IBM.

IBM Operational Decision Manager
Version 8.6.0

Patterns for Operational Decision Management in
Streams

© Copyright IBM Corporation 2014.

Patterns for Operational Decision Management in Streams

This edition applies to version 8, release 6, modification 0 of Operational Decision
Manager and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 2014.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

© Copyright IBM Corporation 2014. 2

Patterns for Operational Decision Management in Streams

Title:
Patterns for Operational Decision Management in Streams.

Abstract:
With the advent of mobile, cloud and big data processing, businesses need to respond
quickly to emerging risks and opportunities as part of a smarter decision-making process.

This article looks at patterns that allow Operational Decision Management decisions to be
integrated into Big Data streams processing to improve the business insights and
situational awareness used to produce actionable responses in business solutions.

A retail scenario illustrates how IBM Operational Decision Manager can be integrated
into InfoSphere streams to help analyse customer book buying behaviour and thus
improve the chance of a successful order.

Recommended practices are described so that solution architects and integrators
understand how these products can be used together. While the article describes many of
the key installation, configuration and development tasks for a solution, administrators,
analysts and rule developers should refer to the appropriate product documentation.

Authors: Duncan Clark, Katherine Tsui, Gavin Willingham, Lucinda Croft, Peter
Seddon

Technology:
Operational Decision Manager 8.6
Infosphere Streams 3.2.1

Level: Beginner/Intermediate

© Copyright IBM Corporation 2014. 3

Patterns for Operational Decision Management in Streams

Contents
Decision Management Integration patterns OVEIVIEWccocoovrereeeniieneneniesie s 8
OVBIVIBW ...ttt bbbttt bbbt bt b e st e e e bbbt ne e 8
ATTICIE SCOPE. ...ttt b bbbt ene s 8
Figure 1. High level operational VIEW.............ccccveiiiieiieie e 9
ST0] [To] gl O] 1] (= SRR 9
Figure 2. Solution contexXt diagram............ccocveieiieiiere e 10
1. Operational Decision Manager deCiSION SEIVICESccovrerereeierienieriesiesiesieens 11
2. Decision service integration using an Enterprise Service BUS.............cccccvevveennene. 11
3. Making insightful decisions as part of smarter proCesses...........ccoevvvevververveannenn. 12
4. Leveraging 360 degree insight and predictive analytics in decision services 12
5. Applying rules based decisions in Big Data and streams based processing......... 13
6. Situational awareness and aCtIONcevvrieerieieiiere e 13
7. Decision service monitoring, simulation and improvementcc.cccceveveennene. 13
Infosphere Streams INtegration OVEIVIEWcccooveieienieniiineseeieee s 14
Figure 3 Overview of typical streams integration.............cccccveveveevrevieseese e 14
Figure 4 Typical integration of Streams with IBM Operational Decision Manager 16
ATTICIE OVEIVIBW.......iiiiieieie ettt sttt e bbb ne e 16
Business Scenario and Information Models............cccooviiiiiiniineiii s 17
ClasSifiCatioN PALterN.c.coveiiirieieiiiesiee e 17
BOOK CliCk DECISION SEIVICEccuveieieiiieniesieesie e st ste et e e ste e e e aenneeneas 17
FIEEIING PAIEIN. ..oveiiice e st nas 17
Annex: Installation and ConfigUration............cociieiiiineniniree e 17
Business scenario and information Modelcooveiiiiiieiiie e 17
Yo o L Lol 0 =T o 1= SR 18
Figure 2.1. SCENArio OVEIVIEWccciveiiiieiieeieseesteeiestee st re s sre et sre e e e 18
INformation MOdel OVEIVIEWcc.eoviiieiiee e 19
Table 2.1 BooKClick input attribULescccooveiiiiiiic e 20
Table 2.2 BookClick response attributesccooeiiiiiiiiiiiicce e 20
Simple (unstructured) ODM Information Modelsccoooveiieiiiiciiccece e, 20
Figure 2.2 Simple (Non-structured) Variables............cccociiiiiininiiiineic s 21
Figure 2.3 Simple Parameter Business Object Modelccccooiiiiiiiiiiciiccis 22
Figure 2.4 Configuring a Domain for enumerated valuesccccceoeneieiciiinnnnns 23
Figure 2.5 Defining Domain MembersS.........ccvciiiiiieiiie i 24
Figure 2.6 Providing Utility operations in the vocabularyccccocoiiiiinns 25
Structured ODM Information MOdEIS ..o 25
Figure 2.7 Structured Variables ... 25
Figure 2.8 Book Java XOM and BOMcccccciiiiiiiiiiiic e 26
Figure 2.9 BOOK EVENt SCNEMAc..oiviiiiiiiiiiiieieeee e 26
Figure 2.10 BOOKEVENT BOMooiiiiiiciii ettt 27

© Copyright IBM Corporation 2014. 4

Patterns for Operational Decision Management in Streams

Figure 2.11 Adding operations t0 @ BOMcccceiiiiiiienine e 28
Figure 2.12 Defining operation behaviour using BOM to XOM Mapping............... 29
Streams INfOrmation MOGEIScveiiiiiiiee e e 29
Figure 2.13 BookClickIn Stream information modelcccooveiviiiiiciicic e, 30
Figure 2.14 ClassifiedBookClicks Stream information modelc.cccccoceiiiinnns 30
Table 2.3 Representation and Java object type for rstring and ustring..................... 31
ClasSITICAION PATEIMiiiiiiieie et eeenee e 31
Classification Pattern Streams APPCatioNnccvoveiieii i 31
Figure 3.1. Classification Pattern applicationccocooeririniiieicieiesc e 32
CSVIN FIleSOUICE OPEIALOL.......c.viiieeieeiecieesieeee st e e et e ste e sraesre e reeae e sreeseeenee e 32
Figure 3.2 BookClickIn Output Stream SChema..........cccoovviiininieiciciesc e 32
Rules ODMRUIESELEXECULOr OPEIALONccveeveiierieeiieeieceese et sre e sre e nas 32
Figure 3.3 Rules (ODMRulesetExecutor) configuration parametersc..c...... 33
BOOKCIICkClassification RUIESELccviiiiiiiieieiee e s 33
Figure 3.4 BookClickClassification Decision Operation signature...............cc.coev... 34
Figure 3.5 Classification RUIEFIOWcccoiiiiiiiciece e 35
Figure 3.6 INItial ACTION.......ooiiiiiei e 35
Figure 3.7 ClassificationDT Decision Table ..o 36
Figure 3.8 AuthorOfTheMonthOffer rule...........ccooeieiiiiiiiiec s 36
Figure 3.9 ClassifiedBookClicks Output stream schemacccccoveveieeiecie s, 37
Classification Pattern Summary and EXECULION...........cccoriiiriiiniiieee e 37
Listing 3.1 ClassificationPattern application SPL iStingcccccecveveiivevviiicieenns 37
Listing 3.2 bookClicksIn.txt Sample input stream in csv formatc.ccocevenee 38
Listing 3.3 classifiedBookClicksOut.txt Sample output stream in csv format......... 39
FIITErING PAITEIN ..o 39
Filtering Pattern Streams APPLICAtION...........ccoveviiiieii e 39
Figure 4.1 Filtering Pattern appliCationccooeieiiniiiiiiiseeece e 40
Beacon operator (BeaCONIN)c.ocveiiiiicie et 41
Figure 4.2 Beacon configuration to generate stream data............cccoceeerereneiinnnnnns 41
ODMRUIESELEXECULOr (RUIES) .. .veveeiicicciecce et 42
Figure 4.3 Rules (ODMRulesetExecutor) configuration parameterscc.c...... 42
Ruleset Executor Handler mapping to ruleset parameters...........cccccevvevveieeseeriesneee. 43
Figure 4.4 Input stream and BOOK Java Class...........cccoovreiiiiniiiiicnesc e 44
Listing 4.1 BookClickExecutionHandler and BookClickMapping registration Java
FESTING. ettt 44
BOOKCHCKFIITEr RUIESEL........eovieiieiieie et 45
Figure 4.5 BookClickFilter Decision Operation SIgnatureccccocevererenennnnnns 45
Figure 4.6 Filter RUIEFIOW...........cviiiie e 46
Figure 4.7 FilterEvent Action RUIE..........c.coiiiiiie e 47
Ruleset Executor Handler mapping to FileSink: CSVOUL...........ccccoiiiiiiie e 47
Listing 4.2 Default mapping from ruleset parameters to tuples..........cccocvvrvrinnnnne 48
Ruleset Executor Handler mapping to FileSink: EventOut............ccccovviiieiiieciecine, 48
Listing 4.3 Checking for event parameter existence before mapping 48
Listing 4.4 Mapping bookEvent from ruleset parameter to XMLccccccvvennnne. 49
Listing 4.5 Mapping bookEvent from ruleset parameter to Stringc.ccocvvveeee 49
JMSOUL 2 IMSSINK ittt sre e enes 50

© Copyright IBM Corporation 2014. 5

Patterns for Operational Decision Management in Streams

Figure 4.8 IMSSINK Parameters.........cocueuiiieiiiieiie e 51
Listing 4.5 JMS connection configuration in connections.Xmlcccccocvvevvennne 51
Ruleset Execution Error handling through FileSink: Error ... 52
Figure 4.9 Error port SCNEMAcceiieiiiieie e 53
Listing 4.8 Optional error output port attributes orderingccccceeeeeerencrennnnnn 53
FilteringPattern LiSTINGooveiiee et 53
Listing 4.9 FilteringPattern application SPL IiStingccccovviiiiieieniiinceee 53
Filtering Pattern EXECULIONcccuviieiieie ettt 55
Listing 4.10 filteredBookClicksOut.txt Sample output stream in csv format........... 55
Listing 4.11 filteredBookEventsOut.txt Sample output tuples in xml format.......... 56
Figure 4.10 JMS message browsing in MQ EXpPIOrer..........ccccoovieiiiinininiiies 57
Listing 4.12 JMS Message for xml message_Class.........cccvvevevieeniiniieiiiesesiie e 57
Listing 4.13 JMS Message for wbe message_Classccoovvveveienenciencnineen, 58
SUIMMIAIY .ttt ettt bt e e R b bt e s st e e e Rt e e ns b e e e nR b e e e nb b e e e nbbe e e bbe e e neeennnes 58
(O70] 0] [11 [] o PR 58
Annex A: Installation and Configuration of InfoSphere Streams 3.2.1 with IBM
Operational DeCiSION MEaNAGETcuiiiiiieieie e nneas 58
InfoSphere Streams installation and configuration OVerview............ccccccoveveveiieieennne 59
InfoSphere Streams INStAllAtioN ... 59
InfoSphere Streams ConfiQUIationccccoeiiiiicie i 59
InfoSphere Streams Studio ConfiguIationcceoereieiiiiniceeee e 60
Figure A.1 Remote connection configuration for Streams Studio..............cccceeveenee. 62
Figure A.2 InfoSphere Streams install location detailscccccooevineiniiiniinns 63
Configuring IBM Operational Decision Manager in a Streams Environment 63
Installing Decision Server on Tomcat and Derby.........ccooviriiinieieieienc e 64
Configuring Streams Studio to use the Rules ToolKitc.cccevieiiiiiciiccce, 64
Figure A.3 Steams Explorer showing Rules Toolkit locationccccccvcniinnns 65
Building and running the Rules Toolkit sample applications..............ccccccovvevveieinennn. 65
Figure A.4 Importing the toolkit into the Workspace...........c.cooveieiineicieniins 66
Figure A.5 Project explorer after import of Rules toolKit..............ccccooeiviiiiieinenn. 67
Figure A.6 Creating a build configurationccccoceeeiiiiiiniiniece e 68
Figure A.7 Standalone build configuration..............ccccoeiieiiiie e, 69
Figure A.8 Creating a new run CONFIQUIAtIoNcccooeririneninieiee e 70
Figure A.9 Run Configuration editor............ccceeviiiiiiiic e 70
Figure A.10 SimpleRuleEvaluation sample execution results............ccccoeveeninnnnns 71
Figure A.11 Ignored File Patterns in Unix Remote Projectsccccccevvveiecvesneenne. 72
Running SPL Applications using Dynamically Deployed Rulesets..............c.ccocevuenee. 72
Table A.1 Ruleset Executor configuration parameters...........cccoovevveveieevieciieseennns 73
Figure A.12 ODM Operator node remote repository configurationcc.ceevee 74
Figure A.13 DatabaseDeploymentAndRuleRefresh sample Input source................ 75
Figure A.14 Sample rule defining maximum loan amount.............ccccceveieiienennnnnns 75
Figure A.15 Output from Data Sink as ruleset update is deployedc..cccveeneeee 76
Figure A.16 Ruleset execution statistics in Rule Execution Server console 76
Annex B: Configuring MQ and JMS for streams event handling on Linux.................... 77
INSEAITING IMIQ ..o 77
Configuring MQ with a QUeUE MaNAGETcccveiieiiieiie e 77

© Copyright IBM Corporation 2014. 6

Patterns for Operational Decision Management in Streams

Configuring streams to recognize MQ........ccoiiiiieieiieieeie e e
N 0] o OSSOSO PPN
TEARIMATKS ...ttt st te et et e e be e st e sbeenbeeneesreenbeenee s

© Copyright IBM Corporation 2014. 7

Patterns for Operational Decision Management in Streams

Decision Management Integration patterns overview

Overview

Business Rule Management systems have been evolving over many years to provide a
means of automating frequently occurring decisions that are required to make day-to-day
operations run effectively. These decisions ensure that customers are treated
consistently, that the right price is offered or that the most effective offer is made.

Business decisions are often based around policies on how an organization should
conduct its business to better meet business goals or to conform to regulations.

IBM Operational Decision Manager allows organizations to capture these decisions in
order to automate them as decision services. These services can then be used to improve
the straight through processing and increase effectiveness and operations efficiency
consistently across the organization.

Traditional approaches focused on recording and manipulating records using
synchronous decision services to define the actionable response as part of a well-defined
process. With the advent of mobile, cloud and big data processing, businesses need to
respond to emerging risks and opportunities at the earliest actionable moment within a
smarter decision-making process.

Risk or opportunity can be considered by asynchronously accumulating information as a
basis for identifying the situations and context in which the action needs to be taken.
While the reasons for actions in traditional approaches are obvious and may be defined
explicitly in the rules, this new approach is much more subtle, evolves over time and
requires the use of insights provided from analytics, big data in order to make an effective
response.

Article Scope

This article is one of a series of articles that look at patterns that allow business insights
and situational awareness provided by big data and analytics to be combined with
Operational Decision Management to produce actionable responses in business solutions.
Figure 1 shows the overall concepts that are discussed in these articles.

© Copyright IBM Corporation 2014. 8

Patterns for Operational Decision Management in Streams

Figure 1. High level operational view

Data + Analytics = Insight . .
Insight + Policy = Actionable Pattern

Discover (analytics) and define (policy) patterns o
D
M

A

d

V

a

n

C

=

Trigger Actions d

Call to Action + Process = Timely, Effective Action Context + Pattern - Call to Action

In figure 1 you can see how the insight derived from data and analytics allows the
behaviour of solutions to be understood and policies to be discovered and defined.
Operational Decision Management rules and pattern matching techniques can then be
used with the information coming out of the analytics to establish the 360 degree view of
current evolving situations and thus trigger actionable responses at the earliest
opportunity. Processes and traditional decision services can then be used with this
improved context information to optimize the response to the situation.

Solution Context

This section describes the key product components and integration points that can be
combined to produce these actionable insight solutions. The patterns that will be covered
by this series of articles are:
e Patterns for integrating operational decisions into Smarter Processes — shows the
basic patterns for integrating operational decisions into solutions
e Patterns for operational and analytical decision management in Smarter Processes
- shows how operational decisions and predictive analytics can be leveraged in
solution
e Patterns for integrating operational decisions into streams and Big Data solutions
(this article) - shows how operational decisions can be leveraged as part of an
analytical insight solution
e Patterns for actionable insight shows how IBM Operational Decision Manager
Advanced can be integrated into these solutions

Figure 2 shows the overall solution context and integration points between the products
and components in these patterns.

© Copyright IBM Corporation 2014. 9

Patterns for Operational Decision Management in Streams

Figure 2. Solution context diagram
SoE /loT Data

Insight

Sensors

Consumes

Data-at-

Cenerates

Policy

rest
Analytics

}

Operationalizes

Actionable

| Implements

Generates
External
Consumes Streamlng
2eiz ' Analytics
Streams

Mobile

sajelausn

_
Action

T Consumes / Generates

Uses / Maintains

Insight

t Implements

Predictive
Models

sez|[euonessdo

=9

Rules

Composed
from

Uses { Maintains

Consumes /
Generates

Social

Generates

APls

SayOoAL|

Business
Processes

Triggers Situational
4—'—~ Awareness
* Invokes
perational
Decisions

Services on Enterprose Service Bus

h Composed from

Internal
Systems

SoR

Figure 2 shows five main areas of actionable insight solutions.

e Systems of Record (SoR) - provide the internal systems (databases, transaction
processing systems) that perform the main business of the organization. These
systems are exposed through services, messaging infrastructures or Enterprise
Service Bus’s to:

e Systems of Engagement (SoE/IoT) — provide the multichannel access for the
business solutions to partners and customers. This area is growing very fast
supported by Mobile, Cloud and the Internet of Things (1oT) and is also
generating large amounts of information that can be leveraged by:

e Data — provides the means to assimilate and gain insight from the large amounts
of data held in Big Data repositories (Hadoop, Big Insights — data at rest) or
streams of information coming from sensors or social applications (data in
motion). Analysis of this data provides:

e Insight — captured as predictive models or policies (rules) specified according to
what business analysts have learnt from their solutions. This Insight is then
leveraged to realize:

e Action — where the emerging situation can be used to trigger processes and tasks
at the appropriate time, making decisions based on up-to-date, complete and
precise information.

© Copyright IBM Corporation 2014. 10

Patterns for Operational Decision Management in Streams

Figure 2 also highlights the key integration points between IBM Operational Decision
Manager and other products / components used in an actionable insight solution.

