figure 2.13 BookClickIn Stream information model

The purpose of each field has been already described in Table 2.1.

The streams application the passes this information to the Ruleset Executor Operator

which then invokes an ODM Ruleset and then maps the returned parameters to a

ClassifiedBookClicks output stream as shown in figure 2.14.

Figure 2.14 ClassifiedBookClicks Stream information model

This stream simply extends the incoming stream with two new attributes provided from

the rules that describe the classification and rationale.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 31

In these models, rstring is mostly used for String values except when used in a list. In this

case ustring is used. There are limitations with using list<rstring> when mapping to

ODM parameters as the items in the list cannot be accessed in ODM rules. Using

list<ustring> removes the limitation.

The difference between ustring and rstring are summarized in Table 2.3 below:

Table 2.3 Representation and Java object type for rstring and ustring

SPL type Representation Java object type

ustring String of UTF-16

Unicode characters,

based on ICU library

java.lang.String

rstring Sequence of raw bytes

that supports string

processing when the

character encoding is

known

com.ibm.streams.operator.types.RString

For more details of SPL types, see Types and Working with SPL types from the

InfoSphere Streams Knowledge Center.

Classification Pattern
The Classification pattern describes how an ODM JSE Rule integration server (RES) can

be embedded into a streams operator allowing the stream processing to be configured

dynamically by rules. In this case the stream contains the individual customer actions

when building up a book order including viewing, adding or removing a book from the

order. The rules can then classify each tuple in the stream which can then be used in later

streams analytics processing.

Classification Pattern Streams Application

In this pattern a stream of tuples is passed through the Rules Executor operator and the

attributes modified by the rules. The attributes of tuples in the streams are passed

individually as parameters to the rules. Each parameter is a simple primitive type (or list

of primitive types) allowing the rules to refer to each attribute in the stream individually.

Rules and decision tables can then be written in an ODM ruleset to classify each tuple by

assigning values to particular output parameters which will then be passed onto the

output stream.

A simple implementation of ths pattern is shown below.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/types.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.dev.doc/doc/workingwithspltypes.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 32

Figure 3.1. Classification Pattern application

The three operators are now described in the following sections.

CSVIn FileSource operator

The input to the Rules Operator would come from the Systems of Engagement and reflect

various actions taken by customers when browsing the Book Order sites. This is emulated

in this sample by the CSVIn FileSource operator which reads tuples in from a file

(BookClicksIn.txt) using a csv format and outputs them on the BookClickIn stream as

shown in figure 3.2 below.

Figure 3.2 BookClickIn Output stream schema

This stream uses the BookClick type to define the stream attributes. In this example the

attributes are mapped into simple type parameters in ODM.

Rules ODMRulesetExecutor Operator

This stream is passed to the Rules (ODMRulesetExecutor) operator which needs to be

configured to load the correct ruleset from the Decision Server repository and also to

respond automatically to updates as described in the installation and configuration annex

and summarized in figure 3.3 below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 33

Figure 3.3 Rules (ODMRulesetExecutor) configuration parameters

This configuration uses the latest deployed version of the BookClickClassification ruleset

with interfaces defined by the decision service version BookClickDecisionService/1.0.

The remaining parameters define the connection to the Rule Execution Server database

(based on derby in this example) and the Rule Execution Server console. This allows

ruleset updates to be deployed dynamically from ODM Rule Designer or Decision Center

without needing to stop or redeploy the streams application.

The ODMRulesetExecutor provides a default mapping from the stream tuple to ruleset

parameters for all primitive attribute types. List of primitive attribute types are also

supported but care must be taken as the internal types are not correctly mapped.

Two known limitations are:

 Timestamp primitive types are mapped as java.sql.Date by default which is not

fully supported in ODM.

 list<Type> maps to a java.util.List<streams Type> rather than the mapping

supported for a primitive type (e.g list<rstring> instead of list<java.lang.String> -

this can be overcome by using ustring instead of rstring as the streams type).

To overcome these limitations you need to customize the mapping as described in the

Filtering pattern.

BookClickClassification Ruleset

The BookClickClassification ruleset is defined as an operation within the

BookClickDecisionService. To complete the integration with streams we need to define

the decision operation signature that will be mapped to streams attributes. This replaces

the ruleset parameter definitions used in classic rule projects in previous versions of

ODM.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 34

Figure 3.4 BookClickClassification Decision Operation signature

Ths shows which variables will be used as input and which as output. Note that these are

all drawn from the SimpleVariables variableset as this ruleset and pattern will not use

hierarchical parameters.

Note that the book parameters (isbn,title,author and price) are not verbalized as these will

be mapped into an object as the first step in the ruleflow. This allows the rules to be

developed and shared against a fixed set of variables.

Once the signature is defined, the rules and ruleflow can be developed. This article does

not attempt to provide a detailed description of ruleset design practices so a very simple

ruleflow is used to calculate the classification and rationale as shown in figure 3.5.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 35

Figure 3.5 Classification Ruleflow

The ruleflow first creates a book object in the initial task as shown in figure 3.6, then

invokes the ClassificationDT which uses the clickAction with the basketValue to

determine a base classification and rationale as shown in figure 3.7. Finally the flow

evaluates whether to apply an offer to this potential order as shown in figure 3.8.

Figure 3.6 Initial Action

Each task in a ruleflow has the ability to specify an initial action using rules. In this case

this is the entry task so will occur at the beginning of the ruleflow. The rules can be

written in the BAL language (as used by business users using the verbalized phrases) or

as IRL which is a java like language allowing access to all variables whether they are

verbalized or not. In this case the IRL creates a new Book object from the hidden

parameters and assigns it to the visible book variable allowing the values to be referred to

in the rules. (See figure 3.8).

After the variables are initialized the Classification decision table is invoked.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 36

Figure 3.7 ClassificationDT Decision Table

This provides a classification and rationale for a range of combinations of basket value

and click action.

After the base classification has been determined, the AuthorOfTheMonthOffer rule

checks to see if the customer is looking at a book that has the author of the month offer as

shown in figure 3.8.

Figure 3.8 AuthorOfTheMonthOffer rule

Note that in this case the rule refers to “the author of ‘the book’” rather that referring

to the author variable directly as this is not visible and will not have a value when the

book is passed as an object directly from streams. This allows the same rules to be used

in different operations with different signatures.

While this is a simple example it shows how the rule engine can process the tuple

attributes and classify them according to the rules defined by the business.

After the rules have been processed the results are passed to the ClassifiedBookClicks

stream as shown in figure 3.9 below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 37

Figure 3.9 ClassifiedBookClicks Output stream schema

This stream duplicates the original BookClickIn type but adds the two new attributes

whose values are calculated by the rules:

 Classification – indicates the significance of the click in the book order

processing. Typical values expected from the rules include UNKNOWN,

BROWSING, FILLINGBASKET, VALUEBASKET and various eligible

discounts

 Rationale – provides a free text field to say why the particular classification has

been applied.

The ClassifiedBookClicks stream can then be sent on to other operators in the streams

application or in the case of this sample output to the CSVout FileSink operator allowing

the results of a job to be observed in the classifiedBookClicksOut.txt file.

Classification Pattern Summary and Execution

The complete listing for the classificationPattern application is provide in listing 3.1

below.

Listing 3.1 ClassificationPattern application SPL listing
namespace application ;
use com.ibm.streams.rules.odm::ODMRulesetExecutor ;
composite ClassificationPattern()
{
 type
 BookClick = rstring customerID, rstring clickAction,
 timestamp clickTimestamp, rstring isbn, rstring title, rstring author,
 decimal64 price, decimal64 basketValue, list<ustring> items ;
 ClassifiedBookClick = rstring customerID, rstring clickAction,

timestamp clickTimestamp, rstring isbn, rstring title, rstring author,

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 38

decimal64 price, decimal64 basketValue, list<ustring> items,
rstring classification, rstring rationale ;

 graph
(stream<BookClick> BookClickIn) as CSVIn = FileSource()
{

param
file : "bookClicksIn.txt" ;

 format : csv ;
 }

 () as CSVOut = FileSink(ClassifiedBookClicks)
 {
 param
 file : "classifiedBookClicksOut.txt" ;
 format : csv ;
 }

 (stream<BookClick, tuple<rstring classification, rstring rationale>>
 ClassifiedBookClicks) as Rules = ODMRulesetExecutor(BookClickIn)
 {
 param
 rulesetPath :

 "/BookClickDecisionService/1.0/BookClickClassification" ;
 databaseUrl : "jdbc:derby://localhost:1527/resdb" ;
 driverName : "org.apache.derby.jdbc.ClientDriver" ;
 driverPath :

 "/opt/db-derby-10.11.1.1-bin/lib/derbyclient.jar" ;
 managementConsoleHost : "localhost" ;
 managementConsolePort : 1883 ;
 userName : "ilog" ;
 userPassword : "ilog" ;
 managedXomDeployedOnDb : true ;
 }
}

The classification pattern sample may be executed in a standalone stream to demonstrate

the integration techniques. The use of CSV files for the input source and sink make this

an easy option for investigating the rules.

