
IBM XL Fortran Enterprise Edition V10.1 for AIX

Getting Started with XL Fortran

SC09-8009-00

���

IBM XL Fortran Enterprise Edition V10.1 for AIX

Getting Started with XL Fortran

SC09-8009-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

37.

First Edition (September 2005)

This edition applies to IBM® XL Fortran Enterprise Edition V10.1 for AIX® (Program 5724-M13) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure

to include your entire network address if you wish a reply.

v Internet: compinfo@ca.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

How to use this document v

How this document is organized v

Conventions and terminology used in this document vi

Typographical conventions vi

How to read syntax diagrams vi

Examples viii

Related information viii

IBM XL Fortran publications viii

Additional documentation ix

Technical support ix

How to send your comments x

Chapter 1. Overview of XL Fortran

features 1

Commonality with other XL compilers 1

Documentation, online help, and technical support . 1

Hardware and operating system support 1

Highly configurable compiler 2

Language standards compliance 3

Source-code migration and conformance checking 3

Program optimization 3

64-bit object capability 4

Shared memory parallelization 5

OpenMP directives 5

Diagnostic listings 5

Symbolic debugger support 6

Chapter 2. What’s new for V10.1 7

Performance and optimization 7

Architecture and processor-specific code tuning . . 7

High performance libraries 7

VMX support 8

Other performance-related compiler options and

directives 8

Intrinsic procedures new for this release 11

Support for language enhancements and APIs . . . 12

XL Fortran language enhancements 12

OpenMP API V2.5 support for C, C++, and

Fortran 13

Ease of use 13

Newly-supported filename extensions 13

Support for IBM Tivoli License Manager 13

New compiler options 14

New command line options 14

New directives 15

If you have just upgraded to XL Fortran Version

10.1 15

Things to note in XL Fortran Version 10.1 . . . 15

Avoiding or fixing upgrade problems 16

Chapter 3. Setting up and customizing

XL Fortran 21

Environment variables and XL Fortran 21

Setting the compiler working environment . . . 21

Setting the default runtime options 21

Customizing the configuration file 22

Determining what level of XL Fortran is installed . . 22

Chapter 4. Editing, compiling, and

linking programs with XL Fortran . . . 23

The compiler phases 23

Editing Fortran source files 23

Compiling with XL Fortran 24

Compiling Fortran 77 programs 24

Compiling Fortran 95 or Fortran 90 programs . . 25

Compiling parallelized XL Fortran applications 25

XL Fortran input files 26

XL Fortran output files 27

Specifying compiler options 28

Linking XL Fortran programs 28

Compiling and linking in separate steps 29

Linking new objects with existing ones 29

Relinking an existing executable file 29

Dynamic and static linking 29

Chapter 5. Running XL Fortran

programs 31

Canceling execution 31

Setting runtime options 31

Chapter 6. XL Fortran compiler

diagnostic aids 33

Compilation return codes 33

XL Fortran compiler listings 33

Debugging compiled applications 34

Chapter 7. XL Fortran runtime

environment information 35

External names in the runtime environment . . . 35

External names in the XL Fortran shared libraries . 36

Notices 37

Programming interface information 38

Trademarks and service marks 39

Index 41

© Copyright IBM Corp. 1990, 2005 iii

iv Getting Started

About this document

Getting Started with XL Fortran provides a general overview of the XL Fortran

compiler, its more significant features, and how those features can help you

improve your software development productivity.

For the benefit of current XL Fortran users upgrading to this release, Getting Started

with XL Fortran also includes a summary of features that are new or improved for

V10.1.

Getting Started with XL Fortran is intended only to help familiarize you with the

compiler. For detailed information on using the XL Fortran compiler, you will want

to refer to other books in the XL Fortran Enterprise Edition V10.1 for AIX library of

books, described in “IBM XL Fortran publications” on page viii.

Who should read this document

Getting Started with XL Fortran is intended for anyone who plans to work with

IBM® XL Fortran Enterprise Edition V10.1 for AIX, who is familiar with the AIX

operating system, and who has some previous Fortran programming experience.

How to use this document

If you are new to XL Fortran , you should view Chapter 1, “Overview of XL

Fortran features,” on page 1 to familiarize yourself with the key features of XL

Fortran and how to begin using it to develop your applications.

If you are already an experienced XL Fortran user and are now upgrading to the

latest release of XL Fortran , you may want to go directly to Chapter 2, “What’s

new for V10.1,” on page 7 to review that latest changes and feature enhancements

to the compiler.

The remaining sections of this guide provide a brief overview of basic program

development tasks with XL Fortran.

How this document is organized

This guide includes these topics:

v Chapter 1, “Overview of XL Fortran features,” on page 1 outlines the the key

features of the XL Fortran compiler

v Chapter 2, “What’s new for V10.1,” on page 7 describes new and updated

features offered by the latest version of XL Fortran.

v Chapter 3, “Setting up and customizing XL Fortran,” on page 21 provides brief

overview information on the steps involved in setting up and customizing XL

Fortran, together with pointers on where you can find more detailed

information.

v Chapter 4, “Editing, compiling, and linking programs with XL Fortran,” on page

23 discusses the basic steps involved in creating and compiling your applications

with XL Fortran.

v Chapter 5, “Running XL Fortran programs,” on page 31 describes how to run

your compiled applications, including setting of run time options.

© Copyright IBM Corp. 1990, 2005 v

v Chapter 6, “XL Fortran compiler diagnostic aids,” on page 33 offers guidance on

how to use XL Fortran compiler diagnostic aids to identify and correct

compilation problems with your applications.

Conventions and terminology used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable

names, and compiler

options.

By default, if you use the -qsmp compiler

option in conjunction with one of these

invocation commands, the option

-qdirective=IBM*:SMP$:$OMP:IBMP:IBMT

will be on.

italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

The maximum length of the trigger_constant

in fixed source form is 4 for directives that

are continued on one or more lines.

UPPERCASE Fortran programming

keywords, statements,

directives, and intrinsic

procedures.

The ASSERT directive applies only to the

DO loop immediately following the

directive, and not to any nested DO loops.

monospace Programming keywords and

library functions, compiler

built-in functions, file and

directory names, examples

of program code, command

strings, or user-defined

names.

If you call omp_destroy_lock with an

uninitialized lock variable, the result of the

call is undefined.

How to read syntax diagrams

Throughout this document, diagrams illustrate XL Fortran syntax. This section will

help you to interpret and use those diagrams.

If a variable or user-specified name ends in _list, you can provide a list of these

terms separated by commas.

You must enter punctuation marks, parentheses, arithmetic operators, and other

special characters as part of the syntax.

v Read syntax diagrams from left to right and from top to bottom, following the

path of the line:

– The ��─── symbol indicates the beginning of a statement.

– The ───� symbol indicates that the statement syntax continues on the next

line.

– The �─── symbol indicates that a statement continues from the previous line.

– The ───�� symbol indicates the end of a statement.

– Program units, procedures, constructs, interface blocks and derived-type

definitions consist of several individual statements. For such items, a box

vi Getting Started

encloses the syntax representation, and individual syntax diagrams show the

required order for the equivalent Fortran statements.

– IBM and Fortran 95 extensions are marked by a number in the syntax

diagram with an explanatory note immediately following the diagram.
v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([

and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path:

�� keyword required_argument

required_argument
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path:

�� keyword

optional_argument

optional_argument

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can repeat an item, and the separator character if it is other than a

blank:

��

�

 ,

keyword

repeatable_argument

��

A repeat arrow above a stack indicates that you can make more than one choice

from the items in the stack.

About this document vii

��

�

 ,

keyword

required_argument

required_argument

��

The following is an example of a syntax diagram with an interpretation:

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.

v Enter the value of at least one name for name_list. If you enter more than one

value, you must put a comma between each. (The _list syntax is equivalent to

the previous syntax for e.)

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

IBM XL Fortran publications

XL Fortran provides product documentation in the following formats:

v Readme files

Readme files contain late-breaking information, including changes and

corrections to the product documentation. Readme files are located by default in

the /usr/lpp/xlf/ directory and in the root directory of the installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the IBM XL Fortran Enterprise Edition V10.1 for AIX

Installation Guide.

v Information center

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

 ,

e

name_list

��

Notes:

1 IBM extension

viii Getting Started

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

information center are provided in the IBM XL Fortran Enterprise Edition V10.1

for AIX Installation Guide. The information center is also viewable on the Web at:

publib.boulder.ibm.com/infocenter/comphelp/index.jsp
v PDF documents

PDF documents are located by default in the /usr/lpp/xlf/doc/language/pdf

directory, and are also available on the Web at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library
In addition to this document, the following files comprise the full set of XL

Fortran product manuals:

 Table 2. XL Fortran PDF files

Document title

PDF file

name Description

IBM XL Fortran Enterprise

Edition V10.1 for AIX

Installation Guide,

GC09-8008-00

install.pdf Contains information for installing XL Fortran

and configuring your environment for basic

compilation and program execution.

IBM XL Fortran Enterprise

Edition V10.1 for AIX

Compiler Reference,

GC09-8007-00

cr.pdf Contains information about the various

compiler options and environment variables.

IBM XL Fortran Enterprise

Edition V10.1 for AIX

Language Reference,

GC09-8006-00

lr.pdf Contains information about the Fortran

programming language as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards,

compiler directives and intrinsic procedures.

IBM XL Fortran Enterprise

Edition V10.1 for AIX

Optimization and

Programming Guide,

GC09-8010-00

opg.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls, floating-point

operations, input/output, application

optimization and parallelization, and the XL

Fortran high-performance libraries.

