
IBM Case Manager
Version 5.3.3

Development Guide

SC19-3682-09

IBM

IBM Case Manager
Version 5.3.3

Development Guide

SC19-3682-09

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 173.

This edition applies to Version 5 Release 3 Modification 3 of IBM Case Manager (product number 5725-A15) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2010, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Developing case management
applications 1

Developing case management
applications with the JavaScript API . . 3
IBM Case Manager JavaScript packages 3

IBM Case Manager JavaScript icm.model package 3
IBM Case Manager JavaScript icm.action package 7

Action contexts 11
IBM Case Manager JavaScript icm.base package 12
IBM Case Manager JavaScript icm.dialog
package 12
IBM Case Manager JavaScript icm.pgwidget
package 13
IBM Case Manager JavaScript icm.util package 14
IBM Case Manager JavaScript icm.widget.menu
package 14

Developing case management
applications with the Java API 15
Configuring your environment to use the Java API 16
Configuring your environment to use the Content
Engine Java API 16
Java API Components 16

Case class 17
CaseMgmtObjectStore class 17
CaseType class 17
DeployedSolution class 18

Example: IBM Case Manager Java API Context . . 18

Developing case management
applications with the REST protocols . 21
Creating and managing case objects by using the
IBM Case Manager REST protocol 21

Case management REST resource URIs 21
Symbolic names 22
Error responses 23
Common JSON payload for cases and case types 23
Getting information about deployed solutions . . 31

List of document classes resource 31
GET method for the list of document
classes resource 31

List of solutions resource 33
GET method for the list of solutions
resource 33

Particular solution resource 35
GET method for the particular solution
resource 35

Getting information about deployed case types 37
List of case types resource 38

GET method for the list of case types
resource 38

List of view definitions resource 40

GET method for the list of view definitions
resource 40

List of discretionary task types resource . . . 42
GET method for the list of discretionary
task types resource 42

Particular case type resource. 44
GET method for the particular case type
resource 44
POST method for the particular case type
resource 47

Case page resource 51
GET method for the case page resource . . 51

Getting and changing case information 52
Cases resource 53

POST method for the cases resource . . . 54
Particular case instance resource 56

GET method for the particular case
instance resource 57
POST method for the particular case
instance resource 60
PUT method for the particular case
instance resource 64

Status of particular case resource 67
GET method for the status of particular
case resource 67

Related cases for a particular case resource . . 68
GET method for the related cases for a
particular case resource 69

List of task instances resource 71
GET method for the list of task instances
resource 71

Create new task resource 74
GET method for the create new task
resource 74
POST method for the create new task
resource 77

Particular task instance resource 80
PUT method for the particular task instance
resource 80

Case comments resource 82
GET method for the case comments resource 83
POST method for the case comments
resource 85

Case history resource 87
GET method for the case history resource . 87

Managing workflows, roles, and in-baskets by using
the Process Engine REST Service 93

© Copyright IBM Corp. 2010, 2018 iii

Managing case folders and documents
by using IBM CMIS for FileNet Content
Manager 97

Configuring a solution to create a case
when a document is added to the
object store 99

Getting case data from an external
data source 101
Implementing an external data service by using the
REST protocol 102

Particular object type resource 102
POST method for the particular object type
resource 103
Request modes 106
Client context for work items 107
Response to a request for case data 108
Error responses for an external data service 113

Authentication for external data services . . . 113
Persistence of case data 114
Example data flow for case creation 114

Retrieval of initial information for a new case 115
Update of a property that has dependencies 120
Creation of the new case 123

Content Platform Engine add-on
extensions for IBM Case Manager . . 127
IBM Case Manager design object store extensions 127
IBM Case Manager target object store extensions 130
IBM Case Manager history and analytics extensions 135
IBM Case Manager subscriptions and events . . . 136

Using external properties 139
Defining external properties at run time 139
Defining external properties by using the Script
Adapter widget 140

Retrieving and persisting external properties . . . 143

Creating custom property editors and
controllers 145

Creating custom inline messages and
prompts. 147

Creating custom page widgets and
actions 149
Defining registry files for custom actions,
properties, page widgets, and events 151

Defining the widget package catalog file . . . 152
Defining a page widget definition file 156
Defining an action definition file 158
Defining a property for a page widget or an
action 160
Defining a property type 161
Defining a widget event 163

Tips for sizing IBM Case Manager
widgets 167

Widget toolbar 169
Adding an event action to a widget toolbar or
menu 169
Adding a script action to a widget toolbar or menu 170

Notices 173
Trademarks 175
Terms and conditions for product documentation 175
IBM Online Privacy Statement. 176

Index 177

iv Development Guide

Developing case management applications

IBM® Case Manager and the IBM FileNet® P8 software provide tools for building
custom web applications to manage cases. You can use various extension points
and application programming interfaces (APIs) to extend Case Manager Client by
adding custom pages, widgets, actions, events, or services. Alternatively, you can
use the APIs to build custom applications that incorporate IBM Case Manager
features without using Case Manager Client.

You can use Case Manager Builder to create a solution by using one of the
industry-solution templates provided by IBM or by using a blank template. You
can then modify that solution to meet your requirements.

Restriction: You cannot use a custom application to create a solution. You must
use Case Manager Builder to create or modify solutions.

You might create an application that implements a custom widget that interacts
directly with the Case Manager Client widgets. For example, if a Work Item
Toolbar widget does not provide the functionality you need, you can implement a
custom widget to replace that widget. You can then wire the custom widget with
the other Case Manager Client widgets on the Work Details page and the Add
Task page.

Alternatively, you might create an application that enables case workers to process
cases without using Case Manager Client. For example, you might create such an
application to use your existing user interface for processing cases with IBM Case
Manager.

You can use the following APIs to extend your case management client application:

IBM Case Manager JavaScript API
Use this API to customize your Case Manager Client application.

IBM Case Manager Java™ API
Use this API to create servlets for custom web applications and to develop
custom component queue applications.

Content Platform Engine add-on extensions for Case Manager Builder
Use these add-on extensions to access the custom metadata and data that is
stored in object stores.

IBM CMIS for FileNet Content Manager
Use the IBM Content Management Interoperability Services (CMIS) for
FileNet Content Manager to enable applications and clients that use the
OASIS CMIS standard to access content that is stored on Content Platform
Engine. In a case management application, you use CMIS to manage the
case folders and documents and to retrieve case information.

© Copyright IBM Corp. 2010, 2018 1

2 Development Guide

Developing case management applications with the
JavaScript API

IBM Case Manager provides a JavaScript application programming interface (API)
that you can use to customize your case management client application. For
example, you can use this API to create cases, gather information about solutions,
and start manual tasks.

The IBM Case Manager JavaScript API provides classes that represent case
management objects such as solutions, case types, cases, and tasks. It also provides
classes that represent components of the client user interface such as page widgets,
dialog boxes, toolbars, and pop-up menus.

The IBM Case Manager JavaScript API uses the Dojo toolkit, which is an open
source JavaScript library for web development.

In addition to the IBM Case Manager JavaScript API, you use the IBM Content
Navigator JavaScript API to customize your client application. The IBM Content
Navigator JavaScript API includes more modeling classes and widget classes that
you can use in your application.

“IBM Case Manager JavaScript packages”
Related information:

IBM Content Navigator JavaScript API Reference

IBM Case Manager JavaScript packages
The classes in the IBM Case Manager JavaScript API are divided into packages
based on functionality.

“IBM Case Manager JavaScript icm.model package”
“IBM Case Manager JavaScript icm.action package” on page 7
“IBM Case Manager JavaScript icm.base package” on page 12
“IBM Case Manager JavaScript icm.dialog package” on page 12
“IBM Case Manager JavaScript icm.pgwidget package” on page 13
“IBM Case Manager JavaScript icm.util package” on page 14
“IBM Case Manager JavaScript icm.widget.menu package” on page 14

IBM Case Manager JavaScript icm.model package
The classes in the icm.model package contain the classes that represent the objects
in the case management domain. These case management objects, which include
solutions, cases, work items, and tasks, map to Content Platform Engine objects on
the server.

Case Manager Client is a plug-in to IBM Content Navigator. The IBM Content
Navigator model provides the capabilities for searching and retrieving Content
Platform Engine objects on the server. However, this model lacks the semantics for
the case management context. Therefore, the IBM Case Manager model provides
the mechanism for adding the context that is needed for users to search and
retrieve case management objects.

© Copyright IBM Corp. 2010, 2018 3

http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/index.html

The IBM Case Manager model classes are derived from the base classes in the IBM
Content Navigator JavaScript model. In addition, some IBM Case Manager model
classes use the functionality of IBM Content Navigator classes. For example, an
WorkItem object is obtained by using an ecm.model.WorkItem object.

Each IBM Case Manager model class defines methods for creating, reading,
updating, and deleting the case management object that it represents.

Important: Although you can use the model API to create the artifacts in a
solution, you cannot use the API to create a solution. Instead, you must use Case
Manager Builder to create the solution.

A model class also defines methods that enable the object to reference related case
management objects. For example, the Case.retrieveTasks() method is used to
fetch Task objects that are related to a case. In many situations, a widget uses the
model objects received in an event payload to navigate the model API and retrieve
needed information. This ability simplifies the data that a widget must pass in
events because a widget can pass a model object instead of passing all the
information for that object. For example, an event to open a work item can pass a
WorkItem object or a WorkItemEditable object in the payload. If this work item
event is received by a milestones widget, that widget can call the appropriate
model API method to retrieve the milestones. The originating widget does not
need to collect and pass the milestone information.

For certain objects, the model defines two related classes. The persistent class
represents the object as it is saved in the object store. The other class represents an
editable version of the object. This editable class, sometimes called a scratchpad,
represents the object as it is being edited.

The widgets on a page share an editable object to enable the widgets to coordinate
changes to the object. Events notify the widgets to any changes in the editable
object. For example, the caseEditable.onRefresh() event is called when
v The CaseEditable object is saved.
v A CaseEditable object that was obtained from the same Case object is saved.

For editable properties, the onChange() methods, such as onChoiceListChanged and
onValueChanged, notify the widgets when updates are made to the editable object.
The changes that are made to the editable object are saved to the corresponding
persistent object only when the user saves the page.

The editable object is shared only by widgets that are on the same page. If multiple
pages related to the same object are open, each page has its own editable object.
However, the model is defined so that when a user saves changes to the editable
object on one page, the editable objects on the other pages are refreshed. The
widgets on these pages are notified of changes by listening for the event that is
triggered by the onRefresh() method on the editable object.

4 Development Guide

Table 1. Classes in the icm.model package

Persistent class Editable class Description

Case CaseEditable Represents a case.

To obtain a CaseEditable object to
create a case, call the
createNewCaseEditable method on the
Solution object.

To obtain a CaseEditable object to edit
an existing case, call the
createEditable method on the Case
object.

The propertiesCollection attribute of
the CaseEditable class provides a
collection of PropertyEditable objects.
Each PropertyEditable object
represents a property value for a case.

CaseComment Represents a comment that is entered
for a case.

CaseRelationship Represents the relationship between
two cases.

CaseType Represents a case type.

DocumentType Represents a document class.

HistoryEvent Represents the record of an event in a
case history.

InbasketDynamicFilter Represents a dynamic filter type.

InbasketFilter Represents a inbasket filter type.

None PropertyEditable Represents a property of a case or a
parameter of a launch step or work
item.

ResultSet Represents a set of search results or
other items that are returned by a
query to the content server.

Solution Represents a solution.

Developing case management applications with the JavaScript API 5

Table 1. Classes in the icm.model package (continued)

Persistent class Editable class Description

Task TaskEditable

LaunchStep

Represents a task.

TaskEditable objects are primarily
used to represent new discretionary
tasks. To obtain a TaskEditable object
for a discretionary task, call the
createNewTaskEditable method on the
Case object.

To obtain a TaskEditable object to edit
an existing task, call the
createEditable method on the Task
object.

For discretionary tasks, the model
includes the LaunchStep class that
represents the launch step of a
workflow. The propertiesCollection
attribute of this class provides a
collection of PropertyEditable objects.
Each PropertyEditable object
represents a parameter for the launch
step.

TaskType Represents a task type in a deployed
case management solution.

Timeline Represents a timeline object.

TimelineEvent Represents a timeline event of a given
case.

TimelineOverview Represents a timeline overview of a
given case.

TimelineTask Represents a timeline task of a given
case.

TimelineWorkitem Represents a timeline work item of a
given task.

WorkItem WorkItemEditable Represents a work item.

To obtain a WorkItemEditable object,
call the createEditable method on the
WorkItem object.

The propertiesCollection attribute of
this class provides a collection of
PropertyEditable objects. Each
PropertyEditable object represents a
parameter for the work item.

The following classes are included in the icm.model.properties.controller
package:

icm.model.properties.controller.ControllerManager
Represents a manager that is used to retrieve the property controllers for
editable objects.

6 Development Guide

icm.model.properties.controller.PropertyCollectionController
Represents a collection of property controllers that are bound to the
properties of an editable object.

icm.model.properties.controller.types._PropertyController
Provides the base controller class for a property.

icm.model.properties.controller.types.AttachmentPropertyController
Represents the controller for a property of type attachment.

icm.model.properties.controller.types.BooleanPropertyController
Represents the controller for a property of type boolean.

icm.model.properties.controller.types.DatetimePropertyController
Represents the controller for a property of type datetime.

icm.model.properties.controller.types.FloatPropertyController
Represents the controller for property of type float.

icm.model.properties.controller.types.GroupPropertyController
Represents the controller for a property of type group.

icm.model.properties.controller.types.IntegerPropertyController
Represents the controller for property of type integer.

icm.model.properties.controller.types.StringPropertyController
Represents the controller for a property of type string.

IBM Case Manager JavaScript icm.action package
The classes in the icm.action package represent that actions that users can perform
on case management objects. You can add these actions to the toolbars or pop-up
menus for a widget.

A IBM Case Manager action works for a specific type of object such as a case or a
work item. The object is indicated by the subpackage within the icm.action
package. One exception is the icm.action.util package, which contains actions
that are not performed for specific case management objects.

An action also requires a specific context within which the action works. The
context identifies the objects that the action requires. The context also determines
on which toolbars and menus the action is available. For example, the action that is
represented by the icm.action.case,AddCustomTask class requires either an
icm.model.Case object or an icm.model.WorkItem object. This action is available on
the toolbar for editing a case or opening a work item. The action is not available
on the toolbar for adding a case or work item.

In the following tables, the context for each action is shown in single or double
brackets:

Table 2. Context syntax

Syntax Description

[’Case’, ’WorkItem’] The action requires either a case object or a
work item object.

[[’NewCase’, ’Coordination’]] The action requires a new case object and a
coordination object.

[[’CasePage’, ’Coordination’],
[’NewCase’, ’Coordination’]]

The action requires either a case page object
and a coordination object or a new case
object and a coordination object.

Developing case management applications with the JavaScript API 7

icm.action.attachment package

The icm.action.attachment package defines a single class, Remove, for the
attachment context. A Remove object is used to remove a document from an
attachment.

icm.action.case package

The icm.action.case package defines actions that are performed for cases.

Table 3. Classes in the icm.action.case package

Class Context Description

AddCaseAndClosePage [[’NewCase’,
’Coordination’]]

Saves the case that is being added,
and then closes the current Add Case
page or Split Case page.

AddCustomTask [’Case’,
’WorkItem’]

Opens the Custom Task Editor
window so that the user can add a
custom task to a case.

AddCustomTaskFromExisting [’Case’,
’WorkItem’]

Opens a copy of the selected task in
the Custom Task Editor window so
that the user can add a new custom
task to a case.

CloseCasePage [[’CasePage’,
’Coordination’],
[’NewCase’,
’Coordination’]]

Closes the current Add Case page,
Case Details page, or Split Case page
without saving any changes.

OpenAddPredefinedTaskPage [’Case’,
’WorkItem’]

Adds a discretionary task to the case.

OpenCasePage [’CaseReference’] Opens the selected case in the Case
Details page.

OpenSplitCasePage [[’Solution’,
’Case’]]

Opens the Split Case page so that the
user can reuse properties from an
existing case to create a new case.

SaveCaseOnPage [[’CasePage’,
’Coordination’],
[’NewCase’,
’Coordination’]]

Saves the case that is being edited or
added without closing the page.

SendLink [’Case’] Sends an email that contains the URL
to open the selected case in the Case
Details page.

ShowLink [’Case’] Displays the URL to open the selected
case in the Case Details page.

icm.action.comment package

The icm.action.comment package defines actions that are used to add comments to
cases, documents, tasks, and work items.

Table 4. Classes in the icm.action.comment package

Class Contenxt Description

AddCaseComment [’Case’] Opens the Comments window so that the
user can add a comment or view
comments for a case.

8 Development Guide

http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.attachment.Remove.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.AddCaseAndClosePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.AddCustomTask.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.AddCustomTaskFromExisting.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.CloseCasePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.OpenAddPredefinedTaskPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.OpenCasePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.OpenSplitCasePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.SaveCaseOnPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.SendLink.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.case.ShowLink.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.comment.AddCaseComment.html

Table 4. Classes in the icm.action.comment package (continued)

Class Contenxt Description

AddDocumentComment [[’Case’,
’Document’]]

Opens the Comments window so that the
user can add a comment or view
comments for a document.

AddTaskComment [’WorkItem’,
’Task’]

Opens the Comments window so that the
user can add a comment or view
comments for a task.

AddWorkItemComment [’WorkItem’] Opens the Comments window so that the
user can add a comment or view
comments for a work item.

icm.action.contentitem package

The icm.action.contentitem package defines actions that are performed for
documents and folders.

Table 5. Classes in the icm.action.contentitem package

Class Context Description

Cut [’Document’] Removes the selected document from
the case.

Open [’Folder’,
’Document’]

Opens the selected document or folder.

Paste [’CurrentFolder’] Pastes a document into the case.

icm.action.document package

The icm.action.document package defines actions that are performed for
documents.

Table 6. Classes in the icm.action.document package

Class Context Description

AddDocumentFromLocal [’CurrentFolder’] Adds a document to a case or a case
folder.

When Allow documents and
attachments from repositories other
than the case management object
stores is selected, documents can be
saved directly to a case without
selecting a repository or folder.

Open [’Document’] Opens the selected document.

Refresh [’Document’] Refreshes the document.

icm.action.folder package

The icm.action.folder package defines actions that are performed for folders.

Table 7. Classes in the icm.action.folder package

Class Context Description

AddFolder [’CurrentFolder’] Adds a folder to the case.

Developing case management applications with the JavaScript API 9

http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.comment.AddDocumentComment.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.comment.AddTaskComment.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.comment.AddWorkItemComment.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.contentitem.Cut.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.contentitem.Open.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.contentitem.Paste.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.document.AddDocumentFromLocal.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.document.Open.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.document.Refresh.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.folder.AddFolder.html

Table 7. Classes in the icm.action.folder package (continued)

Class Context Description

Open [’Folder’] Opens the selected folder and
displays its content.

icm.action.solution package

The icm.action.solution package defines actions that are performed for solutions.