A sample input file has been established in bookClicksIn.txt as shown in listing 3.2.

Listing 3.2 bookClicksIn.txt Sample input stream in csv format
#rstring customerID, rstring clickAction,timestamp clickTimestamp,
#rstring isbn, rstring title, rstring author, decimal64 price,
#decimal64 basketValue, list<rstring> items
"A-111","ADD",(5000000, 0, 0),"S-111","Night","G Jones",7.99,7.99,["S-111"]
"A-111","ADD",(5000001, 0, 0),"S-222","Quiet Day","L P James",9.99,17.98,["S-111","S-222"]
"A-111","VIEW",(5000002, 0, 0),"S-333","Sun in the Sky","L P James",8.99,26.97,["S-111","S-222","S-333"]
"B-222","ADD",(5000003, 0, 0),"S-444","Short Stories","V Hurst",4.99,4.99,["S-444"]
"B-222","REMOVE",(5000004, 0, 0),"S-444","Short Stories","V Hurst",4.99,0.0,[]
"B-222","ADD",(5000005, 0, 0),"S-555","Day","H R Smith",6.99,6.99,["S-555"]
"B-222","ORDER",(5000006, 0, 0),"S-666","My Life","F Bloggs",5.49,12.48,["S-555","S-666"]
"E-555","VIEW",(5000006, 0, 0),"S-777","Go Like the Wind","S Speed",12.99,0.0,[]
"E-555","ADD",(5000007, 0, 0),"S-888","Long Stories","L P James",15.99,0.0,["S-888"]
"E-555","VIEW",(5000008, 0, 0),"S-999","Hobsons Choice","H R Smith",2.99,15.99,["S-888"]
"D-444","VIEW",(5000009, 0, 0),"S-999","Hobsons Choice","H R Smith",2.99,0.0,[]

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 39

When the application is executed the result can be seen in the classifiedBookClicksOut

file. The two parameters output from the rules (classification and rationale) have been

moved to the next line for readability.

Listing 3.3 classifiedBookClicksOut.txt Sample output stream in csv
format
"A-111","ADD",(5000000,0,0),"S-111","Night","G Jones",7.99,7.99,["S-111"],

"FILLINGBASKET","Items in basket."
"A-111","ADD",(5000001,0,0),"S-222","Quiet Day","L P James",9.99,17.98,["S-111","S-222"],

"FILLINGBASKET","Items in basket."
"A-111","VIEW",(5000002,0,0),"S-333","Sun in the Sky","L P James",8.99,26.97,["S-111","S-222","S-333"],

"OFFERBASKET","High value basket: Offer AOTM to close order."
"B-222","ADD",(5000003,0,0),"S-444","Short Stories","V Hurst",4.99,4.99,["S-444"],

"FILLINGBASKET","Items in basket."
"B-222","REMOVE",(5000004,0,0),"S-444","Short Stories","V Hurst",4.99,0,[],

"BROWSING","No items in basket."
"B-222","ADD",(5000005,0,0),"S-555","Day","H R Smith",6.99,6.99,["S-555"],

"FILLINGBASKET","Items in basket."
"B-222","ORDER",(5000006,0,0),"S-666","My Life","F Bloggs",5.49,12.48,["S-555","S-666"],

"PLACEORDER","Average Order placed"
"E-555","VIEW",(5000006,0,0),"S-777","Go Like the Wind","S Speed",12.99,0,[],

"BROWSING","No items in basket."
"E-555","ADD",(5000007,0,0),"S-888","Long Stories","L P James",15.99,0,["S-888"],

"BROWSING","No items in basket."
"E-555","VIEW",(5000008,0,0),"S-999","Hobsons Choice","H R Smith",2.99,15.99,["S-888"],

"FILLINGBASKET","Items in basket."
"D-444","VIEW",(5000009,0,0),"S-999","Hobsons Choice","H R Smith",2.99,0,[],

"BROWSING","No items in basket."

Filtering Pattern
In this pattern rules are used to identify particular tuples that are of significance to later

analytics processing and remove those that are not relevant. This filtering may apply to

the main output stream but in this case an additional stream is generated that identifies

significant events which can then be routed to operational decision making systems to

apply suitable action responses.

Filtering Pattern Streams Application

This pattern builds on the Classification Pattern described earlier using the same input

stream structure. In this case the pattern shows how to map the tuple attributes into java

objects that can be passed as parameters to the ODM Ruleset executed by the

ODMRulesetExecutor operator. The response parameters (containing these objects) are

then mapped to a number of ports and this example shows how the parameters are

mapped and formatted to meet the requirements of a number of streams as shown in

figure 4.1 below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 40

Figure 4.1 Filtering Pattern application

The input stream (BookClicksIn) is provided through a Beacon operator (BeaconIn) that

generates a sequence of configurable BookClick tuples with random book price and

basketValue attributes.

The ODMRulesetExecutor operator (Rules) invokes some simple rules to first classify

each tuple (as described for the Classification pattern) and then creates an optional event

output parameter for tuples that are classified OFFERBASKET.

The default output port provides a classified stream (FilteredBookClicksOut) with a

similar structure as the BookClicksIn stream but including the classification and

rationale fields. This is sent to the FileSink operator (CSVOut) which allows the

classified stream tuples to be written to a file (filteredBookClicksOut.txt) for later

assessment.

The customized mapping in the Rules operator then takes the “bookEvent” parameter (if

present) and maps it into two ports generating streams with different formats:

 FilteredBookEventsOut generates a tuple using the streams xml format allowing

this to be parsed in later streams operators or saved as a file in the FileSink

operator (EventOut)

 FilteredJMSBookEvents generates a tuple with a single rstring attribute which is

used as the payload for a JMSSink operator (JMSOut). This JMS event can then

be routed to an external system for correlation or for further action like making an

offer in order to close the order.

An optional error port is also included that provides a stream of runtime errors which in

this case is sent to a FileSink operator (Error) for later analysis.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 41

This pattern introduces the use of a Java XOM in ODM with a Book Java class and the

use of customized mappings from ruleset parameters to output tuples routing to different

output ports.

Each of the operators in the application is now described in more detail together with the

mapping used in Ruleset Executor to produce the streams needed.

Beacon operator (BeaconIn)

BeaconIn is a Beacon operator that is used in this example to generate a stream of tuples

with the same schema as the BookClickIn stream but with random price and basketValue

values. The Beacon operator can be configured to generate values using the Output

configuration shown in figure 4.2 below.

Figure 4.2 Beacon configuration to generate stream data

This stream uses the BookClick type to define the stream attributes. This is the same

BookClickIn stream attributes for the Classification Pattern as tabled in 3.1. The values

for price and basketValue are generated randomly to allow each tuple to have different

classified results resulting in different events being generated according to the rules.

Warning messages (CDISP0079W) appear about multiple calls to a stateful function

within the same output clause for getTimestamp and random functions. For a random

generator, potential side effects are not an issue here in our sample run.

In this example, we set the iteration count to 100 and interval to 0.1 in the Beacon

parameters so that 100 tuples are generated at 0.1 seconds interval. This allows us to

check the expected number of events generated based on the number of tuples with

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 42

OFFERBASKET classification written to filteredBookClicksOut.txt. It will also allow

the stream processing to run for at least 10 seconds which allows the ruleset execution to

be observed in a Rule Execution server console.

ODMRulesetExecutor (Rules)

The BeaconIn operator stream is connected to the input port of the Rules operator. This is

configured to load the BookClickFilter ruleset from the Decision Server repository and

also to respond automatically to updates as described in the installation and configuration

section earlier. The parameters settings for the ODMRulesetExecutor are summarized in

figure 4.3 below.