These PDF files are viewable and printable from Adobe Reader. If you do not

have the Adobe Reader installed, you can download it from:

www.adobe.com

Additional documentation

More documentation related to XL Fortran, including redbooks, whitepapers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/fortran/xlfortran/library

Technical support

Additional technical support is available from the XL Fortran Support page. This

page provides a portal with search capabilities to a large selection of technical

support FAQs and other support documents. You can find the XL Fortran Support

page on the Web at:

About this document ix

http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

http://www.ibm.com/software/awdtools/fortran/xlfortran/support

If you cannot find what you need, you can e-mail:

compinfo@ca.ibm.com

 For the latest information about XL Fortran, visit the product information site at:

http://www.ibm.com/software/awdtools/fortran/xlfortran

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

Fortran documentation, send your comments by e-mail to:

compinfo@ca.ibm.com

 Be sure to include the name of the document, the part number of the document,

the version of XL Fortran, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

x Getting Started

http://www.ibm.com/software/awdtools/fortran/xlfortran/support
http://www.ibm.com/software/awdtools/fortran/xlfortran

Chapter 1. Overview of XL Fortran features

XL Fortran Enterprise Edition V10.1 for AIX can be used for large, complex,

computationally intensive programs, including interlanguage calls with C and C++

programs. This section discusses the features of the XL Fortran compiler at a high

level. It is intended for people who are evaluating XL Fortran and for new users

who want to find out more about the product.

Commonality with other XL compilers

XL Fortran, together with XL C and XL C/C++, comprise the family of XL

compilers.

The XL compilers are part of a larger family of IBM C, C++, and Fortran compilers

that are derived from a common code base that shares compiler function and

optimization technologies among a variety of platforms and programming

languages, such as AIX, Linux distributions, OS/390, OS/400, z/OS, and z/VM

operating systems. The common code base, along with compliance to international

programming language standards, helps ensure consistent compiler performance

and ease of program portability across multiple operating systems and hardware

platforms.

The XL compilers are available for use on AIX and select Linux distributions.

Documentation, online help, and technical support

This guide provides an overview of XL Fortran and its features. You can also find

more extensive product documentation in the following formats:
v Readme files.

v Installable man pages.

v A searchable, HTML-based help system.

v Portable Document Format (PDF) documents.

v Online technical support over the Web.

For more information about product documentation and technical support

provided with XL Fortran, see:
v “IBM XL Fortran publications” on page viii

v “Additional documentation” on page ix

v “Technical support” on page ix

Hardware and operating system support

XL Fortran Enterprise Edition V10.1 for AIX supports AIX 5L for POWER V5.1,

V5.2, and V5.3. See the README file and Installing XL Fortran Enterprise Edition

in the XL Fortran Enterprise Edition V10.1 for AIX Installation Guide for a complete

list of requirements.

The compiler, its libraries, and its generated object programs will run on all

RS/6000® or pSeries® systems with the required software and disk space.

© Copyright IBM Corp. 1990, 2005 1

All supported processors other than POWER and POWER2 are considered part of

the PowerPC family. Any reference to PowerPC includes all chips except POWER

and POWER2

To take maximum advantage of different hardware configurations, the compiler

provides a number of options for performance tuning based on the configuration

of the machine used for executing an application.

Highly configurable compiler

XL Fortran offers you a wealth of features to let you tailor the compiler to your

own unique compilation requirements.

Compiler invocation commands

XL Fortran provides several different commands that you can use to

invoke the compiler, for example, xlf, xlf95, and xlf90. Each invocation

command is unique in that it instructs the compiler to tailor compilation

output to meet a specific language level specification. Compiler invocation

commands are provided to support all standardized Fortran language

levels, and many popular language extensions as well.

 The compiler also provides corresponding ″_r″ versions of most invocation

commands, for example, xlf_r and xlf_r7. These ″_r″ invocations instruct

the compiler to link and bind object files to thread-safe components and

libraries, and produce threadsafe object code for compiler-created data and

procedures.

 For more information about XL Fortran compiler invocation commands,

see “Compiling with XL Fortran” on page 24 in this book or Compiling XL

Fortran programs in the XL Fortran Enterprise Edition V10.1 for AIX Compiler

Reference.

Compiler options

You can control the actions of the compiler through a large set of provided

compiler options. Different categories of options help you to debug your

applications, optimize and tune application performance, select language

levels and extensions for compatibility with programs from other

platforms, and do many other common tasks that would otherwise require

changing the source code.

 XL Fortran lets you specify compiler options through a combination of

environment variables, compiler configuration files, command line options,

and compiler directive statements embedded in your Fortran program

source.

 For more information about XL Fortran compiler options, see

Compiler-options reference in the XL Fortran Enterprise Edition V10.1 for

AIX Compiler Reference.

Custom compiler configuration files

The installation process creates a default plain text compiler configuration

file at /etc/xlf.cfg. This configuration file contains several stanzas that

define compiler option default settings.

 Your compilation needs may frequently call for specifying compiler option

settings other than the defaults settings provided by XL Fortran. If so, you

can create your own custom configuration files containing your own

frequently-used compiler option settings, and call those configuration files

when you compile your applications.

2 Getting Started

See Customizing the configuration file in the XL Fortran Enterprise Edition

V10.1 for AIX Compiler Reference for more information on creating and

using custom configuration files.

Language standards compliance

The compiler supports the following programming language specifications for

Fortran:

v ISO/IEC 1539-1:1991(E) and ANSI X3.198-1992 (referred to as Fortran 90 or

F90)

v ISO/IEC 1539-1:1997 (referred to as Fortran 95 or F95)

v Extensions to the Fortran 95 standard:

– Industry extensions that are found in Fortran products from various

compiler vendors

– Extensions specified in SAA Fortran
v Partial support of the Fortran 2003 standard

In addition to the standardized language levels, XL Fortran also supports language

extensions, including:
v OpenMP extensions to support parallelized programming.

v Language extensions to support VMX vector programming.

See Language standards in the XL Fortran Enterprise Edition V10.1 for AIX Language

Reference for more information about Fortran language specifications and

extensions.

Source-code migration and conformance checking

XL Fortran helps protect your investment in your existing Fortran source code by

providing compiler invocation commands that instruct the compiler to inspect your

application for conformance to to a specific language level and warn you if it finds

constructs and keywords that do not conform to the specified language level. You

can also use the -qlanglvl compiler option to specify a given language level, and

the compiler will issue warnings if language elements in your program source do

not conform to that language level. Additionally, you can name your source files

with common filename extensions such as .f77, .f90, or .f95, then use the generic

compiler invocations such as xlf or xlf_r to automatically select the appropriate

language-level appropriate to the filename extension.

To protect your investments in FORTRAN 77 object code, you can link Fortran 90

and Fortran 95 programs with existing FORTRAN 77 object modules and libraries.

See -qlanglvl in the XL Fortran Enterprise Edition V10.1 for AIX Compiler Reference

for more information.

Program optimization

XL Fortran provides several compiler options that can help you control the

optimization of your programs. With these options, you can:

v Select different levels of compiler optimizations.

v Control optimizations for loops, floating point, and other types of operations.

v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Chapter 1. Overview of XL Fortran features 3

Optimizing transformations can give your application better overall performance at

run time. Fortran provides a portfolio of optimizing transformations tailored to

various supported hardware. These transformations can:

v Reduce the number of instructions executed for critical operations.

v Restructure generated object code to make optimal use of the PowerPC

architecture.

v Improve the usage of the memory subsystem.

v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Significant performance improvements are possible with relatively little

development effort because the compiler is capable of sophisticated program

analysis and transformation. Moreover, XL Fortran enables programming models,

such as OpenMP, which allow you to write high-performance code.

If possible, you should test and debug your code without optimization before

attempting to optimize it.

For more information about optimization techniques, see Optimizing XL compiler

applications in the XL Fortran Enterprise Edition V10.1 for AIX Optimization and

Programming Guide.

For a summary of optimization-related compiler options, see Options for

performance optimization in the XL Fortran Enterprise Edition V10.1 for AIX

Compiler Reference.

64-bit object capability

The XL Fortran compiler’s 64-bit object capability addresses increasing demand for

larger storage requirements and greater processing power. The AIX operating

system provides an environment that allows you to develop and execute programs

that exploit 64-bit processors through the use of 64-bit address spaces.

To support larger executables that can be fit within a 64-bit address space, a

separate, 64-bit object form is used to meet the requirements of 64-bit executables.

The binder binds 64-bit objects to create 64-bit executables. Note that objects that

are bound together must all be of the same object format. The following scenarios

are not permitted and will fail to load, or execute, or both:

v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library

v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library

v A 64-bit executable that explicitly attempts to load a 32-bit module

v A 32-bit executable that explicitly attempts to load a 64-bit module

v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they

currently do on a 32-bit platform.

XL Fortran supports 64-bit mode mainly through the use of the -q64 and -qarch

compiler options. This combination determines the bit mode and instruction set for

the target architecture.

For more information, see Using XL Fortran in a 64-Bit Environment in the XL

Fortran Enterprise Edition V10.1 for AIX Compiler Reference.