Table 8. Classes in the icm.action.solution package

Class Context Description

EditProcessPreferences [’Solution’] Opens the Preference window so that the
user can edit notification preferences for
processes.

ManageRoles [’Solution’] Opens the Manage Roles window so that
the user can assign users to roles in a
solution.

OpenAddCasePage [’Solution’] Opens the Add Case page so that the user
can create a case of the selected case type.

icm.action.task package

The icm.action.task package defines actions that are performed for tasks.

Table 9. Classes in the icm.action.task package

Class Context Description

AddTaskAndClosePage [[’NewTask’,
’Coordination’]]

Starts the new task and closes the
current Add Task page.

CancelAddTaskPage [[’NewTask’,
’Coordination’]]

Cancels the addition of a new task
and closes the current Add Task
page.

icm.action.utility package

The icm.action.utility package defines actions that are not related to specific
case management objects.

Table 10. Classes in the icm.action.utility package

Class Context Description

EventAction None Creates a button or menu item that
publishes or broadcasts a custom event.

OpenWebPage None Opens the specified website in a separate
window.

ScriptAction None Creates a button or menu item that runs a
custom script.

icm.action.workitem package

The icm.action.workitem package defines actions that are performed for work
items.

10 Development Guide

http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.folder.Open.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.solution.EditProcessPreferences.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.solution.ManageRoles.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.solution.OpenAddCasePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.task.AddTaskAndClosePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.task.CancelAddTaskPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.utility.EventAction.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.utility.OpenWebPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.utility.ScriptAction.html

Table 11. Classes in the icm.action.workitem package

Class Context Description

CloseWorkItemPage [[’WorkItemPage’,
’Coordination’]]

Closes the current Work
Details page without saving
any changes.

DispatchWorkItemAndClosePage [[’WorkItemPage’,
’Coordination’]]

Dispatches the current work
item. If the next work item is
not opened automatically, this
action also closes the current
Work Details page.

MoveToInbox [[’WorkItem’,
’Solution’]]

Moves the selected work item
to the user's personal in-basket.

OpenNextWorkItemInPage [[’WorkItemPage’,
’Coordination’]]

Opens the next available work
item in the same page when
the user dispatches the current
work item.

OpenWorkItemPage [’WorkItemReference’] Opens the selected work item
in the Work Details page.

Reassign [[’WorkItem’,
’Solution’, ’Role’]]

Reassigns the selected work
item to another user. If the
work item is open, this action
first closes the work item.

ReturnToSender [[’WorkItem’,
’Solution’]]

Returns a work item to the
in-basket it was most recently
in. If the work item is open,
this action first closes the work
item.

SaveWorkItemOnPage [[’WorkItemPage’,
’Coordination’]]

Saves the work item that the
user is editing without closing
the Work Details page.

“Action contexts”

Action contexts
The context for an action corresponds to one or more IBM Case Manager or IBM
Content Navigator model classes.

The following table identifies the class or classes that each context represents:

Table 12. Action context model classes

Context Class

Attachment ecm.model.ContentItem

Case icm.model.Case

icm.model.CaseEditable

CasePage icm.model.Case

icm.model.CaseEditable

CaseReference icm.model.Case

icm.model.CaseEditable

Coordination icm.util.Coordination

CurrentFolder ecm.model.ContentItem

Developing case management applications with the JavaScript API 11

http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.CloseWorkItemPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.DispatchWorkItemAndClosePage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.MoveToInbox.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.OpenNextWorkItemInPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.OpenWorkItemPage.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.Reassign.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.ReturnToSender.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.workitem.SaveWorkItemOnPage.html
http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/symbols/ecm.model.ContentItem.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.Case.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.CaseEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.Case.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.CaseEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.Case.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.CaseEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.util.Coordination.html
http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/symbols/ecm.model.ContentItem.html

Table 12. Action context model classes (continued)

Context Class

Document ecm.model.ContentItem

Folder ecm.model.ContentItem

NewCase icm.model.CaseEditable

icm.model.TaskEditable

Role ecm.model.ProcessRole

Solution icm.model.Solution

Task icm.model.Task

icm.model.TaskEditable

WorkItem icm.model.WorkItem

icm.model.WorkItemEditable

WorkItemPage icm.model.WorkItem

icm.model.WorkItemEditable

WorkItemReference icm.model.WorkItem

icm.model.WorkItemEditable

IBM Case Manager JavaScript icm.base package
The classes in the icm.base package that support the definition of custom events,
actions, page widgets, and constants.

Table 13. Classes in the icm.base package

Class Description

_EventStub Provides methods that can be used to
publish events for a custom page widget.

BaseActionContext Provides an interface for exchanging context
information between a page widget and an
action.

BasePageWidget Provides methods that can be used to return
the role context, solution context, and
attributes for a page widget. In addition, this
class provides methods that can be used to
publish events for a custom page widget.

Constants Provides a collection of constant variables
that are used in IBM Case Manager.

WidgetAttributes Represents the attribute values that are set
for a page widget.

IBM Case Manager JavaScript icm.dialog package
The icm.dialog package contains classes that represent the dialog box boxes that
are used in Case Manager Client.

12 Development Guide

http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/symbols/ecm.model.ContentItem.html
http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/symbols/ecm.model.ContentItem.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.CaseEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.TaskEditable.html
http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/symbols/ecm.model.ProcessRole.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.Solution.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.Task.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.TaskEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.WorkItem.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.WorkItemEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.WorkItem.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.WorkItemEditable.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.WorkItem.html
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.model.WorkItemEditable.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.base._EventStub.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.base.BaseActionContext.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.base.BasePageWidget.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.base.Constants.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.base.WidgetAttributes.html

Table 14. Classes in the icm.dialog package

Class Description

icm.dialog.addcommentdialog.
AddCommentDialog

icm.dialog.addcommentdialog.
djit.CommentContentPane

Represents the Add Comment dialog
box that case workers use to add and
view comments for cases,
documents, work items, or tasks.

The CommentContentPane class
represents the user interface panel
that is used by the Add Comment
dialog box.

icm.dialog.addtaskdialog.AddTaskDialog Represents the Add Task dialog box
that case workers use to add
discretionary tasks to a case.

icm.dialog.dynamictaskeditor.
DynamicTaskEditorDialog

Represents the Custom Task Editor
dialog box that case workers use to
add custom tasks to a case.

icm.dialog.reassigndialog.ReassignDialog Represents the Reassign Items dialog
box that case workers use to reassign
work items to other case workers.

icm.dialog.showlinkdialog.ShowLinkDialog Represents the Show Link dialog box
that case worker use to view, copy,
or email the URLs to cases.

IBM Case Manager JavaScript icm.pgwidget package
The icm.pgwidget package contains classes that represent the page widgets that are
provided byIBM Case Manager.

These classes define the methods that are used to handle the incoming events for
the IBM Case Manager widgets. In addition, some of the classes define extension
points that you can use to customize the behavior of the page widgets.

Table 15. Classes in the icm.pgwidget package by widget

Widget Class

Attachments icm.pgwidget.attachment.Attachment

Case Information icm.pgwidget.caseinfo.CaseInfo

icm.pgwidget.caseinfo.dijit.CaseInfoComponentContentPane

Case List icm.pgwidget.caselist.CaseList

icm.pgwidget.caselist.CaseListViewDetails

icm.pgwidget.caselist.CaseListViewMagazine

Case Toolbar icm.pgwidget.casetoolbar.CaseToolbar

Content List icm.pgwidget.contentlist.ContentList

Form icm.pgwidget.caseform.CaseForm

In-baskets icm.pgwidget.inbasket.Inbasket

Instruction icm.pgwidget.instruction.Instruction

Original Case
Properties

icm.pgwidget.originalcase.OriginalCase

Process History icm.pgwidget.processhistory.Processhistory

Developing case management applications with the JavaScript API 13

http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.addcommentdialog.AddCommentDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.addcommentdialog.AddCommentDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.addcommentdialog.dijit.CommentContentPane.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.addcommentdialog.dijit.CommentContentPane.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.addtaskdialog.AddTaskDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.dynamictaskeditor.DynamicTaskEditorDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.dynamictaskeditor.DynamicTaskEditorDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.reassigndialog.ReassignDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.dialog.showlinkdialog.ShowLinkDialog.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.attachment.Attachment.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caseinfo.CaseInfo.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caseinfo.dijit.CaseInfoComponentContentPane.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caselist.CaseList.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caselist.CaseListViewDetails.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caselist.CaseListViewMagazine.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.casetoolbar.CaseToolbar.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.contentlist.ContentList.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caseform.CaseForm.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.inbasket.Inbasket.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.instruction.Instruction.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.originalcase.OriginalCase.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.processhistory.Processhistory.html

Table 15. Classes in the icm.pgwidget package by widget (continued)

Widget Class

Properties icm.pgwidget.properties.Properties

Script Adapter icm.pgwidget.scriptadapter.ScriptAdapter

Search icm.pgwidget.casesearch.CaseSearch

Select Case
Documents

icm.pgwidget.caseselectdocument.CaseSelectDocument

Split Case Properties icm.pgwidget.splitcase.SplitCase

Timeline Visualizer icm.pgwidget.casevisualizer.CaseVisualizer

Toolbar icm.pgwidget.toolbar.Toolbar

Viewer icm.pgwidget.viewer.Viewer

Website Viewer icm.pgwidget.websitedisplayer.WebSiteDisplayer

Work Item Toolbar icm.pgwidget.workitemtoolbar.WorkitemToolbar

IBM Case Manager JavaScript icm.util package
The classes in the icm.util package provide support for multiple widgets.

Table 16. Classes in the icm.util package

Class Description

Coordination Represents an object that is used to
coordinate the communication among
widgets that are on a page.

SearchPayload Represents the payload of the event that
contains criteria for a case search. This event
is published by the Search widget and
handled by the Case List widget.

Util Provides the getResourceBundle method that
can be used for different types of objects.

IBM Case Manager JavaScript icm.widget.menu package
The classes in the icm.widget.menu package represent the pop-up menus and
toolbars that are used with page widgets.

The toolbars and menus in IBM Case Manager are Dojo widgets that can be used
with any page widget.

Table 17. Classes in the icm.widget.menu package

Class Description

ContextualMenu Represents a pop-up menu for a widget.

Menu Provides the base class for pop-up menus
and toolbars.

MenuManager Provides methods for managing menus in
Case Manager Client.

Toolbar Represents a toolbar for a widget.

14 Development Guide

http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.properties.Properties.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.scriptadapter.ScriptAdapter.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.casesearch.CaseSearch.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.caseselectdocument.CaseSelectDocument.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.splitcase.SplitCase.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.casevisualizer.CaseVisualizer.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.toolbar.Toolbar.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.viewer.Viewer.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.websitedisplayer.WebSiteDisplayer.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.pgwidget.workitemtoolbar.WorkitemToolbar.html
http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/doc/JavaScriptdoc/symbols/ecm.model.ProcessRole.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.util.SearchPayload.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.util.Util.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.widget.menu.ContextualMenu.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.widget.menu.Menu.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.widget.menu.MenuManager.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m1/topic/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.widget.menu.Toolbar.html

Developing case management applications with the Java API

IBM Case Manager provides a Java application programming interface (API) so
that you can create custom applications. For example, you can create applications
that create cases, gather information about solutions, and start manual tasks.

With the Java API methods, you can develop many case management operations in
your own applications:

Deployed solutions
You can gather the following information:
v The workflow system connection point that a specific solution is

configured to use
v The case types and document classes that are included in a deployed

solution
v The IBM Content Manager host information for the object store where

the solutions are deployed, if the object store is configured for IBM
Content Manager integration

Deployed case types
You can gather the following information:
v Which discretionary task types are available to be created
v Which page views are configured for a case type

Cases You can create the following operations for cases:
v Create cases
v Update the properties of cases
v Split cases
v Create relationships between cases
v Retrieve the cases that are related to another split case or a related case
v Add and retrieve comments on cases
v Retrieve history about cases

Tasks You can create the following operations for tasks:
v Retrieve a list of the tasks of a case
v Start manual tasks
v Enable and disable tasks
v Stop and restart the workflow associated with a task
v Create discretionary tasks

“Configuring your environment to use the Java API” on page 16
“Configuring your environment to use the Content Engine Java API” on page
16
“Java API Components” on page 16
“Example: IBM Case Manager Java API Context” on page 18

© Copyright IBM Corp. 2010, 2018 15

Configuring your environment to use the Java API
To develop case management applications with the IBM Case Manager Java API,
you must configure your system to use both the IBM Case Manager Java API and
the Content Engine Java API.

About this task

To configure your development environment, you must add specific JAR files to
your class path.

Procedure

To configure your development environment:
1. Find the installation directory that contains the JAR files that you use to run

the API. The installation directory is installation_directory/IBM/
CaseManagement/CaseAPI/lib where installation_directory is the directory
where IBM Case Manager was installed.

2. Include each JAR file in this directory in the class path.
3. If your application integrates with IBM Content Manager, find the JAR files in

the CaseAPI/lib_cm8 directory on your development system and include each
one in the class path.

Configuring your environment to use the Content Engine Java API
To develop case management applications with the IBM Case Manager Java API,
you must configure your system to use the IBM FileNet Content Engine Java API.

About this task

The IBM FileNet P8 Information Center describes how to configure an environment
for the IBM FileNet Content Engine Java API. For example, a typical approach to
configuring the IBM FileNet Content Engine Java API to use the WSI transport is:

Procedure
1. Include xlxpScanner.jar, xlxpScannerUtils.jar, and stax-api.jar in the

CLASSPATH.
2. Define a system property to reference the appropriate JAAS configuration file

as follows: -Djava.security.auth.login.config=C:\CE_API\config\
jaas.conf.WSI.

Java API Components
The IBM Case Manager Java API is organized into a set of major components that
you use to build an application.

“Case class” on page 17
“CaseMgmtObjectStore class” on page 17
“CaseType class” on page 17
“DeployedSolution class” on page 18

16 Development Guide

Case class
The Case class represents a case in the case management system.

To obtain an instance of a Case object, use one of the factory methods:
v createPendingInstance

v fetchInstance

A new object is first created in a pending state with a method such as
createPendingInstance. The actual object is not created in the repository until the
save method is called.

A factory method such as fetchInstance obtains an instance that represents an
existing Case object. State information about the object, such as its list of properties,
is fetched from the repository and maintained in the returned instance. A Case
instance can also be obtained without a fetch operation by calling the
getFetchlessInstance method. With this method, no call is made to the server to
verify that the object exists in the repository, allows certain operations to be run in
a more efficient manner, since the original fetch of the object is bypassed.

Once a Case instance is obtained, other methods can be called to run various
operations on the object, such as modifying its properties, fetching the history of
the case, or adding comments.

CaseMgmtObjectStore class
The CaseMgmtObjectStore class represents an object store that contains a deployed
solution.

To obtain an instance of the CaseMgmtObjectStore class, use one of the factory
methods:
v fetchInstance

v getFetchlessInstance

If an instance is obtained by calling fetchInstance, the method verifies that the
identifier used to specify an object store does reference a valid object store. An
exception is thrown if the object store is invalid. If getFetchlessInstance is called,
no such verification occurs. However, an exception might be thrown later if a
method is called that requires a reference to a valid object store.

All of the information contained in an instance of CaseMgmtObjectStore is managed
by a cache that is internal to the IBM Case Manager Java API. The same
information can be accessed whether the instance was obtained with or without a
fetch operation, but the fetchInstance method runs only an initial check to ensure
that the referenced object store is valid.

CaseType class
The CaseType class represents a case type that is part of a deployed solution.

To obtain an instance of CaseType, use one of the factory methods:
v fetchInstance

v getFetchlessInstance

If an instance is obtained by calling fetchInstance, the method verifies that the
referenced object store and case type symbolic name represent a valid case type.
The method throws an exception if the case type is invalid. If

Developing case management applications with the Java API 17

getFetchlessInstance is called, no such verification occurs. An exception might be
thrown later if a method is called that requires that the identifiers used to reference
the case type are valid.

Much of the information contained in a CaseType instance is managed by a cache
that is internal to the IBM Case Manager Java API. All of the information can be
retrieved, whether the instance was obtained with or without a fetch operation.
However, the fetchInstance method runs only an initial check to ensure that the
referenced case type is valid.

DeployedSolution class
The DeployedSolution class represents a deployed solution in the case management
system.

To obtain an instance of DeployedSolution, use one of the factory methods:
v fetchInstance
v getFetchlessInstance

A list of deployed solutions can be obtained by calling the fetchSolutions method.

If a DeployedSolution instance is obtained by calling fetchInstance, the method
verifies that the referenced object store is valid and that the solution name refers to
a valid solution. If the object store or solution is invalid, then the method throws
an exception. If getFetchlessInstance is called, no such verification occurs.
However, an exception might be thrown later if another method is called that
requires that the identifiers used to reference the object store is valid.

Much of the information contained in a DeployedSolution instance is managed by
a cache that is internal to the IBM Case Manager Java API. All of the information
can be retrieved whether the object was obtained with or without a fetch, but the
fetchInstance method runs only an initial check to ensure that the referenced
solution is valid.

Example: IBM Case Manager Java API Context
With the correct context, a UserContext can be established in the calling thread
before calling IBM Case Manager Java API methods or directly calling IBM FileNet
Content Engine Java API methods.

The general structure necessary to call the IBM FileNet Content Engine Java API
includes establishing both a UserContext and a CaseMgmtContext. The UserContext
is established by using the IBM FileNet Content Engine Java API, and the
CaseMgmtContext is established by using the IBM Case Manager Java API. For
example, in a stand-alone environment, the overall structure might look like:

P8ConnectionCache connCache = new SimpleP8ConnectionCache();
Connection conn = connCache.getP8Connection(CE_URI);
Subject subject =

UserContext.createSubject(conn, USER_NAME,
PASSWORD, "FileNetP8WSI");

UserContext uc = UserContext.get();
uc.pushSubject(subject);
Locale origLocale = uc.getLocale();
uc.setLocale(1);
CaseMgmtContext origCmctx =

CaseMgmtContext.set(
new CaseMgmtContext(

new SimpleVWSessionCache(), connCache()

18 Development Guide

)
);

try {
// Code that calls the Case Java API or
// directly calls the CE Java API
...

}
finally {

CaseMgmtContext.set(origCmctx);
uc.setLocale(origLocale);
uc.popSubject();

}

If the application is running as an IBM WebSphere® Application Server (WAS)
application, so that the user is already authenticated by the application server, the
code might look like:

HttpServletRequest request;
P8ConnectionCache connCache =

new HttpP8ConnectionCache(request);
VWSessionCache vwSessCache =

new HttpVWSessionCache(request);
UserContext origUc = UserContext.get();
UserContext uc = new UserContext();
uc.setLocale(request.getLocale());
UserContext.set(uc);
CaseMgmtContext origCmctx =

CaseMgmtContext.set(
new CaseMgmtContext(vwSessCache, connCache)

);
try {

// Code that calls the Case Java API or
// directly calls the CE Java API
...