Figure 4.3 Rules (ODMRulesetExecutor) configuration parameters

This configuration uses the latest deployed version of the BookClickFilter ruleset with

interfaces defined by the decision service version BookClickDecisionService/1.0.

The parameters for connection to the Rule Execution Server console (management

console) are the same as for the Classification pattern while the Rule Execution Server

database is based on DB2 in this pattern to provide another topology configuration

example.

In this pattern, a Ruleset execution handler, BookClickExecutionHandler, is used to

perform customized mapping of the ruleset ouput parameters to the stream output tuple.

This is configured with the ruleset execution handler class name and library in the

parameters.

The BookClickFilter ruleset also uses a Book Java class as Java XOM. There are 2

options for configuring a Java XOM in the ODMRulesetExecutor. In Figure 4.3 above,

the xomLibrary parameter configures the operator to load the bookXom.jar into the

classpath. This library contains the Java XOM and needs to match the classes used in the

ruleset for execution. The parameter can either be a full path or a relative path with

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 43

respect to the data directory of the project. In this example, we placed the bookXom.jar

in the /FilteringPattern/data directory of the project.

Alternatively, if the Java XOM is a managed XOM deployed on the ODM RES database,

then you can set the parameter managedXomDeployedOnDb to true instead of

configuring the xomLibrary parameter. In either configuration, you still need to have a

copy of the Java XOM in the streams studio environment to create the Java XOM object

for the input parameters used for ODM ruleset execution.

After the rules have been processed, the registered BookClickExecutionHandler maps the

output parameters returned from ODM to tuples on the different output ports for action.

Ruleset Executor Handler mapping to ruleset parameters

The ODMRulesetExecutor operator allows customized tuple mapping by using a ruleset

executor handler. The com.ibm.streams.rules toolkit sample

FeatureDemoCustomMapping shipped in the InfoSphere Stream is a good reference in

this topic. In this pattern, BookClickExecutionHandler and BookClickMapping Java

classes provide the custom mappings to forward different data to the different output

ports.

The BookClickExecutionHandler class is invoked once for each tuple passed through the

ruleset executor and provides the code to manage the overall mapping of ruleset

parameters to operator ports. The BookClickMapping class provides the detailed

mapping functions between the ruleset parameters and the stream on any given port.

The Java listings in this section should be studied with the ruleset execution handler in

the FeatureDemoCustomMapping sample for a full picture.

The stream coming into the Ruleset Executor operator is the same as that provided for the

classification pattern but the book fields (highlighted in red) need to be mapped into the

Book Java class that will be sent to ODM as a parameter as shown in Figure 4.4.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 44

Figure 4.4 Input stream and Book Java class

In this example, the BookClickFilter ruleset in BookClickDecisionService expects a

Book Java XOM as one of the input parameters. The Book object is instantiated in the

mapToInputParameters method in BookClickMapping class based on the data in the

input tuple. The other input parameters, which are primitive attribute types, are mapped

calling the super class method mapToInputParameters. This can be seen in listing 4.1

below.

Listing 4.1 BookClickExecutionHandler and BookClickMapping
registration Java listing
public Map<String, ?> mapToInputParameters(Tuple tuple) throws Exception {
 // Call to super will help user levarage the auto mapping for
 // primitive types

Map<String, Object> inputParameters = (Map<String, Object>)
super.mapToInputParameters(tuple);

 // Create the Book object of the Custom Defined types which need to
 // go as ODM Input Parameters from Beacon data
 String isbn = tuple.getString("isbn");
 String title = tuple.getString("title");
 BigDecimal price = tuple.getBigDecimal("price");
 String author = tuple.getString("author");

 Book book = new Book(isbn, title, price, author);
 inputParameters.put("book", book);

 return inputParameters;
}

Once the ruleset parameters have been created the RulesetExecutor operator then invokes

the BookClickFilter ruleset on the JSE RES.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 45

BookClickFilter Ruleset

The BookClickFilter decision operation signature can be defined based on a combination

of the simple variables used by the BookClickClassification ruleset and the

StructuredVariables based on the Book and BookEvent BOM. Figure 4.15 shows the

BookClickFilter decision operation signature which can be compared with the

BookClickClassification decision operation signature from Figure 3.2. A book parameter

replaces the isbn, title, author and price parameters and a bookEvent parameter is added

to the output parameters.

Figure 4.5 BookClickFilter Decision Operation signature

This signature shows the new book input parameter populated in the previous section

together with the bookEvent output parameter that will be created if required by the rules.

With the BOM, decision service variables and parameters defined, the ruleset follows the

Filter ruleflow as shown in figure 4.6 below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 46

Figure 4.6 Filter Ruleflow

The ruleflow does not need to initialize the book variable as this has been provided as an

input parameter. The flow applies the ClassificationDT decision table (figure 3.7) to

classify the click and then the AuthorOf TheMonth (figure 3.8) rules to identify when an

Offer should be made. These rules are the same as those used in the Classification

ruleset.

The ruleflow then applies the FilterEvent rule which selects those clicks (tuples) that are

classified as OFFERBASKET and creates a book event as shown in figure 4.7.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 47

Figure 4.7 FilterEvent Action Rule

The book event is only created if the classification is OFFERBASKET. When this

condition is met a BookEvent is created using the createBookEvent() operation that was

defined in the BOM and the fields of the BookEvent initialized from the available

variables. On completion of this rule the bookEvent variable is returned as an output

parameter back to the RulesetExecutor stream operator.

This ruleset shows how to leverage the existing rules for classification and add the

ability to identify significant events which can be returned as output parameters to the

streams for further action. The pattern also shows how we introduce structure to the

object model and map that to the streams data by using a Java XOM and or a schema

based XOM. The next section shows how the BookClickFiltering ruleset return

parameters are mapped back into the RulesetExecutor output streams.

Ruleset Executor Handler mapping to FileSink: CSVOut

CSVOut is a FileSink operator similar to the CSVOut operator in the Classification

Pattern which writes the classified tuples output from the Rules operator port to a CSV

file. When a ruleset execution handler is registered for the rule operator, a call is made

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 48

to the method mapToTuple for each set of returned parameters and each output port. The

implementation in the case of the filtered output port (as the book object is not a return

parameter) can use the default operation from the superclass to map all simple ruleset

parameters to the stream tuples as shown in listing 4.2 below.

Listing 4.2 Default mapping from ruleset parameters to tuples
public void mapToTuple(StreamingOutput<OutputTuple> outputPort,
 OutputTuple tuple, Map<String, ?> outMap) throws Exception
{
 // Mapping of Port 0 - main port filtered
 if (outputPort.getPortNumber() == 0) {
 // Call to super.mapToTuple(outputPort, tup, outMap);
 // is to help user leverage auto mapping of primitive types
 super.mapToTuple(outputPort, tuple, outMap);
 }
 ::::::
}

Ruleset Executor Handler mapping to FileSink: EventOut

EventOut is a FileSink operator used for writing the event data in XML format to a CSV

file. The mapping takes the eventOut parameter returned from the ruleset (if present) and

writes the xml string as a single xml attribute in the stream sent to the EventOut operator

as shown in listing 4.3.

This demonstrates that events can be forwarded as XML to other operators in a streams

application.

The bookEvent is an optional output parameter from the ruleset and is only sent when the

tuple is classified as OFFERBASKET. This means that a check for the existence of a

bookEvent needs to be undertaken in the handleExecutionResponse method in

BookClickExecutionHandler before we call the data mapping for the event output ports.

If this check is not performed, null or empty String data will be sent to the output port

even when no event is generated. See listing 4.3 below on checking for bookEvent data

and submitting events to event ports.

Listing 4.3 Checking for event parameter existence before mapping
String bookEventContent = (String) outMap.get("bookEvent");
 if (bookEventContent != null) {
 // Book event available, send to port 1 which is book event port
 StreamingOutput<OutputTuple> outputPort1 = getOperatorContext()
 .getStreamingOutputs().get(1);

 // Create Output Tuple for output port 1
 OutputTuple streamsOutputTuple1 = outputPort1.newTuple();
 streamsOutputTuple1.assign(inputTuple);

 try {
 getTupleRulesetParamMapping().mapToTuple(outputPort1,
 streamsOutputTuple1, outMap);

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 49

 } catch (Exception e) {
 handleExecutionException(e, inputTuple, inputParameters);
 return;
 }

 // Submit book event content
 outputPort1.submit(streamsOutputTuple1);

// Continue for port 2
:::::::::::::

This switch is applied to both port 1 and port 2.