4 Getting Started

Shared memory parallelization

XL Fortran Enterprise Edition V10.1 for AIX supports application development for

multiprocessor system architectures. You can use any of the following methods to

develop your parallelized applications with XL Fortran:
v Directive-based shared memory parallelization (OpenMP, SMP)

v Instructing the compiler to automatically generate shared memory

parallelization

v Message passing based shared or distributed memory parallelization (MPI)

v POSIX threads (Pthreads) parallelization

v Low-level UNIX parallelization using fork() and exec()

The parallel programming facilities of the AIX operating system are based on the

concept of threads. Parallel programming exploits the advantages of multiprocessor

systems, while maintaining a full binary compatibility with existing uniprocessor

systems. This means that a multithreaded program that works on a uniprocessor

system can take advantage of a multiprocessor system without recompiling.

For more information, see Parallel programming with XL Fortran in the XL Fortran

Enterprise Edition V10.1 for AIX Optimization and Programming Guide.

OpenMP directives

 OpenMP directives are a set of API-based commands supported by XL Fortran and

many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a

particular loop. The existence of the directives in the source removes the need for

the compiler to perform any parallel analysis on the parallel code. OpenMP

directives requires the presence of Pthread libraries to provide the necessary

infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its

own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel

region of code should be distributed across the SMP processors.

3. Directives are available to control synchronization between the processors.

XL Fortran supports the OpenMP API Version 2.5 specification. For more

information, see www.openmp.org.

Diagnostic listings

The compiler output listing has optional sections that you can include or omit. For

information about the applicable compiler options and the listing itself, refer to

“XL Fortran compiler listings” on page 33.

The -S option gives you a true assembler source file.

Chapter 1. Overview of XL Fortran features 5

http://www.openmp.org

Symbolic debugger support

You can use dbx or any other symbolic debugger that supports the AIX XCOFF

executable format when debugging your programs.

6 Getting Started

Chapter 2. What’s new for V10.1

The new features and enhancements in XL Fortran Enterprise Edition V10.1 for

AIX fall into four categories:

v “Performance and optimization”

v “Support for language enhancements and APIs” on page 12

v “Ease of use” on page 13

v “New compiler options” on page 14

Performance and optimization

Many new features and enhancements fall into the category of optimization and

performance tuning.

Architecture and processor-specific code tuning

The -qarch compiler option controls the particular instructions that are generated

for the specified machine architecture. The -qtune compiler option adjusts the

instructions, scheduling, and other optimizations to enhance performance on the

specified hardware. These options work together to generate application code that

gives the best performance for the specified architecture.

XL Fortran V10.1 augments the list of suboptions available to the -qarch compiler

option to support newly-available POWER5+ processors and processors that

support the VMX instruction set. The following new -qarch options are available:
v -qarch=pwr5x

v -qarch=ppc64v

High performance libraries

XL Fortran includes highly-tuned mathematical functions that can greatly improve

the performance of mathematically-intensive applications. These functions are

provided through the following high-performance libraries:

Mathematical Acceleration Subsystem (MASS)

MASS libraries provide high-performance scalar and vector functions to

perform common mathematical computations. The MASS libraries included

with XL Fortran Enterprise Edition V10.1 for AIX introduce new scalar and

vector functions, and new support for the POWER5 processor architecture.

 For more information about using the MASS libraries, see Using the

Mathematical Acceleration Subsystem in the XL Fortran Enterprise Edition

V10.1 for AIX Optimization and Programming Guide.

Basic Linear Algebra Subprograms (BLAS)

XL Fortran Enterprise Edition V10.1 for AIX introduces the BLAS set of

high-performance algebraic functions. You can use these functions to:

v Compute the matrix-vector product for a general matrix or its transpose.

v Perform combined matrix multiplication and addition for general

matrices or their transposes.

For more information about using the BLAS functions, see Using the Basic

Linear Algebra Subprograms in the XL Fortran Enterprise Edition V10.1 for

AIX Optimization and Programming Guide.

© Copyright IBM Corp. 1990, 2005 7

VMX support

XL Fortran now provides a VECTOR data type and vector multimedia extension

(VMX) intrinsic functions to support direct AltiVec programming.

Objects compiled with VECTOR data types and related operations can run on

systems with processor architectures and operating systems (AIX 5L Version 5.3

with the 5300-03 Recommended Maintenance package or higher) that support the

single instruction, multiple data (SIMD) instruction set. The SIMD instruction set

(also known as vector multimedia extension or VMX instructions) enables higher

utilization of microprocessor hardware and supports performing calculations in

parallel. The compiler provides the ability to automatically enable SIMD

vectorization at higher levels of optimization.

This release of XL Fortran introduces several new option and suboption

combinations to enable and exploit VMX instructions.

 Table 3. VMX-Related Compiler Options and Directives

Option/directive Description

-qenablevmx |

-qnoenablevmx

Setting -qenablevmx enables compiler generation of VMX

instructions. It also enables Fortran language support for the

VECTOR data type and the VMX intrinsic functions.

Setting -qnoenablevmx disables compiler generation of VMX

instructions. This is the compiler default setting.

Note: You can set -qenablevmx (and other options described in this

section that cause the compiler to generate VMX instructions) if you

are compiling your application on a system that does not support

VMX instructions, but are targeting your compiled objects for later

use on a system that does support VMX instructions.

-qhot=simd |

-qhot=nosimd

When -qhot=simd is in effect, the compiler will try to improve

application performance by converting certain loop operations on

successive elements in an array into calls to the faster, more efficient

VMX instructions.. This option has effect only when the target

architecture supports VMX instructions and -qenablevmx is set.

When -qhot=nosimd is in effect, the compiler performs

optimizations on loops and arrays, but does not replace code with

calls to VMX instructions.

-qvecnvol |

-qnovecnvol

-qvecnvol instructs the compiler to generate objects that use both

volatile and non-volatile vector registers, providing potential

performance benefits on systems that support VMX instructions.

-qnovecnvol instructs the compiler to generate objects that use only

volatile vector registers. Volatile vector registers do not preserve their

values across function calls or context save/jump/switch system

library functions. Setting this option will make your vector

applications safe where there is risk of interaction with objects built

with AIX libraries prior to AIX 5.3 with 5300-03, but may also result

in reduced application performance. This is the compiler default

setting.

Other performance-related compiler options and directives

The entries in the following table describes new or changed compiler options and

directives not already mentioned in the sections above.

8 Getting Started

Information presented here is just a brief overview. For more information about

these compiler options, refer to Options for performance optimization in the XL

Fortran Enterprise Edition V10.1 for AIX Compiler Reference.

 Table 4. Other Performance-Related Compiler Options and Directives

Option/directive Description

-qhot -qhot adds the following new suboptions:

-qhot=level=0 The compiler performs a subset of high-order

transformations.

v -qhot=novector

v -qhot=nosimd

v -qhot=noarraypad
This setting is the default when -O3

optimization is in effect.

-qhot=level=1 The compiler performs the complete range of

high-order transformations.

v -qhot=vector

v -qhot=simd

v -qhot=arraypad
This setting is the default when -O4 or -O5

optimization is in effect.

-qhot=simd Described above in “VMX support” on page

8.

Chapter 2. What’s new for V10.1 9

Table 4. Other Performance-Related Compiler Options and Directives (continued)

Option/directive Description

-qipa -qipa adds the following new suboptions:

-qipa=clonearch=arch{,arch}

Specifies one or more processor architectures for

which multiple versions of the same instruction set are

produced.

 XL Fortran lets you specify multiple specific processor

architectures for which instruction sets will be

generated. At run time, the application will detect the

specific architecture of the operating environment and

select the instruction set specialized for that

architecture.

-qipa=cloneproc=name{,name}

Specifies the names of one or more functions to clone

for the processor architectures specified by the

clonearch suboption.

-qipa=malloc16

This new option has effect only at link time. It asserts

to the compiler that dynamic memory allocation

routines such as malloc, calloc, realloc, and new will

return addresses aligned on 16-byte boundaries, and

instructs the compiler to optimize generated code

according to that assertion. This option is set by

default when compiling in 64-bit mode, but can be

overridden with -qipa=nomalloc16.

Notes:

1. You must specify -qipa=nomalloc16 only if you

can ensure that executables created with this

option will be run in an environment where

dynamic memory allocations can return addresses

aligned on 16-byte boundaries.

2. If you are using -qhot=simd, you should also

consider specifying -qipa=malloc16 to expose

additional VMX optimization opportunities.

-O Specifying the -O3 compiler option now instructs the compiler to

also assume the -qhot=level=0 compiler option setting.

Specifying the -O4 or -O5 compiler option now instructs the

compiler to also assume the -qhot=level=1 compiler option setting.

10 Getting Started

Table 4. Other Performance-Related Compiler Options and Directives (continued)

Option/directive Description

-qsmallstack The -qsmallstack compiler option adds the following new

suboptions to control dynamic length variable allocation

transformations:

-qsmallstack=dynlenonheap

When this suboption is specified, certain automatically-sized

objects are allocated from the heap. This suboption affects

automatic objects that have nonconstant character lengths or

a nonconstant array bound (DYNamic LENgth ON HEAP).

Specifying this suboption turns on both dynlenonheap and

general smallstack transformations.

-qsmallstack=nodynlenonheap

This is the default. If this suboption is not specified, those

objects are allocated on the stack. This suboption affects

automatic objects that have nonconstant character lengths or

a nonconstant array bound (DYNamic LENgth ON HEAP).

-qstacktemp The -qstacktemp compiler option is new, and gives you the ability to

control where certain compiler temporaries are stored. Available

suboptions are:

-qstacktemp=0

This is the default. Certain compiler temporaries are

allocated to the heap instead of the stack at compiler’s

discretion, depending on the size of the compiler

temporaries and the target operating system environment.

-qstacktemp= -1

Certain compiler temporaries are always allocated on the

stack, providing best performance but also using the most

amount of stack space.