}
finally {

CaseMgmtContext.set(origCmctx);
UserContext.set(origUc);

}

public class HttpP8ConnectionCache
implements P8ConnectionCache {
// A custom implementation of P8ConnectionCache
// that caches Connection objects
// in the HttpSession of the HttpServletRequest

}

public class HttpVWSessionCache implements VWSessionCache {
// A custom implementation of VWSessionCache
// that caches VWSession objects in the HttpSession
// of the HttpServletRequest

}

Developing case management applications with the Java API 19

20 Development Guide

Developing case management applications with the REST
protocols

You can use the REST protocols to incorporate IBM Case Manager features in your
custom application. You use the IBM Case Manager REST protocol to access
case-specific objects. You use the Process Engine REST Service to access
workflow-related aspects of tasks.

The REST protocols are provided for compatibility with previous releases of IBM
Case Manager. If you are developing a new custom case management application,
use the JavaScript APIs that are provided with IBM Case Manager and IBM
Content Navigator.

“Creating and managing case objects by using the IBM Case Manager REST
protocol”
“Managing workflows, roles, and in-baskets by using the Process Engine REST
Service” on page 93

Creating and managing case objects by using the IBM Case Manager
REST protocol

You use the IBM Case Manager REST protocol to access and manipulate
case-specific objects, including solutions, case types, tasks, case comments, and case
histories.

“Case management REST resource URIs”
“Symbolic names” on page 22
“Error responses” on page 23
“Common JSON payload for cases and case types” on page 23
“Getting information about deployed solutions” on page 31
“Getting information about deployed case types” on page 37
“Getting and changing case information” on page 52

Case management REST resource URIs
Each resource in the IBM Case Manager REST protocol is identified by a unique
URI. This URI includes the resource name and any parameters that are required for
the specific method that you are calling.

Syntax

The URI syntax for case management REST resources is as follows:
http://host:port/context/CASEREST/v1/resourceName[?resourceParameters]

The variables used in the URI are:

host
The name of the server that is hosting the IBM Case Manager REST protocol as
configured for your web application server.

port
The host port that is used for IBM Case Manager REST protocol
communications as configured for your web application server.

© Copyright IBM Corp. 2010, 2018 21

context
The web application context root for the IBM Case Manager REST protocol as
configured for your web application server. By default, this value is set to
CaseManager.

resourceName
The name of the IBM Case Manager REST resource to use.

resourceParameters
Any parameters specified for the specified IBM Case Manager REST resource.
Use an ampersand (&) to separate multiple parameters.

The IBM Case Manager REST protocol version identification (/v1) enables
subsequent updates to the REST protocol.

The following example shows a URI for the particular task instance resource.
http://example.com:9080/CaseManager/CASEREST/v1/task
/7A75A997-0E42-406E-AZC4-EE55D7DER9PF?TargetObjectStore=MyExampleObjectStore
&Grouping=ROD

Special characters

Besides ASCII letters and decimal digits, you can use the following characters
without any special notation in the case management REST URIs: $ - _ . + ! * ' () ,

You must escape any other character, including spaces, double quotation marks (“
and ”), and percent signs (%). To escape a character in UTF-8 encoding, use %xy
where xy is the two-digit hexadecimal value of the character. For example, %20 is
the escaped representation of a space in a URI.

Symbolic names
When you design a case, Case Manager Builder assigns symbolic names for
metadata objects such as property descriptions, document classes, and folder
classes. You use the symbolic names when you refer to these metadata objects in
calls to the methods that are provided by the IBM Case Manager REST protocol.

Typically, the symbolic name is generated from the display name that you enter for
an object. The symbolic name begins with a letter and consists of uppercase and
lowercase ASCII letters, decimal digits, and underscores. It can contain a maximum
of 64 characters. The Content Platform Engine enforces that symbolic names are
unique within an object store.

The IBM Case Manager REST protocol uses the symbolic name that is assigned by
Content Platform Engine for the following items:
v Certain URI elements, including class names and object store names
v Values for query parameters that reference metadata objects
v The JSON payload for the names of object stores, case types, and activity types

Content Platform Engine requires symbolic names that are unique within the object
store for metadata objects such as document classes and property templates.
Instance objects, such as documents and folders, do not have symbolic names. For
these objects, you use the GUID that is assigned to the object in the target object
store.

In addition, solutions do not have symbolic names. To reference a solution, you use
the solution name that is defined in Case Manager Builder.

22 Development Guide

Error responses
When a method call fails, the response code that the IBM Case Manager REST
protocol returns indicates the type of error that occurred. For example, the
response code 404 Not Found indicates that the method did not find a resource
such as the specified solution or case type. The response code 400 Bad Request
indicates that a required parameter was not provided or that an incorrect value
was specified for a parameter.

The JSON response that is returned by the method contains additional information
about the error condition. The following example shows the format that the
response uses to provide that information:
#Response
HTTP/1.1 500 Internal Server Error
Content-Type: application/json;charset-UTF-8
{

"UserMessage":
{
"UniqueId":"FNRPA0024E",
"Text":"FNRPA0024E IBM Case Manager Builder cannot connect to the Process
Engine.",
"Severity":"ERROR"

}
"UnderlyingDetails":
{
"Causes":
[

"Failed to connect to vworbbroker on hq-liquent:32776[100]. Check server
connection.\nfilenet.pe.peorb.client.ORBServiceHelper$VWORBBrokerNotStarted:
Failed to retrieve an IOR for vworbbroker. URL=http:\/\/hq-liquent:32776\
/IOR\/FileNet.PE.vworbbroker. Check PE server to make sure that vworbbroker
process is started.",
"Failed to retrieve an IOR for vworbbroker. URL=http:\/\/hq-liquent:32776\
/IOR\/FileNet.PE.vworbbroker. Check PE server to make sure that vworbbroker
process is started."

]
},

}

You can search for message information in the IBM Case Manager Information
Center. Enter the value of the UniqueId element in the search field of the
information center.

Common JSON payload for cases and case types
The IBM Case Manager REST protocol defines a JSON payload that is used in the
methods that get or return information about a case or case type. This payload is
also used by the external data service to obtain case information from an external
data source.

The common JSON payload is used by methods for the following IBM Case
Manager REST protocol resources:

Particular solution resource
The GET method uses the common payload to return a list of case types
and the case type properties that are defined for a solution.

List of case types resource
The GET method uses the common payload to return a list of case types
that are defined for a solution.

Developing case management applications with the REST protocols 23

Particular case type resource
The GET method uses the common payload to return detailed property
information for a case type.

The POST method uses the common payload to use the current property
values to update information for dependent properties.

Cases resource
The POST method uses the common payload to create a case.

Particular case instance resource
The GET method uses the common payload to return information about a
case.

The POST method uses the common payload to create a case by splitting an
existing case.

The PUT method uses the common payload to update case information.

Payload parameters

The following code shows the structure of the full payload. However, not all
methods use all parameters. See the specific method for the parameters that it uses
in the payload.
{
"TargetObjectStore" : "<target object store name>",
"CaseType" : "<case type symbolic name>",
"CaseFolderId" : "<GUID of case folder>",
"DisplayName" : "<name displayed for case type>",
"Description" : "<description of case type",
"CaseTitleProperty": "<property used as case title>",
"CaseIdentifier": "<case identifier>",
"ExternalDataIdentifier" : "<opaque data>",
"Properties":
[
{

"SymbolicName" : "<symbolic name>",
"DisplayName" : "<display name>",
"Value" : <current property value>,
"OriginalValue" : <original property value>,
"DisplayMode" : "<readonly/readwrite>",
"CustomValidationError" : "<text of error>",
"CustomInvalidItems" : [<array of indexes>],
"Description" : "<property description>",
"PropertyType" : "<property type>",
"Cardinality" : "<single or multiple>",
"Updatability" : "<settability as defined in CE>",
"Required" : <required flag>,
"Queryable" : <true or false>,
"Orderable" : <true or false>,
"Hidden" : <hidden flag>,
"Inherited" : <true or false>,
"DefaultValue" : <default property value>,
"MaxValue" : <maximum property value>,
"MinValue" : <minimum property value>,
"MaxLength" : <integer maximum length>,
"HasDependentProperties" : <true or false>,
"ChoiceList" :

{
"DisplayName" : "<display name for choic list>",
"Choices" :

[
{

"ChoiceName" : "<display name for choice>"
"Value" : <integer or string>

24 Development Guide

},
]

}
}

// ... additional properties

]
"ClientContext":
{

"<key>":<value">,
\\ additional key value pairs

}
}

The common JSON payload has the following attributes:

Table 18. Parameters for the common JSON payload

Parameter Type Description

TargetObjectStore String The symbolic name of the object store that
contains the case.

A symbolic name is called a unique identifier in
IBM Case Manager.

CaseType String The symbolic name that is assigned to the case
type.

ReturnUpdates Boolean A Boolean value that indicates whether the
method is to return the property values after the
case is created or updated. Set this parameter to
true so that the method returns the case property
values.

By default, this parameter is set to false.

CaseFolderId String The GUID that identifies the root folder of an
existing case.

DisplayName String The name that is displayed for the case in Case
Manager Client.

Description String The description of the case.

CaseTitle
Property

String The name of the property that is used for the title
of the case.

By default, this parameter is set to
CmAcmCaseIdentifier.

CaseIdentifier The value of the CmAcmCaseIdentifier property for
the case.

Developing case management applications with the REST protocols 25

Table 18. Parameters for the common JSON payload (continued)

Parameter Type Description

ExternalData
Identifier

String A string that provides contextual information to
indicate the state of the data that was returned by
an external data service.

The value of this parameter is set by an external
data service. Typically, the service sets the
parameter to reference the specific configurations
that were used to define the attributes other than
the property value. These attributes include
settings for the minimum value, maximum value,
choice list, and so on.Case Manager Client
maintains the value or the parameter, but it does
not change the value or parameter.

The ExternalDataIdentifier parameter is
required for the POST method of the particular case
type resource. It is recommended that you include
the ExternalDataIdentifier parameter in the
payload whenever a method creates or updates a
case. If you do not include the parameter, the IBM
Case Manager REST protocol must establish
another identifier internally.

Properties Array An array of JSON objects that represent the
properties that have external data to merge with
the underlying information.

For a description of the attributes that can be
included for each property, see Table 19.

ClientContext JSON object An object that contains a series of key value pairs
that specify contextual information for a specific
work item. This parameter is used to send
information to an external data service when a
case worker opens the work item.

Property attributes

You can include the following attributes for each property that is defined in the
Properties parameter in the JSON payload.

Table 19. Property attributes in the common JSON payload

Attribute Type Description

SymbolicName string The symbolic name of the property.

DisplayName string The name that is displayed for the property in Case Manager
Client.

26 Development Guide

Table 19. Property attributes in the common JSON payload (continued)

Attribute Type Description

Value Boolean,
datetime,
float,
integer,
string,
object

The value of the property.

The value is returned in various response payloads based on
the type of case the call is referencing, to indicate the current
or working property value.

v For a new case, the value starts out with a default value,
which can be null.

v For an existing case, the value starts out with the current
value on the case.

v An external data service can override this value. For a new
case, the new value becomes the new working value
before the case is created, and for an existing case it
becomes the working value before the case is saved.

v The user can also modify the working value.

v The value can take various forms, depending on the type
of property:

– null

– a string

– a Boolean

– an integer or a float

– for a datetime type, a value in W3C format (for
example, 2012-10-31T18:30:10)

– for an ID type, a string GUID

– for a multivalued type, an array of the appropriate
non-null type

– for an object-valued type, another JSON object with
information about the object that this property refers to

OriginalValue Boolean,
datetime,
float,
integer,
string,
object

The value currently persisted for the property in the
repository. The IBM Case Manager REST protocol uses the
OriginalValue parameter to determine whether the value
that is specified by external data service is different from the
value in the repository.

v This parameter can be specified in certain input payloads
and is preserved in the response payload, regardless of
whether the property value is modified.

v If not present in an input payload, it is not preserved in
the response payload.

Developing case management applications with the REST protocols 27

Table 19. Property attributes in the common JSON payload (continued)

Attribute Type Description

DisplayMode string A string that is returned by an external data service to
specify whether Case Manager Client is to display the
property value as read-only.

An external data service can determine what the value of a
property must be. If a value is predetermined, the field is
rendered read-only from the user's perspective, but that
value is saved when the case is saved or created. This mode
is ignored if Updatability is not readwrite or oncreate for a
new case. This mode has the following options:

readonly
The field is rendered as read-only, and the specified
value is saved as the value of the property.

readwrite
The default setting. The field is be rendered
writable, but Updatability takes preference.

Custom
Validation
Error

string A message produced by an external data service, explaining
why the existing value is invalid. An external data service
can validate the current property values. It can leave an
invalid value as-is and put a message in this field.

v The presence of this attribute indicates that the value is
considered invalid by an external data service.

v The absence of this attribute indicates only that there is
not an external data service that considers this property
value to be invalid. The client can still consider the other
attributes of the property when providing feedback to the
user about the state of the property.

An example use case is a customer ID property. An external
data service can determine that the value of the property
does not represent a valid customer ID without automatically
modifying the value to a valid ID. In that case, the external
data service can provide a custom validation error message.

Custom
Invalid
Items

array of
indexes

A list of items on a multivalue list that are invalid, given as
an array of indexes into the multivalue list of values. If an
external data service validates a property value and the
property is multivalue, it can also indicate the individual
items of the multivalue list that are invalid. This attribute is
applicable only if CustomValidationError indicates that the
property is invalid. It does not need to be present even for a
multivalue property. If CustomValidationError indicates that
the property is invalid and this attribute is missing, then the
entire property, rather than just individual items, should be
considered invalid.

Description string The description of the property.

PropertyType string The data type of the property:

v integer

v float

v boolean

v string

v datetime

v id

v object

28 Development Guide

Table 19. Property attributes in the common JSON payload (continued)

Attribute Type Description

Cardinality string One of the following values that indicates whether the
property contains a single value or multiple values:

v single

v multi

Updatability string One of the following values that indicates whether a case
worker can modify the property value:

readonly
Indicates that a case worker can read the property
value but cannot modify the value.

readwrite
Indicates that a case worker can read and modify
the property value.

oncreate
Indicates that a case worker can modify the
property value only when creating a case.

Required Boolean A Boolean value that is set to true to indicate that a value is
required for the property.

Queryable Boolean A Boolean value that is set to true if the property can be
used in a query condition.

Orderable Boolean A Boolean value that is set to true if the property can be
used in an Order By clause in a query condition.

Hidden Boolean A Boolean value that is set to true to indicate that the
property is to be hidden in Case Manager Client.

Inherited Boolean A Boolean value that is set to true if this property is
inherited from the superclass of the class.

DefaultValue Boolean,
datetime,
float,
integer,
string,
object

The default value that is specified for the property in Case
Manager Builder. If no value is specified, this parameter is
set to null.

MaxValue datetime,
float,
integer

A number that indicates the maximum value of the property.

MinValue datetime,
float,
integer

A number that indicates the minimum value of the property.

MaxLength integer A number that indicates the maximum length of the property
value.

Developing case management applications with the REST protocols 29

Table 19. Property attributes in the common JSON payload (continued)

Attribute Type Description

ChoiceList object A JSON object that contains array that defines a list of
choices for the property value.

The ChoiceList value can contain a flat list of choices:

"ChoiceList" :
{

"DisplayName" : "<display name for choice list>",
"Choices" :
[
{
"DisplayName" : "<display name for choice 1>
"Value" : <value>
},

{
"DisplayName" : "<display name for choice 2>",
"Value" : <value>

},

// More choices ...
]

}

HasDependent
Properties

Boolean A Boolean value that is set to true by an external data service
if other properties depend on the value of this property.

Currently, the only object-valued properties (OVPs) returned by this protocol are
OVPs with single values. List and enum type OVPs are not supported. The
protocol supports retrieving OVPs but does not support updating OVPs.

A non-null OVP value is represented in the JSON as in the following example:
"Value": {

"Type": "reference",
"ObjectStoreIdentity": "{DE6FC95A-3E90-42E2-9F3B-8B74C3945733}",
"ClassIdentity": "{557F0B86-5C74-4F6D-BEA7-2B8C5476DBCF}",
"ObjectIdentity": "{A9FC8EEC-FC7F-4B53-A5A0-73FC1E774FA7}"

},

Type Currently always "reference". Indicates that the other attributes of the JSON
object define a reference to an object in the repository.

ObjectStoreIdentity
Indicates an identity for the object store that holds the object. Property
values returned from the protocol always have an Object Store ID (GUID)
as this value.

ClassIdentity
Identifies the class of the object. Property values returned from the protocol
always have a Class ID (GUID) as this value.

ObjectIdentity
Identifies the object itself. Property values returned from the protocol
always have an ID (GUID) as this value.

Related reference:
“Client context for work items” on page 107
“Symbolic names” on page 22
“GET method for the particular solution resource” on page 35
“GET method for the particular case type resource” on page 44

30 Development Guide

“POST method for the particular case type resource” on page 47
“POST method for the cases resource” on page 54
“GET method for the particular case instance resource” on page 57
“POST method for the particular case instance resource” on page 60
“PUT method for the particular case instance resource” on page 64

Getting information about deployed solutions
You can use the IBM Case Manager REST protocol to get information about
deployed solutions. This information includes the object stores to which the
solutions are deployed and the connection point that identifies the workflow
stream, communications port, and isolated region number that is used by the
solution.

“List of document classes resource”
“List of solutions resource” on page 33
“Particular solution resource” on page 35

List of document classes resource
The list of document classes resource provides a list of document classes that are
defined in a solution. You can use this list to determine what classes of documents
can be attached to cases and work items.

“GET method for the list of document classes resource”

GET method for the list of document classes resource:

The GET method for the list of document classes resource returns a list of the
document classes that are defined in a solution. If the solution uses an IBM
Content Manager repository, the method returns a list of the item types that are
defined in the solution.

URI

/CASEREST/v1/solution/{solution name}/documenttypes

The URI for the GET method includes the following path element:

Table 20. Path element for the GET method

Name Type Required? Description

{solution name} String No The name of the solution for which the list of document classes is to
be returned.

The URI for the GET method includes the following parameter:

Table 21. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

Request content

The request for this method contains no JSON content.

Developing case management applications with the REST protocols 31

Response content

For each document class or item type, the method returns:
v The name of the document class or item type.
v The identifier of the item type. No identifier is returned for a document class.
v The name that is displayed for the document class or item type.
v The description of the document class or item type.
v A Boolean value that is set to true if the case worker has permission to create a

document of this document class or item type. This value is always set to true
for an item type.

The GET method also returns one of the following response codes:

Table 22. Response codes for the GET method

Code Description

200 OK The method completed successfully. The requested list of document classes was returned.

400 Bad Request The required TargetObjectStore parameter was not specified or a parameter value was
invalid.

404 Not Found No document classes were found for the solution or the specified solution was not found.

For information about the error, see the userMessage element in the JSON response.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests a list of all document classes that are defined for the
Auto Claims solution:
#Request to get the document classes of a deployed solution
GET /CASEREST/v1/solution/Auto+Claims/documenttypes
?TargetObjectStore=MyTOS HTTP/1.1
Host: www.example.net

Example: GET method response for a Content Platform Engine object store

This sample code shows the list of all document classes that are defined for the
Auto Claims solution in a Content Platform Engine object store:
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"DocumentTypes":
[

{
"DocumentType": "AUTO_CollisionClaim",
"DisplayName": "Collision Claim",
"Description": "collision claim",
"HasInstanceCreationRights": true

},
{

"DocumentType": "Correspondence",
"DisplayName": "Correspondence",
"Description": "client correspondence",
"HasInstanceCreationRights": true

32 Development Guide

},
...