The following integration points are covered in other articles:

1. Operational Decision Manager decision services where the policies defining what
people know can be expressed as rules and automated.

2. Decision service integration using an Enterprise Service Bus where the decisions can
be turned into actions in the context of the business solution.

3. Making insightful decisions as part of smarter processes where the flow of process
activities and tasks can be automated according to the decisions.

4. Leveraging 360 degree insight and predictive analytics in decision services allowing a
more accurate decision at the time the decision is made.

This article concentrates on:
5. Applying rules based decisions in Big Data streams based processing

The following integration points will be described in other articles:
6. Situational Awareness and Action using Operational Decision Manager Advanced
7. Decision service monitoring, simulation and improvement

Each numbered integration point is now described in more detail in the following
sections.

1. Operational Decision Manager decision services

The starting point for this series of articles is the synchronous decision service
capabilities provided by IBM Operational Decision Manager. These can be integrated
into applications or processes using the patterns described in this series of articles. The
behavior of the decision services can be controlled by the business and evolved using
rules and decision tables to meet the evolving policies. It is not the intention to describe
the detailed capabilities of IBM Operational Decision Manager but it is important to
understand the underlying principles shared across the integration patterns.

Readers should refer to the IBM Operational Decision Manager Knowledge Center for
further information about IBM Operational Decision Manager.

2. Decision service integration using an Enterprise Service Bus

IBM Integration Bus provides a flexible environment for implementing both Event and
Enterprise Service Buses. This integration point shows how IBM Integration Bus can
virtualize decision services or event based interactions as well as leveraging other sources
of information used in the decision making process.

Customers also require well defined APIs for exposing their decision services to the
broader Systems of Engagement (SoE) or Internet of Things (IoT). These environments
now require REST / JSON services for use from mobile devices or from applications on
the cloud. The information needed to make the decisions is drawn from a wide variety of
sources and formats across the cloud based ecosystem requiring flexible yet robust

© Copyright IBM Corporation 2014. 11

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/kc_welcome.html

Patterns for Operational Decision Management in Streams

decision service APl management based on these underlying virtualized decision
services.

Readers should refer to the IBM Integration Bus Knowledge Center for further
information about IBM Integration Bus.

3. Making insightful decisions as part of smarter processes

Insight from “what your data knows” and “what your organization knows” drives the
“action” in actionable insights. These policies and insight are used in decision making
through the decision services or other pattern matching techniques. The decisions made
influence the actions taken by the organization as part of their day-to-day activities and
processes.

Insight can be used in two key areas in smarter processes:
e Deciding when to act — situations that start, progress or cause an exception path to
be adopted in a process.
e Making an insightful decision to decide on the next activities to undertake within
the process.
This combination of situational awareness and insightful decisions is what allows the
actions to be taken in the business moment.

Readers should refer to the IBM Business Process Manager Knowledge Center for further
information about IBM Business Process Manager..

4. Leveraging 360 degree insight and predictive analytics in decision
services

Big Data and analytics are now able to provide deep insights and 360 degree information
about entities (e.g. customers, products) that are important to the business. Predictive
models based on historical analytics then allow predictions to be made of future customer
behavior allowing decisions to be made with the advantage of “hindsight” and thus the
business outcome optimized.

Big Data and analytics not only provides insight into the behaviors of customers and the
potential market but also allows the overall performance and trends of the business to be
monitored and visualized through dashboards and reports. Using this business status
information allows situations to be detected at an early stage and corrective action
applied before KPIs degrade.

Consumers of decision services want to consider the latest situational awareness and
predictive analytics when making decisions. This information is not directly available to
those consumers and has to be drawn either from the cashed situational state or directly
from the analytics. Virtualization techniques such as IBM Integration Bus, API
Management or even the integration services in Business Process Manager can be used to
ensure that the decision leverages this evolving insight.

© Copyright IBM Corporation 2014. 12

http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/mapfiles/help_home_msgbroker.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSFPJS_8.5.5/com.ibm.wbpm.main.doc/kc-homepage-bpm.html

Patterns for Operational Decision Management in Streams

Readers should refer to the IBM SPSS Collaboration and Deployment Services
Information Center for further information on the IBM SPSS Analytics product.

5. Applying rules based decisions in Big Data and streams based
processing

Social computing and the Internet of Things are leading to massive quantities of
information being made available to organizations. To analyze and process this
information, technologies such as streams processing (processing data-in-motion) and
Hadoop (processing data-at-rest) are applying massively parallel processing close to the
data. The use of decision services whose behavior can be configured by the business to
classify and filter this information using rules is becoming more and more important to
identify emerging situations that require attention. This article concentrates on how ODM
is integrated with InfoSphere streams.

Readers should refer to the IBM Infosphere Streams Knowledge Center and IBM
InfoSphere Biglnsights Knowledge Center for further information.

6. Situational awareness and action

Situational awareness means knowing when to act — by bringing together analytic insight
and rules to describe the situations — combinations of past events that happened, events
that didn’t happen, current state, and predictions that demand immediate attention.

Just in time awareness of risk and opportunity — the ability to detect any situation
immediately upon receipt of the information that “concludes” the situation — is the bridge
from insight to action, and triggers action customized to individual risks and
opportunities. In the general case, action is process — a straight through orchestration,
workflow or case management response to the situation.

7. Decision service monitoring, simulation and improvement

The key goal of decision services and complex rule based event processing is to allow the
business to express and manage the required behavior of their solutions using rules. By
monitoring and analyzing the behavior of the business in response to the decisions,
organizations can understand how the rules and policies that are used in the decisions
affect the business.

Once organizations have this insight on how their decision making affects the business,
they can start to optimize their business by careful change management of those rules and
policies. Simulation of decision making based on historic data records is often used to
evaluate the effectiveness of new policies requiring close integration between data,
decision management and KPIs and dashboards.

© Copyright IBM Corporation 2014. 13

http://pic.dhe.ibm.com/infocenter/spsscads/v6r0m0/index.jsp
http://pic.dhe.ibm.com/infocenter/spsscads/v6r0m0/index.jsp
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.homepage.doc/doc/kc-homepage.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.im.infosphere.biginsights.welcome.doc/doc/welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_2.1.2/com.ibm.swg.im.infosphere.biginsights.welcome.doc/doc/welcome.html

Patterns for Operational Decision Management in Streams

Infosphere Streams Integration Overview

Streams applications process large volumes of moving data in data streams and are
created by using the Streams Processing Language (SPL). In this integration pattern we
will start with a typical streams solution as shown in Figure 3.

Figure 3 Overview of typical streams integration

%OE_EAL WORLD
USAGE
/ Capturing a \
Customer's Activity

Streaming Processor

5

@ Analytics
=

Sources

Sensors
producing
readings

<

=

| 5
% Real-time

Decisions
& J
In the diagram above there are five key interactions taking place within an Infosphere
Streams environment:

1. You can use the Streams Processing Language (SPL) to define data sources for
most devices, sensors, or application systems. To simplify application
development, you can use the predefined adapters or toolkits that are included
with the product. This results in streams of similar information arriving from
disparate sources. A data stream is a running sequence of tuples which can
encompass both structured and unstructured data.

2. Streams processing provides the technology for "real-time" analytics for this
“data-on-motion”. This allows a wide range of characterization and filtering of the
data as well as advanced analytics through the use of SPSS, R, Time-series
analysis or other toolkits or operators. This article describes how the rules toolkit
(and ODM) can be used in these streams applications.

© Copyright IBM Corporation 2014. 14

Patterns for Operational Decision Management in Streams

3. The Streaming Processor is arranged as a distributed pipeline of processing nodes
and operators. The main components of SPL applications are tuples, data streams,
operators, processing elements (PEs), and jobs. By combining operators and
streams together into a streams application and deploying that application across
multiple machines (processing elements), a very high performance processing
pipeline can be developed.

4. Whenever an operator receives a tuple from an input stream, the operator
produces modified tuples on output streams. Toolkits are packages of SPL
artifacts that are designed for specific business environments or activities. The
Rules toolkit allows ODM rulesets to be executed as an operator in the stream.
This allows the stream tuples to be classified or filtered by the rules to identify
tuples (or events) of significance in other decision making systems. This would
include ODM Decision Server Insights that would allow these more significant
events to be interpreted in a broader longer-term context.

5. The resulting streams data can be consumed in many ways with the toolkits or fed
into other products such as Hadoop, Bl or other data warehouse technologies for
doing deeper data-at-rest analytics, and looking more at historical results. This
data at rest insight can be leveraged as scoring services or encoded as rules and
brought back into the real-time decision making process making the insight
immediately actionable.

The Ruleset Executor Node can be configured in the streams as shown in figure 3. Each
Ruleset Executor Node works with an embedded JSE Rule Execution Server deployed
onto the Java Virtual Machine in the Streams Node. It is often the case that a streams
topology will need to support different streams using different rulesets with potentially
different owners. Figure 4 below shows how the ruleset management fits in with the
streams architecture

© Copyright IBM Corporation 2014. 15

http://pic.dhe.ibm.com/infocenter/streams/v3r2/topic/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/tlkt-container.html

Patterns for Operational Decision Management in Streams

Figure 4 Typical integration of Streams with IBM Operational Decision
Manager

Development - RS e el
Use RuF;e F: - P — DSCISIOH Center LOB-update rules — DC
designer to g = = access control proyi_des
design rulesets = o ¢ /1 <:> “‘MultiTenet” capability.
invoked by = =TT (32
operator. R - =
Operations - publish
rulesets and configure
ruleapps for deploying to
XU repositories
‘ | | | |
— , A Decision Server
ODM ODM
Operator Operator
\
Streams Customer 1 Job
Eclipse
Tooling -
Streams ODM ODM ODM O
\ perator — ensures
Ope‘r;[tlons - DlperEiin Operator job uses rulesets from the
use Streams customer specific XU
toollfl_’lg to . lL Customer 2 Job /1 | containing latest cached
configure jobs versions of customers
for each N1 | | NZ | | No rulesets - notified on
customer. changes

The streams tooling allows jobs to be defined that process the information through a
number of operators including the Ruleset Executor operator. The ruleset executor
operator requires a JSE Rule Execution Server to be deployed on the JVM of each node
(machine) that the operator will run on (N1-N3). The operators can be configured to
download their rulesets from separate Decision Server repositories. This allows the
rulesets for different customers to be isolated if required.

Providing a Decision Server to manage rulesets also means that updated rulesets can be
deployed from Decision Center according to governance best practices. It also means
that the JSE RES’s embedded in the streams can be monitored and managed from the
Decision Server console. For a streams application that is running with very low latency,
it would not normally be appropriate to use a decision warehouse so the decision server
would mainly be used for testing, simulation and managing deployed rulesets.

Article Overview

The remainder of this article describes the following aspects of ODM and streams
integration

© Copyright IBM Corporation 2014. 16

Patterns for Operational Decision Management in Streams

Business Scenario and Information models

This describes the example retail scenario that illustrates how IBM Operational Decision
Manager can be integrated into Infosphere streams to help analyse customer book buying
behaviour and thus improve the chance of a successful order. The section also describes
the information models used in the scenario by both the streams application and OBM
Operational Decision Manager.

Classification Pattern.

This section describes how an ODM JSE Rule integration server (RES) can be embedded
into a streams operator allowing the stream processing to be configured dynamically by
rules. In this case the stream contains the individual customer actions when building up a
book order including viewing, adding or removing a book from the order. The rules
classify each tuple in the stream which can then be used in later streams analytics
processing.

Book Click Decision Service

This section describes how to develop an ODM decision service to be used in streams
processing. The section starts by describing how to support the simple flat object model
provided in the Classification pattern and goes on to describe how to structure and write
rules that can leverage more sophisticated hierarchical object models that can be
integrated into streams as described in the filtering pattern.

Filtering Pattern.

This pattern describes how an ODM JSE Rule execution server (RES) can be embedded
into a streams operator allowing the stream processing to be configured dynamically by
rules. In this case the Rule executor operator uses the rules to identify and filter certain
tuples of interest. This pattern shows how to use custom mapping between ruleset
parameters and the streams allowing the operator to provide events on a separate port that
can then be routed to other systems for action.

Annex: Installation and Configuration

This section provides an overview of installing and configuring IBM InfoSphere streams
with IBM Operational Decision Manager to support the use of business rules with
streams applications. The tutorial is based on the use of the InfoSphere Streams Quick
Start Edition which is available for non-production environments as a VMWare Image or
as a native Linux install. The version used for this tutorial is v3.2.1. This section also
includes instructions on running the ODM samples provided with IBM InfoSphere
streams and configuring the JMS messaging toolkit to work with WebSphere MQ.

Business scenario and information model

This section describes a simplified retail scenario that illustrates how IBM Operational
Decision Manager can be integrated with a range of other IBM products across the

© Copyright IBM Corporation 2014. 17

http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmistvi
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmisqse
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS214-083

Patterns for Operational Decision Management in Streams

Smarter Process, Connectivity and Analytics portfolios. The goal of the scenario is to
perform discounted pricing of books based on emerging customer characteristics. In this
article we extend this scenario to examine how we can use IBM InfoSphere Streams with
IBM Operational Decision Manager to help analyze individual customer web clicks

Scenario overview

The scenario is based around a book retail organization. The organization provides their
customers with a number of channels to buy their products. Products can be discounted
based on the quantity of products being bought, the loyalty of the customer and any
marketing plays that are being exercised. The main scenario described in previous
articles focusses on the interactions between Operational and Analytical Decision
management within a solution that could be based either on an IBM Integration Bus
message flow or as part of a Business Process Management book order process.

In this article the scenario focusses on the click stream analysis that leads up to the
customer requesting a quote.

A high-level overview of the solution is shown in figure 2.1 below:

Figure 2.1. Scenario Overview

-
- -—b-

Book Order Streams Application ‘ I 1

Operational Decision Management

In this scenario, customers browse through a number of web sites selecting books to add
to a shopping basket. Each click that a customer makes (view a book, add a book to the
basket, remove a book from basket etc.) is routed into a stream using a “book click”
source node. Each book click contains key information about the customer and the book
being viewed together with basic information about the state of the shopping basket.

© Copyright IBM Corporation 2014. 18

Patterns for Operational Decision Management in Streams

This stream is then passed to an ODM operational decision that uses rules to classify each
click so that it can be passed to analytics to better understand the buying patterns of
customers. In addition, some clicks may imply a need for more detailed action — for
example if a customer has a high value shopping basket — where the organization might
want to start providing offers to close the deals. In this case the rules can be used to
create a new event tuple that can be sent through a filtered events stream and routed into
another system (such as ODM Advanced Insights) that allows the sequence of actions of
that customer to be analyzed and appropriate actionable responses taken.

This article describes the integration between streams and ODM using the decision
service capabilities provided in version 8.6. As an example we describe a
BookClickDecisionService decision service that provides two operations (rulesets):

e BookClickClassification uses simple flat input and output parameters that map to
each field in the tuple. The rules in this operation are those described in the
Classification pattern and basically classify each tuple as it passes throyugh the
rule operator..

e BookClickFilter provides a more complex set of parameters that use both a Java
XOM and hierarchical xml parameters. This requires mapping of the tuple fields
into hierachical object models. It also shows how different output parameters
from the rules can be fed to different streams.

These two patterns share a common information model but use different mapping
techniques between the streams representations and the way the information is referenced
in the rules.

The Classification pattern uses a very simple mapping approach passing each attribute
over a single simple type (or list of simple types). This style of mapping can be
supported by the Rule Executor Operator without the need for any customization code.
Any mapping to structured business objects needs to be performed in the ruleset as part
of the operation ruleflow.

The Filtering pattern extends this approach to perform the mapping to Java classes in the

Ruleset Executor Operator using custom plugin code. This allows more complex stream

structures to be supported and mapped directly to executable object models within ODM

avoiding serialization and delivering higher performance. The filtering pattern also shows
how to support the use of schema based eXecution Object Models and mapping different

return parameters to different streams.

Information Model Overview
This section describes the structure of the information being processed in the solution.

The streams are processing customer clicks on a web site or application which contain
information about the click that they take and the state of their order.

© Copyright IBM Corporation 2014. 19

Patterns for Operational Decision Management in Streams

Each field is tabulated below to describe its purpose in the scenario.

Table 2.1 BookClick input attributes

Attribute ODM type Description
customerID String Identifier of the customer
clickAction String (ClickActionType) | Action taken by this click VIEW, ADD,

REMOVE, ORDER

clickTimestamp | Date Timestamp of the click
isbn String Book ISBN
title String Book title
author String Book author
price BigDecimal (in Class Book list price on website
Book)
basketValue BigDecimal Value of shopping basket
items List<String> List of book isbn numbers in basket
book Book Book object passed as a Java class

The streams application then passes this information to the Ruleset Executor Operator
which then invokes an ODM Ruleset which then generates a response stream.

This response stream extends the incoming stream with two new attributes provided from
the rules that describe the classification and rationale as shown in table 2.2.

Table 2.2 BookClick response attributes

Attribute ODM Type Description

basketValue BigDecimal Value of shopping basket

items Vector<String> List of book isbn numbers in basket
classification String Classification provided by the rules:

(BookClassification)

BROWSING, FILLINGBASKET,
VALUEBASKET, OFFERBASKET,
PLACEORDER

rationale

String

Textual rationale for the classification

bookEvent

XML BookEvent Object

XML representation of filtered event

The information required for the decisions is represented in ODM through variables that
can either be simple types (as shown in the tables) or complex types represented in a
Business Object Model. The next section describes how this can be represented in ODM.

Simple (unstructured) ODM Information Models

When using simple flat information models, the book click fields are held in ODM
variable sets and can be mapped to and from the parameters passed into the ruleset at
execution time. A simple variable set containing flat unstructured data is show below in

figure 2.2.

© Copyright IBM Corporation 2014.