In the mapping class, the bookEvent output parameter from the rule execution is retrieved

from a Map in String format which then needs to be converted to SPL XML format for

the EventOut port. After conversion, we set the xmlEvent in the OutputTuple using

setXML method. See Listing 4.4 below on the mapping done for port EventOut.

Listing 4.4 Mapping bookEvent from ruleset parameter to XML
public void mapToTuple(StreamingOutput<OutputTuple> outputPort,
 OutputTuple tuple, Map<String, ?> outMap) throws Exception
{

// Mapping of Port 0 - main port filtered
 ::::::

 // Mapping of Port 1 - book event returned as xml
 // to be logged in output file
 if (outputPort.getPortNumber() == 1) {
 String bookEventString = (String) outMap.get("bookEvent");
 XML xml = ValueFactory.newXML(
 new ByteArrayInputStream(bookEventString.getBytes()));
 tuple.setXML("xmlEvent", xml);
 }
 ::::::
}

The Messaging Toolkit operators and the JMSSink operator in particular, requires a

string to be sent as the message payload rather than an SPL XML type. In this case we

need to map the bookEvent data into a String when sending the stream to JMSOut port.

See listing 4.5 below on the mapping done for port JMSOut.

Listing 4.5 Mapping bookEvent from ruleset parameter to String
public void mapToTuple(StreamingOutput<OutputTuple> outputPort,
 OutputTuple tuple, Map<String, ?> outMap) throws Exception
{

// Mapping of Port 0 - main port filtered
 ::::::

 // Mapping of Port 1 - book event returned as xml

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 50

 // to be logged in output file
 ::::::

 // Mapping of Port 2 - book event returned as xml in String
 // to be forwarded as JMS message.
 if (outputPort.getPortNumber() == 2) {
 String bookEventString = (String) outMap.get("bookEvent");
 // Use of setString handles the conversion between
 // Java String and SPL rstring
 tuple.setString("bookEvent", bookEventString);
 }
}

The JMSOut operator is expecting the bookEvent data as SPL rstring. The bookEvent

data is extracted from the output parameter Map as a java.lang.String. The conversion

from Java String to SPL rstring is handled by the setString method of the OutputTuple. If

OutputTuple.setObject method is used instead, the Java String needs to be wrapped in a

Java RString object.

JMSOut : JMSSink

JMSOut is a JMSSink operator from the Messaging Toolkit and is included in this

application to show that the events identified by rules can be sent via messaging to

remote systems for further action. The book event data is sent as a String whose content

is an XML document that can be used as a payload. The Messaging Toolkit includes

operators for sending messages using JMS, XMS and MQTT protocols. It is important to

study the documentation in IBM Knowledge Centre for the Messaging Toolkit which has

details on the use of the 3 different operator types, the data format supported and the SPL

to JMS/XMS conversions.

In our example, we send the event as a JMS message using JMSSink to a WebSphere

MQ queue. In the JMSSink operator, we need to set the parameters for the JMS

connection and access for our JMS environment as shown in figure 4.8

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.messaging-toolkit.doc/doc/msgtlkt-container.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 51

Figure 4.8 JMSSink parameters

The access and connection values referred to are defined in a connection document.

The default document location is Resources/etc/connections.xml in the project. If the

connection document is in a different file location, then the full path to the connection

document can be defined in the connectionDocument parameter for the JMSSink

operator.

The connection configuration used in our sample environment (as described in the annex)

is described in listing 4.5 below.

Listing 4.5 JMS connection configuration in connections.xml
<st:connections xmlns:st="http://www.ibm.com/xmlns/prod/streams/adapters"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <connection_specifications>

<connection_specification name="conn1">
 <JMS initial_context="com.sun.jndi.fscontext.RefFSContextFactory"

provider_url=file:///opt/JNDI-Directory
connection_factory="ConnectionFactory" />

 </connection_specification>
 </connection_specifications>

 <access_specifications>
 <access_specification name="access1">
 <destination identifier="BOOKEVENT_IN"

delivery_mode="persistent"
message_class="xml" />

 <uses_connection connection="conn1"/>
 <native_schema>
 <attribute name="bookEvent" type="String" />
 </native_schema>
 </access_specification>
</access_specifications>

</st:connections>

/opt/JNDI-Directory

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 52

The connection_specification_name (conn1) and the access_ specification_name

(access1) defined in the connections.xml are used in setting the parameters in the JMSOut

port. The JMS to SPL type mapping is based on the message_class defined in the access

destination. See Attribute element for the list of message_classes supported and the

mappings between message_class and the attribute type. The link also describes the

optional length attribute for each operator. Depending on the operator type,

message_class and attribute type, you may need to add the length attribute to avoid

truncation of data.

In our sample, we set the message_class to xml. Note that xml SPL type is not supported

by the Messaging Toolkit and we set the attribute type for bookEvent to String in Listing

4.5 above. If you intend to send the event to the ODM event runtime (previously called

WebSphere Business Events (WBE)), you can set the message_class to “wbe”. The JMS

message will then have WBE-related headers included.

The Redbook on IBM InfoSphere Streams: Accelerating Deployments with Analytic

Accelerators has details on configurations for the Messaging Toolkit. It also provides

shortcuts for bypassing WMQ related permissions to simplify the running of samples.

For more details of configuring streams to support JMS messaging refer to Annex B.

Ruleset Execution Error handling through FileSink: Error

The RulesetExecution operator provides an additional port that can be used to provide a

stream of exceptions that occur when processing a tuple through ODM. This Error port

outputs a stream that is connected to the FileSink (Error) operator which is configured to

record any errors to file Errors.txt. The error stream schema is shown below in figure

4.9.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.messaging-toolkit.doc/doc/attributeelement.html
http://books.google.co.uk/books?id=JWfRAgAAQBAJ&printsec=frontcover#v=onepage&q&f=false
http://books.google.co.uk/books?id=JWfRAgAAQBAJ&printsec=frontcover#v=onepage&q&f=false

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 53

Figure 4.9 Error port schema

The streams schema includes errorTuple and the errorMessage. The order of the schemas

is important. Swapping the 2 error types will cause the Exceptions as shown in Listing

4.8 below and the streams fail to run.

Listing 4.8 Optional error output port attributes ordering
16 Oct 2014 17:17:05.310 [12112] ERROR #splapplog,J[0],P[0],Rules
M[JavaOp.cpp:log:92] - CDIST2257E The second attribute in the optional error
output port must be an rstring.
16 Oct 2014 17:17:05.310 [12112] ERROR #splapplog,J[0],P[0],Rules
M[JavaOp.cpp:log:92] - CDIST3358E The first attribute in the optional error
output port must be a tuple.

There should not be any records in Errors.txt for successful runs.

The default port for error output is port 1 with port 0 being the main application port.

The Filtering pattern has a total of 4 ports including the Error port. In this example, we

set the error port to the last as in the FeatureDemoCustomMapping sample.

FilteringPattern Listing

The complete listing for the FilteringPattern application is provide in listing 4.9 below.

Listing 4.9 FilteringPattern application SPL listing
namespace application ;

use com.ibm.streams.rules.odm::ODMRulesetExecutor ;
use com.ibm.streams.messaging.jms::JMSSink ;

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 54

composite FilteringPattern
{
 type
 BookClick = rstring customerID, rstring clickAction,
 timestamp clickTimestamp, rstring isbn, rstring title, rstring
author,
 decimal64 price, decimal64 basketValue, list<ustring> items ;
 FilteredBookClick = rstring customerID, rstring clickAction,
 timestamp clickTimestamp, rstring isbn, rstring title, rstring
author,
 decimal64 price, decimal64 basketValue, list<ustring> items,
 rstring classification, rstring rationale ;
 graph
 (stream<BookClick> BookClicksIn) as BeaconIn = Beacon()
 {
 param
 iterations : 100 ;
 period : 0.1 ;
 output
 BookClicksIn : customerID = "Customer" +(rstring)((int32)
IterationCount()
 / 10), clickTimestamp = getTimestamp(), isbn = "S-222",
title =
 "Quiet Day", author = "L P James", price =
(decimal64)(random() * 10.0),
 basketValue = (decimal64)(random() * 25.0), items =
[(ustring) "S-222"],
 clickAction = "ADD" ;
 }