]
}

Example: GET method response for an IBM Content Manager repository

This sample code shows the list of all document classes that are defined for the
Auto Claims solution in an IBM Content Manager repository.
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"DocumentTypes":
[

{
"DocumentType": "Claim",
"ItemTypeId": "10325", ?
"DisplayName": "Liability Claim",
"Description": "",
"HasInstanceCreationRights": true

},
...

]
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

List of solutions resource
The list of solutions resource provides a list of all deployed solutions. This list can
be useful to identify the servers to which you must redeploy an updated solution.

“GET method for the list of solutions resource”
Related information:

Solution List page

GET method for the list of solutions resource:

The GET method returns a list of the solutions that are deployed to all target object
stores.

URI

/CASEREST/v1/solutions

Request content

The request for this method contains no JSON content.

Response content

For each solution, the method returns:
v Solution name
v Name of the target object store to which the solution is deployed
v Deployment status

Developing case management applications with the REST protocols 33

http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.design.doc/acmdc022.htm

v Connection point
v Web application ID

The GET method also returns one of the following response codes:

Table 23. Response codes for the GET method

Code Description

200 OK The method completed successfully. The requested list of solutions was returned.

404 Not Found No solutions were found.

For information about the error, see the userMessage element in the JSON response.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method response

This sample code requests a list of all solutions that are deployed to all target
object stores.
GET http://example.com:9080/CaseManager/CASEREST/v1/solutionsHTTP/1.1
Host: www.example.net

Example: GET method response

This sample code shows the list that is returned in response to the request for a list
of all solutions that are deployed to all target object stores,
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"Solutions":
[
{

"SolutionName": "Automobile Claims",
"SolutionFolderId": "{659C6566-4A6B-4328-A89A-27D2D08D0A1B}",
"Description": "Solution for processing automobile claims",
"TargetOS": "AutomobileClaimsOS",
"Status": "Completed",
"PEConnectionPoint": "PECP1",
"WebAppID": "ABC"

},
{

"SolutionName": "Fire Insurance Claims",
"SolutionFolderId": "{18389232-FE4D-4400-8215-0FFA5A3F2C88}",
"Description": "Solution for processing fire damage",
"TargetOS": "FireInsuranceOS",
"Status": "Failed",
"PEConnectionPoint": "PECP1",
"WebAppID": "8"

}
]

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21

34 Development Guide

Particular solution resource
The particular solution resource provides information for a deployed solution. You
can use this resource to get information about the case types that are defined for
the solution.

“GET method for the particular solution resource”

GET method for the particular solution resource:

The GET method for the particular solution resource returns information about the
case types that are defined for a solution.

URI

/CASEREST/v1/solution/{SolutionName}

The URI for the GET method includes the following path element:

Table 24. Path elements for the GET method

Name Type Description

{SolutionName} String The name of the solution for which information is to be returned.

The URI for the GET method includes the following parameter:

Table 25. Parameters for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the
solution.

Request content

The request for this method contains no JSON content.

Response content

For each case type, the method returns a list of the properties and a detailed
description of the views.

The GET method also returns one of the following response codes:

Table 26. Response codes for the GET method

Code Description

200 OK The method completed successfully. The response that is returned by the GET method
includes the information for the specified solution.

400 Bad Request One of the required parameters was missing or a parameter value was invalid.

404 Not Found The solution that was specified in the request was not found.

If a request is received for an object type that the external data service does not manage any
data for, it must return status code 404: Not Found. The integration tier layer of IBM Case
Manager treats this return status as if the particular object type did not have any external
data associated with it. No error is returned to the IBM Case Manager caller.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Developing case management applications with the REST protocols 35

Example: GET method request

This sample code requests information about the case types that are defined for the
Auto Loan solution:
GET /CASEREST/v1/solution/Auto+Loan+Solution
?TargetObjectStore=MyTargetObjectStore HTTP/1.1
Host: "www.example.net"

Example: GET method

This sample code shows the case type information that is returned for the Auto
Loan solution:
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{
"CaseTypes" : [
{
"CaseType" : "AUTO_CollisionClaimCase1",
"DisplayName" : "Collision Claim Case",
"Description" : "Case to process a collision claim",
"CaseTitleProperty": "CmAcmCaseIdentifier",
"Views":
{

"CaseDataView":
{
"Fields":
[

{ "FieldType": "property", "Name": "caseName" },
{ "FieldType": "property", "Name": "accountNumber" },
{ "FieldType": "group", "Label": "Home Address",
"OpenState": false,
"Fields":
[

{"FieldType": "property", "Name": "StreetAddressLine1"},
{"FieldType": "property", "Name": "StreetAddressLine2"},
{"FieldType": "property", "Name": "City"},
{"FieldType": "property", "Name": "State"},
{"FieldType": "property", "Name": "ZIPCode"},

]
}

]
},
"CaseSummaryView":
{
"Fields":
[

{ "FieldType": "property", "Name": "caseName" },
{ "FieldType": "property", "Name": "customerName" },
{ "FieldType": "property", "Name": "requestedLoanAmount" },
{ "FieldType": "property", "Name": "percentageDown" },
{ "FieldType": "property", "Name": "FicoScore" }

]
},
"CaseSearchView":
{
"Fields":
[

{ "FieldType": "property", "Name": "caseName" },
{ "FieldType": "property", "Name": "customerName" },
{ "FieldType": "property", "Name": "accountNumber" },
{ "FieldType": "property", "Name": "requestedLoanAmount" }

]
}
}

36 Development Guide

},
{
"CaseType" : "AUTO_CollisionClaimCase2",
"CaseTiTleProperty": "CmAcmCaseIdentifier",
"Views": ...
}
],
"SolutionProperties":
[
{

"SymbolicName": "AUTO_City",
"DisplayName": "City",
"Value": null,
"DisplayMode": "readwrite",
"Description": "City where home office is located",
"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxLength": 64,
"ChoiceList": {
"DisplayName": "CityChoiceList",
"Choices": [

{
"ChoiceName": "Los Angeles",
"Value": "Los Angeles"

},
{

"ChoiceName": "San Diego",
"Value": "San Diego"

},
{

"ChoiceName": "San Francisco",
"Value": "San Francisco"

}
]

}
}
]
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23

Getting information about deployed case types
You can use the IBM Case Manager REST protocol to access information about the
case types. The case types identify the kinds of cases that case workers can create
with your application.

“List of case types resource” on page 38
“List of view definitions resource” on page 40
“List of discretionary task types resource” on page 42
“Particular case type resource” on page 44
“Case page resource” on page 51

Developing case management applications with the REST protocols 37

List of case types resource
The list of case types resource provides a list of the case types that are available for
a solution. You can use this list to populate a choice list from which a case worker
can select the type of case to create. For example, the choice list might include case
types such as Loan application or Manage dispute.

“GET method for the list of case types resource”
Related information:

Setting permissions for a case type class

GET method for the list of case types resource:

The GET method for the list of case types resource returns information about each
case type that is defined for a specified solution.

URI

/CASEREST/v1/solution/{solution name}/casetypes

The URI for the GET method includes the following path element:

Table 27. Path element for the GET method

Name Type Description

{solution name} String The name of the solution for which the list of case types is to be returned.

The URI for the GET method includes the following parameter:

Table 28. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

Request content

The request for this method contains no JSON content.

Response content

For each case type, the method returns the following information:

DisplayName
The name that is displayed for the case type.

Description
The description of the case type.

HasInstanceCreationRights
A Boolean value that is set to true if the case worker has permission to
create a case of this case type and a subfolder of the case type folder.

These permissions are set when you configure security by using IBM
Administration Console for Content Platform Engine or by using IBM Case
Manager administration client. Permission to create a case is set by
selecting the Create instance right for the specific case type. Permission to
create a subfolder is set by selecting the Create subfolder right for the case
type folder.

38 Development Guide

http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.design.doc/acmdc004.htm

HasAnnotationRights
A Boolean value that is set to true if the case worker has permission to
add a case of this case type to a folder. A case worker must have this
permission to split a case of this case type.

These permissions are set when you configure security by using IBM
Administration Console for Content Platform Engine or by using IBM Case
Manager administration client. Permission to create a case by splitting an
existing case is set by selecting the File in folder/Annotate right for the
case type folder.

The GET method also returns one of the following response codes:

Table 29. Response codes for the GET method

Code Description

200 OK The method completed successfully. The requested list of case types was returned.

400 Bad Request The required TargetObjectStore parameter was not specified or a parameter value was
invalid.

404 Not Found Either the solution specified in the request URI was not found or no case types were found
for the specified solution. For more information, see the userMessage element in the JSON
response.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests a list of the case types that are defined for the deployed
Auto Claims solution:
GET http://example.com:9080/CaseManager/CASEREST/v1/solution/Auto+Claims
/casetypes?TargetObjectStore=MyTOS HTTP/1.1
Host: www.example.net

Example: GET method

This sample code shows the list of case types that is returned for the deployed
Auto Claims solution:
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"CaseTypes":
[
{

"CaseType": "AUTO_CollisionClaim",
"DisplayName": "Collision Claim",
"Description": "process a collision claim"
"HasInstanceCreationRights": true,
"HasAnnotationRights": true

},
{

"CaseType": "AUTO_LiabilityClaim",
"DisplayName" : "Liability Claim",
"Description": "process a liability claim"
"HasInstanceCreationRights": true,
"HasAnnotationRights": true

},
...

]
}

Developing case management applications with the REST protocols 39

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23

List of view definitions resource
The list of view definitions resource represents the properties that are set in Case
Manager Builder for the views defined for a case type.

“GET method for the list of view definitions resource”

GET method for the list of view definitions resource:

The GET method for the list of view definitions resource returns the properties for
the Case Summary view, the Case Properties view, and the Case Search view.

URI

/CASEREST/v1/casetype/{case type name}/viewdefinitions

The URI for the GET method includes the following path element:

Table 30. Path element for the GET method

Name Type Description

{case type name} String The symbolic name of the case type for which view properties are to be
returned.

The URI for the GET method includes the following parameters:

Table 31. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the target object store that contains the case
type.

Request content

The request for this method contains no JSON content.

Response content

For each view definition, the GET method returns a list of the properties that are
displayed as fields in the view. To work with these properties, you can use IBM
CMIS for FileNet Content Manager to obtain detailed information such as data
types and lengths.

The GET method also returns one of the following response codes:

Table 32. Response codes for the GET method

Code Description

200 OK The method completed successfully and returned the requested view properties.

400 Bad Request The TargetObjectStore parameter was not specified or the parameter value was invalid.

40 Development Guide

Table 32. Response codes for the GET method (continued)

Code Description

404 Not Found The case type that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests the view properties for the AUTO_FleetPurchase case
type:
GET http://example.com:9080/CaseManager/CASEREST/v1/casetype
/AUTO_FleetPurchase/viewdefinitions?
TargetObjectStore=MyExampleObjectStore HTTP/1.1
Host: www.CaseMgmtExample.net

Example: GET method response

This sample code shows the view properties that are returned for the
AUTO_FleetPurchase case type:
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"CaseTitleProperty": "CmAcmCaseIdentifier",
"CaseDataView":
{
"Fields":
[

{"FieldType": "property", "Name": "caseName"},
{"FieldType": "property", "Name": "accountNumber"},
{"FieldType": "group", "Label": "Home Address",

"OpenState": false,
"Fields":
[
{"FieldType": "property", "Name": "StreetAddressLine1"},
{"FieldType": "property", "Name": "StreetAddressLine2"},
{"FieldType": "property", "Name": "City"},
{"FieldType": "property", "Name": "State"},
{"FieldType": "property", "Name": "ZIPCode"},

]
}

]
},
"CaseSummaryView":
{
"Fields":
[

{"FieldType": "property", "Name": "caseName"},
{"FieldType": "property", "Name": "customerName"},
{"FieldType": "property", "Name": "requestedLoanAmount"},
{"FieldType": "property", "Name": "percentageDown"},
{"FieldType": "property", "Name": "FicoScore"}

]
},
"CaseSearchView":
{
"Fields":
[

{"FieldType": "property", "Name": "caseName"},
{"FieldType": "property", "Name": "customerName"},
{"FieldType": "property", "Name": "accountNumber"},

Developing case management applications with the REST protocols 41

{"FieldType": "property", "Name": "requestedLoanAmount"}
]

}
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

List of discretionary task types resource
The list of discretionary task types resource provides a list of the user-created task
types that are defined for a specified case type. You can use this list to display a
choice list of the user-created tasks that a case worker can add to the case as
needed.

“GET method for the list of discretionary task types resource”

GET method for the list of discretionary task types resource:

The GET method returns the properties for the user-created task types that are
defined for a specified case type.

URI

/CASEREST/v1/casetype/{case type name}/discretionarytasktypes

The URI for the GET method includes the following path element:

Table 33. Path element for the GET method

Name Type Description

{case type name} String The symbolic name of the case type for which the list of user-created tasks is
to be returned.

The URI for the GET method includes the following parameter:

Table 34. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

Request content

The request for this method contains no JSON content.

Response content

For each user-created task type, the method returns the following properties:

Table 35. Properties returned by the GET method

Property Description

Description The description that is defined for the task.

HasInstanceCreationRights A Boolean value that is set to true if the current user can
create an instance of this task type.

42 Development Guide

Table 35. Properties returned by the GET method (continued)

Property Description

RequiresLaunchInfo A Boolean value that is set to true if the GET method for the
create new task resource must be called to obtain launch
step information for the task.

If this property is set to true, the StepElement property is
required for the POST method for the create new task
resource.

TaskClassId The GUID for the Task class.

TaskDisplayName The name of the task that is displayed in Case Manager
Client.

TaskName The symbolic name of the task.

IsHidden A Boolean value that is set to true if the task is hidden
from the user at run time.

IsContainer A Boolean value that is set to true if the task is a container
task.

The GET method also returns one of the following response codes:

Table 36. Response codes for the GET method

Code Description

200 OK The method completed successfully. The requested list of task types was returned.

400 Bad Request The required TargetObjectStore parameter was not specified or a parameter value was
invalid.

404 Not Found The case type specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, refer to the userMessage element in
the JSON response.

Example: GET method request

This sample code request a list of the user-created tasks for the Collision claim case
type:
GET http://example.com:9080/CaseManager/CASEREST/v1/casetype
/AUTO_CollisionClaim/discretionarytasktypes
?TargetObjectStore=MyTOS HTTP/1.1
Host: www.example.net

Example: GET method response

This sample code shows the list of the user-created tasks that are returned for the
Collision claim case type. The TaskName field that is returned specifies the symbolic
name of the user-created task class. To create a user-created task, your application
must first pass this symbolic name to the GET method for the create new task
resource. Your application must then call the POST method for the create new task
resource.
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"DiscretionaryTaskTypes":
[

{

Developing case management applications with the REST protocols 43

"TaskName": "AUTO_ContactCustomer",
"TaskDisplayName": "Contact Customer",
"Description": "phone, email or write to the customer",
"TaskClassId": "{76DE6D7A-FC7D-4AD0-A109-DB9B9E63E7AE}",
"HasInstanceCreationRights": true,
"RequiresLaunchInfo": true,

"IsHidden": false,
"IsContainer": false
},
{

"TaskName": "AUTO_ReadCollisionReport",
"TaskDisplayName": "Read Collision Report",
"Description": "read the collision report and police report",
"TaskClassId": "{070AF241-C4FC-4E0A-86ED-BE017B68913F}",
"HasInstanceCreationRights": true,
"RequiresLaunchInfo":false,

"IsHidden": false,
"IsContainer": false
}
...

]
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“GET method for the create new task resource” on page 74

Particular case type resource
The particular case type resource provides information about the properties that
are defined for a case type or a case. In preparation for creating a case, you can use
this resource to get a list of the properties that are defined for the specific case
type. For an existing case, you can use this resource to return updated information
for dependent properties based on the current working values of the case
properties.

“GET method for the particular case type resource”
“POST method for the particular case type resource” on page 47

Related reference:
“Request modes” on page 106
“Response to a request for case data” on page 108
“Client context for work items” on page 107

GET method for the particular case type resource:

The GET method for the particular case type resource returns the property
information that you need to create a case of the specified case type.

If you are using an external data service, the GET method incorporates information
from that service into property information that the method returns.

To create a case that reuses data from an existing case, you can specify the optional
SourceCaseFolderId parameter to identify the source case. The IBM Case Manager
REST protocol reuses the property values that are not null or empty from the
source case for any matching properties in the new case.

44 Development Guide

URI

/CASEREST/v1/casetype/{case type name}

The URI for the GET method includes the following path element:

Table 37. Path element for the GET method

Name Type Description

{case type name} String The symbolic name of case type

The URI for the GET method includes the following parameters:

Table 38. Parameters for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

A symbolic name is called a unique identifier in IBM Case Manager.

SourceCaseFolderId String No The GUID that identifies the root folder of an existing case from which
data is to be reused in creating the case.

Request content

The request for this method contains no JSON content.

Response content

GET method returns the properties that are defined for the specified case type.

The GET method also returns one of the following response codes:

Table 39. Response codes for the GET method

Code Description

200 OK The method completed successfully. The response that is returned by the GET method
includes the information for the specified case types.

400 Bad Request The required TargetObjectStore parameter was missing or the parameter value was invalid.

404 Not Found The case type specified in the request was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests information about the properties that are defined for the
DH2_MyCase case type:
#Request to properties for case type DH2_MyCase
GET /CaseManager/CASEREST/v1/casetype/DH2_MyCase?TargetObjectStore=MyTOS
HTTP/1.1
Host: www.example.net

Example: GET method

This sample code shows the information that is returned for the properties that are
defined for the DH2_MyCase case type:

Developing case management applications with the REST protocols 45

#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"externalDataIdentifier": "-1,0",
"properties": [
{

"symbolicName": "DH2_State",
"required": true,
"maxLength": 2,
"hasDependentProperties": true,
"choiceList": {
"displayName": "StateChoiceList",
"choices": [

{
"displayName": "New York",
"value": "NY"

},
{
"displayName": "California",
"value": "CA"

},
{
"displayName": "Nevada",
"value": "NV"

}
]

}
},
{

"symbolicName": "DH2_PropOne",
"maxValue": 10,
"minValue": 1,
"hasDependentProperties": false

},
{

"symbolicName": "DH2_MVInt",
"value": [
0,
100

],
"maxValue": 1000,
"minValue": 0,
"hasDependentProperties": true

},
{

"symbolicName": "DH2_MVString",
"required": true,
"maxLength": 24,
"hasDependentProperties": false,
"choiceList": {
"displayName": "MVStringChoiceList",
"choices": [

{
"displayName": "One",
"value": "One"

},
{
"displayName": "Two",
"value": "Two"

},
{
"displayName": "Three",
"value": "Three"

},
{
"displayName": "Ten",

46 Development Guide

"value": "Ten"
},
{

"displayName": "Eleven",
"value": "Eleven"

},
{

"displayName": "Twelve",
"value": "Twelve"

}
]

}
},
{

"symbolicName": "DH2_City",
"value": null,
"displayMode": "readonly",
"hidden": true,
"required": true,
"hasDependentProperties": false

}
]

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23

POST method for the particular case type resource:

The POST method is used to obtain the properties defined for a case type to create a
case, optionally passing in the client context. This method is also used to obtain
updated values for dependent properties as a case worker edits a case.