20

Patterns for Operational Decision Management in Streams

Figure 2.2 Simple (Non-structured) Variables

Variable Set: SimpleVariables

MName Type Verbalization Initial Value
isbn java.lang.5tring

title java.lang.5tring

author java.lang.5tring

price java.math.BigDecimal

classification BookClassification the classification BookClassification.BROWSING
rationale java.lang.5tring the rationale
basketValue java.math.BigDecimal the value of the basket

items java.util.List the books in the basket

customerID java.lang.5tring the customer ID

clickTimestamp java.util.Date the time of the click

clickAction ClickActionType the click action

When using simple variables the streams ODM Ruleset Executor operator can provide
automatic mapping to the attributes in the streams. The Name field has to correspond to
name of the attribute in the stream and automatic mapping will be performed by the
Ruleset Operator using the corresponding Type mapping.

The verbalization defines how the variables will appear to the rules. Note that the isbn,
title, author and price variables do not have a verbalization and are not directly accessible
from the rules. These variables (when present) will be used to construct a book object as
described later.

For each variable ensure that the name matches the attibute name used in streams. This
means that the variable can be mapped automatically. You should also ensure that the
Type corresponds to the mapped typed used in streams. See the Data type conversions
between ODM and InfoSphere Streams section in the InfoSphere streams knowledge
center for a more detailed description of the conversions provided by the ODM Ruleset
Executor operator.

Any variables that are going to be provided back to the streams should also be initialized.
Failure to do this may result in null pointer exceptions when the rules execute. In this
case the classification and rationale fields are initialized. You may also like to create and
initialize any local variables that ease the decision making flow and design.

Note also that two of these variables (classification and clickAction) represent domains or
enumerated values and use specific classes (BookClassification and ClickActionType) to
define the possible values that the underlying String can take. This means that the rules
can be constrained to only permit the enumerated values to be used when composing
rules that reference variables typed in this way. This is configured as shown in figure 2.3
below.

© Copyright IBM Corporation 2014. 21

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/datatype-mapping.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/datatype-mapping.html

Patterns for Operational Decision Management in Streams

Figure 2.3 Simple Parameter Business Object Model
4 % model

4 & BookClassification
¥ BROWSING
¥ FILLINGBASKET
¥ OFFERBASKET
¥ PLACEORDER
¥ VALUEBASKET

4 ® ClickActionType
¥ ADD
¥ ORDER
¥ REMOVE
¥ VIEW

4 @ util
& toString(Object)

This BOM declares two domains that can be used to constrain the values used in the rules
when selecting options for clickActions or classifications. Each domain is specified as a
class extending a java.lang.String and providing static attributes for each enumeration as
shown in figure 2.4.

© Copyright IBM Corporation 2014. 22

Patterns for Operational Decision Management in Streams

Figure 2.4 Configuring a Domain for enumerated values

x Remave the verbalization. (8 Edit the documentation.
Name: BookClassification

Namespace: "] Generate automatic variable
Superclasses: javalang.String Term: book classification # Edit term.
Interfaces: I the book classification, a book classification, the book classifications....

[Deprecated
~ Members ~ Domain
Specify the members of this class. Create and edit a domain for this class.
¥ BROWSING New.. # Edit the domain.
Y FILLINGBASKET * Remove the domain.
Delete
¥ OFFERBASKET
¥ PLACEORDER Edit . .
Domain type: Static References
¥ VALUEBASKET
< Synchronize.
* BROWSING
@ FILLINGBASKET
OFFERBASKET
* PLACEORDER
* VALUEBASKET

Package |Class Member| model.bom | model.b2x | model_en_US.voc

Each domain value need to have an implementation that verbalizes it and provides a retrn
value as shown in figure 2.5 below.

© Copyright IBM Corporation 2014. 23

Patterns for Operational Decision Management in Streams

Figure 2.5 Defining Domain Members

Member BROWSING (class: BookClassification)

General Information ~ Member Verbalization

x> Remove the verbalization.

MName; BROWSING
Label: BROWSING

Type: BookClassification Browse...

Class: BookClassification Browse...
Read/Write Read Only Write Only

Static Final

[] Deprecated Update object state

[Tl1gnore for DVS

» Domain

» Categories » Custom Properties

~ BOM to XOM Mapping
Edit the mapping between this BOM member and the XOM.
Edit the imports.
- Getter
return "BROWSING";

Package | Class |Member| model.bom | model.b2x model_en_US.voc

This approach forces the rules to reference only these explicit values if the string is typed
according to a given domain. When the values used for these domains are very dynamic
and are held in another system (or spreadsheet) it is possible to write integration code
that can synchronize with that source and thus maintain a consistent set of enumerated
values. See the Working with Domains section in the IBM Operational Decision
Manager Knowledge Center for details.

The Business Object model also includes a Util class with a verbalized operation which
allows any object to be expressed as a string using the verbalization: StringValueOf(an
object) . This allows, for example, numbers and dates to be included in a rationale.

© Copyright IBM Corporation 2014. 24

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/com.ibm.odm.dserver.rules.designer.author/shared_itoa_config_auth_topics/tpc_rd_bom_domains.html?lang=en

Patterns for Operational Decision Management in Streams

Figure 2.6 Providing Utility operations in the vocabulary

Member toString (class: Util)
General Information ~ Member Verbalization
> Remove the verbalization.

Mame: toString
=# Create a navigation phrase.

Type: java.lang.String Browse...

~ Navigation : "StringValueOf(an object)”
Class: Uil Browse...
Static [Final Template: StringValueOf{{0})

"l Deprecated || Update object state

» Arguments + Domain

» Categories » Custom Properties

~ BOM to XOM Mapping
Edit the mapping between this BOM member and the XOM.

Edit the imports.
~ Body

if (in != null) return in.toString();
else return "null”;

Package | Class | Member | model.oom | model.b2x model_en_US.voc

Structured ODM Information Models

The information in ODM can also be managed through variables with complex types
represented in a Business Object Model. These variables are also held in ODM variable
sets and can be mapped to and from the parameters passed into the ruleset at execution
time. The structured variable set containing structured data variables is show below in

figure 2.7.

Figure 2.7 Structured Variables

Variable Set: StructuredVariables

Name Type Verbalization Initial Value
book bookstore.Book the book
bookEvent bookevent.BookEvent the book event

These variables are passed to the streams using a complex type which in the case of the
book (bookstor.Book) is based on a Java XOM while the bookEvent
(bookevent.BookEvent) is based on an xml schema and will be passed to streams as an
xml string.

In this example we have the concept of a book which has four attributes and is
implemented as a Java XOM to provide a structured type for the input and output

© Copyright IBM Corporation 2014. 25

Patterns for Operational Decision Management in Streams

parameters. The BOM is shown below in figure 2.8 in Rule Designer showing the details
of the class and the members. This has been based on the Java class illustrated alongside.

Figure 2.8 Book Java XOM and BOM

= book-xom
4 (& grc
4 1 bookstore
4 [J] Bookjava

4 O Book
& author
& isbn
4 price
s title 4 {7 bookModel
& Book(String, String, BigDecimal, String) 4 B} bookstore
@ getAuthor() : String
@ getlsbn() : Strir “ G Book
o getPrice(): o author
o getTitle() : String o isbn
@ setAuthor(String) : void o pri ce
@ setlsbn(String) : void B
@ setPrice(BigDecimal) : void o title
o setTitle(String) : void & Book(String,String,BigDecimal,5tring)

This allows book objects to be represented as Java objects in the streams mapping and
interpreted directly in the rule engine without any serialization in ODM.

The BookClickFilter ruleset also uses a hierarchical model to represent a BookEvent.
This is based on XML schema and is added as an output parameter so that a book event
can be generated by the rules when further action processing or exceptions occur. All the
information from the input parameters and the output classifications are included in the
book event data. The XML schema is shown below in Figure 2.9.

Figure 2.9 Book Event Schema

BookEvent | BookType

(&l customerID string (el isbn string
&l clickTimestamp dateTime - [e] title string
[#] clickAction string - [el author string
(2] basketValue float [e] price float
[g] classification string

(8] rationale string

(2] book BookType

[e] items [0.%] string

© Copyright IBM Corporation 2014. 26

Patterns for Operational Decision Management in Streams

The BookEvent BOM can be generated automatically from the XML schema in Rule
Designer as shown in figure 2.10 below.

Figure 2.10 BookEvent BOM

4 T eventModel
4 1 bookevent
4 © BookEvent
o basketValue
° book
o classification
o clickAction
o clickTimestamp
o customerlD
o jtemsList
o rationale
BookEvent()
@ addToltemsList(String)
& createBookEvent()
@ removeFromltemsList(String)
@ setUnknownBasketValue()
4 B BookType
° author
° isbn

o,

o price

o title

& BookType()

@ setUnknownPrice()

In this BOM methods have been added to manipulate the items list (addToltemsList,
removeFromltemsList) and we also need to define a method to create a new BookEvent
from the rules. This new member createBookEvent() is added as a static method on the
BookEvent class so that book events can be created in the rules for those book click data
that requires further action. See Figure 2.11 below on using the New button to create a
createBookEvent() member in Rule Designer.

© Copyright IBM Corporation 2014. 27

Patterns for Operational Decision Management in Streams

Figure 2.11 Adding operations to a BOM
Class BookEvent (package: bookevent)

General Information + Class Yerbalization
* Femowe the verbalization, (& Edit the documentation,
Tarne: BookEwent
Mamespace: bookevent Change... Generate automatic variable

i

Superclasses: javalang.Object, ilog.rules: | Change..
Term: book event & Edit terrn,

Interfaces: Change...

i

I the book event, a book event, the book events...,

Deprecated
- Members * Domain
Specify the members of this class, Create and edit a dormain for this class,

basketyalue Mew,., # Create a domain.

o
2 book

o classification Delete

o click&ction Edit
o | Edit |
o

o

clickTimestamp ~ Categories

custornerlD Define the categories assaciated with this class,

iternsList
& Edit the categories,

© rationale

{onnkEventD @ Any

@ addTolternsList(String)

[C-S createBookBvent()

@ remowveFromlternsList(String) » Custom Properties

@ setUnknownBasketWaluel

» BOM to XOM Mapping

Package | Class | Member | eventModelbom | eventhodelb2x | eventhodel_en_GBwvoc

The new createBookEvent() should be a static method and a BOM to XOM Mapping
needs to be defined which implements the behaviour and instantiates the BookEvent class
hierarchy including the BookType member. The method also needs to be verbalized in
the member verbalization to allow access from rules. The BOM to XOM mapping in the
Rule Designer is shown in Figure 2.12 below in the BOM Member page for
createBookEvent().

© Copyright IBM Corporation 2014. 28

Patterns for Operational Decision Management in Streams

Figure 2.12 Defining operation behaviour using BOM to XOM Mapping
Member createBookEvent (class: bookevent.BookEvent)

General Information w Member Yerbalization

¥ Hemowe the verbalization,

Marre: createBookEwvent
57 Create a navigation phrase,

Type: bookevent.BookBwent IBrnwse...I
« Mavigation : "book t. teBookEvent()" x
Clazs: bookevent.BookBwent Browvse... avigation ook event.createBookEvent()

[T Final Template: book event.createBookBvent() 15}
[[Deprecated [[]Update ohject state

» Arguments ¢ Domain

b Categories b Custom Properties

« BOM to XOM Mapping
Edit the mapping between this BOM member and the X0k,

& Edit the imports,
* Body

bookewvent.BookEvent bookEvent = new bookewent.BookEwent(); 2
bookEwent.book = new bookevent.BookType();
return bookEwent;

Package | Class | Member | eventModelbom | eventhodelb2x | eventhodel_en_GBwvoc

This now completes the information models needed by both patterns.

Streams Information models

This section describes the structure of the streams and how they represent the information
being processed in the solution. Figure 2.13 describes the structure of the BookClick
input stream which corresponds to the book click information coming from the customer
channels.

© Copyright IBM Corporation 2014. 29

Patterns for Operational Decision Management in Streams

Figure 2.13 BookClickIn Stream information model

-+ BookClickIn (Stream)

General Name

Schema f2 <extendss
00 customerID
IO clickAction
OO clickTimestamp
D isbn
DO title
00 author
D price
0 basketValue
D items

Type
BookClick
rstring
rstring
timestamp
rstring
rstring
rstring
decimal64d
decimal64d
list<ustring =

M Add attribute...

The purpose of each field has been already described in Table 2.1.

The streams application the passes this information to the Ruleset Executor Operator
which then invokes an ODM Ruleset and then maps the returned parameters to a
ClassifiedBookClicks output stream as shown in figure 2.14.

Figure 2.14 ClassifiedBookClicks Stream information model

* ClassifiedBookClicks (Stream)

General Name Type
Schema | 5 <extends> BookClick
00 customerID rstring
0D clickAction rstring
00 clickTimestamp timestamp
00 isbn rstring
M title rstring
00 author rstring
00 price decimaltd
M basketValue decimal&d
00 items list<ustring =
M classification rstring
M rationale rstring

D Add attribute..,

This stream simply extends the incoming stream with two new attributes provided from
the rules that describe the classification and rationale.

© Copyright IBM Corporation 2014. 30

Patterns for Operational Decision Management in Streams

In these models, rstring is mostly used for String values except when used in a list. In this
case ustring is used. There are limitations with using list<rstring> when mapping to
ODM parameters as the items in the list cannot be accessed in ODM rules. Using
list<ustring> removes the limitation.

The difference between ustring and rstring are summarized in Table 2.3 below:

Table 2.3 Representation and Java object type for rstring and ustring

SPL type Representation Java object type

ustring String of UTF-16 java.lang.String
Unicode characters,
based on ICU library

rstring Sequence of raw bytes | com.ibm.streams.operator.types.RString
that supports string
processing when the
character encoding is
known

For more details of SPL types, see Types and Working with SPL types from the
InfoSphere Streams Knowledge Center.

Classification Pattern

The Classification pattern describes how an ODM JSE Rule integration server (RES) can
be embedded into a streams operator allowing the stream processing to be configured
dynamically by rules. In this case the stream contains the individual customer actions
when building up a book order including viewing, adding or removing a book from the
order. The rules can then classify each tuple in the stream which can then be used in later
streams analytics processing.

Classification Pattern Streams Application

In this pattern a stream of tuples is passed through the Rules Executor operator and the
attributes modified by the rules. The attributes of tuples in the streams are passed
individually as parameters to the rules. Each parameter is a simple primitive type (or list
of primitive types) allowing the rules to refer to each attribute in the stream individually.
Rules and decision tables can then be written in an ODM ruleset to classify each tuple by
assigning values to particular output parameters which will then be passed onto the
output stream.

A simple implementation of ths pattern is shown below.

© Copyright IBM Corporation 2014. 31

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.spl-language-specification.doc/doc/types.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.dev.doc/doc/workingwithspltypes.html

Patterns for Operational Decision Management in Streams

Figure 3.1. Classification Pattern application

ClassificationPattern =

CSVIn ¥ Rules CEVO
> 2l s

The three operators are now described in the following sections.

CSViIn FileSource operator

The input to the Rules Operator would come from the Systems of Engagement and reflect
various actions taken by customers when browsing the Book Order sites. This is emulated

in this sample by the CSVIn FileSource operator which reads tuples in from a file
(BookClickslIn.txt) using a csv format and outputs them on the BookClicklIn stream as

shown in figure 3.2 below.

Figure 3.2 BookClickIn Output stream schema

- BookClickIn (Stream)

General Name Type
Schema 4 G5 <extends> BookClick
M customerID rstring
@ clickAction rstring
M clickTimestamp timestamp
M isbn rstring
M title rstring
0D author rstring
M price decimalb4
M basketValue decimal64
M items list<rstring =

[Add attribute...

This stream uses the BookClick type to define the stream attributes. In this example the
attributes are mapped into simple type parameters in ODM.

Rules ODMRulesetExecutor Operator

This stream is passed to the Rules (ODMRulesetExecutor) operator which needs to be
configured to load the correct ruleset from the Decision Server repository and also to
respond automatically to updates as described in the installation and configuration annex
and summarized in figure 3.3 below.

© Copyright IBM Corporation 2014.

32

Patterns for Operational Decision Management in Streams

Figure 3.3 Rules (ODMRulesetExecutor) configuration parameters
[Rules (ODMRulesetExecutor)

General Parameter Value
Annotations t-trulesetPath "/BookClickDecision5ervice/1.0/BookClickClassification”
Input Ports |- 1databaseUrl "jdbc:derby://localhost:1527/resdb”
Output Ports . idriverName "org.apache.derby.jdbe.ClientDriver”
i idriverPath "fopt/db-derby-10.11.1.1-bin/lib/derbyclientjar”
Parii'm L. imanagementConsol.. “localhost”
L2 L. imanagementConsol.. 1883
Window L luserName "llog”
Config I-JuserPassword “ilog”

This configuration uses the latest deployed version of the BookClickClassification ruleset
with interfaces defined by the decision service version BookClickDecisionService/1.0.

The remaining parameters define the connection to the Rule Execution Server database
(based on derby in this example) and the Rule Execution Server console. This allows
ruleset updates to be deployed dynamically from ODM Rule Designer or Decision Center
without needing to stop or redeploy the streams application.

The ODMRulesetExecutor provides a default mapping from the stream tuple to ruleset
parameters for all primitive attribute types. List of primitive attribute types are also
supported but care must be taken as the internal types are not correctly mapped.

Two known limitations are:
e Timestamp primitive types are mapped as java.sgl.Date by default which is not
fully supported in ODM.
e list<Type> maps to a java.util.List<streams Type> rather than the mapping
supported for a primitive type (e.g list<rstring> instead of list<java.lang.String> -
this can be overcome by using ustring instead of rstring as the streams type).

To overcome these limitations you need to customize the mapping as described in the
Filtering pattern.

BookClickClassification Ruleset

The BookClickClassification ruleset is defined as an operation within the
BookClickDecisionService. To complete the integration with streams we need to define
the decision operation signature that will be mapped to streams attributes. This replaces
the ruleset parameter definitions used in classic rule projects in previous versions of
ODM.

© Copyright IBM Corporation 2014. 33

Patterns for Operational Decision Management in Streams

Figure 3.4 BookClickClassification Decision Operation signature

Decision Operation Signature - BookClickClassification

Eligible variables

Select the ruleset variables that you want to use
as parameters for the decision operation.