-qstacktemp=num_bytes

Certain compiler temporaries less than num_bytes in size are

allocated to the stack. Compiler temporaries greater than or

equal to num_bytes are allocated to the heap.
Programs that use large arrays may to use this option if they are

running out of stack space at run time. SMP or OpenMP applications

that are constrained by stack space may also find this option useful

to move some compiler temporaries onto the heap from the stack.

Intrinsic procedures new for this release

The following table lists intrinsic procedures that are new for this release. For more

information on intrinsic procedures provided by XL Fortran, see Intrinsic

procedures in the XL Fortran Enterprise Edition V10.1 for AIX Language Reference.

 Table 5. Intrinsic procedures for XL Fortran

Function Description

FRIM(val); Takes an input val of REAL *8 format, rounds val down to the next

lower integral value, and returns the result in REAL *8 format. Valid

only for POWER5+ processors.

FRIMS(val); Takes an input val in REAL *4 format, rounds val down to the next

lower integral value, and returns the result in REAL *4 format. Valid

only for POWER5+ processors.

Chapter 2. What’s new for V10.1 11

Table 5. Intrinsic procedures for XL Fortran (continued)

Function Description

FRIN(val); Takes an input val in REAL *8 format, rounds val to the nearest

integral value, and returns the result in REAL *8 format. Valid only

for POWER5+ processors.

FRINS(val); Takes an input val in REAL *4 format, rounds val to the nearest

integral value, and returns the result in REAL *4 format. Valid only

for POWER5+ processors.

FRIP(val); Takes an input val in REAL *8 format, rounds val up to the next

higher integral value, and returns the result in REAL *8 format. Valid

only for POWER5+ processors.

FRIPS(val); Takes an input val in REAL *4 format, rounds val up to the next

higher integral value, and returns the result in REAL *4 format. Valid

only for POWER5+ processors.

FRIZ(val); Takes an input val in REAL *8 format, rounds val to the next integral

value closest to zero, and returns the result in REAL *8 format. Valid

only for POWER5+ processors.

FRIZS(val); Takes an input val in REAL *4 format, rounds val to the next integral

value closest to zero, and returns the result in REAL *4 format. Valid

only for POWER5+ processors.

Support for language enhancements and APIs

API and language enhancements can offer you additional ease of use and

flexibility when developing your applications, as well as making it easier for you

to develop code that more fully exploits the capabilities of your hardware

platform.

XL Fortran language enhancements

XL Fortran V10.1 implements new features compliant to the Fortran 2003 standard.

These features, supported when -qlanglvl=2003std or -qlanglvl=2003pure is in

effect, include:

ENUM statement

You can specify an ENUM statement to define and group a set of named

integer constants called enumerators. The storage size of the enumerators

can be set by the new -qenum compiler option.

READ statement - new BLANK and PAD specifiers

The BLANK specifier controls the default interpretation of blanks when

you are using a format specification. The setting of the PAD specifier

determines if input records are padded with blanks.

WRITE statement - new DELIM specifier

The DELIM specifier specifies what delimiter, if any, is used to delimit

character constants written with list-directed or namelist formatting.

Relaxed rules for specification expression

XL Fortran now allows recursive functions to be specification functions.

Procedure pointers

This release adds support for procedure pointers. A procedure pointer is a

PROCEDURE entity that has the EXTERNAL and POINTER attribute. It

may be a pointer associated with an external procedure, a module

procedure, an intrinsic procedure, or a dummy procedure that is not a

procedure pointer.

12 Getting Started

See IBM XL Fortran Enterprise Edition V10.1 for AIX Language Reference for more

information.

OpenMP API V2.5 support for C, C++, and Fortran

XL Fortran now supports the OpenMP API V2.5 standard. This latest level of the

OpenMP specification combines the previous C/C++ and Fortran OpenMP

specifications into one single specification for both C/C++ and Fortran, and

resolves previous inconsistencies between them.

The OpenMP Application Program Interface (API) is a portable, scalable

programming model that provides a standard interface for developing

user-directed shared-memory parallelization in C, C++, and Fortran applications.

The specification is defined by the OpenMP organization, a group of computer

hardware and software vendors, including IBM.

You can find more information about OpenMP specifications at:

www.openmp.org

Ease of use

XL Fortran includes the following new features to help you more easily use the

compiler for your application development.

Newly-supported filename extensions

XL Fortran Enterprise Edition V10.1 for AIX adds support for the .f77, .f90, and .f95

filename extensions.

You can use generic XL Fortran compiler invocations, such as xlf and xlf_r, to

compile program source files with these filename extensions. The compiler will

recognize the filename extensions and apply the appropriate language standard

defaults as if you were compiling using the f77, xlf90, or xlf95 compiler

invocations and their associated _r counterparts.

Support for IBM Tivoli License Manager

IBM Tivoli License Manager (ITLM) is a Web-based solution that can help you

manage software usage metering and license allocation services on supported

systems. In general, ITLM recognizes and monitors the products that are installed

and in use on your system.

IBM XL Fortran Enterprise Edition V10.1 for AIX is ITLM-enabled for inventory

support only, which means that ITLM is able to detect product installation of XL

Fortran, but not its usage.

Note: ITLM is not a part of the XL Fortran compiler offering, and must be

purchased and installed separately.

Once installed and activated, ITLM scans your system for product inventory

signatures that indicate whether a given product is installed on your system. ITLM

also identifies that product’s version, release, and modification levels. Signature

files for XL Fortran are installed to the following directory:

Default installations

/usr/lpp/xlf

Chapter 2. What’s new for V10.1 13

http://www.openmp.org

Non-default installations

compiler/usr/lpp/xlf where compiler is the target directory for

installation specified by the -b installation option.

For more information about IBM Tivoli License Manager Web, see:

www.ibm.com/software/tivoli/products/license-mgr

New compiler options

Compiler options can be specified on the command line or through directives

embedded in your application source files. The following table describes new

compiler options or suboptions not already described elsewhere in this section.

New command line options

The following table summarizes command line options new to XL Fortran. You can

find detailed syntax and usage information for all compiler options in Compiler

options reference in the XL Fortran Enterprise Edition V10.1 for AIX Compiler

Reference.

 Option Description and remarks

-qenum The -qenum compiler option specifies the amount of storage

used by enumerators defined with the ENUM statement.

-qlanglvl This release adds the 2003std and 2003pure suboptions to the

-qlanglvl compiler option.

2003std Accepts the language that the ISO

Fortran 95 standard specifies, as well as

all Fortran 2003 features supported by

XL Fortran, and reports anything else

as an error.

2003pure The same as 2003std except that it also

reports errors for any obsolescent

Fortran 2003 features used.

-qlibansi This option is now recognized by the entire compiler, and not

just by the IPA optimizer. It instructs the compiler to assume

that all functions with the name of an ANSI C defined library

function are in fact the library functions.

-qlinedebug This new compiler option enables minimal generation (line

number and source file name) of information for use by a

debugger. This compiler option can be specified on the

command line or in your program source code as a

@PROCESS statement.

-qlist The -qlist compiler option adds new offset and nooffset

suboptions. Specifying -qlist=offset instructs the compiler to

show object listing offsets from the start of a function rather

than from the start of code generation.

-qport This release adds clogicals and noclogicals as new suboptions

to the -qport compiler option. Specifying -qport=clogicals

together with -qintlog instructs the compiler to treat all

non-zero integers used in logical expressions as TRUE. This

option is useful when porting applications from other Fortran

compilers that expect this behavior.

14 Getting Started

http://www.ibm.com/software/tivoli/products/license-mgr

New directives

The following table summarizes directive options new to XL Fortran. You can find

detailed syntax and usage information in Directives in the XL Fortran Enterprise

Edition V10.1 for AIX Language Reference.

 Directive Description and remarks

NOSIMD The NOSIMD directive prohibits the compiler from

automatically generating vector multimedia extension (VMX)

instructions in the loop immediately following the directive, or in

the FORALL construct.

NOVECTOR The NOVECTOR directive prohibits the compiler from

auto-vectorizing the loop immediately following the directive, or

in the FORALL construct. Auto-vectorization refers to converting

certain operations performed in a loop and on successive array

elements, into a call to a routine that computes several results

simultaneously.

If you have just upgraded to XL Fortran Version 10.1

Here is some advice to help make the transition from an earlier version of the XL

Fortran compiler as fast and simple as possible.

Things to note in XL Fortran Version 10.1

Because XL Fortran Version 10.1 is highly compatible with XL Fortran Versions 9

through 3 inclusive, most of the advice in this section applies to upgrades from

Version 2, or earlier levels of XL Fortran.

v The xlf90, xlf90_r, and xlf90_r7 commands provide Fortran 90 conformance, and

the xlf95, xlf95_r, and xlf95_r7 commands provide Fortran 95 conformance.

However, these commands may cause some problems with existing FORTRAN

77 programs. The xlf, xlf_r, xlf_r7, f77, and fort77 commands avoid some of

these problems by keeping the old behavior wherever possible.

v Fortran 90 introduced the idea of kind parameters for types. Except for the types

complex and character, XL Fortran uses numeric kind parameters that

correspond to the lengths of the types. For the type complex, the kind parameter

is equal to the length of the real portion, which is half of the overall length. For

the type character, the kind parameter is equal to the number of bytes that are

required to represent each character, and this value is 1. A FORTRAN 77

declaration that is written using the * extension for length specifiers can now be

rewritten with a kind parameter:

 INTEGER*4 X ! F77 notation with extension.