When you get the properties to create a case, call the POST method instead of the
GET method if you need to pass contextual information to an external data service.
The POST method includes the clientContext parameter that contains an array of
key value pairs that specify the contextual information for a specific task.

An external data service can specify that a property has dependent properties. The
values of the dependent properties are determined by the value of that property.
You can call the POST method when the property value is modified so that it can
return updated values for the dependent properties. For example, you might use
an external data service to populate a choice list with cities from a state that a case
worker selects. When a case worker selects California as the state, you call the POST
method to populate the choice list with the appropriate California cities.

URI

/CASEREST/v1/casetype/{case type name}

The URI for the POST method includes the following path element:

Table 40. Path element for the POST method

Name Type Description

{case type name} String The symbolic name of case type

Developing case management applications with the REST protocols 47

Request content for retrieving data for a new case
{

"TargetObjectStore" : "<target object store name>",
"RequestMode":"<request mode>",
"ClientContext":
{
"<key>":"<value>",
// More key value pairs"

}
}

Request content for retrieving updates for dependent properties
{

"TargetObjectStore" : "<target object store name>",
"RequestMode":"<request mode>",
"ExternalDataIdentifier":"<string set by the external data service>",
"Properties",
[
{

"symbolicName" : "<property name>",
"value" : "<current value>",

}
{

// More properties
}
],
"ClientContext":
{
"<key>":"<value>",
// More key value pairs

}
}

Request parameters

Table 41. Request parameters for the POST method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

A symbolic name is called a unique identifier in IBM Case Manager.

RequestMode String No One of the following request modes that indicates the reason that the
POST method is being called:

initialNewObject
Use this value if you are calling the POST method to get the
properties for a new case.

inProgressChanges
Use this value if you are calling the POST method to update
the values of dependent properties.

The default value for the RequestMode is inProgressChanges.

ExternalData
Identifier

String Yes, if
using an
external
data
service to
get values
of
dependent
properties

A string that indicates the state of the data that was returned by the
external data service. The value of this property is set by the service
and is not modified by the client.

48 Development Guide

Table 41. Request parameters for the POST method (continued)

Name Type Required? Description

Properties Array Yes An array that contains values for the properties that are defined for
the case type. For each property, you specify the symbolic name of
the property and the value for the property.
Important: The value must match the data type of the property.

ClientContext JSON
object

No An array that contains a series of key value pairs that specify
contextual information for a specific work item. This parameter is
used to send information to an external data service when a case
worker opens the work item.

Response content

The content of the response that is returned by the POST method depends on the
setting of the RequestMode property. If this property is set to initialNewObject, the
response contains all the properties that are defined for the specified case type. If
the property is set to inProgressChanges, the response contains only those
properties that were updated by an external data service based on a change to
another property value.

The POST method also returns one of the following response codes:

Table 42. Response codes for the POST method

Code Description

200 OK The method completed successfully. The response that is returned by the POST method
includes the information for the specified case types.

400 Bad Request One of the required parameters was missing, or a parameter value was invalid.

404 Not Found The case type that was specified in the request was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: POST method request

This sample code requests the updated values for the DH2_City property when a
case worker selects CA for the DH2_State property:
POST /CaseManager/CASEREST/v1/casetype/DH2_MyCase
{

"TargetObjectStore": "CMTOSDH",
"ExternalDataIdentifier": "-1,0",
"Properties": [

// Properties not related to external data

{
"SymbolicName": "CmAcmCaseIdentifier",
"Value": null

},
{

"SymbolicName": "CmAcmCaseState",
"Value": 0

},

// ...

{
"SymbolicName": "DH2_State",

Developing case management applications with the REST protocols 49

"Value": "CA"
},
{

"SymbolicName": "DH2_PropOne",
"Value": null

},
{

"SymbolicName": "DH2_City",
"Value": null

},
{

"SymbolicName": "DH2_MVInt",
"Value": [
0,
100

]
},
{

"SymbolicName": "DH2_MVString",
"Value": []

}
]

}

Example: POST method response

This sample code shows the choice list items that are returned when the DH2_City
property is set to California:
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"externalDataIdentifier": "1,0",
"properties": [
{

"symbolicName": "DH2_City",
"hidden": false,
"required": true,
"hasDependentProperties": false,
"choiceList": {
"displayName": "CityChoiceList",
"choices": [

{
"displayName": "Los Angeles",
"value": "Los Angeles"

},
{
"displayName": "San Diego",
"value": "San Diego"

},
{
"displayName": "San Francisco",
"value": "San Francisco"

}
]

}
}

]
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

50 Development Guide

“Common JSON payload for cases and case types” on page 23
“Request modes” on page 106
“Client context for work items” on page 107

Case page resource
The case page resource represents the physical identifier of the Case Details page,
the Add Case page, or Split Case page that is used for a specific case type. You can
use this identifier to open the page in the user interface.

“GET method for the case page resource”

GET method for the case page resource:

The GET method for the case page resource returns the page ID of the Case Details
page, the Add Case page, or the Split Case page for a specific case type.

URI

/CASEREST/v1/casetype/{case type name}/page

The URI for the GET method includes the following path element:

Table 43. Path element for the GET method

Name Type Description

{case type name} String The symbolic name of the case type.

The URI for the GET method includes the following parameters:

Table 44. Parameters for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

PageType String Yes One of the following values that indicates the page for which the ID is
to be returned:

CaseCreationPage
Returns the ID for the Add Case page.

CasePage
Returns the ID for the Case Details page.

CaseSplitPage
Returns the ID for the Split Case page.

Role String No The name of the role for which the Case Details page ID is to be
returned.

Specify this parameter when the PageType parameter is set to CasePage
to return the ID of the Case Details page that is used for a specific role.

This parameter is not valid if the PageType parameter is set to
CaseCreationPage or CaseSplitPage.

Request content

The request for this method contains no JSON content.

Developing case management applications with the REST protocols 51

Response content

The method returns the page ID of the specified page type for the case type.

The GET method also returns one of the following response codes:

Table 45. Response codes for the GET method

Code Description

200 OK The method completed successfully and returned the requested page ID.

400 Bad Request The required TargetObjectStore parameter or PageType parameter was not specified, or a
parameter value was invalid.

404 Not Found The case folder that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests the page ID for the Case Details page that is defined for
the caseWorker role in the AUTO_CollisionClaim case type:
GET http://example.com:9080/CaseManager/CASEREST/v1/casetype
/AUTO_CollisionClaim/page?TargetObjectStore=MyTOS
&PageType=CasePage&Role=caseWorker HTTP/1.1
Host: www.example.net

Example: GET method response

This sample code shows the page ID for the Case Details page that is defined for
the caseWorker role in the AUTO_CollisionClaim case type:
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"PhysicalPageId": "e134f49999c112399a"
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“GET method for the list of view definitions resource” on page 40

Getting and changing case information
You can use the IBM Case Manager REST protocol to get and set case data,
including case comments, case history, and tasks.

Cases and case folders

A case is represented as a case folder within the folder hierarchy in the target
object store for a deployed solution. A case is filed in folder hierarchy under the
Cases folder for its case type. A case folder contains the tasks, history, and
comments that are associated with the case.

To prevent any one folder from being overloaded with too many objects, the new
case folder is placed in a subfolder that is based on the year, month, and day that
the case was created. The subfolder also includes a randomly generated number to

52 Development Guide

identify the parent folder. The following example illustrates the general structure of
the folder hierarchy for a deployed solution. In this example, the subfolder
hierarchy is represented as follows:
v yyyy: The four-digit year
v mm: The two-digit month
v dd: The two-digit day
v pppp: The four-digit parent folder number
/IBM Case Manager

/Solution Deployments
/<solution name 1>

/Case Types /<Case Type 1a folder>
/Cases

/yyyy
/mm

/dd
/pppp

/<case folder. Name = sequence number>
... (more case instance folders)

/<Case Type 1b folder>
/Cases

/yyyy
/mm

/dd
/pppp

/<case folder. Name = sequence number>
... (more case types for solution 1)

/<solution name 2>
/Case Types
/<Case Type 2a folder>

/Cases
/yyyy
/mm

/dd
/pppp

/<case folder. Name = sequence number>
...

/<Case Type 2b folder>
/Cases

/yyyy
/mm

/dd
/pppp

/<case folder. Name = sequence number>
... (more case types for solution 2)

... (more solutions)

“Cases resource”
“Particular case instance resource” on page 56
“Status of particular case resource” on page 67
“Related cases for a particular case resource” on page 68
“List of task instances resource” on page 71
“Create new task resource” on page 74
“Particular task instance resource” on page 80
“Case comments resource” on page 82
“Case history resource” on page 87

Cases resource
The cases resource represents the cases that are defined in your case management
system. You can use this resource to create a case.

Developing case management applications with the REST protocols 53

The cases resource creates a case that is represented as a case folder in the folder
hierarchy in the target object store for a deployed solution. A case is filed in the
folder hierarchy under the cases folder for its case type. To prevent any one folder
from being overloaded with too many objects, the cases resource places the new
case folder in a subfolder. The subfolder path is based on the year, month, and day
that the case was created along with a unique number assigned to the parent
folder.

“POST method for the cases resource”
Related reference:
“Client context for work items” on page 107

POST method for the cases resource:

The POST method for the cases resource creates a case by creating a case folder
under the cases folder for its case type.

The property values that are submitted in the POST method request are validated
by Content Platform Engine. If you use an external data service for the case type,
the property values in the request are also validated by the IBM Case Manager
REST protocol against the values that are returned by the service. The protocol
validates the values against any property attributes that are set by the service, such
as the minimum value, maximum value, and choice list.

When the case is saved, the value that was specified for a property in Case
Manager Client is persisted for the case if the value meets the constraints that are
set by the external data service. If a value is not specified for a property in Case
Manager Client, the external data service can set a value that is persisted for the
case.

URI

/CASEREST/v1/cases

Request content
{

"CaseType": "<case type symbolic name>",
"TargetObjectStore": "<target object store name>",
"ReturnUpdates": <true or false>,
"ExternalDataIdentifier" : "<string set by external data service">,
"Properties" :
[// the array of case property values may be empty
{

"SymbolicName": "<symbolic name of case property>",
"Value" : <property value>

},
...

]
"ClientContext":
{
"<key>":"<value>",
// More key value pairs

}
}}

Table 46. Request parameters for the POST method

Name Type Required? Description

CaseType String Yes The symbolic name that is assigned to the case type.

54 Development Guide

Table 46. Request parameters for the POST method (continued)

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the
case.

A symbolic name is called a unique identifier in IBM Case
Manager.

ReturnUpdates Boolean No A Boolean value that indicates whether the method is to
return the property values after the case is created. Set this
parameter to true to force the method to return the case
property values.

By default, this parameter is set to false.

ExternalData
Identifier

String No A string that indicates the state of the data that was
returned by the external data service.
Tip: Include this parameter in the request if a value was
provided in response to a previous call to get data from the
external data service.

Properties Array No An array that contains values for the properties that are
defined for the case type. For each property, you specify the
symbolic name of the property and the value for the
property.
Important: The value that is specified for the property
must match the data type of the property.

You can use the particular case type resource to get a list of
the properties that are defined for the case type.

ClientContext Array No An array that contains a series of key value pairs that
specify contextual information for a specific work item. This
parameter is used to send information to an external data
service when a case worker opens the work item.

Response content

The POST method returns the case title, case identifier, and case folder identifier for
the new case folder. The POST method also returns one of the following response
codes:

Table 47. Response codes for the POST method

Code Description

201 Created The method completed successfully. The POST method returns the identifier that is assigned
to the new case folder.

400 Bad Request One of the required parameters was missing, or a parameter value was invalid.

404 Not Found The case type that was specified in the request was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: POST method request

This sample code requests a case of the AUTO_CollisionClaim case type to be
created and the property values to be returned after the case is created.

Tip: If the ReturnUpdates parameter is set to true, the response from the POST
method is similar to the response from the GET method.

Developing case management applications with the REST protocols 55

POST http://example.com:9080/CaseManager/CASEREST/v1/cases
HTTP/1.1
Host: www.CaseMgmtExample.net
Content-Type: charset.json;charset-UTF-8
{

"CaseType": "AUTO_CollisionClaim",
"TargetObjectStore": "ATOSME",
"ReturnUpdates": false,
"Properties":
[

{
"SymbolicName" : "AUTO_ClaimDate",
"Value" : "2010-07-16T21:50:36Z",

},
{
"SymbolicName" : "AUTO_ClaimStatus",
"Value" : "0",

}
]

}

Example: POST method response

This sample code shows the property values that are returned for the new
AUTO_CollisionClaim case:
HTTP 1.1 201 OK Created
Content-Type: application/json;charset-UTF-8
{

"CaseTitle": "DH2_MyCase_000000100402",
"CaseIdentifier": "DH2_MyCase_000000100402",
"CaseFolderId": "{A42BE8EB-848F-4CBD-B2F7-64FAF2CE7081}"

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23
“Client context for work items” on page 107

Particular case instance resource
The particular case instance resource represents a case. You can use this resource to
return or update the property values for a case.

You can also use the POST method of this resource to split an existing case to form
two cases. For example, an insurance claim for a car accident might initially be
filed as a single case. After further investigation, you might decide to split the
original case into two cases. The original case tracks the claim for damage to the
car, and the second case covers the claim for injuries.

“GET method for the particular case instance resource” on page 57
“POST method for the particular case instance resource” on page 60
“PUT method for the particular case instance resource” on page 64

Related reference:
“Response to a request for case data” on page 108
“Client context for work items” on page 107

56 Development Guide

GET method for the particular case instance resource:

The GET method for the particular case instance resource returns the properties that
are defined for a case.

URI

/CASEREST/v1/case/{case folder id}

The URI for the GET method includes the following path element:

Table 48. Path element for the GET method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for which
the method is to return properties.

The URI for the GET method includes the following parameter:

Table 49. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

Request content

The request for this method contains no JSON content.

Response content

The GET method returns the following information for a specified case folder:
v The symbolic name of the case that is represented by the case folder
v A list of the case properties and their current values

If you are using an external data service to populate the case properties, the GET
method includes information from the external service in the response. Typically,
the values provided by the external data service are the same as the current
property values for the case. However, if the values for a property are different, the
Value attribute for the property differs from the OriginalValue attribute.

The GET method also returns one of the following response codes:

Table 50. Response codes for the GET method

Code Description

200 OK The method completed successfully, and the list of properties for the specified case was
returned.

400 Bad Request A required parameter was missing, or the parameter value was invalid.

404 Not Found The specified case folder was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Developing case management applications with the REST protocols 57

Example: GET method request

This sample code requests the current property values for case
C5AB1E9D-30D1-4D21-ADDF-F248FF1354B7:
GET
http://localhost:9081/CaseManager/CASEREST/v1/case/
C5AB1E9D-30D1-4D21-ADDF-F248FF1354B7
?TargetObjectStore=CMTOSDH

Example: GET method response

This sample code shows the current property values that are returned for case
C5AB1E9D-30D1-4D21-ADDF-F248FF1354B7:
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"Properties": [

{
"SymbolicName": "DateCreated",
"DisplayName": "Date Created",
"Value": "2011-04-28T18:49:55Z",
"OriginalValue": "2011-04-28T18:49:55Z",
"DisplayMode": "readwrite",
"Description": "The date and time this object was created.",
"PropertyType": "datetime",
"Cardinality": "single",
"Updatability": "readonly",
"Required": false,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": true,
"DefaultValue": null,
"MaxValue": "9999-12-31T23:59:59Z",
"MinValue": "1753-01-01T00:00:00Z",
"HasDependentProperties": false

},

// Additional properties omitted

{
"SymbolicName": "CmAcmCaseIdentifier",
"DisplayName": "Case Identifier",
"Value": "DH2_MyCase_000000100602",
"OriginalValue": "DH2_MyCase_000000100602",
"DisplayMode": "readwrite",
"Description": "A specially formatted identifier for
Case Folder instances, consists of Case Folder subclass
symbolic class name, \"_\" and then a 12 digit sequence
number with leading zeros.",

"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": false,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": true,
"DefaultValue": null,
"MaxLength": 85,
"HasDependentProperties": false

},
{

58 Development Guide

"SymbolicName": "CmAcmCaseState",
"DisplayName": "Case State",
"Value": 2,
"OriginalValue": 2,
"DisplayMode": "readwrite",
"Description": "An integer choice property that defines the possible
the possible states of Case Folder instance.",

"PropertyType": "integer",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": true,
"DefaultValue": 0,
"MaxValue": null,
"MinValue": null,
"ChoiceList": {
"DisplayName": "CmAcmCaseStateChoiceList",
"Choices": [
{
"ChoiceName": "New",
"Value": 0
},
{
"ChoiceName": "Initializing",
"Value": 1
},
{
"ChoiceName": "Working",
"Value": 2
},
{
"ChoiceName": "Complete",
"Value": 3
},
{
"ChoiceName": "Failed",
"Value": 4
}
]

},
"HasDependentProperties": false

},
{

"SymbolicName": "DH2_State",
"DisplayName": "State",
"Value": "CA",
"OriginalValue": "CA",
"DisplayMode": "readwrite",
"Description": "State where home office is located",
"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxLength": 2,
"ChoiceList": {
"DisplayName": "StateChoiceList",
"Choices": [
{

"ChoiceName": "New York",

Developing case management applications with the REST protocols 59

"Value": "NY"
},
{

"ChoiceName": "California",
"Value": "CA"

},
{

"ChoiceName": "Nevada",
"Value": "NV"

}
]

},
"HasDependentProperties": true

},

// Additional properties omitted

]
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23

POST method for the particular case instance resource:

The POST method for the particular case instance resource returns information for a
specific case. You can call this method to create a new case from an existing case.
You can also call this method to return information for a case. If you use an
external data service, you can pass client context information in the request to
provide contextual information about work items.

URI

/CASEREST/v1/case/{case folder id}

The URI for the POST method includes the following path element:

Table 51. Path element for the POST method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case that is to
be split.

Request content for creating a split case
{

"CaseType": "case type symbolic name",
"TargetObjectStore": "target object store name",
"OperationDescription": "operation description,
"Operation": "split",
"ExternalDataIdentifier": "string set by the external data service",
"Properties" :
[// the array of case property values may be empty

{
"SymbolicName": "symbolic name of case property",
"Value" : "property value"
},
...