Ruleset variables are defined in variable sets.

< Refresh

4 &2 BookClickDecisionService

4 B SimpleVariables

Pl

B

= isbn

= title

= author

= price

= classification
= rationale

= basketValue

= items

= customerID

= clickTimestamp
= clickAction
StructuredVariables
= book

= bookEvent

-

Input Parameters
Define the parameters required to call the execution.

Parameter name Verbalization Type Initial Value

24 clickTimestamp the time of the click java.util.Date

24 clickAction the click action Click&ctionType

24 customerlD the customer 1D java.lang.String

24 isbn java.lana.String

2 title java.lana.String

2 author java.lang.5tring

2 price java.math.BigDecimal

Input - Output Parameters
Define the parameters that are required, modified, and then returned by the execution.

Parameter name Verbalization Type Initial Value
22 basketValue the value of the basket java.math.BigDecimal
23 items the books in the basket java.util.List

Output Parameters
Define the parameters that are initialized and returned by the execution.

Parameter name Verbalization Type Initial Value
& classification the classification BookClassification BookClassification. BROWSING
& rationale the rationale javalang.String

Ths shows which variables will be used as input and which as output. Note that these are
all drawn from the SimpleVariables variableset as this ruleset and pattern will not use

hierarchical parameters.

Note that the book parameters (isbn,title,author and price) are not verbalized as these will
be mapped into an object as the first step in the ruleflow. This allows the rules to be
developed and shared against a fixed set of variables.

Once the signature is defined, the rules and ruleflow can be developed. This article does
not attempt to provide a detailed description of ruleset design practices so a very simple
ruleflow is used to calculate the classification and rationale as shown in figure 3.5.

© Copyright IBM Corporation 2014. 34

Patterns for Operational Decision Management in Streams

Figure 3.5 Classification Ruleflow

2 classificationRuleflow &2 = B

|:EI_|
»

W i

iz} ClassificationDT

<)

2k AuthorOfThe MonthOffer

O]

4 3

Diagram | IRL | classificationRuleflow.rfl

The ruleflow first creates a book object in the initial task as shown in figure 3.6, then
invokes the ClassificationDT which uses the clickAction with the basketValue to
determine a base classification and rationale as shown in figure 3.7. Finally the flow
evaluates whether to apply an offer to this potential order as shown in figure 3.8.

Figure 3.6 Initial Action

E Properties

@ Initial Action Use BAL for action @ IRL

N ——— book = new bookstore. Book(isbn,title price,author);

Each task in a ruleflow has the ability to specify an initial action using rules. In this case
this is the entry task so will occur at the beginning of the ruleflow. The rules can be
written in the BAL language (as used by business users using the verbalized phrases) or
as IRL which is a java like language allowing access to all variables whether they are
verbalized or not. In this case the IRL creates a new Book object from the hidden
parameters and assigns it to the visible book variable allowing the values to be referred to
in the rules. (See figure 3.8).

After the variables are initialized the Classification decision table is invoked.

© Copyright IBM Corporation 2014. 35

Patterns for Operational Decision Management in Streams

Figure 3.7 ClassificationDT Decision Table

&, classificationRuleflow B2 ClassificationDT 2
B2 I s+ s @Ak |ic Al E EE

v 'the value of the basket' is at least <min> and less than <max>

Basket Value

: Click Action Classification Rationale
min max
1 0 1 BROWSING No items in basket.
2 1 - ORDER PLACEORDER Average Order placed
3 Otherwise FILLINGBASKET Trems in basket.
4 .- ORDER PLACEORDER High Value Order placed
5 Otherwise VALUEBASKET High value basket but no order

This provides a classification and rationale for a range of combinations of basket value
and click action.

After the base classification has been determined, the AuthorOfTheMonthOffer rule
checks to see if the customer is looking at a book that has the author of the month offer as
shown in figure 3.8.

Figure 3.8 AuthorOfTheMonthOffer rule
Action Rule: AuthorOfTheMonthOffer

» General Information » Category Filter

» Documentation

Content

if the author of 'the book®' contains "L P James"
and 'the classification' is VALUEBASKET
then
set 'the classification' to OFFERBASKET ;
set "the rationale' to
"High value basket: Offer AOTM to close order.";

Note that in this case the rule refers to “the author of ‘the book”” rather that referring
to the author variable directly as this is not visible and will not have a value when the
book is passed as an object directly from streams. This allows the same rules to be used
in different operations with different signatures.

While this is a simple example it shows how the rule engine can process the tuple
attributes and classify them according to the rules defined by the business.

After the rules have been processed the results are passed to the ClassifiedBookClicks
stream as shown in figure 3.9 below.

© Copyright IBM Corporation 2014. 36

Patterns for Operational Decision Management in Streams

Figure 3.9 ClassifiedBookClicks Output stream schema
%= ClassifiedBookClicks (Stream)

General Name Type
Schema 4 Uz, <extends> BookClick
00 customerID rstring
0D clickAction rstring
00 clickTimestamp timestamp
00 isbn rstring
M title rstring
00 author rstring
00 price decimaltd
M basketValue decimal&d
00 items list<ustring =
M classification rstring
M rationale rstring

D Add attribute..,

This stream duplicates the original BookClicklIn type but adds the two new attributes
whose values are calculated by the rules:

e Classification — indicates the significance of the click in the book order
processing. Typical values expected from the rules include UNKNOWN,
BROWSING, FILLINGBASKET, VALUEBASKET and various eligible
discounts

e Rationale — provides a free text field to say why the particular classification has
been applied.

The ClassifiedBookClicks stream can then be sent on to other operators in the streams
application or in the case of this sample output to the CSVout FileSink operator allowing
the results of a job to be observed in the classifiedBookClicksOut.txt file.

Classification Pattern Summary and Execution

The complete listing for the classificationPattern application is provide in listing 3.1
below.

Listing 3.1 ClassificationPattern application SPL listing

namespace application ;
use com.ibm.streams.rules.odm: :0DMRulesetExecutor ;
composite ClassificationPattern()
{
type
BookClick = rstring customerID, rstring clickAction,
timestamp clickTimestamp, rstring isbn, rstring title, rstring author,
decimalé4 price, decimalé4 basketValue, list<ustring> items ;
ClassifiedBookClick = rstring customerID, rstring clickAction,
timestamp clickTimestamp, rstring isbn, rstring title, rstring author,

© Copyright IBM Corporation 2014. 37

Patterns for Operational Decision Management in Streams

decimalé4 price, decimal64 basketValue, list<ustring> items,
rstring classification, rstring rationale ;

graph

}

(stream<BookClick> BookClickIn) as CSVIn = FileSource()
{

param
file : "bookClicksIn.txt" ;
format : csv ;

}

() as CSVOut = FileSink(ClassifiedBookClicks)

{

param

file : "classifiedBookClicksOut.txt" ;
format : csv ;

}

(stream<BookClick, tuple<rstring classification, rstring rationale>>
ClassifiedBookClicks) as Rules = ODMRulesetExecutor(BookClickIn)

{
param
rulesetPath
"/BookClickDecisionService/1.0/BookClickClassification” ;
databaseUrl : "jdbc:derby://localhost:1527/resdb” ;
driverName : "org.apache.derby.jdbc.ClientDriver" ;
driverPath
"/opt/db-derby-10.11.1.1-bin/lib/derbyclient.jar" ;
managementConsoleHost : "localhost" ;
managementConsolePort : 1883 ;
userName : "ilog" ;
userPassword : "ilog" ;
managedXomDeployedOnDb : true ;
}

The classification pattern sample may be executed in a standalone stream to demonstrate
the integration techniques. The use of CSV files for the input source and sink make this
an easy option for investigating the rules.

A sample input file has been established in bookClicksIn.txt as shown in listing 3.2.

Listing 3.2 bookClicksIn.txt Sample input stream in csv format

#rstring customerID, rstring clickAction,timestamp clickTimestamp,
#rstring isbn, rstring title, rstring author, decimal64 price,
#decimal64 basketValue, list<rstring> items

CmMmMMee®® 5> 5

-111"
-111"
-111"
-222"
-222"
-222"
-222"
-555"
-555"
-555"
-444"

>

"ADD", (5000000, @, ©),"S-111","Night","G Jones",7.99,7.99,["S-111"]

"ADD", (5000001, @, 8),"S-222","Quiet Day","L P James",9.99,17.98,["S-111","S-222"]

"VIEW", (5000002, @, ©),"S-333","Sun in the Sky","L P James",8.99,26.97,["S-111","S-222","S-333"]
"ADD", (5000003, @, 8),"S-444","Short Stories","V Hurst",4.99,4.99,["S-444"]

"REMOVE", (5000004, 8, 0),"S-444","Short Stories","V Hurst",4.99,0.0,[]

"ADD", (5000005, @, 8),"S-555","Day","H R Smith",6.99,6.99,["S-555"]

>
>
>
>
>
"
>
>
>
>
>

ORDER", (5000006, 0, ©),"S-666","My Life","F Bloggs",5.49,12.48,["S-555","S-666"]

"VIEW", (5000006, 0, ©),"S-777","Go Like the Wind","S Speed",12.99,0.0,[]

"ADD", (5000007, @, ©),"S-888","Long Stories","L P James",15.99,0.0,["S-888"]
"VIEW", (5000008, @, ©),"S-999","Hobsons Choice","H R Smith",2.99,15.99,["S-888"]
"VIEW", (5000009, @, ©),"S-999","Hobsons Choice","H R Smith",2.99,0.0,[]

© Copyright IBM Corporation 2014. 38

Patterns for Operational Decision Management in Streams

When the application is executed the result can be seen in the classifiedBookClicksOut
file. The two parameters output from the rules (classification and rationale) have been
moved to the next line for readability.

Listing 3.3 classifiedBookClicksOut.txt Sample output stream in csv
format

"A-111","ADD", (5000000,0,0),"S-111","Night","G Jones",7.99,7.99,["S-111"],
"FILLINGBASKET","Items in basket."

"A-111","ADD", (5000001,0,0),"S-222","Quiet Day","L P James",9.99,17.98,["S-111","S-222"],
"FILLINGBASKET","Items in basket."

"A-111","VIEW", (5000002,0,0),"S-333","Sun in the Sky","L P James",8.99,26.97,["S-111","S-222","S-333"],
"OFFERBASKET", "High value basket: Offer AOTM to close order."

"B-222","ADD", (5000003,0,0),"S-444","Short Stories","V Hurst",4.99,4.99,["S-444"],
"FILLINGBASKET","Items in basket."

"B-222","REMOVE", (5000004,0,0),"S-444","Short Stories","V Hurst",4.99,0,[],
"BROWSING","No items in basket."

"B-222","ADD", (5000005,0,0),"S-555","Day","H R Smith",6.99,6.99,["S-555"],
"FILLINGBASKET","Items in basket."

"B-222","ORDER", (5000006,0,0),"S-666","My Life","F Bloggs",5.49,12.48,["S-555","5-666"],
"PLACEORDER", "Average Order placed"

"E-555","VIEW", (5000006,0,0),"S-777","Go Like the Wind","S Speed",12.99,0,[],
"BROWSING","No items in basket."

"E-555","ADD", (5000007,0,0),"S-888","Long Stories","L P James",15.99,0,["S-888"],
"BROWSING","No items in basket."

"E-555","VIEW", (5000008,0,0),"S-999", "Hobsons Choice","H R Smith",2.99,15.99,["S-888"],
"FILLINGBASKET","Items in basket."

"D-444","VIEW", (5000009,0,0),"S-999","Hobsons Choice","H R Smith",2.99,0,[],
"BROWSING","No items in basket."

Filtering Pattern

In this pattern rules are used to identify particular tuples that are of significance to later
analytics processing and remove those that are not relevant. This filtering may apply to
the main output stream but in this case an additional stream is generated that identifies
significant events which can then be routed to operational decision making systems to

apply suitable action responses.

Filtering Pattern Streams Application

This pattern builds on the Classification Pattern described earlier using the same input
stream structure. In this case the pattern shows how to map the tuple attributes into java
objects that can be passed as parameters to the ODM Ruleset executed by the
ODMRulesetExecutor operator. The response parameters (containing these objects) are
then mapped to a number of ports and this example shows how the parameters are
mapped and formatted to meet the requirements of a number of streams as shown in
figure 4.1 below.

© Copyright IBM Corporation 2014. 39

Patterns for Operational Decision Management in Streams

Figure 4.1 Filtering Pattern application

FilteringPattern =
l::> CSW Ot
l::> EventOut
: Fules
X =y
-y,
JMSOut
Cald
l::> Error

The input stream (BookClicksln) is provided through a Beacon operator (BeaconlIn) that
generates a sequence of configurable BookClick tuples with random book price and
basketValue attributes.

The ODMRulesetExecutor operator (Rules) invokes some simple rules to first classify
each tuple (as described for the Classification pattern) and then creates an optional event
output parameter for tuples that are classified OFFERBASKET.

The default output port provides a classified stream (FilteredBookClicksOut) with a
similar structure as the BookClickslIn stream but including the classification and
rationale fields. This is sent to the FileSink operator (CSVOut) which allows the
classified stream tuples to be written to a file (filteredBookClicksOut.txt) for later
assessment.

The customized mapping in the Rules operator then takes the “bookEvent” parameter (if
present) and maps it into two ports generating streams with different formats:

e FilteredBookEventsOut generates a tuple using the streams xml format allowing
this to be parsed in later streams operators or saved as a file in the FileSink
operator (EventOut)

e FilteredJMSBookEvents generates a tuple with a single rstring attribute which is
used as the payload for a JMSSink operator (JMSOut). This JMS event can then
be routed to an external system for correlation or for further action like making an
offer in order to close the order.

An optional error port is also included that provides a stream of runtime errors which in
this case is sent to a FileSink operator (Error) for later analysis.

© Copyright IBM Corporation 2014. 40

Patterns for Operational Decision Management in Streams

This pattern introduces the use of a Java XOM in ODM with a Book Java class and the
use of customized mappings from ruleset parameters to output tuples routing to different
output ports.

Each of the operators in the application is now described in more detail together with the
mapping used in Ruleset Executor to produce the streams needed.

Beacon operator (Beaconlin)

Beaconln is a Beacon operator that is used in this example to generate a stream of tuples
with the same schema as the BookClicklIn stream but with random price and basketValue
values. The Beacon operator can be configured to generate values using the Output
configuration shown in figure 4.2 below.

Figure 4.2 Beacon configuration to generate stream data

' BeaconIn (Beacon)

¥ Compile errarsfwarnings found on this page. Hower onto the errar marker for details,

G I
ENErs Dutput streams for the selected operator:

Annotati .
AnGtatans type filter text

Input Ports

Outnut Ports Marne Walue

E— a [BDDkC“EkSE[n

_ 4 g, BookClick

i @Ef custarnerlD @ rstring "Custorner” +(rstring)({int32) terationCount() £ 10)

Mind oy @Ef click&ction : rstring “app"

Output &F clickTimestamp @ timestz getTimestamp)

Config {i‘f ishn : rstring "-222"
{i‘f title : rstring "Quiet Day"
{i‘f author @ rstring "L P larmes"
-\1_.-5? price : decimaltd idecimalé$i{randomd * 10.0)
{i‘f basketWalue : decimalfd {decirnalGfifrandom(™ 25.0)
{i‘f iterns ¢ list<ustring = [(ustring) "5-222"]

This stream uses the BookClick type to define the stream attributes. This is the same
BookClicklIn stream attributes for the Classification Pattern as tabled in 3.1. The values
for price and basketValue are generated randomly to allow each tuple to have different
classified results resulting in different events being generated according to the rules.

Warning messages (CDISP0079W) appear about multiple calls to a stateful function
within the same output clause for getTimestamp and random functions. For a random
generator, potential side effects are not an issue here in our sample run.

In this example, we set the iteration count to 100 and interval to 0.1 in the Beacon

parameters so that 100 tuples are generated at 0.1 seconds interval. This allows us to
check the expected number of events generated based on the number of tuples with

© Copyright IBM Corporation 2014. 41

Patterns for Operational Decision Management in Streams

OFFERBASKET classification written to filteredBookClicksOut.txt. It will also allow
the stream processing to run for at least 10 seconds which allows the ruleset execution to
be observed in a Rule Execution server console.

ODMRulesetExecutor (Rules)

The BeaconlIn operator stream is connected to the input port of the Rules operator. This is
configured to load the BookClickFilter ruleset from the Decision Server repository and
also to respond automatically to updates as described in the installation and configuration
section earlier. The parameters settings for the ODMRulesetExecutor are summarized in
figure 4.3 below.

Figure 4.3 Rules (ODMRulesetExecutor) configuration parameters
(2 Rules (ODMRulesetExecutor)

General Pararmeter Walue

Annotations 1 trulesetPath "fBookClickDecisionService/1.0/BookClickFilter”

Input Parts |-} databasellrl "jdbcidb2i/flocalhostS0000/ resdb"

Output Parts 1. tdriverMame "corn.ibm.db2.jcc.DB2Driver”

p 1t driverPath "fopt/ Bk db2 1001 fjavafdb 2o jar”

a”_lm - tmanagementConsaleHost "localhost”

Loaic I tmanagementConsolePort 1883

Mfind oy 1 tuserMarne "db2instl"

Config 1 fuserPassword "db2passwnelrd”
1 TxomLibrary "hookXorm.jar"
1 trulesetErecutionHandlerClassMame “com.ibm.streams.odm. bookelick.BookClickExecutionHandler"
1 trulesetExecutionHandlerLibrary "BookClickMapping.jar"

This configuration uses the latest deployed version of the BookClickFilter ruleset with
interfaces defined by the decision service version BookClickDecisionService/1.0.

The parameters for connection to the Rule Execution Server console (management
console) are the same as for the Classification pattern while the Rule Execution Server
database is based on DB2 in this pattern to provide another topology configuration
example.