 INTEGER(4) X ! F90 standard notation.

 COMPLEX*8 Y ! *n becomes (n) for all types except

 COMPLEX(4) Y ! COMPLEX, where the value is halved.

This new form is the one we use consistently throughout the XL Fortran

manuals.

Because the values of kind parameters may be different for different compilers,

you may want to use named constants, placed in an include file or a module, to

represent the kind parameters used in your programs. The

SELECTED_INT_KIND and SELECTED_REAL_KIND intrinsic functions also

let you determine kind values in a portable way.

v Fortran 90 introduced a standardized free source form for source code, which is

different from the XL Fortran Version 2 free source form. The -qfree and -k

Chapter 2. What’s new for V10.1 15

options now use the Fortran 90 free source form; the Version 2 free source form

is available through the option -qfree=ibm.

v The libxlf90.a library located in /usr/lib provides Fortran 90 and Fortran 95

support. A libxlf.a library of stub routines is provided in /usr/lib, but it is only

used for linking existing Version 1 or 2 object files or running existing

executables. When a Version 1 or Version 2 object file calls entry points in

libxlf.a, those entry points then call equivalent entry points in libxlf90.a. If you

recompile such object files, the result could be improved I/O performance,

because the entry points in libxlf90.a are called directly.

Avoiding or fixing upgrade problems

Although XL Fortran is generally backward-compatible with FORTRAN 77

programs, there are some changes in XL Fortran and the Fortran 90 and Fortran 95

languages that you should be aware of.

To preserve the behavior of existing compilation environments, the xlf, and f77

commands both work as they did in earlier XL Fortran versions wherever possible.

As you write entirely new Fortran 90 or Fortran 95 programs or adapt old

programs to avoid potential problems, you can begin using the xlf90 and xlf95

commands, which use Fortran 90 and Fortran 95 conventions for source-code

format.

Note that in the following table, you can substitute xlf_r or xlf_r7 for xlf, xlf90_r

or xlf90_r7 for xlf90, and xlf95_r or xlf95_r7 for xlf95.

 Table 6. Potential Problems Migrating Programs to XL Fortran V10. The column on the right

shows which problems you can avoid by using the xlf or f77 command.

Potential problem Solution or workaround xlf Avoids?

Compilation problems

New intrinsic procedure names may conflict

with external procedure names. The

intrinsic procedure is called instead of the

external procedure.

Use the -qextern option, or

insert EXTERNAL

statements to avoid the

ambiguity. Consider

switching to the Fortran 90

or Fortran 95 procedure if it

does what you want.

The .XOR. intrinsic is not recognized. Use the option

-qxlf77=intxor.

U

Zero-sized objects are not allowed by the

compiler.

Use the xlf90 or xlf95

command, or use the

-qzerosize option with the

xlf or f77 command.

Performance / optimization problems

Existing programs or programs linked with

older XL Fortran object files run more

slowly or do not show expected

performance improvements on new

hardware.

Recompile everything.

Programs compiled with -O3 or -qhot

optimization behave differently from those

unoptimized (different results, exceptions,

or compilation messages).

Try adding the -qstrict

option.

16 Getting Started

Table 6. Potential Problems Migrating Programs to XL Fortran V10 (continued). The column

on the right shows which problems you can avoid by using the xlf or f77 command.

Potential problem Solution or workaround xlf Avoids?

The option combination -O and -1 cannot

be abbreviated -O1, to avoid

misunderstandings. (There are -O2, -O3,

-O4, and -O5 optimization levels, but there

is no -O1.)

Specify -O and -1 as separate

options.

Programs that use integer POINTERs

produce incorrect results when optimized.

Specify the option

-qalias=intptr with the xlf90

or xlf95 command, or use the

xlf command.

U

Chapter 2. What’s new for V10.1 17

Table 6. Potential Problems Migrating Programs to XL Fortran V10 (continued). The column

on the right shows which problems you can avoid by using the xlf or f77 command.

Potential problem Solution or workaround xlf Avoids?

Runtime problems

Programs that read to the end of the file

and then try to append records without first

executing a BACKSPACE statement do not

work correctly. The write requests generate

error messages.

To compile existing

programs, specify the option

-qxlf77=softeof with the

xlf90 or xlf95 command, or

use the xlf command. For

new programs, add the

BACKSPACE statement

before writing past the

endfile record.

U

Uninitialized variables are not necessarily

set to zero, and programs that ran before

may exceed the user stack limit. The reason

is that the default storage class is now

AUTOMATIC, rather than STATIC (an

implementation choice allowed by the

language).

Ensure that you explicitly

initialize your variables, use

the -qsave option with the

xlf90 or xlf95 command, or

add SAVE statements where

needed in the source.

U

Writing data to some files opened without a

POSITION= specifier overwrites the files,

instead of appending the data.

Use the option

-qposition=appendold, or

add POSITION= specifiers

where needed.

U

Newly compiled programs are unable to

read existing data files containing

NAMELIST data. The reason is that the

Fortran 90 and Fortran 95 standards define

a namelist format that is different from that

used on AIX in the past.

Set the environment variable

XLFRTEOPTS to the string

namelist=old.

The programs that produced

the old NAMELIST data

must be recompiled.

Some I/O statements and edit descriptors

accept or produce slightly different input

and output. For example, real output now

has a leading zero when appropriate.

The changes to I/O formats are intended to

be more usable and typical of industry

practice, so you should try to use the

defaults for any new data you produce.

When you need to maintain

compatibility with existing

data files, compile with the

xlf command. If the

incompatibility is due to a

single specific I/O change,

see if the -qxlf77 option has

a suboption for backward

compatibility. If so, you can

switch to the xlf90 or xlf95

command and use the

-qxlf77 option on programs

that use the old data files.

U

Numeric results and I/O output are not

always exactly identical with XL Fortran

Version 2. Certain implementation details of

I/O, such as spacing in list-directed output

and the meanings of some IOSTAT values,

have changed since XL Fortran Version 2.

(This entry is similar to the previous one

except that these differences have no

backward-compatibility switches.)

You may need to generate

existing data files again or to

change any programs that

depend on these details.

When no

backward-compatibility

switch is provided by the

-qxlf77 compiler option or

XLFRTEOPTS runtime

options, there is no way to

get the old behavior back.

18 Getting Started

Table 6. Potential Problems Migrating Programs to XL Fortran V10 (continued). The column

on the right shows which problems you can avoid by using the xlf or f77 command.

Potential problem Solution or workaround xlf Avoids?

SIGN(A,B) now returns -|A| when B=-0.0.

Prior to XL Fortran Version 7.1, it returned

|A|.

This behavior conforms with

the Fortran 95 standard and

is consistent with the IEEE

standard for binary

floating-point arithmetic. It

occurs because the

-qxlf90=signedzero option is

turned on. Turn it off, or

specify a command that does

not use this option by

default.

U

A minus sign is printed for a negative zero

in formatted output. A minus sign is

printed for negative values that have an

outputted form of zero (that is, in the case

where trailing non-zero digits are truncated

from the output so that the resulting output

looks like zero). Prior to XL Fortran Version

7.1, minus signs were not printed in these

situations.

This behavior conforms with

the Fortran 95 standard and

occurs because the

-qxlf90=signedzero option is

turned on. Turn it off, or

specify a command that does

not use this option by

default.

U

Chapter 2. What’s new for V10.1 19

20 Getting Started

Chapter 3. Setting up and customizing XL Fortran

This section provides brief overview information about setting up and customizing

XL Fortran, together with pointers to other documentation that describes specific

set-up and customization topics in greater detail.

Environment variables and XL Fortran

XL Fortran uses a number of environment variables to control various aspects of

compiler operation. Environment variables fall into two basic categories:

v Environment variables defining the basic working environment for the compiler.

v Environment variables defining run time compiler option defaults.

Setting the compiler working environment

These environment variables define the basic working environment for the

compiler, including specifying your choice of national language or defining the

location of libraries or temporary files. For complete information, refer to Correct

settings for environment variables in the XL Fortran Enterprise Edition V10.1 for AIX

Compiler Reference.

LANG

Specifies the default national language locale used to display diagnostic

messages and compiler listings.

LIBPATH

Specifies the location of libraries used at run time.

MANPATH

Specifies the search path for system, compiler, and third-party man pages.

NLSPATH

Specifies one or more directory locations where message catalogs can be

found.

PDFDIR

Specifies the directory location where profile-directed feedback information

is stored when you compile with the -qpdf option.

TMPDIR

Specifies the directory location where the compiler will store temporary

files created during program compilation.

XLFSCRATCH_unit

Used to give a specific name to a scratch file.

XLFUNIT_unit

Used to give a specific name to an implicitly connected file or a file

opened with no FILE= specifier.

Setting the default runtime options

These environment variables define runtime compiler option defaults to be used by

the compiler, unless explicitly overridden by compiler option settings specified on

the command line or in directives located in your program source.

OBJECT_MODE

If set, this environment variable sets the default object mode to be either

© Copyright IBM Corp. 1990, 2005 21

32-bit or 64-bit, or both. See Default bit mode in the XL Fortran Enterprise

Edition V10.1 for AIX Compiler Reference for more information.

XLFRTEOPTS

The XLFRTEOPTS environment variable allows you to specify options that

affect I/O, EOF error-handling, and the specification of random-number

generators. See Setting run time options in the XL Fortran Enterprise

Edition V10.1 for AIX Compiler Reference for more information.