60 Development Guide

],
"DocumentFiling":
[// the array of folders to have documents filed in

{
"FolderName": "path to case subfolder, or just '/'",
"DocumentId": "vsid for P8 document or PID for CM8 document"
},
...

]
}

No data from the original case is used when creating the new split case. You must
pass in the property values you want to set on the new split case by using the
properties attribute.

Request content for getting case data
{

"TargetObjectStore": "<target object store name>",
"Operation": "fetchProperties",
"ClientContext":
{

"key": "value",
// More key value pairs

}
}

Request content for adding a case relationship
{

"TargetObjectStore": "target object store name",
"Operation": "relate",
"CaseFolderId": "GUID of target case",
"OperationDescription": "operation description - this parameter is optional",
"RelationshipCategory": "category name - this parameter is optional",
"TwoWayRelationship": "true/false defaults to true - this parameter is optional"

}

Tip: A user can create relationships between cases even if that user does not have
write permission for the case folders. The request to relate a case can succeed even
if the user has only read permission on the folder.

Request content for removing a case relationship
{

"TargetObjectStore": "target object store name",
"Operation": "unrelate",
"RelationshipId": "GUID of relationship to delete",
"OperationDescription": "operation description - this parameter is optional"

}

Tip: A user can remove relationships between cases even if the user does not have
write permission on the case folders. The request to remove the relationship
between cases can succeed even if the user has only read permission on the
folders.

Developing case management applications with the REST protocols 61

Request parameters

Table 52. Request parameters for the POST method

Name Type Required? Description

CaseType String Yes The symbolic name that is assigned to the case type of the case
that is to be created by the POST method. The CaseType parameter
is not required for the relate operation, and it is not required for
the unrelate operation.

TargetObjectStore String Yes The symbolic name of the object store that is to contain the new
case.

A symbolic name is called a unique identifier in IBM Case
Manager.

Operation
Description

String No Text that describes the action that is indicated by the POST
method.

Operation String Yes One of the following operations that the POST method is to run:

split Specify this option to reuse data from the current case to
create a case.

fetchProperties
Specify this option to return data for the current case.

relate Specify this option to relate another case to the current
case.

unrelate
Specify this option to remove the relationship between
this case and a related case.

ExternalData
Identifier

String No A string that indicates the state of the data that was returned by
the external data service. The external identifier is set by the
external data service when the properties are fetched for the first
time. This identifier is passed back to the external data service for
splitting a case or creating a case. The value of this property is set
by the service and is not modified by the client.
Tip: If you are using an external data service and the Operation
parameter is set to split, you can include the
ExternalDataIdentifier parameter in the request, since the
identifier was set when the properties were fetched. This
parameter is not required if the Operation parameter is set to
fetchProperties, because the identifier might not be set by the
external data service.

Properties Array No An array that contains values for the properties that are defined
for the case type. For each property, you specify the symbolic
name of the property and the value for the property.
Important: The value must match the data type of the property.

You can use the particular case type resource to get a list of the
properties that are defined for the case type.

DocumentFiling Array No An array that identifies any documents to be attached to the new
case and the folder in which the documents are to be filed. Use
the version ID to identify a document. Use a slash (/) to indicate
the root folder. Use a slash and the folder name to indicate a
subfolder under the root folder, for example, /folder1.

ClientContext Array No An array that contains a series of key value pairs that specify
contextual information for a specific work item. This parameter is
used to send information to an external data service when a case
worker opens the work item.

62 Development Guide

Table 52. Request parameters for the POST method (continued)

Name Type Required? Description

RelationshipId String No The GUID of the related case you want to remove the relationship
from.

RelationshipCategory String No An optional string that describes the category of the relationship.

TwoWayRelationship String No Indicates whether the related case also has a relationship with the
current case. The value of the parameter must be true or false.
The default value is true.

Response content

The content of the response that is returned by the POST method depends on the
operation that you are running. If you are running the split operation, the method
returns the identifier of the new case that was created by reusing data from an
existing case. If you are running the fetchProperties operation, the method
returns the case properties.

The POST method also returns one of the following response codes:

Table 53. Response codes for the POST method

Code Description

200 OK The method completed successfully, and the case was created. The response that is returned
by the POST method contains the case folder ID for the new case.

201 OK The method completed successfully, and the case relationship was created. The response that
is returned by the POST method contains the ID of the new case relationship.

400 Bad Request A required parameter was missing, or a parameter value was invalid.

404 Not Found The case folder that was specified in the request was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

POST method request for splitting a case

This sample code shows a request for the case with the ID ending in
EE55D8BCF2ED to be split to create a case of the My_casetype case type:
#Request
POST /CASEREST/v1/case/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED
HTTP/1.1
Host: www.CaseMgmtExample.net
Content-Type: application/json;charset-UTF-8
{

"CaseType": "My_casetype",
"TargetObjectStore": "myTargetOS",
"OperationDescription": "splitting case1 to case2",
"Operation": "split"
"Properties" :
[
{

"SymbolicName" : "MY_property1",
"Value" : "property1Value"

}
],
"DocumentFiling" :
[// the array of folders to have documents filed in
{

"FolderName": "/CaseSubFolder1",

Developing case management applications with the REST protocols 63

"DocumentId": "12345678-0000-0000-0000-aabbccddeeff"
}

]
}

POST method response for splitting a case

This sample code shows the case folder ID that is returned for the new case that
was created by splitting the case given in the POST request:
HTTP 1.1 201 OK Created
Content-Type: application/json;charset-UTF-8
{

"CaseFolderId": "{12345678-1234-1234-1234-aabbccddeeff}"
}

POST method request for relating a case

This sample code shows a request for a case to be related to a case of the
My_casetype case type:
#Request
POST /CASEREST/v1/case/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED
HTTP/1.1
Host: www.CaseMgmtExample.net
Content-Type: application/json;charset-UTF-8
{

"CaseType": "My_casetype",
"TargetObjectStore": "myTargetOS",
"Operation": "relate",
"CaseFolderId": "{12345678-1234-1234-1234-aabbccddeeff}",
"OperationDescription": "description of operation",
"RelationshipCategory": "category name",
"TwoWayRelationship": "true"

}

POST method response for create operation

This sample code shows the relationship ID that is returned for the relationship
that was created:
HTTP 1.1 201 OK Created
Content-Type: application/json;charset-UTF-8
{

"RelationshipId": "{12345678-1234-1234-1234-aabbccddeeff}"
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23
“Client context for work items” on page 107

PUT method for the particular case instance resource:

The PUT method for the particular case instance resource updates the case
properties in the specified case folder with new values. Optionally, the method
returns the full list of case properties with the updated values.

The property values that are submitted in the PUT method request are validated by
Content Platform Engine. If you use an external data service for the case type, the

64 Development Guide

property values in the request are also validated by the service. The service
validates the values against any property attributes that are set by the service,
which include the minimum value, maximum value, and choice list.

When the case is saved, the value that was specified for a property in Case
Manager Client is persisted for the case if the value meets the constraints set by
the external data service. If a value is not specified for a property in Case Manager
Client, the external data service can set a value that is persisted for the case.

URI

/CASEREST/v1/case/{case folder id}

The URI for the PUT method includes the following path element:

Table 54. Path element for the PUT method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for which the PUT
method is to update property values.

Request content
{

"TargetObjectStore": "<target object store name>",
"ExternalDataIdentifier" : "<string set by external data service>",
"ReturnUpdates": <true or false>
"Properties" :
[// the array of case property values can be empty

{
"SymbolicName": "<symbolic name of case property>",
"Value" : <property value>
},
...

]
"ClientContext":
{

"<key>":"<value>",
// More key value pairs

}
}

Table 55. Request parameters for the PUT method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that is to contain the
new case.

A symbolic name is called a unique identifier in IBM Case
Manager.

ExternalData
Identifier

String No A string that indicates the state of the data that was
returned by the external data service.
Tip: Include this parameter in the request if a value was
provided in response to a previous call to get data from the
external data service.

ReturnUpdates Boolean No A Boolean value that indicates whether the method is to
return the updated case property values. Set this parameter
to true to force the method to return the case property
values.

By default, this parameter is set to false.

Developing case management applications with the REST protocols 65

Table 55. Request parameters for the PUT method (continued)

Name Type Required? Description

Properties Array No An array that contains values for the properties that are
defined for the case type. For each property, you specify the
symbolic name of the property and the value for the
property.
Important: The value that is specified for the property must
match the data type of the property.

You can use the particular case type resource to get a list of
the properties that are defined for the case type.

ClientContext Array No An array that contains a series of key value pairs that
specify contextual information for a specific task.

Response content

By default, the PUT method returns one of the following response codes. Optionally,
the method also returns the full list of case properties with the updated values.

Table 56. Response codes for the PUT method

Code Description

200 OK The method completed successfully. The case was updated with the new property values.

400 Bad Request The required TargetObjectStore parameter was missing, or the parameter value was invalid.

404 Not Found The specified case folder was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Examples: PUT method request

This sample code requests the update of values for the five properties of a case
(with ID ending with 354B7):
PUT
http://localhost:9081/CaseManager/CASEREST/v1/case/
C5AB1E9D-30D1-4D21-ADDF-F248FF1354B7

{
"TargetObjectStore":"CMTOSSH",

"Properties":
[
{"SymbolicName":"DH2_State","Value":"NV"},
{"SymbolicName":"DH2_PropOne","Value":8},
{"SymbolicName":"DH2_City","Value":"Reno"},
{"SymbolicName":"DH2_MVInt","Value":[0,101,300,340]},
{"SymbolicName":"DH2_MVString","Value":["One","Three","Sixty"]}

]
}

Examples: PUT method response

This sample code shows the response code that is returned after the property
values are updated in case C5AB1E9D-30D1-4D21-ADDF-F248FF1354B7. Because
the ReturnUpdates parameter was not set in the request, the method does not
return the updated property values.

66 Development Guide

HTTP 1.1 200 OK
Content-Type: application/json;charset-UTF-8
{ }

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“Common JSON payload for cases and case types” on page 23
“Client context for work items” on page 107

Status of particular case resource
The status of particular case resource represents status information about a case.
You can use this resource to determine whether a case completed successfully.

“GET method for the status of particular case resource”

GET method for the status of particular case resource:

The GET method for the status of particular case resource returns a value that
indicates the status of a specified case. The status indicates the state of the case as
complete, failed, initializing, new, or working.

URI

/CASEREST/v1/case/{case folder id}/status

The URI for the GET method includes the following path element:

Table 57. Path element for the POST method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for
which status is to be returned.

The URI for the GET method includes the following parameter:

Table 58. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case type.

A symbolic name is called a unique identifier in IBM Case Manager.

Request content

The request for this method contains no JSON content.

Response content

The GET method returns the case identifier, the date that the case was created, and
the date that the case was last modified. In addition, the method returns one of the
following values that indicates the status of the case. You can query this value to
determine whether a case was successfully created.

Developing case management applications with the REST protocols 67

Table 59. Case status values

Value Description

Complete All tasks that are associated with the case are completed.

Failed The case was not created. The response might still include a case ID
and a case creation date if the case folder was created.

Initializing The case is being created, but is not yet ready to be worked on.

New The process of creating the case started.

Working The case was created and is ready to be worked on.

The GET method also returns one of the following response codes:

Table 60. Response codes for the GET method

Code Description

200 OK The method completed successfully. The response that is returned by the GET method
includes the status of the specified case.

400 Bad Request The required TargetObjectStore parameter was missing, or the parameter value was invalid.

404 Not Found The case specified in the request was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests the status of the case in a specified case folder:
#Request
GET /CASEREST/v1/case/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED/status
?TargetObjectStore=MyExampleObjectStore
HTTP/1.1
Host: www.CaseMgmtExample.net

Example: GET method

This sample code shows the response to the request, with the status of the case:
#Response

HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8

{
"Status": "Working",
"CaseIdentifier":"MY_Case_000000100105",
"DateCreated":" 2010-07-16T21:50:36Z",
"DateLastModified":"2010-07-16T21:50:36Z"

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

Related cases for a particular case resource
The related cases for a particular case resource represent the set of cases that are
related to a specific case. You can use this resource to return a list of the related
cases. For example, you can return a list of the cases that were created by splitting
the current case.

68 Development Guide

IBM Case Manager supports the following relationships between cases:

Table 61. Case relationships

Relationship Description

split source The related case was created when the current case was split.

split target The current case was created when the related case was split.

“GET method for the related cases for a particular case resource”

GET method for the related cases for a particular case resource:

The GET method for the related cases for a particular case resource returns
information for each case that is related to a specified case. Related cases include
the case that was split to create the current case and any cases that were created by
splitting the current case. Results can be filtered by type or category of
relationship.

URI

/CASEREST/v1/case/{case folder id}/cases

The URI for the GET method includes the following path element:

Table 62. Path element for the GET method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for which related cases
are to be returned.

The URI for the GET method includes the following parameters:

Table 63. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

A symbolic name is called a unique identifier in IBM Case Manager.

RelationshipType String No The type of relationship between the case that is returned and the
case that is initiating the request. Use this parameter to filter the
results by the type of relationship.

RelationshipCategory String No The category of the relationship between the case that is returned
and the case that is initiating the request. Use this parameter to
filter the results by the category of relationship. Use this parameter
only if RelationType is "Related".

Request content

The request for this method contains no JSON content.

Response content

For each case that is related to the specified case, the GET method returns the
following properties:
v Status
v Case title

Developing case management applications with the REST protocols 69

v Case identifier
v Date created
v Creator
v Relationship type
v Relationship ID
v Relationship category

The GET method also returns one of the following response codes:

Table 64. Response codes for the GET method

Code Description

201 Created The method completed successfully and returned the requested case comments.

400 Bad Request The required TargetObjectStore parameter was not specified, or the parameter value was
invalid.

404 Not Found The case folder that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests a list of the cases that are related to a specified case
(with ID ending in F2ED):
#Request
GET /CASEREST/v1/case/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED/cases
?TargetObjectStore=MyExampleObjectStore
HTTP/1.1
Host: www.CaseMgmtExample.net

Example: GET method response

This sample code shows the response to the request, with the list of the cases that
are related to the case in the request:
#Response

HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8

[
{

"Status": "Working",
"CaseTitle": "MY_Case_000000100105",
"CaseIdentifier":"MY_Case_000000100105",
"CaseFolderId":"1D56A997-0E42-406E-AAC4-EE55D8BCF2ED",
"DateCreated":" 2010-07-16T21:50:36Z",
"Creator": "Admin",
"RelationshipType": "split source",
"RelationshipId": "{12345678-1234-1234-1234-aabbccddeeff}"

},
{

"Status": "Working",
"CaseTitle": "MyCaseTitle",
"CaseIdentifier":"MY_Case_000000100106",
"CaseFolderId":"2E67A997-0E42-406E-AAC4-EE55D8BCF2ED",
"DateCreated":" 2010-07-16T21:50:36Z",
"Creator": "Admin",
"RelationshipType": "split target",
"RelationshipID": "{22345678-1234-1234-1234-aabbccddeeff"}

},
{

70 Development Guide

"Status": "Working",
"CaseTitle": "MY_Case_000000100107",
"CaseIdentifier":"MY_Case_000000100107",
"CaseFolderId":"3F47B997-0E42-406E-AAC4-EE55D8BCF2ED",
"DateCreated":" 2010-07-16T21:50:36Z",
"Creator": "Admin",
"RelationshipType": "split target"
"RelationshipID": "{32345678-1234-1234-1234-aabbccddeeff"}

},
{

"Status": "Working",
"CaseTitle": "MY_Case_000000100107",
"CaseIdentifier": "MY_Case_000000100107",
"CaseFolderId": "3F47B997-0E42-406E-AAC4-EE55D8BCF2ED",
"DateCreated": "2010-07-16T21:50:36Z",
"Creator": "Admin",
"RelationshipType”: "Related",
"RelationshipId": "{42345678-1234-1234-1234-aabbccddeeff}",
"RelationshipCategory": "user profile"

}]

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

List of task instances resource
The list of task instances resource provides a list of all the tasks instances that are
running for a particular case instance.

“GET method for the list of task instances resource”

GET method for the list of task instances resource:

The GET method returns a collection that lists all of the tasks that are running for a
particular case. In the collection, the tasks are grouped according to whether they
are required, optional, or disabled.

URI

/CASEREST/v1/case/{case folder id}/tasks

The URI for the GET method includes the following path element:

Table 65. Path element for the GET method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for which tasks are to be
returned.

The URI for the GET method includes the following parameters:

Table 66. Parameters for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

A symbolic name is called a unique identifier in IBM Case Manager.

Developing case management applications with the REST protocols 71

Table 66. Parameters for the GET method (continued)

Name Type Required? Description

Grouping String Yes The identifier that indicates grouping for the tasks. You must set this
parameter to ROD, which represents the following groups:

Required
This group includes tasks for which the RequiredState
property is set to REQUIRED_BY_USER or
REQUIRED_BY_INCLUSIVE.

Optional
This group includes tasks that are enabled and for which the
RequiredState property is set to OPTIONAL.

Disabled
This group includes tasks that are disabled and for which the
DisabledState property is set to DISABLED_BY_USER,
DISABLED_BY_EXCLUSIVE, or DISABLED_BY_ABORTED.

The GET method does not return groups that are empty.

The groups can be returned in any order. Within each group, the tasks
are ordered first by the task state and then by the task name.

Request content

The request for this method contains no JSON content.

Response content

For the task, the method returns:
v The required state of the task
v The disabled state of the task
v The launch mode state of the task
v The date the task was created
v The task identifier
v The task name
v The task number
v The date the task was last modified
v Whether the task is hidden
v Whether the task is a container
v The process instance ID
v The date the task was last restarted
v The restart count
v The roster name

The GET method also returns one of the following response codes:

Table 67. Response codes for the GET method

Code Description

200 OK The method completed successfully and returned the requested list of tasks.

400 Bad Request The required TargetObjectStore parameter or Grouping parameter was not specified, or a
parameter value was invalid.

72 Development Guide

Table 67. Response codes for the GET method (continued)

Code Description

404 Not Found The case folder that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests a list of all the tasks that are running for a specified
case (with ID ending in F2ED):
GET http://example.com:9080/CaseManager/CASEREST/v1/case
/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED/tasks
?TargetObjectStore=MyExampleObjectStore&Grouping=ROD
HTTP/1.1
Host: www.CaseMgmtExample.net

Example: GET method response

This sample code shows the response to the request, with the list of tasks that are
running for the case given in the request. If a task is in the failed state, the
response also includes a FailureReason element that describes the reason for the
failure. The text provided for this element might not be available in languages
other than English.
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"Optional":
[
{

"RequiredState": 0, "TaskState": 3, "DisabledState": 0,
"LaunchMode": 0, "DateCreated": "2010-07-16T21:50:36Z",
"TaskId": "{3B5C8E64-43FE-4188-AC72-457A4B8E374C}",
"TaskName": "ETECase2 Task number 2",
"DateLastModified": "2010-07-16T21:50:36Z",
"IsHidden": false,
"IsContainer": false,
"ProcessInstanceId": "0907E35E7DC03B4FA03F6B6767633FB2",
"LastRestartDate": "2010-07-16T21:50:36Z",
"RestartCount": "1",
"RosterName": "MySolution1"

}
],
"Required":
[
{

"RequiredState": 1, "TaskState": 1, "DisabledState": 0,
"LaunchMode": 4, "DateCreated":"2010-07-16T21:50:36Z",
"TaskId": "{CB3F1916-8D03-44C8-9598-23589D9ED78F}",
"TaskName": "ETECase2 Task number 1",
"DateLastModified": "2010-07-16T21:50:36Z"
"IsHidden": false,
"IsContainer": false,
"ProcessInstanceId": "0907E35E7DC03B4FA03F6B6767633FB1",
"LastRestartDate": null,
"RestartCount": "0",
"RosterName": "MySolution1"

}
]

}

Developing case management applications with the REST protocols 73

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

Create new task resource
By using the create new task resource, a case worker can add a user-created task to
a case. You can use the GET method that is defined for this resource to retrieve the
launch step information for the selected user-created task type. You can then use
the POST method to add a new user-created task of that type to the case.