In this pattern, a Ruleset execution handler, BookClickExecutionHandler, is used to
perform customized mapping of the ruleset ouput parameters to the stream output tuple.
This is configured with the ruleset execution handler class name and library in the
parameters.

The BookClickFilter ruleset also uses a Book Java class as Java XOM. There are 2
options for configuring a Java XOM in the ODMRulesetExecutor. In Figure 4.3 above,
the xomLibrary parameter configures the operator to load the bookXom.jar into the
classpath. This library contains the Java XOM and needs to match the classes used in the
ruleset for execution. The parameter can either be a full path or a relative path with

© Copyright IBM Corporation 2014. 42

Patterns for Operational Decision Management in Streams

respect to the data directory of the project. In this example, we placed the bookXom.jar
in the /FilteringPattern/data directory of the project.

Alternatively, if the Java XOM is a managed XOM deployed on the ODM RES database,
then you can set the parameter managedXomDeployedOnDb to true instead of
configuring the xomLibrary parameter. In either configuration, you still need to have a
copy of the Java XOM in the streams studio environment to create the Java XOM object
for the input parameters used for ODM ruleset execution.

After the rules have been processed, the registered BookClickExecutionHandler maps the
output parameters returned from ODM to tuples on the different output ports for action.

Ruleset Executor Handler mapping to ruleset parameters

The ODMRulesetExecutor operator allows customized tuple mapping by using a ruleset
executor handler. The com.ibm.streams.rules toolkit sample
FeatureDemoCustomMapping shipped in the InfoSphere Stream is a good reference in
this topic. In this pattern, BookClickExecutionHandler and BookClickMapping Java
classes provide the custom mappings to forward different data to the different output
ports.

The BookClickExecutionHandler class is invoked once for each tuple passed through the
ruleset executor and provides the code to manage the overall mapping of ruleset
parameters to operator ports. The BookClickMapping class provides the detailed
mapping functions between the ruleset parameters and the stream on any given port.

The Java listings in this section should be studied with the ruleset execution handler in
the FeatureDemoCustomMapping sample for a full picture.

The stream coming into the Ruleset Executor operator is the same as that provided for the

classification pattern but the book fields (highlighted in red) need to be mapped into the
Book Java class that will be sent to ODM as a parameter as shown in Figure 4.4.

© Copyright IBM Corporation 2014. 43

Patterns for Operational Decision Management in Streams

Figure 4.4 Input stream and Book Java class

-*. BookClicksIn (Stream) 4 # bookstore
4 [J] Bookjava
General Name Type 4 @ Book
4 U3 <extends= BookClick & author
Schema - . ish
0 customerlD rstring 1sbn
. . . 4 price
M clickAction rstring _
.) A 2 title
[clickTimestamp timestamp & Book(String, String, BigDecimal, String)
I isbn rstring @ getAuthor() : String
I title rstring @ getlsbn() : Stri
D author rstring © getPrice(): BigDecima
. . @ getTitle() : String
0D price decimal&4 getTitle0 e
= - @ setAuthor(String) : void
Pasket\."alue r__ieumaltsf-t o setlsbn(String) - voic
0o items list<ustring>» @ setPrice(BigDecimal) : void
[Add attribute... o setTitle(String) : void

b IDF Covrdnmn §ilemme Tl n 00 4 71

In this example, the BookClickFilter ruleset in BookClickDecisionService expects a
Book Java XOM as one of the input parameters. The Book object is instantiated in the
mapTolnputParameters method in BookClickMapping class based on the data in the
input tuple. The other input parameters, which are primitive attribute types, are mapped
calling the super class method mapTolnputParameters. This can be seen in listing 4.1
below.

Listing 4.1 BookClickExecutionHandler and BookClickMapping
registration Java listing

public Map<String, ?> mapToInputParameters(Tuple tuple) throws Exception {
// Call to super will help user levarage the auto mapping for
// primitive types
Map<String, Object> inputParameters = (Map<String, Object>)
super.mapToInputParameters(tuple);

// Create the Book object of the Custom Defined types which need to
// go as ODM Input Parameters from Beacon data

String isbn = tuple.getString("isbn");

String title = tuple.getString("title");

BigDecimal price = tuple.getBigDecimal("price");

String author = tuple.getString("author");

Book book = new Book(isbn, title, price, author);
inputParameters.put("book", book);

return inputParameters;

}

Once the ruleset parameters have been created the RulesetExecutor operator then invokes
the BookClickFilter ruleset on the JSE RES.

© Copyright IBM Corporation 2014. 44

Patterns for Operational Decision Management in Streams

BookClickFilter Ruleset

The BookClickFilter decision operation signature can be defined based on a combination
of the simple variables used by the BookClickClassification ruleset and the
StructuredVariables based on the Book and BookEvent BOM. Figure 4.15 shows the
BookClickFilter decision operation signature which can be compared with the
BookClickClassification decision operation signature from Figure 3.2. A book parameter
replaces the isbn, title, author and price parameters and a bookEvent parameter is added
to the output parameters.

Figure 4.5 BookClickFilter Decision Operation signature
Decision Operation Signature - BookClickFilter

Eligible variables Input Parameters

Select the ruleset variables that you want to use Define the parameters required to call the execution.
as parameters for the decision operation.

Ruleset variables are defined in variable sets. Bammeteqnanms erbalization Type Inirial\Valie
= customerlD the customer ID java.lang.5tring
<" Refresh - 2 clickTimestamp the time of the click java.util.Date
+ & BookClickDecisionService = clickAction the click action ClickActionType
. . = book the book bookstore.Book
« E% SimpleVariables
= isbn
= title
= author
= price Input - Output Parameters
= classification Define the parameters that are required, modified, and then returned by the execution.
= rationale
= basketValue Parameter name Verbalization Type Initial Value
= items %, basketValue the value of the basket java.math.BigDecimal
= customeriD =3 ftems the books in the basket java.util.List
= clickTimestamp
= clickAction
a B StructuredVariables
= book Output Parameters
= baokEvent Define the parameters that are initialized and returned by the execution.
Parameter name Verbalization Type Initial Value
“ classification the classification BookClassification BookClassification.BROWSING
& rationale the rationale java.lang.String
“ bookEvent the book event bookevent.BookEvent

This signature shows the new book input parameter populated in the previous section
together with the bookEvent output parameter that will be created if required by the rules.

With the BOM, decision service variables and parameters defined, the ruleset follows the
Filter ruleflow as shown in figure 4.6 below.

© Copyright IBM Corporation 2014. 45

Patterns for Operational Decision Management in Streams

Figure 4.6 Filter Ruleflow

.E. filterRuleflow &2 = H
D2 R@@e | Rl X|I%| %% 54
'-_'i’:_,:' "

L]
wt [:a:]
- i
/
-
itk ClassificationDT
* b

i} AuthorOfTheMonthOffer

w

iZh FilterEvent

w

O

4 I

Diagrarm | IRL | filterRuleflow.fl

The ruleflow does not need to initialize the book variable as this has been provided as an
input parameter. The flow applies the ClassificationDT decision table (figure 3.7) to
classify the click and then the AuthorOf TheMonth (figure 3.8) rules to identify when an
Offer should be made. These rules are the same as those used in the Classification
ruleset.

The ruleflow then applies the FilterEvent rule which selects those clicks (tuples) that are
classified as OFFERBASKET and creates a book event as shown in figure 4.7.

© Copyright IBM Corporation 2014. 46

Patterns for Operational Decision Management in Streams

Figure 4.7 FilterEvent Action Rule

I filterRuleflou @ FilterEvent 53 = g

Action Rule: FilterEvent

+ General Information = Cateqgory Filter

Mame : FilterEvent
i Categories: Any, #”Edit

¢ Documentation

Content

F.f "the classification’ is OFFERBASHET P
then
set "the book event® to bock event.createBookEwvent () ;
set the author of the book of "the book event® to the author of “the book®;
zet the basket walue of "the book event® to “the value of the basket® ;
set the classification of "the book event' to "the classification® ;
set the click action of "the book event® to “the click action® ;
set the click timestamp of “the book event® to ‘the time of the click® ;
zet the customer ID of ‘the book event®' to ‘the customer ID" ;
set the isbn of the book of "the book event' to the isbn of “the book' ;
set the price of the bock of "the book event® to the price of ‘the book® ;
zet the rationale of "the book event® to "the rationale® ;
zet the title of the book of “the book event® to the title of “the book® ;
for each string in ‘"the books in the basket' :

- add this string to the items of ‘the book event® ;

4 2

Intellirule | IRL | FilterEvent.brl

The book event is only created if the classification is OFFERBASKET. When this
condition is met a BookEvent is created using the createBookEvent() operation that was
defined in the BOM and the fields of the BookEvent initialized from the available
variables. On completion of this rule the bookEvent variable is returned as an output
parameter back to the RulesetExecutor stream operator.

This ruleset shows how to leverage the existing rules for classification and add the
ability to identify significant events which can be returned as output parameters to the
streams for further action. The pattern also shows how we introduce structure to the
object model and map that to the streams data by using a Java XOM and or a schema
based XOM. The next section shows how the BookClickFiltering ruleset return
parameters are mapped back into the RulesetExecutor output streams.

Ruleset Executor Handler mapping to FileSink: CSVOut

CSVOut is a FileSink operator similar to the CSVOut operator in the Classification
Pattern which writes the classified tuples output from the Rules operator port to a CSV
file. When a ruleset execution handler is registered for the rule operator, a call is made

© Copyright IBM Corporation 2014. 47

Patterns for Operational Decision Management in Streams

to the method mapToTuple for each set of returned parameters and each output port. The
implementation in the case of the filtered output port (as the book object is not a return
parameter) can use the default operation from the superclass to map all simple ruleset
parameters to the stream tuples as shown in listing 4.2 below.

Listing 4.2 Default mapping from ruleset parameters to tuples

public void mapToTuple(StreamingOutput<OutputTuple> outputPort,
OutputTuple tuple, Map<String, ?> outMap) throws Exception

{
// Mapping of Port © - main port filtered
if (outputPort.getPortNumber() == 0) {
// Call to super.mapToTuple(outputPort, tup, outMap);
// is to help user leverage auto mapping of primitive types
super.mapToTuple(outputPort, tuple, outMap);
}
}

Ruleset Executor Handler mapping to FileSink: EventOut

EventOut is a FileSink operator used for writing the event data in XML format to a CSV

file. The mapping takes the eventOut parameter returned from the ruleset (if present) and
writes the xml string as a single xml attribute in the stream sent to the EventOut operator

as shown in listing 4.3.

This demonstrates that events can be forwarded as XML to other operators in a streams
application.

The bookEvent is an optional output parameter from the ruleset and is only sent when the
tuple is classified as OFFERBASKET. This means that a check for the existence of a
bookEvent needs to be undertaken in the handleExecutionResponse method in
BookClickExecutionHandler before we call the data mapping for the event output ports.
If this check is not performed, null or empty String data will be sent to the output port
even when no event is generated. See listing 4.3 below on checking for bookEvent data
and submitting events to event ports.

Listing 4.3 Checking for event parameter existence before mapping

String bookEventContent = (String) outMap.get("bookEvent");
if (bookEventContent != null) {
// Book event available, send to port 1 which is book event port
StreamingOutput<OutputTuple> outputPortl = getOperatorContext()
.getStreamingOutputs().get(1);

// Create Output Tuple for output port 1
OutputTuple streamsOutputTuplel = outputPortl.newTuple();
streamsOutputTuplel.assign(inputTuple);

try {
getTupleRulesetParamMapping().mapToTuple(outputPortl,

streamsOutputTuplel, outMap);

© Copyright IBM Corporation 2014. 48

Patterns for Operational Decision Management in Streams

} catch (Exception e) {
handleExecutionException(e, inputTuple, inputParameters);
return;

}

// Submit book event content
outputPortl.submit(streamsOutputTuplel);

// Continue for port 2

This switch is applied to both port 1 and port 2.

In the mapping class, the bookEvent output parameter from the rule execution is retrieved
from a Map in String format which then needs to be converted to SPL XML format for
the EventOut port. After conversion, we set the xmlEvent in the OutputTuple using
setXML method. See Listing 4.4 below on the mapping done for port EventOut.

Listing 4.4 Mapping bookEvent from ruleset parameter to XML

public void mapToTuple(StreamingOutput<OutputTuple> outputPort,
OutputTuple tuple, Map<String, ?> outMap) throws Exception
{

// Mapping of Port @ - main port filtered

......
......

// Mapping of Port 1 - book event returned as xml
// to be logged in output file
if (outputPort.getPortNumber() == 1) {
String bookEventString = (String) outMap.get("bookEvent");
XML xml = ValueFactory.newXML (
new ByteArrayInputStream(bookEventString.getBytes()));
tuple.setXML("xmlEvent", xml);

The Messaging Toolkit operators and the JIMSSink operator in particular, requires a
string to be sent as the message payload rather than an SPL XML type. In this case we
need to map the bookEvent data into a String when sending the stream to JMSOut port.
See listing 4.5 below on the mapping done for port IMSOut.

Listing 4.5 Mapping bookEvent from ruleset parameter to String
public void mapToTuple(StreamingOutput<OutputTuple> outputPort,
OutputTuple tuple, Map<String, ?> outMap) throws Exception

{
// Mapping of Port © - main port filtered

// Mapping of Port 1 - book event returned as xml

© Copyright IBM Corporation 2014. 49

Patterns for Operational Decision Management in Streams

// to be logged in output file

......

// Mapping of Port 2 - book event returned as xml in String

// to be forwarded as IMS message.

if (outputPort.getPortNumber() == 2) {
String bookEventString = (String) outMap.get("bookEvent");
// Use of setString handles the conversion between
// Java String and SPL rstring
tuple.setString("bookEvent", bookEventString);

}

The JMSOut operator is expecting the bookEvent data as SPL rstring. The bookEvent
data is extracted from the output parameter Map as a java.lang.String. The conversion
from Java String to SPL rstring is handled by the setString method of the OutputTuple. If
OutputTuple.setObject method is used instead, the Java String needs to be wrapped in a
Java RString object.

JMSOut : IMSSink

JMSOQut is a IMSSink operator from the Messaging Toolkit and is included in this
application to show that the events identified by rules can be sent via messaging to
remote systems for further action. The book event data is sent as a String whose content
is an XML document that can be used as a payload. The Messaging Toolkit includes
operators for sending messages using JMS, XMS and MQTT protocols. It is important to
study the documentation in IBM Knowledge Centre for the Messaging Toolkit which has
details on the use of the 3 different operator types, the data format supported and the SPL
to JMS/XMS conversions.

In our example, we send the event as a JMS message using JMSSink to a WebSphere
MQ queue. In the JMSSink operator, we need to set the parameters for the JMS
connection and access for our JMS environment as shown in figure 4.8

© Copyright IBM Corporation 2014. 50

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.messaging-toolkit.doc/doc/msgtlkt-container.html

Patterns for Operational Decision Management in Streams

Figure 4.8 JMSSink parameters

£l Properties 53

<4 JMS0ut (JMS5ink)

General Pararmeter Walue
Annotations | taccess "accessl"
Input Parts I fconnection "connl”
Output Ports
Param

Laogic
W e
Config

The access and connection values referred to are defined in a connection document.
The default document location is Resources/etc/connections.xml in the project. If the
connection document is in a different file location, then the full path to the connection
document can be defined in the connectionDocument parameter for the JIMSSink
operator.

The connection configuration used in our sample environment (as described in the annex)
is described in listing 4.5 below.

Listing 4.5 JMS connection configuration in connections.xml

<st:connections xmlns:st="http://www.ibm.com/xmlns/prod/streams/adapters"”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<connection specifications>
<connection_specification name="connl">
<JMS initial_context="com.sun.jndi.fscontext.RefFSContextFactory"
provider_url=file:///opt/INDI-Directory
connection_factory="ConnectionFactory"” />
</connection specification>
</connection specifications>

<access specifications>
<access_specification name="access1">
<destination identifier="BOOKEVENT_IN"
delivery mode="persistent”
message_class="xml" />
<uses_connection connection="connl"/>
<native schema>
<attribute name="bookEvent" type="String" />
</native schema>
</access specification>
</access specifications>

</st:connections>

© Copyright IBM Corporation 2014. 51

/opt/JNDI-Directory

Patterns for Operational Decision Management in Streams

The connection_specification_name (connl) and the access_ specification_name
(accessl) defined in the connections.xml are used in setting the parameters in the JIMSOut
port. The JMS to SPL type mapping is based on the message_class defined in the access
destination. See Attribute element for the list of message_classes supported and the
mappings between message_class and the attribute type. The link also describes the
optional length attribute for each operator. Depending on the operator type,
message_class and attribute type, you may need to add the length attribute to avoid
truncation of data.

In our sample, we set the message_class to xml. Note that xml SPL type is not supported
by the Messaging Toolkit and we set the attribute type for bookEvent to String in Listing
4.5 above. If you intend to send the event to the ODM event runtime (previously called
WebSphere Business Events (WBE)), you can set the message class to “wbe”. The JMS
message will then have WBE-related headers included.

The Redbook on IBM InfoSphere Streams: Accelerating Deployments with Analytic
Accelerators has details on configurations for the Messaging Toolkit. It also provides
shortcuts for bypassing WMQ related permissions to simplify the running of samples.

For more details of configuring streams to support JMS messaging refer to Annex B.

Ruleset Execution Error handling through FileSink: Error

The RulesetExecution operator provides an additional port that can be used to provide a
stream of exceptions that occur when processing a tuple through ODM. This Error port
outputs a stream that is connected to the FileSink (Error) operator which is configured to
record any errors to file Errors.txt. The error stream schema is shown below in figure
4.9.