 (stream<FilteredBookClick> FilteredBookClicksOut as outPort0Alias ;
 stream<xml xmlEvent> FilteredBookEventsOut as outPort1Alias ;
 stream<rstring bookEvent> FilteredJMSBookEvents as outPort2Alias ;
 stream<tuple<BookClick> errorTuple, rstring errorMessage>
RuleExceptions as
 outPort3Alias) as Rules = ODMRulesetExecutor(BookClicksIn as
inPort0Alias)
 {
 param
 rulesetPath : "/BookClickDecisionService/1.0/BookClickFilter"
;
 databaseUrl : "jdbc:db2://localhost:50000/RESDB86" ;
 driverName : "com.ibm.db2.jcc.DB2Driver" ;
 driverPath : "/opt/IBM/db2/V10.1/java/db2jcc.jar" ;
 managementConsoleHost : "localhost" ;
 managementConsolePort : 1883 ;
 userName : "db2inst1" ;
 userPassword : "db2passw0rd" ;
 xomLibrary : "bookXom.jar" ;
 rulesetExecutionHandlerClassName :
 "com.ibm.streams.odm.bookclick.BookClickExecutionHandler"
;
 rulesetExecutionHandlerLibrary : "BookClickMapping.jar" ;
 }

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 55

 () as CSVOut = FileSink(FilteredBookClicksOut as inPort0Alias)
 {
 param
 file : "filteredBookClicksOut.txt" ;
 format : csv ;
 }

 () as EventOut = FileSink(FilteredBookEventsOut as inPort0Alias)
 {
 param
 file : "filteredBookEventsOut.txt" ;
 format : csv ;
 }

 () as Error = FileSink(RuleExceptions as inPort0Alias)
 {
 param
 file : "Errors.txt" ;
 format : csv ;
 }

 () as JMSOut = JMSSink(FilteredJMSBookEvents as inPort0Alias)
 {
 param
 access : "access1" ;
 connection : "conn1" ;
 }

}

Filtering Pattern Execution

The filtering pattern sample may be executed in a standalone stream to demonstrate the

integration techniques. The multiple output ports have different output data in different

formats.

The output from CSVOut port is very similar to the CSVOut in classification pattern.

With the Beacon generating 100 random tuples, the CSVOut should have 100 records

with random data as shown in listing 4.11.

Listing 4.10 filteredBookClicksOut.txt Sample output stream in csv
format
"Customer0","ADD",(1413458660,134793000,0),"S-222","Quiet Day","L P
James",0.1773576019331813,8.868423302192241,["S-222"],"FILLINGBASKET","Items in basket."
"Customer0","ADD",(1413458660,260986000,0),"S-222","Quiet Day","L P
James",0.217961915768683,21.45777679979801,["S-222"],"OFFERBASKET","High value basket: Offer AOTM to close
order."
"Customer0","ADD",(1413458660,959895000,0),"S-222","Quiet Day","L P
James",6.52473428286612,15.69889669772238,["S-222"],"FILLINGBASKET","Items in basket."

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 56

"Customer0","ADD",(1413458661,65070000,0),"S-222","Quiet Day","L P
James",3.213561940938234,7.297414459753782,["S-222"],"FILLINGBASKET","Items in basket."
"Customer0","ADD",(1413458661,176415000,0),"S-222","Quiet Day","L P
James",8.917076834477484,6.223083520308137,["S-222"],"FILLINGBASKET","Items in basket."
"Customer0","ADD",(1413458661,281345000,0),"S-222","Quiet Day","L P
James",7.776940008625388,22.92293792124838,["S-222"],"OFFERBASKET","High value basket: Offer AOTM to close
order."
"Customer0","ADD",(1413458661,393003000,0),"S-222","Quiet Day","L P
James",7.02701048925519,18.24273504316807,["S-222"],"FILLINGBASKET","Items in basket."
"Customer0","ADD",(1413458661,497381000,0),"S-222","Quiet Day","L P
James",4.393221000209451,6.449947797227651,["S-222"],"FILLINGBASKET","Items in basket."
"Customer0","ADD",(1413458661,601683000,0),"S-222","Quiet Day","L P
James",8.860875847749412,3.423841251060367,["S-222"],"FILLINGBASKET","Items in basket."
"Customer0","ADD",(1413458661,705928000,0),"S-222","Quiet Day","L P
James",5.077155292965472,24.38116824487224,["S-222"],"OFFERBASKET","High value basket: Offer AOTM to close
order."
"Customer1","ADD",(1413458661,815945000,0),"S-222","Quiet Day","L P
James",9.768905667588115,5.983907252084464,["S-222"],"FILLINGBASKET","Items in basket."

:::::::::::::::::::::

As the filter event rule sends book event based on the classification, the number of book

events received in the other ports should be the number of records with OFFERBASKET

classification in filteredBookClicksOut.txt which is random for each run with random

input tuples. For this particular run, there are 19 tuples with OFFERBASKET

classification.

The book event output parameter is of XML kind and can sent as an XML to target

destinations. In this example, the xml formatted book event tuples are written to a file

filteredBookEventsOut.txt. For this run, there are 19 book events tuples. The Listing

4.11 below shows the 3 book events corresponding to the 3 records with

OFFERBASKET classification shown in Listing 4.11 above.

Listing 4.11 filteredBookEventsOut.txt Sample output tuples in xml
format
"<ns0:BookEvent xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:ns0=\"http://BookEvent\"><ns0:customerID>Customer0</ns0:customerID><ns0:clickTimestamp>2014-10-
16T13:24:20.260</ns0:clickTimestamp><ns0:clickAction>ADD</ns0:clickAction><ns0:basketValue>21.457777</ns0:basket
Value><ns0:classification>OFFERBASKET</ns0:classification><ns0:rationale>High value basket: Offer AOTM to close
order.</ns0:rationale><ns0:book><ns0:isbn>S-222</ns0:isbn><ns0:title>Quiet Day</ns0:title><ns0:author>L P
James</ns0:author><ns0:price>0.21796192</ns0:price></ns0:book><ns0:items>S-222</ns0:items></ns0:BookEvent>"x
"<ns0:BookEvent xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:ns0=\"http://BookEvent\"><ns0:customerID>Customer0</ns0:customerID><ns0:clickTimestamp>2014-10-
16T13:24:21.281</ns0:clickTimestamp><ns0:clickAction>ADD</ns0:clickAction><ns0:basketValue>22.922937</ns0:basket
Value><ns0:classification>OFFERBASKET</ns0:classification><ns0:rationale>High value basket: Offer AOTM to close
order.</ns0:rationale><ns0:book><ns0:isbn>S-222</ns0:isbn><ns0:title>Quiet Day</ns0:title><ns0:author>L P
James</ns0:author><ns0:price>7.77694</ns0:price></ns0:book><ns0:items>S-222</ns0:items></ns0:BookEvent>"x
"<ns0:BookEvent xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:ns0=\"http://BookEvent\"><ns0:customerID>Customer0</ns0:customerID><ns0:clickTimestamp>2014-10-
16T13:24:21.705</ns0:clickTimestamp><ns0:clickAction>ADD</ns0:clickAction><ns0:basketValue>24.381168</ns0:basket
Value><ns0:classification>OFFERBASKET</ns0:classification><ns0:rationale>High value basket: Offer AOTM to close
order.</ns0:rationale><ns0:book><ns0:isbn>S-222</ns0:isbn><ns0:title>Quiet Day</ns0:title><ns0:author>L P
James</ns0:author><ns0:price>5.077155</ns0:price></ns0:book><ns0:items>S-222</ns0:items></ns0:BookEvent>"x
::::::::::::::::

The JMSOut port should be sending the same number of book events to the configured

JMS destination BOOKEVENT_IN as JMS messages. With the MQ Explorer, we can

browse the JMS message arrived in the BOOKEVENT_IN queue and view the data sent

as shown in Figure 4.16 below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 57

Figure 4.10 JMS message browsing in MQ Explorer

If you find that the message is truncated in the MQ Explorer, you would need to define

the length attribute for the native_schema in the connections.xml discussed earlier. Just

make sure that the MQ Explorer Preferences under WebSphere MQ Explorer >

Messages > Max data bytes displayed is not causing the truncation in the UI first.