You use this resource only to create a user-created task. Tasks that are not
user-created are created automatically either when a case is created or, for
repeatable tasks, as needed.

“GET method for the create new task resource”
“POST method for the create new task resource” on page 77

GET method for the create new task resource:

The GET method returns the launch step information for the specified task type that
is required to add a user-created task to the case. The launch step information is
passed to the POST method to start the user-created task.

Remember: You must call the GET method if the RequiresLaunchInfo property in
payload returned by the GET method for the list of discretionary task types
resource is set to true.

URI

/CASEREST/v1/case/{case folder id}/tasktype/{symbolic task name}

The URI for the GET method includes the following path elements:

Table 68. Path elements for the GET method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case to which the task is to be
added.

{symbolic task name} String The symbolic name of the task type to be used for the new task.

The URI for the GET method includes the following parameter:

Table 69. Parameter for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

Request content

The request for this method contains no JSON content.

74 Development Guide

Response content

The GET method returns the following information that is required to add a
user-created task to the case:
v Attachments
v System properties
v Workflow groups
v Data fields
v Step processor

The GET method also returns one of the following response codes:

Table 70. Response codes for the GET method

Code Description

200 OK The method completed successfully. The requested task type information was returned.

400 Bad Request The required TargetObjectStore parameter was not specified or a parameter value was
invalid.

404 Not Found The case folder ID or the symbolic task name specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests the launch step information for an
AUTO_ContactCustomer task:
GET http://example.com:9080/CaseManager/CASEREST/v1/case
/12345678-abcd-dcba-4321-12345678/tasktype/
AUTO_ContactCustomer?TargetObjectStore=MyTOS HTTP/1.1
Host: www.example.net

Example: GET method response

This sample code shows the launch step information for an AUTO_ContactCustomer
task:
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"attachments": {},
"systemProperties":
{
"responses": ["yes", "no"],
"mapName": "Workflow",
"stepId": 0,
"stepName": "LaunchStep",
"caseFolderId": "{8CA37883-9BA1-4513-AF94-120EA4255A2B}",
"workflowName": "ETE_ETECase3_ETECase3Task1",
"selectedResponse": "",
"workObjectNumber": "D931E58C31E1DE44BDF519E88565614F",
"subject": "ETE_ETECase3_ETECase3Task1",
"authoredMapName": "Workflow",
"instruction": ""

},
"workflowGroups":
{
"F_Trackers":
{

"value" : [],

Developing case management applications with the REST protocols 75

"desc": "",
"mode": 3,
"modified": false,
"type": 64,
"name": "F_Trackers",
"isArray": true

}
},
"dataFields":
{
"ETEProperty1":
{

"value": true,
"desc": "",
"mode": 3,
"modified": false,
"type": 4,
"name": "ETEProperty1",
"isArray": false

},
"ETEProperty2":
{

"value": 163,
"desc": "",
"mode": 3,
"modified": false,
"type": 1,
"name": "ETEProperty2",
"isArray":false

},
"ETEProperty3":
{

"value": "TestStringChoice1",
"desc": "",
"mode": 3,
"modified": false,
"type": 2,
"name": "ETEProperty3",
"isArray": false

},
"ETEProperty4":
{

"value": 3.1415926535,
"desc": "",
"mode": 3,
"modified": false,
"type": 8,
"name": "ETEProperty4",
"isArray": false

},
"ETEProperty5":
{

"value": "2010-07-05T19:21:24Z",
"desc": "",
"mode": 3,
"modified": false,
"type": 16,
"name": "ETEProperty5",
"isArray":false

}
},
"stepProcessor":
{
"width":800,
"height":600,
"applicationName":"",
"appType":32,

76 Development Guide

"id":455,
"name":"ETE_LaunchPage",
"processorType":4,
"locations":{"8":"123456"}

}
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22
“GET method for the list of discretionary task types resource” on page 42

POST method for the create new task resource:

The POST method adds a new user-created task to a case by passing in the
workflow launch step information that was returned by the preceding GET method.

URI

/CASEREST/v1/case/{case folder id}/tasks

The URI for the POST method includes the following path element:

Table 71. Path element for the POST method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case to which the task is to
be added.

Request content

The POST method can create the user-created task successfully, but the response
might be lost in transit. In that situation, you can implement logic to send the
request again. The request returns one of the following responses:
v A 201 Created response code is returned if the initial POST request was never

received by the server, but the second request was received and successfully
processed.

v A 200 OK response code is returned if the initial POST request was received by
the server and successfully processed, but the response was lost. In this
situation, the second request is treated as a duplicate POST request.

v Any other return code indicates that an error occurred.
Content-Type: charset.json;charset-UTF-8
{ "TaskTypeName": "<Symbolic task type name>",

"TaskName": "<Task name to create>",
"StepElement": <JSON object returned by previous GET method>

}

Table 72. Request parameters for the POST method

Name Type Required? Description

TaskTypeName String Yes The symbolic name of the task type.

TaskName String Yes The name of the task that is being created.

Developing case management applications with the REST protocols 77

Table 72. Request parameters for the POST method (continued)

Name Type Required? Description

StepElement Object No A JSON object that contains the information that is required to launch
the task.

The StepElement parameter is required if the RequiresLaunchInfo
property that is returned by the GET method for the list of discretionary
task types resource is set to true.

Response content

The POST method returns the identifier for the new task. The POST method also
returns one of the following response codes:

Table 73. Response codes for the POST method

Code Description

201 Created The method completed successfully. The workflow that is associated with the task is started.

200 OK A duplicate POST request was detected, so the method does not create a task or start the
workflow. However, the response that is returned is the same as the response that is returned
for the initial request.

400 Bad Request The required TargetObjectStore parameter was missing, or a parameter value was invalid.

404 Not Found The case folder specified in the request was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: POST method request

This sample code submits a request to create a new user-created task.
POST http://example.com:9080/CaseManager/CASEREST/v1/case
/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED/tasks?
TargetObjectStore=MyExampleObjectStore HTTP/1.1
Host: www.CaseMgmtExample.net
Content-Type: charset.json;charset-UTF-8
{

"TaskTypeName": "AUTO_TakeCustomerToLunch",
"TaskName": "Take customer to lunch",
"StepElement":
{
"attachments": {},
"systemProperties":
{

"responses": ["yes","no"],
"mapName": "Workflow",
"stepId": 0,
"stepName": "LaunchStep",
"caseFolderId": "{8CA37883-9BA1-4513-AF94-120EA4255A2B}",
"workflowName": "ETE_ETECase3_ETECase3Task1",
"selectedResponse": "yes",
"workObjectNumber": "D931E58C31E1DE44BDF519E88565614F",
"subject": "ETE_ETECase3_ETECase3Task1",
"authoredMapName": "Workflow",
"instruction": ""

},
"workflowGroups":
{

"F_Trackers":
{

78 Development Guide

"value": [],
"desc": "",
"mode": 3,
"modified": false,
"type": 64,
"name": "F_Trackers",
"isArray": true

}
},
"dataFields":
{

"ETEProperty1":
{
"value": true,
"desc": "",
"mode": 3,
"modified": false,
"type": 4,
"name": "ETEProperty1",
"isArray": false

},
"ETEProperty2":
{
"value": 163,
"desc": "",
"mode": 3,
"modified": false,
"type": 1,
"name": "ETEProperty2",
"isArray": false

},
"ETEProperty3":
{
"value": "TestStringChoice1",
"desc": "",
"mode": 3,
"modified": false,
"type": 2,
"name": "ETEProperty3",
"isArray": false

},
"ETEProperty4":
{
"value": 3.1415926535,
"desc": "",
"mode": 3,
"modified": false,
"type": 8,
"name": "ETEProperty4",
"isArray": false

},
"ETEProperty5":
{
"value": "2010-07-05T19:21:24Z",
"desc":"",
"mode": 3,
"modified": false,
"type": 16,
"name": "ETEProperty5",
"isArray": false

}
},
"stepProcessor":
{

"width":800,
"height":600,
"applicationName":"",

Developing case management applications with the REST protocols 79

"appType":32,
"id":455,
"name":"ETE_LaunchPage",
"processorType":4,
"locations":{"8":"123456"}

}
}

}

Example: POST method response

This sample code shows the response that is returned when the new user-created
task is created.
HTTP/1.1 201 Created
Location: http://www.CaseMgmtExample.net/task/{task ID}
Content-Location: http://www.CaseMgmtExample.net/task/{task ID}
Content-Type: application/json;charset-UTF-8
{

"TaskId": "{CB3F1916-8D03-44C8-9598-23589D9ED78F}"
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

Particular task instance resource
The particular task instance resource represents an instance of a task. You can use
this resource to change the state of a task, for example, from disabled to started.

“PUT method for the particular task instance resource”

PUT method for the particular task instance resource:

The PUT method updates a specified task. Typically, you use this method to start,
enable, or disable a task.

To avoid unnecessary Content Platform Engine errors, the PUT method ensures that
the task is in the correct state before the task is updated. If a case worker requests
to disable a task, the PUT method ensures that the task is not in a working or
complete state. If the task is in a working or complete state, the method ignores
the request. If a case worker requests to start a task, the PUT method ensures that
the task is in a ready state.

Because multiple case workers might decide a task must be enabled, the PUT
method does not return an error when a request is made to enable a task that is
already enabled. Instead, the method always returns an updated version of the
task.

URI

/CASEREST/v1/task/{taskId}

The URI for the PUT method includes the following path element and parameters:

Path element

80 Development Guide

Table 74. Path element for the PUT method

Name Type Description

{taskId} String The GUID for the task instance that is to be updated.

Parameters

Table 75. Parameters for the PUT method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the task.

A symbolic name is called a unique identifier in IBM Case Manager.

Grouping String Yes The identifier that indicates grouping for the tasks. You must set
this parameter to ROD, which represents the following groups:

Required
This group includes tasks for which the RequiredState
property is set to REQUIRED_BY_USER or
REQUIRED_BY_INCLUSIVE.

Optional
This group includes tasks that are enabled and for which
the RequiredState property is set to OPTIONAL.

Disabled
This group includes tasks that are disabled and for which
the DisabledState property is set to DISABLED_BY_USER,
DISABLED_BY_EXCLUSIVE, or DISABLED_BY_ABORTED.

The PUT method does not return groups that are empty.

Request content
{

"action": "<start or enable or disable or stop or restart>"
}

Important: For a restart request to succeed, the user who makes the call must have
create rights for the roster of the solution. For a stop request to succeed, the user
who makes the call must have read rights on all queues in the solution. By default,
all users have read rights to queues, but if you have customized Content Platform
Engine security, you must add read rights for users who might call this API.

Response content

For the task that is updated, the method returns:
v The required state of the task
v The disabled state of the task
v The launch mode state of the task
v The date the task was created
v The task identifier
v The task name
v The task number
v The date the task was last modified

The PUT method also returns one of the following response codes:

Developing case management applications with the REST protocols 81

Table 76. Response codes for the PUT method

Code Description

200 OK The method completed successfully. No content is returned.

400 Bad Request The TargetObjectStore parameter or the Grouping parameter was not specified, or a
parameter value was invalid.

404 Not Found The task specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: PUT method

This example disables a task.

Request example
PUT http://example.com:9080/CaseManager/CASEREST/v1/task
/7A75A997-0E42-406E-AZC4-EE55D7DER9PF?TargetObjectStore=MyExampleObjectStore
&Grouping=ROD HTTP 1.1
Host: www.example.net
{

"Action": "disable"
}

Response example
If a task is in the failed state, the response also includes a FailureReason
field that describes the reason for the failure.
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"Required":
[
{
"RequiredState": 1,
"TaskState": 1,
"DisabledState": 0,
"LaunchMode": 4,
"DateCreated": "2010-07-16T21:50:36Z",
"TaskId": "{CB3F1916-8D03-44C8-9598-23589D9ED78F}",
"TaskName": "ETECase2 Task number 1",
"DateLastModified": "2010-07-16T21:50:36Z"

}
]

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

Case comments resource
The case comments resource represents the comments that are associated with a
specific case. A case comment can be associated with the case or with a document,
task, or work item in the case. The format of the comment varies depending on the
component with which it is associated. You can use this resource to retrieve
comments for a case and to add a comment to a case.

Restriction: You cannot use the case comments resource to update or delete case
comments.

82 Development Guide

“GET method for the case comments resource”
“POST method for the case comments resource” on page 85

GET method for the case comments resource:

The GET method returns a collection that contains all comments of a specified type
for a case. The comments are returned in reverse chronological order based on the
creation date.

URI

/CASEREST/v1/case/{case folder id}/comments

The URI for the GET method includes the following path element:

Table 77. Path element for the GET method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for which comments are
to be returned.

The URI for the GET method includes the following parameters:

Table 78. Parameters for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

CommentType String Yes One of the following values to indicate the type of comments to be
returned:

v Task

v Case

v Document

v WorkItem

ItemId String No The identifier that indicates the specific document or task or work
item for which comments are to be returned. For a document,
specify the version series ID. For a task or a work item, specify the
GUID for the task.

You must specify this parameter if you set the CommentType
parameter to Task, Document, or WorkItem. Do not specify this
parameter if you set the CommentType parameter to Case.

WorkflowNumber String No The workflow number that indicates the specific work item for
which comments are to be returned.

This parameter is optional if the CommentType parameter is set to
WorkItem. If you do not specify this parameter, the GET method
returns all work item comments for the matching task. Work items
are always associated with a task.
Tip: After a work item completes, it no longer exists. Access to the
work item is not possible. However, if you have the workflow
number for the work item, you can still retrieve the individual
comments for that work item.

Request content

The request for this method contains no JSON content.

Developing case management applications with the REST protocols 83

Response content

For each comment, the GET method returns the following information:
v The name of the person who created the comment
v The date the comment was created
v The comment text
v The comment context that indicates the action, such as adding a case or a

document, that was being taken when the comment was created

The GET method also returns one of the following response codes:

Table 79. Response codes for the GET method

Code Description

201 Created The method completed successfully and returned the requested case comments.

400 Bad Request The required TargetObjectStore parameter or CommentType parameter was not specified, or a
parameter value was invalid.

404 Not Found The case folder that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: GET method request

This sample code requests all the comments for a case:
GET http://example.com:9080/CaseManager/CASEREST/v1/case
/9E45A997-0E42-406E-AAC4-EE55D8BCF2ED/comments?
TargetObjectStore=MyExampleObjectStore&CommentType=Case HTTP 1.1
Host: www.example.net

Example: GET method

This sample code shows all the comments for a case:
{

"Comments":
[
{

"Id": "{5E42A997-0F47-446E-AFC4-EE55D8BCF5PP}",
"Creator": "Bob",
"CommentContext": 101,
"DateCreated": "2010-04-07T14:30Z",
"CommentText": "New request from Bob at GimmeCars.com"

},
{

"Id": "{9E45A997-0E42-406E-AAC4-EE55D8BCF2EA}",
"Creator": "Mary",
"CommentContext": 102,
"DateCreated": "2010-04-07T15:30Z",
"CommentText": "Fast-track Bob’s request – very good customer"

}
]

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

84 Development Guide

POST method for the case comments resource:

The POST method adds a comment to a case, a task, a document, or a work item
that is associated with a specific case folder.

URI

/CASEREST/v1/case/{case folder id}/comments

The URI for the POST method includes the following path element:

Table 80. Path element for the POST method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case to which the comment
is to be added.

The URI for the POST method includes the following parameter:

Table 81. Parameter for the POST method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

Request content

The content of a request to create a comment depends on the type of comment that
you are creating:

Table 82. Request elements required to create different comment types

Request element Comment types Description

CommentType Case, document, task,
work item

One of the following values that indicates the type of comments to be
returned:

v Task

v Case

v Document

v WorkItem

CommentContext Case, document, task,
work item

A number that indicates the action, such as adding a document or case,
that was being taken when this comment was created. This value is based
on the choice list that is defined in the CmAcmActionChoiceList object in
the target object store.

CommentText Case, document, task,
work item

A string that contains the text for the comment.

ItemId Document, task, work
item

The identifier that indicates the specific document, task, or work item for
which the comment is to be added. For a document, specify the version
series ID. For a task or a work item, specify the GUID for the task.

DocumentTitle Document The title that is assigned to the document in Content Platform Engine.

WorkClassName Work item The name of the work class that describes the attributes of the work item,
such as data fields, a security configuration, and event logging options. In
most cases, a work class corresponds to a workflow roster.

StepName Work item The name of the step that contains the work item.

WorkflowNumber Work item The work object number that indicates the specific work item for which
comments are to be returned.

Developing case management applications with the REST protocols 85

Table 82. Request elements required to create different comment types (continued)

Request element Comment types Description

Response Work item The response that was used to process the work item.

Response content

For each comment that is added, the method returns the following information:
v The comment context, which indicates the action that was being taken when this

comment was created
v The date the comment was created
v The comment identifier
v The text of the comment
v The creator of the comment

The POST method also returns one of the following response codes:

Table 83. Response codes for the POST method

Code Description

200 OK The method completed successfully. The new comment was added to the case. The response
header includes the URI for the comment.

400 Bad Request One of the required parameters was not specified, or a parameter value was invalid. For
information about the error, see the userMessage element in the JSON response that was
returned by this method.

404 Not Found The case folder that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response that was returned by this method.