© Copyright IBM Corporation 2014. 52

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.messaging-toolkit.doc/doc/attributeelement.html
http://books.google.co.uk/books?id=JWfRAgAAQBAJ&printsec=frontcover#v=onepage&q&f=false
http://books.google.co.uk/books?id=JWfRAgAAQBAJ&printsec=frontcover#v=onepage&q&f=false

Patterns for Operational Decision Management in Streams

Figure 4.9 Error port schema

Bl Properties 2

i Error (FileSink)

= Input Ports

General

Annotations Input port: |F'|:|rtEI

Input Ports

Output Ports Alias: inPortlAlias

Pararmn

: Input strearns with schema:

Laogic

YifiFdonr Marne Type

Config 4 RuleExceptions
errorTuple tuple <BookClick =
errorbdessage rstring

The streams schema includes errorTuple and the errorMessage. The order of the schemas
is important. Swapping the 2 error types will cause the Exceptions as shown in Listing
4.8 below and the streams fail to run.

Listing 4.8 Optional error output port attributes ordering

16 Oct 2014 17:17:05.310 [12112] ERROR #splapplog,J[0@],P[0@],Rules
M[JavaOp.cpp:log:92] - CDIST2257E The second attribute in the optional error
output port must be an rstring.

16 Oct 2014 17:17:05.310 [12112] ERROR #splapplog,J[@],P[@],Rules
M[JavaOp.cpp:log:92] - CDIST3358E The first attribute in the optional error
output port must be a tuple.

There should not be any records in Errors.txt for successful runs.
The default port for error output is port 1 with port 0 being the main application port.

The Filtering pattern has a total of 4 ports including the Error port. In this example, we
set the error port to the last as in the FeatureDemoCustomMapping sample.

FilteringPattern Listing

The complete listing for the FilteringPattern application is provide in listing 4.9 below.

Listing 4.9 FilteringPattern application SPL listing

namespace application ;

use com.ibm.streams.rules.odm: :0DMRulesetExecutor ;
use com.ibm.streams.messaging.jms::JMSSink ;

© Copyright IBM Corporation 2014. 53

Patterns for Operational Decision Management in Streams

composite FilteringPattern

{
type
BookClick = rstring customerID, rstring clickAction,
timestamp clickTimestamp, rstring isbn, rstring title, rstring
author,
decimalé4 price, decimalé64 basketValue, list<ustring> items ;
FilteredBookClick = rstring customerID, rstring clickAction,
timestamp clickTimestamp, rstring isbn, rstring title, rstring
author,
decimalé4 price, decimalé64 basketValue, list<ustring> items,
rstring classification, rstring rationale ;
graph
(stream<BookClick> BookClicksIn) as BeaconIn = Beacon()
{
param
iterations : 100 ;
period : 0.1 ;
output
BookClicksIn : customerID = "Customer" +(rstring)((int32)
IterationCount()
/ 10), clickTimestamp = getTimestamp(), isbn = "S-222",

title =

"Quiet Day", author = "L P James", price =
(decimalé4) (random() * 10.0),

basketValue = (decimal64)(random() * 25.0), items =
[(ustring) "S-222"],

clickAction

"ADD"
}

(stream<FilteredBookClick> FilteredBookClicksOut as outPort@Alias ;
stream<xml xmlEvent> FilteredBookEventsOut as outPortilAlias ;
stream<rstring bookEvent> FilteredJMSBookEvents as outPort2Alias ;
stream<tuple<BookClick> errorTuple, rstring errorMessage>

RuleExceptions as
outPort3Alias) as Rules = ODMRulesetExecutor(BookClicksIn as
inPorto@Alias)

{
param
rulesetPath : "/BookClickDecisionService/1.0/BookClickFilter"
B
databaseUrl : "jdbc:db2://localhost:50000/RESDB86" ;
driverName : "com.ibm.db2.7jcc.DB2Driver" ;
driverPath : "/opt/IBM/db2/V10.1/java/db2jcc.jar" ;
managementConsoleHost : "localhost" ;
managementConsolePort : 1883 ;
userName : "db2instl" ;
userPassword : "db2passwerd" ;
xomLibrary : "bookXom.jar" ;
rulesetExecutionHandlerClassName :
"com.ibm.streams.odm.bookclick.BookClickExecutionHandler"
B
rulesetExecutionHandlerLibrary : "BookClickMapping.jar" ;
}

© Copyright IBM Corporation 2014. 54

Patterns for Operational Decision Management in Streams

() as CSVOut = FileSink(FilteredBookClicksOut as inPort@Alias)

{
param
file : "filteredBookClicksOut.txt" ;
format : csv ;
}
() as EventOut = FileSink(FilteredBookEventsOut as inPort@Alias)
{
param
file : "filteredBookEventsOut.txt" ;
format : csv ;
}
() as Error = FileSink(RuleExceptions as inPort@Alias)
{
param
file : "Errors.txt" ;
format : csv ;
¥
() as IMSOut = IMSSink(FilteredJMSBookEvents as inPort@Alias)
{
param
access : "accessl" ;
connection : "connl" ;
¥

Filtering Pattern Execution

The filtering pattern sample may be executed in a standalone stream to demonstrate the
integration techniques. The multiple output ports have different output data in different
formats.

The output from CSVOut port is very similar to the CSVOut in classification pattern.
With the Beacon generating 100 random tuples, the CSVOut should have 100 records
with random data as shown in listing 4.11.

Listing 4.10 filteredBookClicksOut.txt Sample output stream in csv
format

"Customere","ADD", (1413458660,134793000,0),"S-222","Quiet Day","L P
James",0.1773576019331813,8.868423302192241,["S-222"], "FILLINGBASKET", "Items in basket."

"Customere","ADD", (1413458660,260986000,0),"S-222","Quiet Day","L P
James",0.217961915768683,21.45777679979801, ["S-222"], "OFFERBASKET", "High value basket: Offer AOTM to close
order."

"Customere","ADD", (1413458660,959895000,0), "S-222","Quiet Day","L P
James",6.52473428286612,15.69889669772238, ["S-222"],"FILLINGBASKET","Items in basket."

© Copyright IBM Corporation 2014. 55

Patterns for Operational Decision Management in Streams

"Customere","ADD", (1413458661,65070000,0),"S-222","Quiet Day","L P
James",3.213561940938234,7.297414459753782,["S-222"],"FILLINGBASKET","Items in basket."

"Customere","ADD", (1413458661,176415000,0),"S-222","Quiet Day","L P
James",8.917076834477484,6.223083520308137, ["S-222"], "FILLINGBASKET", "Items in basket."

"Customere","ADD", (1413458661,281345000,0),"S-222","Quiet Day","L P
James",7.776940008625388,22.92293792124838,["S-222"], "OFFERBASKET", "High value basket: Offer AOTM to close
order."

"Customere","ADD", (1413458661,393003000,0),"S-222","Quiet Day","L P
James",7.02701048925519,18.24273504316807, ["S-222"],"FILLINGBASKET","Items in basket."

"Customere","ADD", (1413458661,497381000,0),"S-222","Quiet Day","L P
James",4.393221000209451,6.449947797227651, ["S-222"],"FILLINGBASKET","Items in basket."

"Customere","ADD", (1413458661,601683000,0),"S-222","Quiet Day","L P
James",8.860875847749412,3.423841251060367, ["S-222"],"FILLINGBASKET","Items in basket."

"Customere","ADD", (1413458661,705928000,0),"S-222","Quiet Day","L P
James",5.077155292965472,24.38116824487224,["S-222"],"OFFERBASKET", "High value basket: Offer AOTM to close
order."

"Customerl","ADD", (1413458661,815945000,0),"S-222","Quiet Day","L P
James",9.768905667588115,5.983907252084464, ["S-222"], "FILLINGBASKET", "Items in basket."

As the filter event rule sends book event based on the classification, the number of book
events received in the other ports should be the number of records with OFFERBASKET
classification in filteredBookClicksOut.txt which is random for each run with random
input tuples. For this particular run, there are 19 tuples with OFFERBASKET
classification.

The book event output parameter is of XML kind and can sent as an XML to target
destinations. In this example, the xml formatted book event tuples are written to a file
filteredBookEventsOut.txt. For this run, there are 19 book events tuples. The Listing
4.11 below shows the 3 book events corresponding to the 3 records with
OFFERBASKET classification shown in Listing 4.11 above.

Listing 4.11 filteredBookEventsOut.txt Sample output tuples in xml
format

"<ns@:BookEvent xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\"
xmlns:ns@=\"http://BookEvent\"><ns0:customerID>Customer@</ns@:customerID><ns@:clickTimestamp>2014-10-
16T13:24:20.260</ns@:clickTimestamp><ns@:clickAction>ADD</ns@:clickAction><ns@:basketValue>21.457777</ns@:basket
Value><ns@:classification>OFFERBASKET</ns@:classification><ns@:rationale>High value basket: Offer AOTM to close
order.</ns@:rationale><ns@:book><ns@:isbn>S-222</ns@:isbn><ns0:title>Quiet Day</ns@:title><ns@:author>L P
James</ns@:author><ns@:price>0.21796192</ns0O:price></ns@:book><ns@:items>S-222</nsO:items></ns0:BookEvent>"x
"<ns@:BookEvent xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\"
xmlns:ns@=\"http://BookEvent\"><ns0:customerID>Customer@</ns@:customerID><ns@:clickTimestamp>2014-10-
16T13:24:21.281</ns@:clickTimestamp><ns@:clickAction>ADD</ns@:clickAction><ns@:basketValue>22.922937</ns@:basket
Value><ns@:classification>OFFERBASKET</ns@:classification><ns@:rationale>High value basket: Offer AOTM to close
order.</ns@:rationale><ns@:book><ns@:isbn>S-222</ns@:isbn><ns@:title>Quiet Day</ns@:title><ns@:author>L P
James</ns@:author><ns@:price>7.77694</ns0@:price></ns@:book><ns@:items>S-222</ns0@:items></ns0:BookEvent>"x
"<ns@:BookEvent xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\"
xmlns:ns@=\"http://BookEvent\"><ns@:customerID>Customer@</ns@:customerID><ns@:clickTimestamp>2014-10-
16T13:24:21.705</ns@:clickTimestamp><ns@:clickAction>ADD</ns@:clickAction><ns@:basketValue>24.381168</ns@:basket
Value><ns@:classification>OFFERBASKET</ns@:classification><ns@:rationale>High value basket: Offer AOTM to close
order.</ns@:rationale><ns@:book><ns@:isbn>S-222</ns@:isbn><ns@:title>Quiet Day</ns@:title><ns@:author>L P
James</ns@:author><ns@:price>5.077155</ns0:price></ns@:book><ns@:items>S-222</ns0:items></ns0:BookEvent>"x

The JMSOut port should be sending the same number of book events to the configured
JMS destination BOOKEVENT _IN as JMS messages. With the MQ Explorer, we can
browse the JIMS message arrived in the BOOKEVENT _IN queue and view the data sent
as shown in Figure 4.16 below.

© Copyright IBM Corporation 2014. 56

Patterns for Operational Decision Management in Streams

Figure 4.10 JMS message browsing in MQ Explorer

B 10O Explorer - Content 52 EEl | e | [B
Queues
Filter: Standard far Queues =
< Queue narme Queue type Openinput count Open gutput count | Current queue depth | Put messages Getrmessages Remote queue Red
'lgl BOOKEVENT IN l Lacal 0 I} 19 Allowed Allowed
= =l Message browser 2
o = - . - - - —
=
Queue Manager Mame: IBIQMGR
=
CQueue Mame: BOOKEWVEMNT_IN
< Position Put date/tirne Useridentifier Putapplication narme Format Total length Data lenc =
%1 16-0ct-2014 12:24:20 streamsadmin Web3phere MQ Client for Java MQSTR 1078 914]
—wil —
2 16-Oct-2014 1 % Message 1 {Pmpedies I =
&3 16-Oct-20141 —— — — -
G4 16-Oct-2014 1 General Data
3 16-Oct-2014 1 Repart
B 16-Oct-2014 1 Contest
%F 16-0ct-2014 1l Identifiers Data length: 914
S 16-Oct-2014 1 Segrentstion Total length: 1078
%9 16-Oct-2014 1 Marmed Properties
B0 16-Oct-2014 1 Format: MQSTR
&1 16-Oct-2014 1
%12 16-0ct-2014 1l Coded character set identifiern 1208
4 n
Encoding: 273
Scheme: Standard for b
G STAe e Lo M R [Message data: <Pl version="10" encoding="UTF-8"7> <tuple xmln:]
Last updated: 15:23:26 (19 itermns;
i ¢) Message data bytes: 65 20 78 6D 6C |F-8"?s><tuple xml| =«
- @ 77 77 77 ZE 69 |ns="http:/fuww.i|
L] All available messages on the q 73 ZF 70 72 6F |bm.com/xmlns/pro|
S 70 6C ZF 74 75 |dfstreams/spl/tu]
6E 61 6D 65 3D |ple"><attr name=|
14 I/n_?“-‘ Z0 74 79 70 65 | "booKEvent™ type|
= 25 6C 72 3B 6E |="ratring"sslt:n|
74 20 78 6D 6C |s0:BookEvent xml| _
- < T b

If you find that the message is truncated in the MQ Explorer, you would need to define
the length attribute for the native_schema in the connections.xml discussed earlier. Just
make sure that the MQ Explorer Preferences under WebSphere MQ Explorer >
Messages > Max data bytes displayed is not causing the truncation in the Ul first.

The Listing 4.13 below shows the message data for the first IMS message when
message _class is set to “xml”

Listing 4.12 JMS Message for xml message_class

<?xml version="1.0" encoding="UTF-8"?><tuple xmlns="http://www.ibm.com/xmlns/prod/streams/spl/tuple"”><attr
name="bookEvent" type="rstring"><ns@:BookEvent xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ns@="http://BookEvent"><ns0:customerID>Customero</nsO:customerID>&1t;ns0:clickTimestamp>
2014-10-
16T13:24:20.260&1t;/ns0@:clickTimestamp>&1t;ns0@:clickAction>ADD&1t;/ns@:clickAction>&1t;ns0:basketValue&
gt;21.457777&1t;/ns0O:basketValue>&1t;ns0:classification> OFFERBASKET&1t;/ns@:classification>&1t;nsO:rati
onale>High value basket: Offer AOTM to close order.</ns@:rationale><ns0:book>&1t;ns0:isbn>S-
222&1t;/ns@:isbn>&1t;ns0:title>Quiet Day</ns0O:title>&1t;ns0:author>L P
James</ns@:author>&1t;ns0:price>0.21796192&1t;/nsO:price>&1t;/ns@:book>&Llt;ns0:items>S-
222&1t;/ns0:items>&1t; /ns0@:BookEvent></attr></tuple>

For comparison, Listing 4.44 shows a JMS message for a bookEvent data using wbe as
message_class from a different run.

© Copyright IBM Corporation 2014. 57

Patterns for Operational Decision Management in Streams

Listing 4.13 JMS Message for wbe message_class

<?xml version="1.0" encoding="UTF-8"?><connector name="System S" version="6.2"
xmlns="http://wbe.ibm.com/6.2/Event/inPort@Alias"><connector-bundle name="inPort@Alias"
type="Event"><inPort@Alias><bookEvent data-type="string"><ns0@:BookEvent
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ns@="http://BookEvent"><ns0:customerID>Customero</ns@:customerID>&1t;ns0@:clickTimestamp>
2014-10-
16T17:49:57.552&1t;/ns@:clickTimestamp>&1t;ns0:clickAction>ADD&1t;/ns@:clickAction>&1t;ns0:basketValue&
gt;22.52891&1t;/ns0:basketValue>&1t;ns0@:classification>OFFERBASKET&1t;/ns@:classification><ns0:ratio
nale>High value basket: Offer AOTM to close order.</ns@:rationale>&1t;ns0:book>&1t;ns@:isbn>S-
22281t;/ns@:isbn>&1t;nsO:title>Quiet Day</nsO:title>&1t;ns0:author>L P
James</ns@:author>&1t;ns0:price>2.2024555&1t;/ns@:pricedgt;&1t;/ns0:book>&1t;ns0:items>S-
222&1t;/ns@:items>&1t;/ns@:BookEvent></bookEvent></inPort@Alias></connector-bundle></connector>

The JMS messages in the BOOKEVENT _IN queue can now be consumed by
applications, e.g. 11B, WBE, waiting on the queue to act on the book events.

Summary

We have shown in this section how to build on the simpler Classification Pattern to create
a new pattern that introduces improved data structure and creating events that can be sent
to different target destinations like JMS. The pattern integrates InfoSphere Streams and
ODM using the ODMRulesetExecutor from the Rules Toolkit to execute a deployed
BookClickFilter ruleset to classify a book click action and create an event for
classifications that requires further actions. Further more, it is possible to customize the
data mapping using the ruleset execution to send data to different ports expecting
different data formats using the ruleset execution handler supported by the Rules Toolkit.
The same data can be sent to more than one destination for different analysis, actions as
required.

Conclusion

This article has examined how Operational Decision Management techniques can be used
within Big Data solutions such as streams. The goal of this integration is to leverage rule
and policy based categorization of the information to assist in the analytics and identify
information of significance to emerging business situations. This allows business
decisions to respond dynamically to the evolving situations providing an optimized
response in the complex emerging business environment.

Annex A: Installation and Configuration of InfoSphere
Streams 3.2.1 with IBM Operational Decision Manager

This section describes how to install and configure InfoSphere streams with IBM
Operational Decision Manager to support the use of business rules with streams

© Copyright IBM Corporation 2014. 58

Patterns for Operational Decision Management in Streams

applications. The tutorial is based on the use of the InfoSphere Streams Quick Start
Edition which is available for non-production environments as a VMWare Image or as a
native Linux install. The version used for this tutorial is v3.2.1.

This section also includes instructions on running the ODM samples provided with IBM
InfoSphere streams.

InfoSphere Streams installation and configuration overview

This section provides an overview of how to establish an InfoSphere streams
environment. Each subsection references the recommended InfoSphere documentation to
be followed to perform that task.

InfoSphere Streams Installation

http://www-
01.ibm.com/support/knowledgecenter/SSCRJU 3.2.1/com.ibm.swg.im.infosphere.stream

s.install.doc/doc/install-container.html?lang=en

This tutorial recommends the use of the Quick start edition as this provides a readily
available install for describing the integration patterns with ODM. The ODM integration
patterns are then also applicable to more sophisticated InfoSphere streams installations
where administrators understand the details of the topologies to be established.