The Listing 4.13 below shows the message data for the first JMS message when

message_class is set to “xml”

Listing 4.12 JMS Message for xml message_class
<?xml version="1.0" encoding="UTF-8"?><tuple xmlns="http://www.ibm.com/xmlns/prod/streams/spl/tuple"><attr
name="bookEvent" type="rstring"><ns0:BookEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns0="http://BookEvent"><ns0:customerID>Customer0</ns0:customerID><ns0:clickTimestamp>
2014-10-
16T13:24:20.260</ns0:clickTimestamp><ns0:clickAction>ADD</ns0:clickAction><ns0:basketValue&
gt;21.457777</ns0:basketValue><ns0:classification>OFFERBASKET</ns0:classification><ns0:rati
onale>High value basket: Offer AOTM to close order.</ns0:rationale><ns0:book><ns0:isbn>S-
222</ns0:isbn><ns0:title>Quiet Day</ns0:title><ns0:author>L P
James</ns0:author><ns0:price>0.21796192</ns0:price></ns0:book><ns0:items>S-
222</ns0:items></ns0:BookEvent></attr></tuple>

For comparison, Listing 4.44 shows a JMS message for a bookEvent data using wbe as

message_class from a different run.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 58

Listing 4.13 JMS Message for wbe message_class
<?xml version="1.0" encoding="UTF-8"?><connector name="System S" version="6.2"
xmlns="http://wbe.ibm.com/6.2/Event/inPort0Alias"><connector-bundle name="inPort0Alias"
type="Event"><inPort0Alias><bookEvent data-type="string"><ns0:BookEvent
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns0="http://BookEvent"><ns0:customerID>Customer0</ns0:customerID><ns0:clickTimestamp>
2014-10-
16T17:49:57.552</ns0:clickTimestamp><ns0:clickAction>ADD</ns0:clickAction><ns0:basketValue&
gt;22.52891</ns0:basketValue><ns0:classification>OFFERBASKET</ns0:classification><ns0:ratio
nale>High value basket: Offer AOTM to close order.</ns0:rationale><ns0:book><ns0:isbn>S-
222</ns0:isbn><ns0:title>Quiet Day</ns0:title><ns0:author>L P
James</ns0:author><ns0:price>2.2024555</ns0:price></ns0:book><ns0:items>S-
222</ns0:items></ns0:BookEvent></bookEvent></inPort0Alias></connector-bundle></connector>

The JMS messages in the BOOKEVENT_IN queue can now be consumed by

applications, e.g. IIB, WBE, waiting on the queue to act on the book events.

Summary

We have shown in this section how to build on the simpler Classification Pattern to create

a new pattern that introduces improved data structure and creating events that can be sent

to different target destinations like JMS. The pattern integrates InfoSphere Streams and

ODM using the ODMRulesetExecutor from the Rules Toolkit to execute a deployed

BookClickFilter ruleset to classify a book click action and create an event for

classifications that requires further actions. Further more, it is possible to customize the

data mapping using the ruleset execution to send data to different ports expecting

different data formats using the ruleset execution handler supported by the Rules Toolkit.

The same data can be sent to more than one destination for different analysis, actions as

required.

Conclusion
This article has examined how Operational Decision Management techniques can be used

within Big Data solutions such as streams. The goal of this integration is to leverage rule

and policy based categorization of the information to assist in the analytics and identify

information of significance to emerging business situations. This allows business

decisions to respond dynamically to the evolving situations providing an optimized

response in the complex emerging business environment.

Annex A: Installation and Configuration of InfoSphere
Streams 3.2.1 with IBM Operational Decision Manager
This section describes how to install and configure InfoSphere streams with IBM

Operational Decision Manager to support the use of business rules with streams

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 59

applications. The tutorial is based on the use of the InfoSphere Streams Quick Start

Edition which is available for non-production environments as a VMWare Image or as a

native Linux install. The version used for this tutorial is v3.2.1.

This section also includes instructions on running the ODM samples provided with IBM

InfoSphere streams.

InfoSphere Streams installation and configuration overview

This section provides an overview of how to establish an InfoSphere streams

environment. Each subsection references the recommended InfoSphere documentation to

be followed to perform that task.

InfoSphere Streams Installation

http://www-

01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.stream

s.install.doc/doc/install-container.html?lang=en

This tutorial recommends the use of the Quick start edition as this provides a readily

available install for describing the integration patterns with ODM. The ODM integration

patterns are then also applicable to more sophisticated InfoSphere streams installations

where administrators understand the details of the topologies to be established.

The VMWare image provides a preconfigured installation that is ideal for prototypes.

The native Linux install can be installed through a GUI (if an X Windows System is

installed on your host) or through an interactive console mode. While you can install and

use the Quick Start Edition without a GUI (for example as a server), the GUI allows you

to get started more quickly and use the Streams Studio application development interface.

InfoSphere Streams Configuration

http://www-

01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.stream

s.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en

If you installed the VMware image, this configuration has been already undertaken and

you can move onto configuring ODM in the environment or setting up Streams Studio on

a remote workstation.

On a native install you should go through the post install configuration steps described

here. http://www-

01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosp

here.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-

roadmap.html

It is important that you follow these steps as they will be needed when you come to

install and configure the ODM Operator.

For the native Linux install you need to undertake the configuration using the FirstSteps

scripts. If you are using the GUI and Launch First Steps is selected in the

http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmistvi
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmisqse
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS214-083
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install.doc/doc/install-container.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install.doc/doc/install-container.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install.doc/doc/install-container.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 60

PostInstallation Tasks panel, the IBM InfoSphere Streams First Steps GUI starts at end

of installation. The First Steps GUI can also be started later by running command

Streams-installation-directory/FirstSteps.sh.

The First Steps documentation and GUI take you through the following important steps:

 Configure the SSH environment

o Select DSA or RSA SSH key type.

 In our environment, we select RSA SSH key type and proceeded

to configure the optional Generate public and private keys.

 Configure InfoSphere Streams environment variables

o Follow instructions provided to set the environment variables for the

InfoStream user, i.e., add the following command to ~/.bashrc file or

/etc/profile.d script:

 source /opt/ibm/InfoSphereStreams/bin/streamsprofile.sh

 Verify the installation.

o Although this is marked as optional. It is a good idea to verify the

installation before proceeding to other tasks.

 Create and manage InfoSphere Streams instances

o Select Share the instance if instance is to be used by other users.

o Click Check port availability for the SWS HTTPS port (default 8443)

before proceeding

InfoSphere Streams Studio Configuration

http://www-

01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosp

here.streams.cfg.doc/doc/remote-development-creating-connection-linux.html

If you installed the VMware image, this configuration has been already undertaken and

you can move onto installing and configuring ODM in the environment.

You can install InfoSphere Streams Studio locally or on a remote Windows or Linux

workstation according to these instructions.

The installable images are shipped in Streams-installation-directory/etc/StreamsStudio:

 Windows: StreamsStudio-Win.zip

 Linux: StreamsStudio.zip

Copy and unzip the installable image on the platform of choice.

The InfoSphere Streams Studio requires a 64-bit Java Development Kit (JDK) with an

IBM ORB. If you use an Oracle JDK, the Java installation must be configured to use the

IBM ORB implementation. For more information, see Configuring an Oracle Java

development kit for Streams Studio.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/tinstall-studio-updating-java-orb-implementation.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/tinstall-studio-updating-java-orb-implementation.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 61

To re-configure the studio to use the correct JDK after studio is installed you must define

where the JDK is installed in the file StreamsStudio-installation-

directory/streamsStudio.ini.

Here is an example to configure a Windows installation of Steams Studio to use the IBM

JDK that is shipped in the Operational Decision Manager (ODM) V8.6 64-bit

installation:

-vm

C:\IBM\ODM86\jdk\bin\javaw.exe

-vmargs

Once the JAVA configuration is completed, you can now bring up the InfoSphere

Streams Studio with the StreamsStudio-installation-directory/streamsStudio.exe

command. On first run, you are prompted by the wizard to connect to the remote streams

instance and set up both remote and local workspaces. These workspaces are

synchronized and should use empty clean workspaces to start with. Existing projects can

be imported into workspace after configuration.

In the New remote connection configuration, the SSH option is selected in our

environment with the Path to installed server on host modified with the correct

installed directory. On clicking Next, enter the user id and password of a user on the

remote host who can access the streams instance and select to save both user id and

password.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 62

Figure A.1 Remote connection configuration for Streams Studio

The wizard then prompts for the Infosphere Streams install directory and the default

remote workspace for synchronizing with the local workspace. You can browse the

remote file system with the Browse button.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 63

Figure A.2 InfoSphere Streams install location details

This completes the InfoSphere Streams Studio configuration. Samples or existing

projects can now be imported into the studio.