XLSMPOPTS

The XLSMPOPTS environment variable allows you to specify run time

options that affect SMP execution. See Setting OMP and SMP runtime

options in theXL Fortran Enterprise Edition V10.1 for AIX Optimization

and Programming Guide for more information.

OMP_DYNAMIC, OMP_NESTED, OMP_NUM_THREADS, OMP_SCHEDULE

 These environment variables, are part of the OpenMP standard. They let

you specify how the application will execute sections of parallel code. See

Setting OMP and SMP runtime options in theXL Fortran Enterprise Edition

V10.1 for AIX Optimization and Programming Guide for more information.

Customizing the configuration file

The configuration file is a plain text file that specifies default settings for compiler

options and invocations. XL Fortran provides a default configuration at file

/etc/xlf.cfg during compiler installation.

If you are running on a single-user system, or if you already have a compilation

environment with compilation scripts or makefiles, you may want to leave the

default configuration file as it is.

As an alternative, you can create additional custom configuration files to meet

special compilation requirements demanded by specific applications or groups of

applications.

See Customizing the configuration file in the XL Fortran Enterprise Edition V10.1 for

AIX Compiler Reference for more information on creating and using custom

configuration files.

Determining what level of XL Fortran is installed

You may not be sure which level of XL Fortran is installed on a particular machine.

You will need to know this information if contacting software support.

To display the version and PTF release level of the compiler you have installed on

your system, invoke the compiler with the -qversion compiler option. For example:
xlf -qversion

22 Getting Started

Chapter 4. Editing, compiling, and linking programs with XL

Fortran

Basic Fortran program development consists of repeating cycles of editing,

compiling and linking (by default a single step combined with compiling), and

running.

Prerequisite Information:

1. Before you can use the compiler, you must first ensure that all AIX settings (for

example, certain environment variables and storage limits) are correctly

configured. For more information see “Environment variables and XL Fortran”

on page 21.

2. To learn more about writing Fortran programs, refer to the XL Fortran Enterprise

Edition V10.1 for AIX Language Reference.

The compiler phases

The typical compiler invocation command executes some or all of the following

programs in sequence. For link time optimizations, some of the phases will be

executed more than once during a compilation. As each program runs, the results

are sent to the next step in the sequence.

1. A preprocessor

2. The compiler, which consists of the following phases:

a. Front-end parsing and semantic analysis

b. Loop transformations

c. Interprocedural analysis

d. Optimization

e. Register allocation

f. Final assembly
3. The assembler (for .s files and for .S files after they are preprocessed)

4. The linker ld

To see the compiler step through these phases, specify the -qphsinfo and -v

compiler options when you compile your application.

Editing Fortran source files

To create Fortran source programs, you can use any of the available text editors,

such as vi or emacs. Source programs must use a recognized filename suffix unless

the configuration file defines additional non-standard filename suffixes. See “XL

Fortran input files” on page 26 for a list of filename suffixes recognized by XL

Fortran.

For a Fortran source program to be a valid program, it must conform to the

language definitions specified in the XL Fortran Enterprise Edition V10.1 for AIX

Language Reference.

© Copyright IBM Corp. 1990, 2005 23

Compiling with XL Fortran

To compile a source program, use one of the compiler invocation commands with

the syntax shown below:

��

compiler_invocation

�

�

input_file

cmd_line_option

��

The compiler invocation command performs all necessary steps to compile Fortran

source files, assemble any .s and .S files, and link the object files and libraries into

an executable program.

When working with source files whose filename extensions indicates a specific

level of Fortran, such as .f95, .f90, or f77, compiling with the xlf or threadsafe

counterpart invocations will cause the compiler to automatically select the

appropriate language-level defaults. The other base compiler invocation commands

exist primarily to provide explicit compilation support for different levels and

extensions of the Fortran language.

In addition to the base compiler invocation commands, XL Fortran also provides

specialized variants of many base compiler invocations. A variation on a base

compiler invocation is named by attaching a suffix to the name of that invocation

command. Suffix meanings for invocation variants are:

_r Threadsafe invocation variant that supports POSIX Pthread APIs for

multithreaded applications, including applications compiled with -qsmp or

with source code containing IBM SMP or OpenMP program parallelization

directives.

_r7 Threadsafe invocation variant that supports Draft 7 POSIX Pthread APIs

for multithreaded applications, including applications compiled with

-qsmp or containing IBM SMP or OpenMP program parallelization

directives.

 Table 7. XL Fortran compiler invocation commands

Base

Invocation

Available Invocation

Variants

Description

xlf
f77
fort77

xlf_r, xlf_r7 Invokes the compiler so that source files are

compiled as FORTRAN 77 source code.

xlf95
f95

xlf95_r, xlf95_r7 Invokes the compiler so that source files are

compiled as Fortran 95 source code.

xlf90
f90

xlf90_r, xlf90_r7 Invokes the compiler so that source files are

compiled as Fortran 90 source code.

Compiling Fortran 77 programs

Where possible, using the xlf compiler invocation maintains compatibility with

existing programs by using the same I/O formats as FORTRAN 77 and some

implementation behaviors compatible with earlier versions of XL Fortran.

24 Getting Started

The f77 compiler invocation is identical to xlf, assuming that you have not

customized the configuration file.

Though you may need to continue using these invocations for compatibility with

existing makefiles and build environments, programs compiled with these

invocations may not conform to the Fortran 2003, Fortran 90, or Fortran 95

language level standards.

Compiling Fortran 95 or Fortran 90 programs

Use the following invocations (or their variants) to conform more closely to their

corresponding Fortran language standards:

f95, xlf95 Fortran 95

f90, xlf90 Fortran 90

These are the preferred compiler invocation commands that you should use when

creating and compiling new applications.

They all accept Fortran 90 free source form by default. To use fixed source form

with these invocations, you must specify the -qfixed command line option.

I/O formats are slightly different between these commands and the other

commands. I/O formats for the xlf95 invocation are also different from those of

xlf90. We recommend that you switch to the Fortran 95 formats for data files

whenever possible.

By default, those invocation commands do not conform completely to their

corresponding Fortran language standards. If you need full compliance, compile

with the following additional compiler option settings:

-qnodirective -qnoescape -qextname -qfloat=nomaf:rndsngl:nofold

 -qnoswapomp -qlanglvl=90std -qlanglvl=95std

Also, specify the following runtime options before running the program, with a

command similar to the following:

export XLFRTEOPTS="err_recovery=no:langlvl=90std"

The default settings are intended to provide the best combination of performance

and usability, so you should change them only when absolutely required. Some of

the options mentioned above are only required for compliance in very specific

situations. For example, you would need to specify -qextname when an external

symbol, such as a common block or subprogram, is named main.

Compiling parallelized XL Fortran applications

XL Fortran provides threadsafe compilation invocations that you can use when

compiling parallelized applications for use in multiprocessor environments.

v xlf_r, xlf_r7

v xlf95_r, xlf95_r7

v xlf90_r, xlf90_r7

These invocations are similar to their corresponding base compiler invocations,

except that they link and bind compiled objects to threadsafe components and

libraries.

Chapter 4. Editing, compiling, and linking programs with XL Fortran 25

Note: Using any of these commands alone does not imply parallelization. For the

compiler to recognize SMP or OpenMP directives and activate

parallelization, you must also specify -qsmp compiler option. In turn, you

can only specify the -qsmp option in conjunction with one of these six

invocation commands. When you specify -qsmp, the driver links in the

libraries specified on the smp libraries line in the active stanza of the

configuration file.

Levels of POSIX Pthreads API support

On AIX Version 5.1 and higher, XL Fortran supports 64-bit thread programming

with the 1003.1-1996 (POSIX) standard Pthreads API. It also supports 32-bit

programming with both the Draft 7 and the 1003.1-1996 standard APIs.

You can use invocation commands (which use corresponding stanzas in the xlf.cfg

configuration file) to compile and then link your programs with either the

1003.1-1996 standard or the Draft 7 interface libraries. For more information on

threadsafe _r and _r7 compiler invocation variants, refer to Compiling XL Fortran

programs in the XL Fortran Enterprise Edition V10.1 for AIX Compiler Reference.

XL Fortran input files

The input files to the compiler are:

Source files (.f .F ,f77 .F77 .f95 .f90 .F90 .F95 suffixes)

The compiler considers files with these suffixes as being Fortran source

files for compilation.

 The compiler compiles source files in the order you specify on the

command line. If it cannot find a specified source file, the compiler

produces an error message and proceeds to the next file, if one exists.

 Files with a suffix of .F, F77, F95, or F90 are passed through the C

preprocessor (cpp) before being compiled.

 Include files also contain source and often have suffixes different from

those ordinarily used for Fortran source files.

Object files (.o suffix)

After the compiler compiles the source files, it uses the ld command to link

the resulting .o files, any .o files that you specify as input files, and some

of the .o and .a files in the product and system library directories. The

compiler can then produce a single .o object file or a single executable

output file from these object files.

Assembler source files (.s and .S suffixes)

The compiler sends assembler source files to the assembler (as). The

assembler sends object files to the linker at link time.

Note: Assembler source files with a .S filename suffix are first

preprocessed by the compiler, then sent to the assembler.

Archive or library files (.a suffix)

The compiler sends any specified library files to the linker at link time.

There are also AIX and XL Fortran library files in the /usr/lib directory that

are linked automatically.

Shared object files (.so suffix)

These are object files that can be loaded and shared by multiple processes

at run time. When a shared object is specified during linking, information

26 Getting Started

about the object is recorded in the output file, but no code from the shared

object is actually included in the output file.