The VMWare image provides a preconfigured installation that is ideal for prototypes.
The native Linux install can be installed through a GUI (if an X Windows System is
installed on your host) or through an interactive console mode. While you can install and
use the Quick Start Edition without a GUI (for example as a server), the GUI allows you
to get started more quickly and use the Streams Studio application development interface.

InfoSphere Streams Configuration

http://www-
01.ibm.com/support/knowledgecenter/SSCRJU 3.2.1/com.ibm.swg.im.infosphere.stream

s.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en

If you installed the VMware image, this configuration has been already undertaken and
you can move onto configuring ODM in the environment or setting up Streams Studio on
a remote workstation.

On a native install you should go through the post install configuration steps described
here. http://www-
01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosp
here.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-
roadmap.html

It is important that you follow these steps as they will be needed when you come to
install and configure the ODM Operator.

For the native Linux install you need to undertake the configuration using the FirstSteps
scripts. If you are using the GUI and Launch First Steps is selected in the

© Copyright IBM Corporation 2014. 59

http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
http://www-01.ibm.com/software/data/infosphere/streams/quick-start/
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmistvi
https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmisqse
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS214-083
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install.doc/doc/install-container.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install.doc/doc/install-container.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install.doc/doc/install-container.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/ibminfospherestreams-containercfg.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/ibminfospherestreams-install-postinstall-roadmap.html

Patterns for Operational Decision Management in Streams

PostlInstallation Tasks panel, the IBM InfoSphere Streams First Steps GUI starts at end
of installation. The First Steps GUI can also be started later by running command
Streams-installation-directory/FirstSteps.sh.

The First Steps documentation and GUI take you through the following important steps:
e Configure the SSH environment
o Select DSA or RSA SSH key type.
= |n our environment, we select RSA SSH key type and proceeded
to configure the optional Generate public and private keys.
e Configure InfoSphere Streams environment variables
o Follow instructions provided to set the environment variables for the
InfoStream user, i.e., add the following command to ~/.bashrc file or
[etc/profile.d script:
= source /opt/ibm/InfoSphereStreams/bin/streamsprofile.sh
e Verify the installation.
o Although this is marked as optional. It is a good idea to verify the
installation before proceeding to other tasks.
e Create and manage InfoSphere Streams instances
o Select Share the instance if instance is to be used by other users.
o Click Check port availability for the SWS HTTPS port (default 8443)
before proceeding

InfoSphere Streams Studio Configuration

http://www-
01.ibm.com/support/knowledgecenter/api/content/SSCRJU 3.2.1/com.ibm.swg.im.infosp

here.streams.cfg.doc/doc/remote-development-creating-connection-linux.html

If you installed the VMware image, this configuration has been already undertaken and
you can move onto installing and configuring ODM in the environment.

You can install InfoSphere Streams Studio locally or on a remote Windows or Linux
workstation according to these instructions.

The installable images are shipped in Streams-installation-directory/etc/StreamsStudio:

e Windows: StreamsStudio-Win.zip
e Linux: StreamsStudio.zip

Copy and unzip the installable image on the platform of choice.

The InfoSphere Streams Studio requires a 64-bit Java Development Kit (JDK) with an
IBM ORB. If you use an Oracle JDK, the Java installation must be configured to use the
IBM ORB implementation. For more information, see Configuring an Oracle Java
development kit for Streams Studio.

© Copyright IBM Corporation 2014. 60

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.cfg.doc/doc/remote-development-creating-connection-linux.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/tinstall-studio-updating-java-orb-implementation.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.install-admin.doc/doc/tinstall-studio-updating-java-orb-implementation.html

Patterns for Operational Decision Management in Streams

To re-configure the studio to use the correct JDK after studio is installed you must define
where the JDK is installed in the file StreamsStudio-installation-
directory/streamsStudio.ini.

Here is an example to configure a Windows installation of Steams Studio to use the IBM
JDK that is shipped in the Operational Decision Manager (ODM) V8.6 64-bit
installation:

-vm
C:\IBM\ODMS86\jdk\bin\javaw.exe
-vmargs

Once the JAVA configuration is completed, you can now bring up the InfoSphere
Streams Studio with the StreamsStudio-installation-directory/streamsStudio.exe
command. On first run, you are prompted by the wizard to connect to the remote streams
instance and set up both remote and local workspaces. These workspaces are
synchronized and should use empty clean workspaces to start with. EXxisting projects can
be imported into workspace after configuration.

In the New remote connection configuration, the SSH option is selected in our
environment with the Path to installed server on host modified with the correct
installed directory. On clicking Next, enter the user id and password of a user on the
remote host who can access the streams instance and select to save both user id and
password.

© Copyright IBM Corporation 2014. 61

Patterns for Operational Decision Management in Streams

Figure A.1 Remote connection configuration for Streams Studio

@ | |@] = |

- . - * -

Mew remote connection configuration

Please specify the configuration information

Indicate how the remote server should be launched

Fermote daermon
Seros I
Daernon Port (1-65535) [4075

REXELC Systern tbype: %86 Linux
Host name: [2A-VTT207.PARISLAR. FRIBR.CORM

Connection name: i2a-wt207 parislab.fribrm.com

Path to installed server on host

AnfoSphereStrearms/etcfrseserser -
User It strearnsadrmin

Server launch command | Jfserversh

Password:

Ayto-detect S50 Save user [D
Use S50 for netwaork cormrmunication [¥] Save passward

Connect to running server

Ilse SEL for network communication

@ 35H

Path to installed server on host

Fopt/IBM InfoSphereStreamsfetcfrsesencer

Server launch command fserversh Port (1-65535) | 22
%5H connection tirneout (rms) | 10000

Auto-detect 550
Idse 551 for network cormmunications
Establizh 55H tunnel

Walidate connection

Walidating connection

@ % Back et = Firish Cancel

The wizard then prompts for the Infosphere Streams install directory and the default
remote workspace for synchronizing with the local workspace. You can browse the
remote file system with the Browse button.

© Copyright IBM Corporation 2014. 62

Patterns for Operational Decision Management in Streams

Figure A.2 InfoSphere Streams install location details
(@ S5

InfoSphere Streams Install Location Details

Enter the directory of the InfoSphereStreams install,

Host connection: |iZa-wtt207. parislab.fribm.com v| | Meww.., |

Install directory: fopt/ BRI InfosphereStrearms Browese...

Default remote weorkspace: fhomefstreamsadmingdstreamsforkspace

(?) (o]'4 | | Cancel

This completes the InfoSphere Streams Studio configuration. Samples or existing
projects can now be imported into the studio.

Configuring IBM Operational Decision Manager in a Streams
Environment

http://www-

01.ibm.com/support/knowledgecenter/api/content/SSCRJU 3.2.1/com.ibm.swq.im.infosp

here.streams.rules-toolkit.doc/doc/container.html

Installation of ODM into a streams environment consists of the following steps.

1. Ensure the STREAM_INSTALL environment variable is setup (usually
opt/ibm/InfoSphereStreams)

2. Install ODM Decision Server Rules. This does not have to be on the same host as
streams but should be reachable over the network. This needs to have a network
reachable database so that the embedded rule engine operating in streams can be
populated dynamically with the rulesets. This tutorial describes how to setup this
environment with a local tomcat Rule execution server console and a network

derby database.

3. Copy the directory ODM-installation-directory/executionserver/lib to a directory
reachable by streams. InfoSphere Streams expects the ODM J2SE jars to be

© Copyright IBM Corporation 2014. 63

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/container.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/container.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/container.html

Patterns for Operational Decision Management in Streams

located in the ODM_HOME/executionserver/lib directory. You will need to
ensure that the ODM_HOMIE variable is correctly configured to reflect this
directory. (typically /opt/IBM/ODMVersion, e.g. /opt/IBM/ODM86)

Installing Decision Server on Tomcat and Derby

This section provides a summary of the steps required to setup a lightweight local
Decision Server running on Apache Tomcat. This is described in the Configuring Rule
Execution Server on Tomcat section in the IBM Operational Decision Manager
Knowledge Center.

The following steps should be taken:

1. Install Apache Tomcat

2. Install Apache Derby a configure and start a network Derby server.

3. Add the derbyclient.jar library from the <DERBY_HOME>/lib directory to the
<TOMCAT_HOME>/lib directory to ensure it is on the classpath. Note where
this jar is located as it will need to be added to the configuration of your ODM

4. Install Decision Server (Rule Execution server) into Tomcat as described in the
IBM Operational Decision Manager Knowledge Center here.

5. You should ensure that you use a network enabled database (e.g. DB2 or Network
Derby) to allow the JSE RES used by the Streams ODM Operator to access it.
The embedded derby database installed by default is not suitable.

6. You should also ensure that the Rule Execution Server console is enabled for
TCPIP notification as described here in Changing the default behavior of the
Management Console. The approach for repackaging the Tomcat management
console war is different and is described here.

Configuring Streams Studio to use the Rules Toolkit

To allow the use of the Rules toolkit in streams studio you should add the toolkit
location. This can be undertaken in the First Steps Task Launcher for Big Data in the
Streams Studio by selecting Make SPL Toolkits available. This should then be visible
in the streams explorer as shown below in figure A.3.

© Copyright IBM Corporation 2014. 64

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tpc_tcat_config_res.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tpc_tcat_config_res.html?lang=en
http://tomcat.apache.org/
http://db.apache.org/derby/
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tpc_tcat_config_res.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.dserver.rules.res.managing/topics/con_res_config_rescons_behavior.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.dserver.rules.res.managing/topics/con_res_config_rescons_behavior.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSQP76_8.6.0/com.ibm.odm.distrib.config.tom/config_ds_res_tomcat/tsk_tcat_repack_with_ant.html

Patterns for Operational Decision Management in Streams

Figure A.3 Steams Explorer showing Rules Toolkit location

[Project Explorer (&) Streams Explorer QB

~ [InfoSphere Streams 3.2.0.0

P [L, Available Hosts

P Instances

+ '3 Toolkit Locations

P {3 Standard Toolkit Location

% (Local) foptibm/InfoSphereStreams/toolkits/com.ibm.streams bigdata/
'ﬁ% (Local) Joptibm/InfoSpherestreams/ftoolkits/com.ibm.streams.cep/
ii5 (Local) foptfibm/InfoSphereStreams/toolkits/com.ibm streams .db/
'ﬁ% (Local) Joptibm/InfoSpheresStreams/ftoolkits/com.ibm streams etl/
% (Local) foptibm/InfoSphereStreams/toolkits/com.ibm.streams financial/
'ﬁ% (Local) Joptiibm/InfoSpherestreams/ftoolkits/com.ibm.streams. geospatial/
ii5 (Local) foptfibm/InfoSphereStreams/toolkits/com ibm.streams inet/
'ﬁ% (Local) Joptibm/InfoSpheresStreams/ftoolkits/com.ibm.streams . .messaging/
i (Local) foptibm/InfoSphereStreams/toolkits/com.ibm.streams.mining/

'ﬁ% (Local) Joptibm/InfoSpheresStreams/ftoolkits/com.ibm.streams rproject/

Jl v v v v v v v v v W

% (Local) foptibm/InfoSphereStreams toolkits/com.ibm.streams rules/

[ru1;%t:c:r'n.il::r'n.streams.rl,lles[l.tll.tll]

b i3 (Local) Joptibm/infoSphereStreams/toolkits/com ibm streams text/

P 'ﬁ%(Local) Joptiibm/infoSphereStreams/toolkits/com.ibm.streams timeseries/

Building and running the Rules Toolkit sample applications

http://www-
01.ibm.com/support/knowledgecenter/api/content/SSCRJU 3.2.1/com.ibm.swq.im.infosp

here.streams.rules-toolkit.doc/doc/bldsamples.html

You can either import the whole Rules Toolkit into the workspace, or import individual
samples.

To import the Rules Toolkit as an SPL project into the workspace:

1. Click File > Import > InfoSphere Streams Studio > SPL Project.

2. Click Next.

3. Click Browse to select a directory that contains the SPL toolkit. An SPL toolkit is
identified by its model file, info.xml. Any directory containing this file is treated
as the root of the SPL toolkit. If you are working in a remote development
environment, you can import SPL projects either from your local system or from a
remote Linux system. To import a project from a remote system, in the Select a
source location for import window, from the Connection list, select the
connection that you can use to connect to the remote system.

© Copyright IBM Corporation 2014. 65

http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/bldsamples.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/bldsamples.html
http://www-01.ibm.com/support/knowledgecenter/api/content/SSCRJU_3.2.1/com.ibm.swg.im.infosphere.streams.rules-toolkit.doc/doc/bldsamples.html

Patterns for Operational Decision Management in Streams

4. The Import SPL Project window lists all the SPL toolkits found from the
selected directory. Each entry in this list shows the directory name, the toolkit
name and the version. Select one or more toolkit(s) to import into the workspace.
To select multiple toolkits, hold down the CTRL key while making your
selection.

5. Click Finish.

Figure A.4 Importing the toolkit into the workspace

&

Import SPL Project Ed
Import SPL Project
Select 5PL projects to import
Source
l(LocaI} foptfibmiinfoSphereStreams/toolkits/com.ibm.streams.rules | ot] Browse. .

Include description when filtering list

Name Project Name Remote Context

™ com.ibm.streams.rules [1.0.0] com.ibm.streams.rule:

[gelect All ngselect All

@ l Cancel H Finish]

When prompted on whether you want to delete unreferenced build configurations, click
Yes to delete them to be rebuilt later.

On completion the project should be built and be visible in the project explorer as shown
below in figure A.5.

© Copyright IBM Corporation 2014. 66

Patterns for Operational Decision Management in Streams

Figure A.5 Project explorer after import of Rules toolkit.

[5 Project Explorer 52 (2 Streams Explorer
=~ Lﬁcom.ibm.streams.rules [1.0.0]
[@,',com.ibm.streams.rules.odm
= &y Samples
P €3 DatabaseDeploymentAndRuleRefresh
P @3 FeatureDemoCustomMapping
P €3 simpleRuleEvaluation
% Dependencies
= Resources

[»

P implfjavalsrc

P = IBM InfoSphere Streams [3.2.0.0]
[

=, JRE System Library [javal

There is also an option to import individual toolkit SPL sample applications.

Once the project is imported into Streams Studio you can now build and run the sample
applications.

The first step is to create a build configuration. This can be either Standalone meaning
that it will run locally on a default stream or Distributed meaning that it can be deployed
to a streams instance. In this tutorial we will create a standalone configuration.

In the Project Explorer navigate to the sample you wish to run (SimpleRuleEvaluation) ,
under application, and right click New>Standalone Build as shown below in figure A.6.

© Copyright IBM Corporation 2014. 67

Patterns for Operational Decision Management in Streams

Figure A.6 Creating a build configuration

[Project Explorer & (&) Streams Explorer B S ¥ = O

~ ﬁcom.ibm.streams.rules [1.0.0] | ==
= (& com.ibm streams . rules.odm
[f7] ODMRulesetExecutor
~ & Samples
['?%DatabaseDeploymentAndRuIeRefresh
[» '?BFeatureDemoCustomMapping

~ & SimpleRuleEvaluation

| 7 Project. .

b i3 Depende| Open % Main Composite
5 Dependencies| Open With v @ spL Namespace
¥ & Resources Clone... m SPL Application Project
b = com.ibm.str pejete L2 SPL Application Set Project
(= data Rename...] SPL Project

b = Aae
[«] & Remote C/C++ Project

El Cconsole 2 Prol Distributed Build
SPL Build [%) standalene Build
Building main composite: application::Simg

(<] |

nt
T Other... Ctri+N |

This opens the Build configuration editor where further details may be modified if
required. Click OK to close the editor and save the build configuration producing a
Standalone build configuration as shown in figure A.7.

© Copyright IBM Corporation 2014. 68

Patterns for Operational Decision Management in Streams

Figure A.7 Standalone build configuration

[t5 Project Explorer 32 | (Z) Streams Explorer 2 & ¥

~ ﬁcom.ibm.streams.rules [1.0.0]
=~ @,com.ibm.streams.rules.odm
[, ODMRulesetExecutor
= [Samples
P 'E_F:j'DatabaseDeponmentAndRuleRefresh
P '@5FeatureDemoCustomMapping
= € simpleRuleEvaluation
= (D application
w7 "&_'_':'SimpIeHuleEvaluaticn [Build: Standalone]

‘;”Qstandalone [Active]
b €2 Types
I {3 Dependencies
% Dependencies
=~ [=Resources

I = com.ibm.streams.rules.odm

o Aata

Now you have a build configuration you can establish a run configuration.

Build configurations that are imported may be read-only resources, and cannot be
modified or synchronized. Right-click to delete the imported build configurations and re-

create the Standalone build configuration.

To create a new run configuration select the drop down next to the run icon and select
Run Configurations... as shown in figure A.8.

© Copyright IBM Corporation 2014. 69

Patterns for Operational Decision Management in Streams

Figure A.8 Creating a new run configuration

InfoSphere Streams - InfoSp

File Edit Source Refactor

MNavigate

Search Proj

- S IR ¥

ect Run %

NS I C IR

[Project Explorer 2 | (Z) Str

= {Zcom.ibm.streams rules [1

< (@ com.ibm streams rules

Bun As L4

B s -

|Rug Configurations...

Organize Favorites. ..

7 ODMRulesetExecuto

~ (&g Samples

= (2 application

P G@DatabaseDeplt}‘j,-ment.ﬂmdRuleFieI’resh
P %FeatureDemcCustcmMapping

~ & SimpleRuleEvaluation

Active]

7 fil'g':‘SimpleRuleEvaluation [Build: Standalone]
) standalone |
P62 Types

In the Run Configurations editor select SPL Application and right click New... to bring
up the configuration editor. Change the fields to select the value for the sample
(SimpleRuleEvaluation) as shown below in figure A.9.

Figure A.9 Run Configuration editor.