Configuring IBM Operational Decision Manager in a Streams
Environment

http://www-

01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosp

here.streams.rules-toolkit.doc/doc/container.html

Installation of ODM into a streams environment consists of the following steps.

1. Ensure the STREAM_INSTALL environment variable is setup (usually

opt/ibm/InfoSphereStreams)

2. Install ODM Decision Server Rules. This does not have to be on the same host as

streams but should be reachable over the network. This needs to have a network

reachable database so that the embedded rule engine operating in streams can be

populated dynamically with the rulesets. This tutorial describes how to setup this

environment with a local tomcat Rule execution server console and a network

derby database.

3. Copy the directory ODM-installation-directory/executionserver/lib to a directory

reachable by streams. InfoSphere Streams expects the ODM J2SE jars to be

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/container.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/container.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/container.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 64

located in the ODM_HOME/executionserver/lib directory. You will need to

ensure that the ODM_HOME variable is correctly configured to reflect this

directory. (typically /opt/IBM/ODMVersion, e.g. /opt/IBM/ODM86)

Installing Decision Server on Tomcat and Derby

This section provides a summary of the steps required to setup a lightweight local

Decision Server running on Apache Tomcat. This is described in the Configuring Rule

Execution Server on Tomcat section in the IBM Operational Decision Manager

Knowledge Center.

The following steps should be taken:

1. Install Apache Tomcat

2. Install Apache Derby a configure and start a network Derby server.

3. Add the derbyclient.jar library from the <DERBY_HOME>/lib directory to the

<TOMCAT_HOME>/lib directory to ensure it is on the classpath. Note where

this jar is located as it will need to be added to the configuration of your ODM

4. Install Decision Server (Rule Execution server) into Tomcat as described in the

IBM Operational Decision Manager Knowledge Center here.

5. You should ensure that you use a network enabled database (e.g. DB2 or Network

Derby) to allow the JSE RES used by the Streams ODM Operator to access it.

The embedded derby database installed by default is not suitable.

6. You should also ensure that the Rule Execution Server console is enabled for

TCPIP notification as described here in Changing the default behavior of the

Management Console. The approach for repackaging the Tomcat management

console war is different and is described here.

Configuring Streams Studio to use the Rules Toolkit

To allow the use of the Rules toolkit in streams studio you should add the toolkit

location. This can be undertaken in the First Steps Task Launcher for Big Data in the

Streams Studio by selecting Make SPL Toolkits available. This should then be visible

in the streams explorer as shown below in figure A.3.

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tpc_tcat_config_res.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tpc_tcat_config_res.html?lang=en
http://tomcat.apache.org/
http://db.apache.org/derby/
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tpc_tcat_config_res.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.dserver.rules.res.managing/topics/con_res_config_rescons_behavior.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.dserver.rules.res.managing/topics/con_res_config_rescons_behavior.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tsk_tcat_repack_with_ant.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 65

Figure A.3 Steams Explorer showing Rules Toolkit location

Building and running the Rules Toolkit sample applications

http://www-

01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosp

here.streams.rules-toolkit.doc/doc/bldsamples.html

You can either import the whole Rules Toolkit into the workspace, or import individual

samples.

To import the Rules Toolkit as an SPL project into the workspace:

1. Click File > Import > InfoSphere Streams Studio > SPL Project.

2. Click Next.

3. Click Browse to select a directory that contains the SPL toolkit. An SPL toolkit is

identified by its model file, info.xml. Any directory containing this file is treated

as the root of the SPL toolkit. If you are working in a remote development

environment, you can import SPL projects either from your local system or from a

remote Linux system. To import a project from a remote system, in the Select a

source location for import window, from the Connection list, select the

connection that you can use to connect to the remote system.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/bldsamples.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/bldsamples.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/bldsamples.html

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 66

4. The Import SPL Project window lists all the SPL toolkits found from the

selected directory. Each entry in this list shows the directory name, the toolkit

name and the version. Select one or more toolkit(s) to import into the workspace.

To select multiple toolkits, hold down the CTRL key while making your

selection.

5. Click Finish.

Figure A.4 Importing the toolkit into the workspace

When prompted on whether you want to delete unreferenced build configurations, click

Yes to delete them to be rebuilt later.

On completion the project should be built and be visible in the project explorer as shown

below in figure A.5.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 67

Figure A.5 Project explorer after import of Rules toolkit.

There is also an option to import individual toolkit SPL sample applications.

Once the project is imported into Streams Studio you can now build and run the sample

applications.

The first step is to create a build configuration. This can be either Standalone meaning

that it will run locally on a default stream or Distributed meaning that it can be deployed

to a streams instance. In this tutorial we will create a standalone configuration.

In the Project Explorer navigate to the sample you wish to run (SimpleRuleEvaluation) ,

under application, and right click New>Standalone Build as shown below in figure A.6.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 68

Figure A.6 Creating a build configuration

This opens the Build configuration editor where further details may be modified if

required. Click OK to close the editor and save the build configuration producing a

Standalone build configuration as shown in figure A.7.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 69

Figure A.7 Standalone build configuration

Now you have a build configuration you can establish a run configuration.

Build configurations that are imported may be read-only resources, and cannot be

modified or synchronized. Right-click to delete the imported build configurations and re-

create the Standalone build configuration.

To create a new run configuration select the drop down next to the run icon and select

Run Configurations… as shown in figure A.8.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 70

Figure A.8 Creating a new run configuration

In the Run Configurations editor select SPL Application and right click New… to bring

up the configuration editor. Change the fields to select the value for the sample

(SimpleRuleEvaluation) as shown below in figure A.9.

Figure A.9 Run Configuration editor.

To save the run configuration click Apply.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 71

You can then run this sample by clicking the Run button.

There is no output in the console from the SimpleRuleEvaluation sample but you can see

the result of the execution by looking at the files used by the datasource node

(applicationFile.txt) and produced in the data sink node (rulesDemoPrimitive.out) as

shown in figure A.10.

Figure A.10 SimpleRuleEvaluation sample execution results

If you are working remotely with the Streams Studio, you need the Remote Reconciler to

view the execution results. Right-click on data of the project and select Remote

Reconciler where you have the options to synchronize, push, pull data or show data in

remote reconciler/system.

The Remote Reconciler ignores some pre-defined file patterns, of which *.out is one.

This means that you may not successfully synchronize the rulesDemoPrimitive.out file.

In order to change these Ignored File Patterns

 Select Windows > Preferences pnel

 Select Remote Systems > Remote Reconciler > Unix Remote Projects

 Deselect the suffix you wish to be synchronized as shown in the figure below.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 72

Figure A.11 Ignored File Patterns in Unix Remote Projects

A similar approach can be applied to running the FeatureDemoCustomMapping

application provided with the rules toolkit.

Running SPL Applications using Dynamically Deployed Rulesets

It is possible to configure the ODM Operator to use rulesets that are deployed to an

existing Decision Server as long as that Decision Server:

 Is a version that is compatible with that used in the Streams ODM Operator

 has a network enabled database and

 has TCPIP notification enabled

The DatabaseDeploymentAndRuleRefresh sample is configured to operate in this way.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 73

To use this sample you need to extract the provide rule project into Rule Designer and

deploy it to Decision Server. The rule project used in this sample is in the project

directory /DatabaseDeploymentAndRuleRefresh/data/ and is called

MiniLoanRuleProject_ForDb_deployment_RuleRefresh.zip.

The rule project is based on a Java XOM (miniloanXom.jar) which is included in the

rule project ZIP file and also in the /DatabaseDeploymentAndRuleRefresh/data directory.

This jar has to be configured so that it is added to the streams classpath at runtime. As

shown below in table x.x.

A RuleApp project can be created in Rule Designer and deployed to an existing Decision

Server. The rulesetPath defined in the configuration parameters should correspond to this

deployment. It is good practice to use a specific RuleApp version in the path to define

the interface and XOM but to omit a ruleset version meaning that the operator will

always use the latest ruleset deployed. You should not deploy the XOM for rule projects

contained in the RuleApp as the miniloanXom.jar is already located in the classpath and

the streams integration always uses file persistence for the XOM. Deploying the XOM

will mean that the ruleset will have a reference that cannot be resolved by the local JSE

RES and an exception will occur at runtime.

The Ruleset Executor Operator provides a number of parameters that can be used to

configure its operation. In this sample you need to set up the Submission time values in

the application configuration to reference the Decision Server and ruleset characteristics

to which it should integrate. Typical values for a local Tomcat installation of Decision

server running on a network Derby database (db2 values in brackets) are shown below.