Configuration files (.cfg suffix)

The contents of the configuration file determine many aspects of the

compilation process, most commonly the default options for the compiler.

You can use it to centralize different sets of default compiler options or to

keep multiple levels of the XL Fortran compiler present on a system.

 The default configuration file is /etc/xlf.cfg.

Module symbol files: modulename.mod

A module symbol file is an output file from compiling a module and is an

input file for subsequent compilations of files that USE that module. One

.mod file is produced for each module, so compiling a single source file

may produce multiple .mod files.

Profile data files

 The -qpdf1 option produces run time profile information for use in

subsequent compilations. This information is stored in one or more hidden

files with names that match the pattern .*pdf*.

XL Fortran output files

The output files that Fortran produces are:

Executable files: a.out

By default, XL Fortran produces an executable file that is named a.out in

the current directory.

Object files: filename.o

If you specify the -c compiler option, instead of producing an executable

file, the compiler produces an object file for each specified program source

input file, and the assembler produces an object file for each specified

assembler input file. By default, the output object files are saved to the

current directory using the same file name prefixes as their corresponding

source input files.

Assembler source files: filename.s

If you specify the -S compiler option, instead of producing an executable

file, the XL Fortran compiler produces an equivalent assembler source file

for each specified input source file. By default, the output assembler source

files are saved to the current directory using the same file name prefixes as

their corresponding source input files.

Compiler listing files: filename.lst

By default, no listing is produced unless you specify one or more

listing-related compiler options. The listing file is placed in the current

directory, with the same file name prefix as the source file.

Module symbol files: modulename.mod

Each module has an associated symbol file that holds information needed

by program units, subprograms, and interface bodies that USE that

module. By default, these symbol files must exist in the current directory.

Compiling modules will also produce .o files that are needed when linking

if you use the module.

Chapter 4. Editing, compiling, and linking programs with XL Fortran 27

Preprocessed source files: Ffilename.f

If you specify the -d option when compiling a file with a .F suffix, the

intermediate file created by the C preprocessor (cpp) is saved rather than

deleted.

Profile data files (.*pdf*)

These are the profile-directed feedback files that the -qpdf1 compiler

option produces. They are used in subsequent compilations to tune

optimizations according to actual execution results.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command line with command line compiler options.

v In the stanzas found in a compiler configuration file

v In your source code using directive statements

v Or by using any combination of these techniques.

When multiple compiler options have been specified, it is possible for option

conflicts and incompatibilities to occur. To resolve these conflicts in a consistent

fashion, the compiler usually applies the following general priority sequence:
1. Directive statements in your source file override command line settings

2. Command line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a command

line when invoking the compiler, the last option specified prevails.

Note: The -I compiler option is a special case. The compiler searches any

directories specified with -I in the xlf.cfg file before it searches the

directories specified with -I on the command line. The option is cumulative

rather than preemptive.

You can also pass compiler options to the linker, assembler, and preprocessor. See

XL Fortran Compiler-option reference in the XL Fortran Enterprise Edition V10.1 for

AIX Compiler Reference for more information about compiler options and how to

specify them.

Linking XL Fortran programs

By default, you do not need to do anything special to link an XL Fortran program.

The compiler invocation commands automatically call the linker to produce an

executable output file. For example, running the following command:

xlf95 file1.f file2.o file3.f

compiles and produces the object files file1.o and file3.o, then all object files

(including file2.o) are submitted to the linker to produce one executable.

After linking, follow the instructions in Chapter 5, “Running XL Fortran

programs,” on page 31 to execute the program.

28 Getting Started

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

xlf95 -c file1.f # Produce one object file (file1.o)

xlf95 -c file2.f file3.f # Or multiple object files (file2.o, file3.o)

xlf95 file1.o file2.o file3.o # Link object files with appropriate libraries

It is often best to execute the linker through the compiler invocation command,

because it passes some extra ld options and library names to the linker

automatically.

Linking new objects with existing ones

If you have .o or other object files that you compiled with an earlier versions of XL

Fortran, you can link them with object files that you compile with the current level

of XL Fortran.

See the Compiler Reference for more information.

Relinking an existing executable file

The linker will accept executable files as input, so you can link an existing

executable file with updated object files. You cannot, however, relink executable

files that were previously linked using the -qipa option.

If you have a program consisting of several source files and only make localized

changes to some of the source files, you do not necessarily have to compile each

file again. Instead, you can include the executable file as the last input file when

compiling the changed files:

 xlf95 -omansion front_door.f entry_hall.f parlor.f sitting_room.f \

 master_bath.f kitchen.f dining_room.f pantry.f utility_room.f

 vi kitchen.f # Fix problem in OVEN subroutine

 xlf95 -o newmansion kitchen.f mansion

Limiting the number of files to compile and link the second time reduces the

compile time, disk activity, and memory use.

Note: If this type of linking is done incorrectly, it can result in interface errors and

other problems. Therefore, you should not try it unless you are experienced

with linking.

Dynamic and static linking

XL Fortran allows your programs to take advantage of the operating system

facilities for both dynamic and static linking:

v Dynamic linking means that the code for some external routines is located and

loaded when the program is first run. When you compile a program that uses

shared libraries, the shared libraries are dynamically linked to your program by

default.

Dynamically linked programs take up less disk space and less virtual memory if

more than one program uses the routines in the shared libraries. During linking,

they do not require any special precautions to avoid naming conflicts with

library routines. They may perform better than statically linked programs if

several programs use the same shared routines at the same time. They also allow

you to upgrade the routines in the shared libraries without relinking.

Chapter 4. Editing, compiling, and linking programs with XL Fortran 29

Because this form of linking is the default, you need no additional options to

turn it on.

v Static linking means that the code for all routines called by your program

becomes part of the executable file.

Statically linked programs can be moved to and run on systems without the XL

Fortran libraries. They may perform better than dynamically linked programs if

they make many calls to library routines or call many small routines. They do

require some precautions in choosing names for data objects and routines in the

program if you want to avoid naming conflicts with library routines. They also

may not work if you compile them on one level of the operating system and run

them on a different level of the operating system.

See Linking XL Fortran programs in the XL Fortran Enterprise Edition V10.1 for AIX

Compiler Reference for more information about linking your programs.

30 Getting Started

Chapter 5. Running XL Fortran programs

The default file name for the program executable file produced by the XL Fortran

compiler is a.out. You can select a different name with the -o compiler option.

You can run a program by entering the name of a program executable file together

with any runtime arguments on the command line.

You should avoid giving your program executable file the same name as system or

shell commands (such as test or cp), as you could accidentally execute the wrong

command. If you do decide to name your program executable file with the same

name as a system or shell command, you can execute the program by specifying a

path name to the directory in which your program executable file resides, such as

./test.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the

foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the

foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and

behaviors of applications created with the XL Fortran compiler. Other environment

variables do not control actual runtime behavior, but can impact on how your

applications run.

For more information on environment variables and how they can affect your

applications at runtime, see “Environment variables and XL Fortran” on page 21.

© Copyright IBM Corp. 1990, 2005 31

32 Getting Started

Chapter 6. XL Fortran compiler diagnostic aids

XL Fortran issues diagnostic messages when it encounters problems compiling

your application. You can use these messages to help identify and correct such

problems.

This section provides a brief overview of the main diagnostics messages offered by

XL Fortran. For more information about related compiler options that can help you

resolve problems with your application, see Options for error checking and

debugging and Options that control listings and messages in the XL Fortran

Enterprise Edition V10.1 for AIX Compiler Reference.

Note: You might encounter problems when moving from previous versions of XL

Fortran to XL Fortran V10. “Avoiding or fixing upgrade problems” on page

16 summarizes these potential problems.

Compilation return codes

At the end of compilation, the compiler sets the return code to zero under any of

the following conditions:

v No messages are issued.

v The highest severity level of all errors diagnosed is less than the setting of the

-qhalt compiler option.

Otherwise, the compiler sets the return code to one of the following values:

 Return Code Error Type

1

An error with a severity level higher than the setting of the -qhalt

compiler option has occurred.

40 An option error or unrecoverable error has occurred.

41 A configuration file error has occurred.

250

An out-of-memory has occurred. The compiler invocation command

cannot allocate any more memory for its use.

251

A signal-received error has occurred. That is, an unrecoverable error or

interrupt signal has occurred.

252 A file-not-found error has occurred.

253 An input/output error has occurred - files cannot be read or written to.

254 A fork error has occurred. A new process cannot be created.

255 An error has been detected while the process was running.

Note: Return codes may also be displayed for runtime errors.

XL Fortran compiler listings

Diagnostic information is produced in the output listing according to the settings

of the -qlist, -qsource, -qxref, -qattr, -qreport, and -qlistopt compiler options. The

-S option generates an assembler listing in a separate file.

© Copyright IBM Corp. 1990, 2005 33

If the compiler encounters a programming error when compiling an application,

the compiler issues a diagnostic message to the standard error device and, if the

appropriate compiler options have been selected, to a listing file.

To locate the cause of a problem with the help of a listing, you can refer to:

v The source section (to see any compilation errors in the context of the

source program)

v The attribute and cross-reference section (to find data objects that are

misnamed or used without being declared or to find mismatched

parameters)

v The transformation and object sections (to see if the generated code is

similar to what you expect)

A heading identifies each major section of the listing. A string of greater than

symbols precede the section heading so that you can easily locate its beginning:

>>>>> section name

You can select which sections appear in the listing by specifying the appropriate

compiler options. For more information about these options see Options for error

checking and debugging and Options that control listings and messages in the XL

Fortran Enterprise Edition V10.1 for AIX Compiler Reference.