(-]

Create, manage, and run configurations

Submits an SPL Application

Run Configurations

CE X B 3 -

Name IS\mpleRuleEva\uatmn|

‘ SPL Application

[€] c/C++ Application

& Eclipse Application

[l Java Applet

31 Java Application

Ju JUnit

JU JUnit Plug-in Test

» Launch Group

] MWE Workflow

4 05GI Framework
~ [SPL Application

SPL Application Set

Filter matched 12 of 12 items

B New_configuration

SPL Application
Project:

Sample:

Main composite

Instance:

Log output level:

Build configuration

Trace output level:

=] gommorﬂ] Envircnmenﬂ

|com.ibm.streams rules | [B[ﬂwse]
|simpleRuleEvaluation | [B[uwse]
|application. simpleRuleEvaluation | [Brgwse] i
[standalone | [Bmﬂse]

\ |

[sderaut 2 ||
[sderaut 2

SPL Application to launch:

[fhcmeistreamsadmlnIODchrkspace.fccm ibm streams.ru\es;‘sampleSIS|mp\eRu\eEvaIuatlon;‘Gutputfap|]

Submission Time Values

@

To save the run configuration click Apply.

© Copyright IBM Corporation 2014.

70

Patterns for Operational Decision Management in Streams

You can then run this sample by clicking the Run button.

There is no output in the console from the SimpleRuleEvaluation sample but you can see
the result of the execution by looking at the files used by the datasource node
(applicationFile.txt) and produced in the data sink node (rulesDemoPrimitive.out) as
shown in figure A.10.

Figure A.10 SimpleRuleEvaluation sample execution results

I Project Expl £ Streams Ex = B8 T ;
[El applicationFile.txt 2

=5 5 ¥ "Mike",32, "GM","PA-18-7272",1978,2
< = SimpleRuleEvaluati (=] "John", 17, "GM", "HJA-872",1999,0

(= SimpleRuleEvaluation "Sam*,32,"Ford", "GSG-777", 1958, 2
P (= application "Dan",32,"GM", "Y5G-322", 1978, 4
= [=data

& LicenseApproval zip]

P = odmData B
= res_xom |2l rulesDemoPrimitive.out 22

"Mike","PA-10-7272",true
"John","HJA-872", Talse

P =doc "Sam", "G5G-T77", Talse

— "Dan","Y5G-322", false

|=| rulesDemoPrimitive.out

iz info.xml
Makefile
P = output

(1«

[I [r]

If you are working remotely with the Streams Studio, you need the Remote Reconciler to
view the execution results. Right-click on data of the project and select Remote
Reconciler where you have the options to synchronize, push, pull data or show data in
remote reconciler/system.

The Remote Reconciler ignores some pre-defined file patterns, of which *.out is one.
This means that you may not successfully synchronize the rulesDemoPrimitive.out file.

In order to change these Ignored File Patterns
e Select Windows > Preferences pnel
e Select Remote Systems > Remote Reconciler > Unix Remote Projects
e Deselect the suffix you wish to be synchronized as shown in the figure below.

© Copyright IBM Corporation 2014. 71

Patterns for Operational Decision Management in Streams

Figure A.11 Ignored File Patterns in Unix Remote Projects

et Laanie T . ! -
(V] [ITIon {ror NOn ‘L - H:!: nvlrf-nmEI':‘ - ‘
lWindu:uw' Help

'S - - -:G:I - - | =
ECTDR
Unix Remote Projects - - -
> General
. Ant Ignored File Patterns:
2 CIC++ *IBMCOR g
> HEIp w |5t
> InfoSphere Streams * 5
s InstallfUpdate O] *out |:|
» lava = E
> Plug-in Developrment par .
y
Datastore [Add Remove
Debug S . . . e
i Ignored File with the following reqular expression patterns in its classification:
File Cache (Classification of a file is obtained by using unix "file” cormmand.)
Files
Logging Fhinary.
Passwords Mexecutable”

4 'F{emote Recuncilerl Mshared object”

[Unix Remote Projects)
350
> RunfDebug
Task Launcher for Big Data
> Team [Ldd] Rermowve
Terrninal
| > HtendKpand

[Restu:ure Defaultsl [Apnply]

I@ [ok [conce |

A similar approach can be applied to running the FeatureDemoCustomMapping
application provided with the rules toolKit.

Running SPL Applications using Dynamically Deployed Rulesets

It is possible to configure the ODM Operator to use rulesets that are deployed to an
existing Decision Server as long as that Decision Server:
e Isaversion that is compatible with that used in the Streams ODM Operator
e has a network enabled database and
e has TCPIP notification enabled

The DatabaseDeploymentAndRuleRefresh sample is configured to operate in this way.

© Copyright IBM Corporation 2014. 72

Patterns for Operational Decision Management in Streams

To use this sample you need to extract the provide rule project into Rule Designer and
deploy it to Decision Server. The rule project used in this sample is in the project
directory /DatabaseDeploymentAndRuleRefresh/data/ and is called
MiniLoanRuleProject_ForDb_deployment_RuleRefresh.zip.

The rule project is based on a Java XOM (miniloanXom.jar) which is included in the
rule project ZIP file and also in the /DatabaseDeploymentAndRuleRefresh/data directory.
This jar has to be configured so that it is added to the streams classpath at runtime. As
shown below in table x.x.

A RuleApp project can be created in Rule Designer and deployed to an existing Decision
Server. The rulesetPath defined in the configuration parameters should correspond to this
deployment. It is good practice to use a specific RuleApp version in the path to define
the interface and XOM but to omit a ruleset version meaning that the operator will
always use the latest ruleset deployed. You should not deploy the XOM for rule projects
contained in the RuleApp as the miniloanXom.jar is already located in the classpath and
the streams integration always uses file persistence for the XOM. Deploying the XOM
will mean that the ruleset will have a reference that cannot be resolved by the local JSE
RES and an exception will occur at runtime.

The Ruleset Executor Operator provides a number of parameters that can be used to
configure its operation. In this sample you need to set up the Submission time values in
the application configuration to reference the Decision Server and ruleset characteristics
to which it should integrate. Typical values for a local Tomcat installation of Decision
server running on a network Derby database (db2 values in brackets) are shown below.

Table A.1 Ruleset Executor configuration parameters

Parameter Example Value Comment

rulesetPath /MiniloanRuleApp/1.0/MiniloanRules | Ruleset to be loaded from the
decision server repository.
The ruleset path does not
include the ruleset version so
that on notification of ruleset
updates, the latest ruleset
version is executed next.

managementConsoleHost | localhost Management console host ip
address or dns name used to
register with the decision
server.

managementConsolePort | 1883 Port used to register for tcpip
notifications of ruleset
updates

databaseUrl jdbc:derby://localhost:1527/resdb Url of the decision server
repository database

databaseUserName ilog Database user credentials

© Copyright IBM Corporation 2014. 73

Patterns for Operational Decision Management in Streams

databaseUserPassword ilog Database user credentials

databaseDriverName org.apache.derby.jdbc.ClientDriver Jdbc client driver class name

databaseDriverPath /home/streamsadmin/db-derby- Classpath containing the
10.10.1.1-bin/lib/derbyclient.jar client driver.

When these configurations are setup, the rulesets to be executed are taken from the Rule
Execution server repository rather than the file system used in the previous samples.

A typical Run configuration is shown below in figure A.12.

Figure A.12 ODM Operator node remote repository configuration

L) Run Configurations x|
Create, manage, and run configurations ~
Submits an SPL Application @

OB X | B 3 - Name: |DatabaseDeploymentAndRuleRefresh]
SPL Application - = Common | B Environment
[E] C/C++ Application SPL Application:
& Eclipse Application FAEEE Icom ibm.streams.rules] Browse. ..
B Java Applet Sample: IDatabaseDep\oymentAndRuIeRefresh] Browse
71 Java Application))
i Junit Main composite lappl\cat\on :DatabaseDeploymentAndRuleRefresh] Browse
Ji Junit Plug-in Test Build configuration: lStandaIune] Browse
= Launch Group Instance:

[B] Mwe workflow
0SGi Framework
~ B SPL Application Log output level: l Info

B, DatabaseDeploymentAndRuld
SPL Application to launch

[FeatureDemoCustomMapping

Trace output level ITrace

W

]
]

a“

B [;‘home;‘streamsadmm.fODMworkspace.icom.ibm.streams rules/samples/DatabaseDeploymentAndRuleRefresh/output/application.
@ SimpleRuleEvaluation

SPL Application Set Submission Time Values
Name Value
application: :DatabaseDeploymentaAndRuleRefresh.databaseUserName ilog

application: :DatabaseDeploymentAndRuleRefresh managementConscleHost localhost
application: :DatabaseDeploymentAndRuleRefresh.databaseUrl jdbc:derby:/localhost:1527/resdb

application: :DatabaseDeploymentAndRuleRefresh.databaseDriverName org.apache.derby.jdbc.ClientDriver

Prompt Before Launching

[Aways prompt

] I [+]
Filter matched 14 of 14 items

ETRETE

@ [cose [mn]

When executing streams with these settings the rules can be dynamically loaded into the
operator when they are changed by deployment from Rule Designer or Decision Center.

In this sample the input data to the rules is provide dthrough a Beacon node that sends the

same set of data at regular intervals. This is configured to have a loan request amount of
2000000 as shown below in figure A.13.

© Copyright IBM Corporation 2014. 74

Patterns for Operational Decision Management in Streams

Figure A.13 DatabaseDeploymentAndRuleRefresh sample Input
source

El Properties 22 xR

L=l

fi' loadApplication (Beacon)

Qutput streams for the selected operator:

General

Edit

Annotations

Input Ports Name Value

Output Ports ~ [loadApplication
) . Show Inputs
Param @ name : rstring "Mike"
Logic @ creditScore : int32 600
Window @yearlylncame - int32 8000000
OQutput & amount : int32 2000000

Config (# dur - int32 240
@yearlylnterestRate fl (float32) 0.05

The default rules deployed with the sample include a rule that defines the loan application
amount limit to be 1000000 as shown in figure A.14.

Figure A.14 Sample rule defining maximum loan amount

& maximum amount £ @ MiniloanRuleApp

Action Rule: maximum amount

» General Information » Category Filter

» Documentation

Content
if
the amount of loan is more than 1000060
then
add "the loan amount is more then 1000008" to the messages of loan ;
reject loan ;

When the rules run in the stream each loan application should be rejected . If the amount
is then changed to 5000000 and the ruleapp and ruleset redeployed, the decision changes
to use the new limit and the loan is approved. This can be seen in figure A.15 below at
the point of transition.

© Copyright IBM Corporation 2014. 75

Patterns for Operational Decision Management in Streams

Figure A.15 Output from Data Sink as ruleset update is deployed

rulesDemo.out &2

"false [the loan amount is more then 1000000]", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"false [the loan amount is more then 1000000]", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"false [the loan amount is more then 1000000]", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"false [the loan amount is more then 1000000]", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"false [the loan amount is more then 1000000]", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"false [the loan amount is more then 1000000]", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"false [the loan amount is more then 1000000]1", false, 2000000
"false [the Lloan amount is more then 1000000]1", false, 2000000
"true []1",true, 2000000

"true []7, true, 2000000

"true []1",true, 2000000

"true []1", true, 2000000

"true []1",true, 2000000

"true []1", true, 2000000

"true []1",true, 2000000

"true []1", true, 2000000

"true []1",true, 2000000

=T

In addition the execution of rules can be managed and monitored in the Rule Execution
Server Console. If tracing is enabled (this will incur a performance overhead) , statistics
showing execution count and timings can be seen as shown in figure A.16.

Figure A.16 Ruleset execution statistics in Rule Execution Server
console

Rule Execution Server 2
console

resAdmin Sign Out

Explorer Decision Warehouse Diagnostics Server Info REST API About | Print View | Help

Explorer >RuleApps > RuleApp > Ruleset > Statistics

| Hep 0
GReﬁesh erset
& @ RuleApps (2)
(@ Resources (1) [~ - o 4 a
4.4 /MiniloanRuleApp/1.0/MiniloanRules/1.1
@ Lbraries .
__j Dedision Services
Server Execution Unit Name Statistics
Metric Ruleset Execution Task Execution
Count 69660 Not Avaiable
Total Time (ms) 12234 Not Available
Average Time (ms) 0.176 Not Available
@ /127.0.0.1:52327 501ff93-b212-4f3b-a02-49717e6d6€97 Min. Time (ms) 0 Not Avaiable
Max. Time (ms) 353 Not Available
Last Execution Time (ms) 0 Not Available
First Execution Date Sep 24, 2014 8:40:56 AM GMT+01:00 Not Avaiable
Last Execution Date In Progress Not Available

© Copyright IBM Corporation 2014. 76

Patterns for Operational Decision Management in Streams

Annex B: Configuring MQ and JMS for streams event
handling on Linux

The use of the messaging toolkit within streams requires the installation and
configuration of at least an MQ client and will usually require at least access to an MQ
server in which the Queue Manager and Queues are running. This annex takes you
through the key installation and configuration steps needed to support the scenario
described in this article.

Installing MQ
The first step is to install MQ Server onto the Streams environment.

1.
2.

3.

6.

7.

Open a command shell as root

Obtain and install MQ 7.5.0.1 or later with filename: WS_MQ_LIN_ON_X86-
64 V7.5.0.1 EIM.tar.gz

Unzip into /opt/mqlnstall or similar directory
Move to the install directory:

cd /opt/mginstall

Accept the licence:

Jmqlicense.sh

Perform the install:

rpm —ivh MQSeries*.rpm

This should install MQ into /opt/mgm

Configuring MQ with a Queue Manager

Once the installation is complete you should configure the mg administrative user and
establish a queue manager.

1.
2.

3.

Open a command shell as root.

Before issueing any commands ensure the MQ environment is setup
. lopt/mgm/bin/setmgenv

Setup an mgadmin user:

/usr/sbin/useradd —g mgm —d /home/mgadmin mgadmin
Set their password:

passwd mgadmin (enter mgadmin password twice)
Change to the mgadmin user (enter password)

su mgadmin

Create a queue manager:

crtmgm —q IB9QMGR

Start the queue manager

strmgm IB9QMGR

Start the tcpip listener

runmglsr —t tcpp —p 1414 -m IBOQMGR &

Run the MQSC console to configure the queue manager
runmgqsc IBOQMGR

© Copyright IBM Corporation 2014. 77

10.

11.

12.
13.
14.
15.
16.

17.
18.
19.

20.
21.

Patterns for Operational Decision Management in Streams

Disable Channel Authorization

ALTER QMGR CHLAUTH(DISABLED)

Enable automatic channel creation to allow use from MQ Explorer
ALTER QMGR CHAD(ENABLED)

Open IBM WebSphere MQ Explorer

Select Queue Managers, right click and select Show/Hide Queue Managers
Click Add

Enter the Queue Manager name IBOQMGR

Enter the following details:

Host Name: eg localhost

Port: eg 1414

Server connection channel: SYSTEM.AUTO.SVRCONN

Click Finish

The queue manager should now be visible in the navigator.

Create the queue to be used by selecting the Queues folder and clicking
New-> Local Queue

In the name type the queue to be used: eg BOOKEVENT _IN

Accept defaults (or configure accordingly) and click Finish.

Configuring streams to recognize MQ

Once you have established your queue manager and queues, you need to need to ensure
that the streams environment is configured to recognize them. In a production
environment, the security would be configured by the WMQ administrator but in this
example we will override security for simplicity.

For our JMSSink operator, we need to generate a .bindings file for JNDI lookup using a
JMSAdmin.config file modified for our environment. The settings we use are:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL-=file:///opt/JNDI-Directory
SECURITY_AUTHENTICATION=none

The steps below should be followed to configure streams to recognize MQ.

1.
2.

Open a command shell as root.

Ensure that the STREAMS_MESSAGING_WMQ_HOME environment variable

is configured by including this export in the .bashrc file.

export STREAMS_MESSAGING_WMQ_HOME=/opt/mgm

Create a directory to hold the MQ JNDI configuration. This will be needed by the

streams JMS operators to find the JMS connections.

mkdir /opt/JINDI-Directory

Copy the file IMSAdmin.config from opt/mgm/java/bin into this directory — this

will hold details of queumanagers and should be edited to show:

INITIAL_CONTEXT_FACTORY=
com.sun.jndi.fscontext.RefFSContextFactory

PROVIDER_URL=file://lopt/INDI-Directory

SECURITY_AUTHENTICATION=noNne

© Copyright IBM Corporation 2014. 78

Patterns for Operational Decision Management in Streams

5. Issue the command:
/opt/IBM/magm/V7.5/java/bin/IJMSAdmin -v -cfg JMSAdmin.config

6. Inresponse to the prompts, define the QueueManager
DEF CF (ConnectionFactory) OMGR (IB9QMGR) TRANSPORT (CLIENT)
HOSTNAME (localhost) PORT (1414)

7. And define the queue:
DEF Q (BOOKEVENT IN) OMGR (IB9QMGR) QU (BOOKEVENT IN)

8. On completion exit the Initial context and check that a .bindings file has been
created in this directory.

The INITIAL_CONTEXT_FACTORY and PROVIDER_URL values in the
JMSAdmin.config file are the values you need to set the initial_context and provider_url
respectively in the connections.xml file for any JMSSinks. The provider URL directory
is the directory where the .bindings file is generated with the WMQ JMSAdmin
command.

© Copyright IBM Corporation 2014. 79

Patterns for Operational Decision Management in Streams

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-1IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM United Kingdom Laboratories,
Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England SO21 2JN

For license inquiries regarding double-byte character set (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in

© Copyright IBM Corporation 2014. 80

Patterns for Operational Decision Management in Streams

new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those websites. The materials
at those websites are not part of the materials for this IBM product and use of those
websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers
of those products.

© Copyright IBM Corporation 2014. 81

Patterns for Operational Decision Management in Streams

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. The sample programs are provided "AS IS", without
warranty of any kind. IBM shall not be liable for any damages arising out of your use of
the sample programs.

Each copy or any portion of these sample programs, or any derivative work, must include
a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

© Copyright IBM Corporation 2014. 82

Patterns for Operational Decision Management in Streams

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www . ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

© Copyright IBM Corporation 2014. 83