Table A.1 Ruleset Executor configuration parameters

Parameter Example Value Comment

rulesetPath /MiniloanRuleApp/1.0/MiniloanRules Ruleset to be loaded from the

decision server repository.

The ruleset path does not

include the ruleset version so

that on notification of ruleset

updates, the latest ruleset

version is executed next.

managementConsoleHost localhost Management console host ip

address or dns name used to

register with the decision

server.

managementConsolePort 1883 Port used to register for tcpip

notifications of ruleset

updates

databaseUrl jdbc:derby://localhost:1527/resdb Url of the decision server

repository database

databaseUserName ilog Database user credentials

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 74

databaseUserPassword ilog Database user credentials

databaseDriverName org.apache.derby.jdbc.ClientDriver Jdbc client driver class name

databaseDriverPath /home/streamsadmin/db-derby-

10.10.1.1-bin/lib/derbyclient.jar

Classpath containing the

client driver.

When these configurations are setup, the rulesets to be executed are taken from the Rule

Execution server repository rather than the file system used in the previous samples.

A typical Run configuration is shown below in figure A.12.

Figure A.12 ODM Operator node remote repository configuration

When executing streams with these settings the rules can be dynamically loaded into the

operator when they are changed by deployment from Rule Designer or Decision Center.

In this sample the input data to the rules is provide dthrough a Beacon node that sends the

same set of data at regular intervals. This is configured to have a loan request amount of

2000000 as shown below in figure A.13.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 75

Figure A.13 DatabaseDeploymentAndRuleRefresh sample Input
source

The default rules deployed with the sample include a rule that defines the loan application

amount limit to be 1000000 as shown in figure A.14.

Figure A.14 Sample rule defining maximum loan amount

When the rules run in the stream each loan application should be rejected . If the amount

is then changed to 5000000 and the ruleapp and ruleset redeployed, the decision changes

to use the new limit and the loan is approved. This can be seen in figure A.15 below at

the point of transition.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 76

Figure A.15 Output from Data Sink as ruleset update is deployed

In addition the execution of rules can be managed and monitored in the Rule Execution

Server Console. If tracing is enabled (this will incur a performance overhead) , statistics

showing execution count and timings can be seen as shown in figure A.16.

Figure A.16 Ruleset execution statistics in Rule Execution Server
console

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 77

Annex B: Configuring MQ and JMS for streams event
handling on Linux
The use of the messaging toolkit within streams requires the installation and

configuration of at least an MQ client and will usually require at least access to an MQ

server in which the Queue Manager and Queues are running. This annex takes you

through the key installation and configuration steps needed to support the scenario

described in this article.

Installing MQ

The first step is to install MQ Server onto the Streams environment.

1. Open a command shell as root

2. Obtain and install MQ 7.5.0.1 or later with filename: WS_MQ_LIN_ON_X86-

64_V7.5.0.1_EIM.tar.gz

3. Unzip into /opt/mqInstall or similar directory

4. Move to the install directory:

cd /opt/mqinstall
5. Accept the licence:

./mqlicense.sh

6. Perform the install:

rpm –ivh MQSeries*.rpm
7. This should install MQ into /opt/mqm

Configuring MQ with a Queue Manager

Once the installation is complete you should configure the mq administrative user and

establish a queue manager.

1. Open a command shell as root.

2. Before issueing any commands ensure the MQ environment is setup

 . /opt/mqm/bin/setmqenv

3. Setup an mqadmin user:

/usr/sbin/useradd –g mqm –d /home/mqadmin mqadmin
4. Set their password:

passwd mqadmin (enter mqadmin password twice)

5. Change to the mqadmin user (enter password)

su mqadmin
6. Create a queue manager:

crtmqm –q IB9QMGR
7. Start the queue manager

strmqm IB9QMGR
8. Start the tcpip listener

runmqlsr –t tcpp –p 1414 –m IB9QMGR &
9. Run the MQSC console to configure the queue manager

runmqsc IB9QMGR

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 78

10. Disable Channel Authorization

ALTER QMGR CHLAUTH(DISABLED)
11. Enable automatic channel creation to allow use from MQ Explorer

ALTER QMGR CHAD(ENABLED)
12. Open IBM WebSphere MQ Explorer

13. Select Queue Managers, right click and select Show/Hide Queue Managers

14. Click Add

15. Enter the Queue Manager name IB9QMGR

16. Enter the following details:

Host Name: eg localhost

Port: eg 1414

Server connection channel: SYSTEM.AUTO.SVRCONN
17. Click Finish

18. The queue manager should now be visible in the navigator.

19. Create the queue to be used by selecting the Queues folder and clicking

New-> Local Queue
20. In the name type the queue to be used: eg BOOKEVENT_IN

21. Accept defaults (or configure accordingly) and click Finish.

Configuring streams to recognize MQ

Once you have established your queue manager and queues, you need to need to ensure

that the streams environment is configured to recognize them. In a production

environment, the security would be configured by the WMQ administrator but in this

example we will override security for simplicity.

For our JMSSink operator, we need to generate a .bindings file for JNDI lookup using a

JMSAdmin.config file modified for our environment. The settings we use are:

 INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

 PROVIDER_URL=file:///opt/JNDI-Directory

 SECURITY_AUTHENTICATION=none

 The steps below should be followed to configure streams to recognize MQ.

1. Open a command shell as root.

2. Ensure that the STREAMS_MESSAGING_WMQ_HOME environment variable

is configured by including this export in the .bashrc file.

export STREAMS_MESSAGING_WMQ_HOME=/opt/mqm

3. Create a directory to hold the MQ JNDI configuration. This will be needed by the

streams JMS operators to find the JMS connections.

mkdir /opt/JNDI-Directory
4. Copy the file JMSAdmin.config from opt/mqm/java/bin into this directory – this

will hold details of queumanagers and should be edited to show:

INITIAL_CONTEXT_FACTORY=

 com.sun.jndi.fscontext.RefFSContextFactory

PROVIDER_URL=file:///opt/JNDI-Directory

SECURITY_AUTHENTICATION=none

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 79

5. Issue the command:
/opt/IBM/mqm/V7.5/java/bin/JMSAdmin -v -cfg JMSAdmin.config

6. In response to the prompts, define the QueueManager
DEF CF(ConnectionFactory) QMGR(IB9QMGR) TRANSPORT(CLIENT)

HOSTNAME(localhost) PORT(1414)

7. And define the queue:
DEF Q(BOOKEVENT_IN) QMGR(IB9QMGR) QU(BOOKEVENT_IN)

8. On completion exit the Initial context and check that a .bindings file has been

created in this directory.

The INITIAL_CONTEXT_FACTORY and PROVIDER_URL values in the

JMSAdmin.config file are the values you need to set the initial_context and provider_url

respectively in the connections.xml file for any JMSSinks. The provider URL directory

is the directory where the .bindings file is generated with the WMQ JMSAdmin

command.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 80

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program, or

service is not intended to state or imply that only that IBM product, program, or service

may be used. Any functionally equivalent product, program, or service that does not

infringe any IBM intellectual property right may be used instead. However, it is the user's

responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described

in this document. The furnishing of this document does not grant you any license to these

patents. You can send license inquiries, in writing, to:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England SO21 2JN

For license inquiries regarding double-byte character set (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated in

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 81

new editions of the publication. IBM may make improvements and/or changes in the

product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those websites. The materials

at those websites are not part of the materials for this IBM product and use of those

websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs and

other programs (including this one) and (ii) the mutual use of the information which has

been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it

are provided by IBM under terms of the IBM Customer Agreement, IBM International

Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.

Therefore, the results obtained in other operating environments may vary significantly.

Some measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available systems.

Furthermore, some measurements may have been estimated through extrapolation. Actual

results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM has not

tested those products and cannot confirm the accuracy of performance, compatibility or

any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers

of those products.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 82

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of

individuals, companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is entirely

coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM, for

the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested

under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs. The sample programs are provided "AS IS", without

warranty of any kind. IBM shall not be liable for any damages arising out of your use of

the sample programs.

Each copy or any portion of these sample programs, or any derivative work, must include

a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Patterns for Operational Decision Management in Streams

© Copyright IBM Corporation 2014. 83

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and trademark

information” at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or

both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of

Oracle and/or its affiliates.