Debugging compiled applications

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL

Fortran compiler to include debugging information in compiled output. You can

then use dbx or any other symbolic debugger that supports the AIX XCOFF

executable format to step through and inspect the behavior of your compiled

application.

34 Getting Started

Chapter 7. XL Fortran runtime environment information

Object code that the XL Fortran compiler produces often invokes compiler-supplied

subprograms at run time to handle certain complex tasks. These subprograms are

collected into several libraries.

The function of the XL Fortran Runtime Environment may be divided into these

main categories:

v Support for Fortran I/O operations

v Mathematical calculation

v Operating-system services

v Support for SMP parallelization

The XL Fortran Runtime Environment also produces runtime diagnostic messages

in the national language appropriate for your system.

Unless you bind statically, you cannot run object code produced by the XL Fortran

compiler without the XL Fortran Runtime Environment. However, static binding is

discouraged because it could cause problems when running applications on

operating systems that require newer XL Fortran libraries than the one that was

statically bound. The compiler defaults to dynamic binding, which is the most

flexible solution for running your applications on multiple operating system levels.

The XL Fortran Runtime Environment is upward-compatible. Programs that are

compiled and linked with a given level of the runtime environment and a given

level of the operating system require the same or higher levels of both the runtime

environment and the operating system to run.

External names in the runtime environment

Runtime subprograms are collected into libraries. By default, the compiler

invocation command also invokes the linker and gives it the names of the libraries

that contain runtime subprograms called by Fortran object code.

The names of these runtime subprograms are external symbols. When object code

that is produced by the XL Fortran compiler calls a runtime subprogram, the .o

object code file contains an external symbol reference to the name of the

subprogram. A library contains an external symbol definition for the subprogram.

The linker resolves the runtime subprogram call with the subprogram definition.

You should avoid using names in your XL Fortran program that conflict with

names of runtime subprograms. Conflict can arise under two conditions:

v The name of a subroutine, function, or common block that is defined in a

Fortran program has the same name as a library subprogram.

v The Fortran program calls a subroutine or function with the same name as

a library subprogram but does not supply a definition for the called

subroutine or function.

© Copyright IBM Corp. 1990, 2005 35

External names in the XL Fortran shared libraries

The runtime libraries included in the XL Fortran Runtime Environment are AIX

shared libraries, which are processed by the linker to resolve all references to

external names. To minimize naming conflicts between user-defined names and the

names that are defined in the runtime libraries, the names of input/output routines

in the runtime libraries are prefixed with an underscore(_), or _xl.

36 Getting Started

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504–1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2–31 Roppongi 3–chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1990, 2005 37

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Lab Director

IBM Canada Limited

8200 Warden Avenue

Markham, Ontario, Canada

L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to IBM’s application programming interfaces.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow the customer to write application

software that obtain the services of this program’s tools.

38 Getting Started

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification, and tuning information is provided to help

you debug your application software.

Note: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of

the International Business Machines Corporation in the United States or other

countries or both:

 AIX IBM OS/390

OS/400 POWER POWER2

POWER5 PowerPC RS/6000

z/OS z/VM

OpenMP is a trademark of the OpenMP Architecture Review Board.

UNIX is a registered trademark of the Open Group in the United States and other

countries.

Windows is a trademark of Microsoft Corporation in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 39

40 Getting Started

Index

Special characters
/etc/xlf.cfg configuration file 22

.a files 26

.cfg files 26

.f and .F files 26

.lst files 27

.mod files 26, 27

.o files 26, 27

.s files 26, 27

.S files 26

Numerics
64-bit environment 4

A
a.out file 27

ANSI
checking conformance to the Fortran

95 standard 3

checking conformance to theFortran

standard 3

archive files 26

assembler
source (.s) files 26, 27

source (.S) files 26

C
code optimization 3

command-line options
See compiler options

compiler listings 33

compiler options
See the individual options listed under

Special Characters at the start of the

index

compiling
description of how to compile a

program 24

SMP programs 25

configuration file 22, 26

conformance checking 3

customizing configuration file (including

default compiler options) 22

D
dbx debugger 6, 34

debugger support 6, 34

debugging 33, 34

defaults
customizing compiler defaults 22

documentation, online formats 1

dynamic linking 29

E
editing source files 23

environment variables
compile time 21

runtime 21

example programs
See sample programs

executable files 27

executing a program 31

executing the compiler 24

external names
in the runtime environment 35

F
f77 command

description 24

level of Fortran standard

compliance 15, 25

files
editing source 23

input 26

output 27

FIPS FORTRAN standard, checking

conformance to 3

fort77 command
description 24

level of Fortran standard

compliance 15

Fortran 90
compiling programs written for 25

H
help system 1

HTML documentation 1

I
I/O

See input/output

input files 26

invoking a program 31

invoking the compiler 24

ISO
checking conformance to the Fortran

2003 standard 3

checking conformance to the Fortran

90 standard 3

checking conformance to the Fortran

95 standard 3

checking conformance to the Fortran

standard 3

K
kind type parameters 15

L
language support 3

level of XL Fortran, determining 22

libraries 26

shared 36

libxlf.a library 16

libxlf90.a and libxlf.a libraries 15

libxlf90.a library 16

linking 28

dynamic 29

static 29

listing files 27

M
makefiles

configuration file as alternative for

default options 22

migrating
from previous versions of XL

Fortran 15

mod files 26, 27

multiprocessor systems 5

O
object files 26, 27

online compiler help 1

online documentation 1

OpenMP 5

optimization 3

output files 27

P
parallelization 5

parameters
See arguments

PDF documentation 1

POSIX Pthreads
API support 26

problem determination 33

profiling data files 27

R
running a program 31

running the compiler 24

runtime
libraries 26

runtime environment
external names in 35

runtime options 31

S
SAA FORTRAN definition, checking

conformance to 3

© Copyright IBM Corp. 1990, 2005 41

setrteopts service and utility

procedure 22

shared libraries 36

shared memory parallelization 5

shared object files 26

SMP
programs, compiling 25

SMP programs 5

source files 26

source-code conformance checking 3

source-level debugging support 6

static linking 29

symbolic debugger support 6

T
text editors 23

U
upgrading to the latest version of XL

Fortran 15

X
xlf command

description 24

level of Fortran standard

compliance 15, 25

xlf_r command
description 24

for compiling SMP programs 25

level of Fortran standard

compliance 15, 25

xlf_r7 command
description 24

for compiling SMP programs 25

level of Fortran standard

compliance 15, 25

xlf90 command
description 24

level of Fortran standard

compliance 15, 25

xlf90_r command
description 24

for compiling SMP programs 25

level of Fortran standard

compliance 15, 25

xlf90_r7 command
description 24

for compiling SMP programs 25

level of Fortran standard

compliance 15, 25

xlf95 command
description 24

level of Fortran standard

compliance 15

xlf95_r command
description 24

for compiling SMP programs 25

level of Fortran standard

compliance 15, 25

xlf95_r7 command
description 24

for compiling SMP programs 25

xlf95_r7 command (continued)
level of Fortran standard

compliance 15, 25

XLFRTEOPTS environment variable 22

42 Getting Started

����

Program Number: 5724-M13

SC09-8009-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions and terminology used in this document
	Typographical conventions
	How to read syntax diagrams
	Examples

	Related information
	IBM XL Fortran publications
	Additional documentation

	Technical support
	How to send your comments

	Chapter 1. Overview of XL Fortran features
	Commonality with other XL compilers
	Documentation, online help, and technical support
	Hardware and operating system support
	Highly configurable compiler
	Language standards compliance
	Source-code migration and conformance checking

	Program optimization
	64-bit object capability
	Shared memory parallelization
	OpenMP directives

	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for V10.1
	Performance and optimization
	Architecture and processor-specific code tuning
	High performance libraries
	VMX support
	Other performance-related compiler options and directives
	Intrinsic procedures new for this release

	Support for language enhancements and APIs
	XL Fortran language enhancements
	OpenMP API V2.5 support for C, C++, and Fortran

	Ease of use
	Newly-supported filename extensions
	Support for IBM Tivoli License Manager

	New compiler options
	New command line options
	New directives

	If you have just upgraded to XL Fortran Version 10.1
	Things to note in XL Fortran Version 10.1
	Avoiding or fixing upgrade problems

	Chapter 3. Setting up and customizing XL Fortran
	Environment variables and XL Fortran
	Setting the compiler working environment
	Setting the default runtime options

	Customizing the configuration file
	Determining what level of XL Fortran is installed

	Chapter 4. Editing, compiling, and linking programs with XL Fortran
	The compiler phases
	Editing Fortran source files
	Compiling with XL Fortran
	Compiling Fortran 77 programs
	Compiling Fortran 95 or Fortran 90 programs
	Compiling parallelized XL Fortran applications
	Levels of POSIX Pthreads API support

	XL Fortran input files
	XL Fortran output files
	Specifying compiler options
	Linking XL Fortran programs
	Compiling and linking in separate steps
	Linking new objects with existing ones
	Relinking an existing executable file
	Dynamic and static linking

	Chapter 5. Running XL Fortran programs
	Canceling execution
	Setting runtime options

	Chapter 6. XL Fortran compiler diagnostic aids
	Compilation return codes
	XL Fortran compiler listings
	Debugging compiled applications

	Chapter 7. XL Fortran runtime environment information
	External names in the runtime environment
	External names in the XL Fortran shared libraries

	Notices
	Programming interface information
	Trademarks and service marks

	Index