Example: POST method request

This sample code requests that a comment be created for a document in a case:
POST http://example.com:9080/CaseManager/CASEREST/v1/case/
9E45A997-0E42-406E-AAC4-EE55D8BCF2ED/comments?
TargetObjectStore=MyExampleObjectStore HTTP 1.1
Host: www.example.net
{

"CommentType" : "Document",
"CommentContext" : 402,
"CommentText" : "this is a sample comment for a document in a case",
"ItemId" : "B9BA42F3-CD30-4C93-BE8B-BDE0BC85AA4F",
"DocumentTitle" : "Sample Document for My Case"

}

Example: POST method response

This sample code shows the comment that was created for a document in a case.
The Id value in the response specifies the identifier for the comment that was
added.
201 Created
{

"CommentContext":402,
"DateCreated":"2010-07-21T23:15:40Z",

86 Development Guide

"Id":"{C1D63E6A-0CEC-433E-A6B9-C0EA0FDEFB53}",
"CommentText":"This is a sample comment for a document in a case",
"Creator":"P8Admin"

}

Example: JSON payload for a task comment
{

"CommentType" : "Task",
"CommentContext" : 202,
"CommentText" : "This is a sample comment for a task in a case",
"ItemId" : "B4DD9C04-46B4-4295-8EA0-1C0DB95C6C74"

}

Example: JSON payload for a work item comment
{

"CommentType" : "WorkItem",
"CommentContext" : 301,
"CommentText" : "This is a sample comment for a work item in a case",
"ItemId" : "B4DD9C04-46B4-4295-8EA0-1C0DB95C6C74",
"WorkClassName" : "_work_class_name",
"StepName" : "test_step_name",
"Response" : "test_response",
"WorkflowNumber" : "78FE3D3856F047408B29ECA140EE90B7"

}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

Case history resource
The case history resource represents the history for a specific case. You can use this
resource to retrieve the entries that make up the case history. The case history
shows information such as creation dates, comments, and such, about the case.

The case history that is maintained by IBM Case Manager is based on the Content
Platform Engine audit feature. The entries are stored as event objects in the Event
table that is in the database for the object store. The case history entries are audit
events that are configured so that they can be retrieved by using the GUID of the
case folder. Therefore, not all audit entries correspond to a case history entry.

Tip: You can enable and configure auditing through the Content Engine API or in
the IBM Case Manager administration client. If the Content Platform Engine audit
feature is not configured correctly, the information available in case histories might
not be what you expect.

“GET method for the case history resource”
Related information:

Auditing concepts

Configuring auditing

GET method for the case history resource:

The GET method returns the entries that make up the case history. You can set
parameters to return only entries for specific object types, such as folders or tasks,
or for specific event types, such as creation or deletion of objects. If you do not set

Developing case management applications with the REST protocols 87

http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.dev.ce.doc/audit_concepts.htm
http://www.ibm.com/support/knowledgecenter/SSNW2F_5.0.0/com.ibm.p8.ce.admin.doc/audit/al_config.htm

any parameters, all entries are returned. In addition, you can specify whether you
want the complete information for the entries that are returned or only the
summary information.

To make it easier to display the entries, the GET method always returns a string
value for the PropertyValue element, regardless of the type of the property.
Therefore, you do not convert integer, float, or datetime properties for display.

URI

/CASEREST/v1/case/{case folder id}/history

The URI for the GET method includes the following path element:

Table 84. Path element for the GET method

Name Type Description

{case folder id} String The GUID that identifies the root folder of the case for which history is to
be returned.

The URI for the GET method includes the following parameters. You can combine
the object types, such as documents and folders, and event types, such as creation,
to obtain specific information. For example, you can return a summary of the
additions of documents and folders by specifying the following parameters in the
GET method:
&ObjectTypes=Document+CmAcmCaseFolder+CmAcmCaseSubfolder&EventTypes=Creation

Table 85. Parameters for the GET method

Name Type Required? Description

TargetObjectStore String Yes The symbolic name of the object store that contains the case.

BatchSize Integer No The maximum number of entries to be returned. If you do not set this
parameter, the method returns a maximum of 200 audit entries.
Tip: For best results, set the BatchSize parameter to no more than
200.

ContinuationToken String No The value of the Continuation element that is returned in the JSON
response for the previous call to the GET method.

Omit this parameter from the request to retrieve the first batch of
entries. Specify this parameter in the next request to retrieve the next
batch of entries. Enter the value as follows (without quotation marks):

ContinuationToken=34832908d930ddkdj390di3kj

If the Continuation element that is returned in the JSON response
contains a null string, there are no more entries to be returned.

88 Development Guide

Table 85. Parameters for the GET method (continued)

Name Type Required? Description

ObjectTypes String No The object types for which entries are to be returned. Enter one or
more object types by using spaces to separate multiple types.

The following list identifies the symbolic names of Content Engine
objects that you might need:

CmAcmCaseComment
Return entries for comments on the case.

CmAcmCaseFolder
Return entries for case folders.

CmAcmCaseSubfolder
Return entries for case subfolders.

CmAcmCaseTask
Return entries for tasks.

CmAcmVersionSeriesComment
Return entries for comments on a document.

CmAcmWorkItemComment
Return entries for comments on work items.

Document
Return entries for documents that are associated with the
case.

When appropriate, the GET method returns entries for subclasses of
the selected object types. For example, the GET method returns entries
for subclasses of the Document object type automatically. You do not
specify each subclass by name.

If you do not specify the ObjectTypes parameter, the method returns
entries for all object types.

EventTypes String No The type of event for which entries are to be returned. Enter one or
more event types by using spaces to separate multiple types.

You can query any subclass of the Content Engine ObjectChangeEvent
class.

If you do not specify the EventTypes parameter, the method returns
entries for all event types.

AdditionalProperties String No A list of the symbolic names of the properties to include in the
"AdditionalProperties" JSON element in the returned payload. Enter
one or more property names. Use spaces to separate multiple names.

AdditionalFilter String No The property expression to be included in the WHERE clause of the case
history query. This expression is a UTF-8 encoded URL, and must
comply with Content Engine SQL syntax.

Request content

The request for this method contains no JSON content.

Response content

The GET method returns the entries in the case history based on the specified
objects and events. The GET method also returns one of the following response
codes:

Developing case management applications with the REST protocols 89

Table 86. Response codes for the GET method

Code Description

200 OK The method completed successfully and returned the requested entries.

400 Bad Request The required TargetObjectStore parameter was not specified, or a parameter value was
invalid.

404 Not Found The case folder that was specified in the request URI was not found.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Retrieving batches of case history entries

The first time that you call the GET method, you can set the BatchSize parameter to
specify the number of entries. However, you do not set the ContinuationToken
parameter. The GET method returns the specified number of entries in reverse
chronological order, beginning with the newest entry in the log. If there are more
entries in the case history, the method also returns a continuation token. You must
include the continuation token in the query parameters to retrieve the next batch of
entries.

To retrieve the next batch of entries, you make a second call to GET method by
using the same values for all parameters except the ContinuationToken parameter.
You set the ContinuationToken parameter to the continuation token that is returned
by the preceding method call. The method then returns the next set of entries.

Important: For the GET method to return the entries correctly, all the query
parameters, except for the continuation token, must be the same in subsequent
calls.

You can continue to call the GET method by using the continuation token to return
all entries for the case. When there are no more entries, the method does not return
a continuation token.

To allow a case worker to view the results that were returned in a previous call to
the GET method, you must maintain a string array that contains the nonnull
continuation tokens. You can then use the array values to retrieve a specific batch
of entries.

For example, assume that you store the continuation tokens in an array named A
and that this array contains X tokens. X is also the index of the array element in
which the next continuation token are stored. The initial value of X is 0 because
there are no continuation results in the array A.

When the GET method returns the first batch of entries, the continuation token in
the response is saved in A[0] and the value of X increases by one to 1 because it
starts from 0. When the GET method returns the second batch of entries, the
continuation token in the response is saved in A[1] and the value of X increases by
one to 2.

After the third batch of entries is returned, X is equal to 3 and the continuation
token from the fourth call to the GET method will be stored in A[2]. To retrieve the
previously returned batches again, you set the ContinuationToken parameter to the
following values:
v A[1] to retrieve the third batch of entries

90 Development Guide

v A[0] to retrieve the second batch of entries
v Null to retrieve the first batch of entries

The general rules for determining the continuation token are:
v If X-1 >= 0, then A[X-1] is the continuation token that is required to get the next

batch of results.
v If X-2 is >= 0, then A[X-2] is the token that is required to return the last batch of

results again.
v A[X-3] is the token that is required to return the batch that comes before the last

batch of results again.

Before you use a continuation token to retrieve a previously retrieved batch of
results, you must decrease X correctly to ensure that A[X-1] is the continuation
token that is required to return the next batch of results.

Example: GET method request

This sample code requests a summary of the entries for case comments and
detailed audit comments for case folders:
#Request to get comment history of a particular case
GET http://example.com:9080/CaseManager/CASEREST/v1/case
/19278CB3-C71C-4DE5-95FE-7C7544020A31/history
?TargetObjectStore=ATOSME&BatchSize=5
&ObjectTypes=CmAcmCaseComment+CmAcmWorkItemComment+
CmAcmVersionSeriesComment&EventTypes=CreationEvent
HTTP/1.1
Host: www.example.net

Example: GET method response

This sample code shows the summary of the entries for case comments and
detailed audit comments for case folders. The fields that are contained in the JSON
response differ slightly based on the event types and objects that are included. This
example illustrates most of the combinations that you might encounter.
#Response
HTTP/1.1 200 OK
Content-Type: application/json;charset-UTF-8
{

"ContinuationToken":"1,1118.0",
"Events":
[
{

"EventType":"CreationEvent",
"EventObjectType":"CmAcmCaseComment",
"EventTypeLocalizedName":"Creation Event",
"EventObjectLocalizedName":"Case Comment",
"EventUser":"P8Admin",
"EventDateTime":"2010-08-18T18:04:51Z",
"CmAcmCommentText":"Here is a comment on this case.
Not my first.",

"AdditionalProperties":{"CmAcmCaseIdentifier":""}
},
{

"EventType":"CreationEvent",
"EventObjectType":"CmAcmVersionSeriesComment",
"EventTypeLocalizedName":"Creation Event",
"EventObjectLocalizedName":"Version Series Comment",
"EventUser":"P8Admin",
"EventDateTime":"2010-08-18T18:00:38Z",
"CmAcmCommentText":

Developing case management applications with the REST protocols 91

"Test comment for CmAcmVersionSeriesComment.",
"CmAcmObjectName":"This is the title of the document",
"AdditionalProperties":{"CmAcmCaseIdentifier":""}

},
{

"EventType":"CreationEvent",
"EventObjectType":"CmAcmWorkItemComment",
"EventTypeLocalizedName":"Creation Event",
"EventObjectLocalizedName":"Work Item Comment",
"EventUser":"P8Admin",
"EventDateTime":"2010-08-18T18:00:16Z",
"CmAcmCommentText":"This was the right resolution for this
work item.",

"CmAcmTaskName":"ETECase1 Task number 1",
"CmAcmStepName":"test_step_name",
"AdditionalProperties":{"CmAcmCaseIdentifier":""}

},
{

"EventType":"CmAcmCaseRelatedEvent",
"EventTypeLocalizedName":"Case Related Event",
"EventDateTime":"2011-06-10T22:53:59Z",
"EventUser":"P8Admin",
"EventObjectType":"CmAcmCaseFolder",
"EventObjectLocalizedName":"Case Folder",
"CmAcmCaseFolder":"{B4CD0C8E-8D1D-424A-A84F-1D2F6F4FB773}",
"CmAcmRelatedCaseFolder":

"{56872C9A-D84C-4316-BB49-0EB1062D5F34}",
"CmAcmCaseTitle":"CTLT_CT1_000000100209",
"CmAcmRelatedCaseTitle":"CTLT_CT1_000000100212",
"CmAcmCaseIdentifier":"CTLT_CT1_000000100209",
"CmAcmRelatedCaseIdentifier":"CTLT_CT1_000000100212",
"CmAcmRelationshipType":101,
"Description":

"split case from poster - test for multi-value",
"CmAcmCategoryName":null,
"CmAcmRelatedCaseClassName":"CTLT_CT1",
"RelatedCaseClassLocalizedName":"CT1",
"CmAcmObjectName":"000000100209",
"AdditionalProperties":{"CmAcmCaseIdentifier":"

CTLT_CT1_000000100209"}
},
{

"EventType":"CmAcmCaseRelatedEvent",
"EventTypeLocalizedName":"Case Related Event",
"EventDateTime":"2012-04-09T14:41:52Z",
"EventUser":"P8Admin",
"EventObjectType":"CmAcmCaseFolder",
"EventObjectLocalizedName":"Case Folder",
"CmAcmCaseFolder":"{B4CD0C8E-8D1D-424A-A84F-1D2F6F4FB773}",
"CmAcmRelatedCaseFolder":

"{56872C9A-D84C-4316-BB49-0EB1062D5F34}",
"CmAcmCaseTitle":"CTLT_CT1_000000100209",
"CmAcmRelatedCaseTitle":"CTLT_CT1_000000100212",
"CmAcmCaseIdentifier":"CTLT_CT1_000000100209",
"CmAcmRelatedCaseIdentifier":"CTLT_CT1_000000100212",
"CmAcmRelationshipType":0,
"Description":

"relating case 1 to case 2 due to similar victim profile",
"CmAcmObjectName":"000000100209",
"CmAcmCategoryName":"victim profile",
"CmAcmRelatedCaseClassName":"CTLT_CT1",
"RelatedCaseClassLocalizedName":"CT1",
"AdditionalProperties":

{"CmAcmCaseIdentifier":" CTLT_CT1_000000100209"}
},
{
"EventType":"CmAcmCaseRelatedEvent",

92 Development Guide

"EventTypeLocalizedName":"Case Related Event",
"EventDateTime":"2012-04-09T14:48:29Z",
"EventUser":"P8Admin",
"EventObjectType":"CmAcmCaseFolder",
"EventObjectLocalizedName":"Case Folder",
"CmAcmCaseFolder":"{B4CD0C8E-8D1D-424A-A84F-1D2F6F4FB773}",
"CmAcmRelatedCaseFolder":"{56872C9A-D84C-4316-BB49-0EB1062D5F34}",
"CmAcmCaseTitle":"CTLT_CT1_000000100209",
"CmAcmRelatedCaseTitle":"CTLT_CT1_000000100212",
"CmAcmCaseIdentifier":"CTLT_CT1_000000100209",
"CmAcmRelatedCaseIdentifier":"CTLT_CT1_000000100212",
"CmAcmRelationshipType":1,
"Description":"unrelating case 1 from case 2",
"CmAcmObjectName":"000000100209",
"CmAcmCategoryName":"victim profile",
"CmAcmRelatedCaseClassName":"CTLT_CT1",
"RelatedCaseClassLocalizedName":"CT1",
"AdditionalProperties":

{"CmAcmCaseIdentifier":" CTLT_CT1_000000100209"}
},
{
"EventType":"ChangeStateEvent",
"EventTypeLocalizedName":"Change State Event",
"EventDateTime":"2012-04-14T01:28:52Z",
"EventUser":"P8Admin",
"EventObjectType":"CmAcmCaseTask",
"EventObjectLocalizedName":"Case Task",
"CmAcmObjectState":4,
"CmAcmLastRestartDate":"",
"CmAcmRestartCount":null,
"CmAcmDisabledState":0,
"CmAcmObjectName":"Case1AutomaticTask2"

}
...

]
}

Related reference:
“Error responses” on page 23
“Case management REST resource URIs” on page 21
“Symbolic names” on page 22

Managing workflows, roles, and in-baskets by using the Process
Engine REST Service

You can use the Process Engine REST Service to manipulate the workflow-related
aspects of tasks. Specifically, you use this REST Service to access and manage
workflows, roles, and in-baskets.

You can use the resources defined in the Process Engine REST Service to perform
the following case management tasks:
v Retrieve the contents of an in-basket that are based on the role of a case worker
v Retrieve the workflow step element when the case worker opens a workflow
v View and update the work items in a workflow
v Track workflow processes
v Retrieve the process history for a workflow
v View and update workflow roles, including adding users and groups to roles
v View all assigned work in a case

Developing case management applications with the REST protocols 93

The Process Engine REST Service provides the following resources that you can
use to get case management information.

Table 87. Process Engine REST Service resources

Resource URI resource name Description

Application space
names

/appspacenames Gets the collection of the names of the application
spaces, including the application spaces to which
the current user does not have access permissions.
You can use this information to select an
application space for page creation.

MyRoles /appspacenames/{appspace}/myroles Gets a collection of roles within an application
space.

Role /appspacenames/{appspace}/roles/{role} Get the role information and in-baskets that are
associated with the specified role.

Writeable
application space
roles

/writableappspaces/{appSpace}/roles Gets the collection of roles defined for an
application space to which you can assign
members. To access this resource, you must have
write access to the application space.

Writeable
application space
role members

/writableappspaces/{appspace}/roles/
{role}/members

Gets the set of members that are assigned to a
specified role. To access this resource, you must
have write access to the application space.

Writeable
application space
role members
update

/writableappspaces/{appspace}/roles/
{role}/members

Updates the role membership for the specified
role. To access this resource, you must have write
access to the application space.

Security domains /securitydomains Gets the names of all the security domains (LDAP
realms) found. You can use this information to
narrow the scope of users and groups for
subsequent operations, such as querying user
information for role membership changes.

Users /users Gets a collection of users from LDAP. You can
limit the search scope by using the domainName
GET parameter to specify the domain.

Groups /groups Gets a collection of groups from LDAP. You can
use this information to select groups for role
memberships or work item assignments.

You can limit the search scope by using the
domainName GET parameter to specify the
domain.

Current® user /currentuser Gets the name and ID of the user that is currently
logged on to the application space.

The following request uses the Process Engine REST Service to return a list of roles
that are defined for a solution:
http://myserver:9080/CaseManager/P8BPMREST/p8/bpm/v1/appspaces/
Candidate%20Selection%202/myroles?cp=newportvm24_796_tos02

The following example shows the format of the response to the request:
{

"Customer Service Representative":
{
"name":"Customer Service Representative",
"URI":"appspaces\/Dannay+Insurance+Claims\/roles\/Customer+Service

+Representative"

94 Development Guide

},
"Adjuster":
{
"name":"Adjuster",
"URI":"appspaces\/Dannay+Insurance+Claims\/roles\/Adjuster"

}
}

Related reference:

Process Engine REST Service Reference

Developing case management applications with the REST protocols 95

http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.pe.dev.doc/rest/rest_ref.htm

96 Development Guide

Managing case folders and documents by using IBM CMIS for
FileNet Content Manager

You use the IBM CMIS for FileNet Content Manager in your case management
application to create and access the case content that is stored in an object store.

You can use IBM CMIS for FileNet Content Manager to perform tasks such as:
v Querying for cases
v Creating a case
v Updating case properties
v Getting the metadata for case classes and document classes
v Adding a folder in a case folder
v Adding a document to a case

Restriction: You cannot use IBM CMIS for FileNet Content Manager to handle
workflow objects and other case-specific objects.

Tip: To access data related to cases and documents, use the JavaScript model APIs
that are provided by IBM Content Navigator and IBM Case Manager. These APIs
provide more capabilities than are available in IBM CMIS for FileNet Content
Manager.

Using IBM CMIS for FileNet Content Manager to create a case

There are two ways in which you can use IBM CMIS for FileNet Content Manager
to create a case and its folder hierarchy. You can create a case:
v Automatically by creating a document of one of a specific set of document

classes anywhere in the target object store
v Manually by using IBM CMIS for FileNet Content Manager to create the case

folder directly under the case type folder

Creating a case by creating a document
You might want to create a case automatically whenever a certain type of
document is received. For example, whenever a new loan application is
received, you might want to create the case that is used to process that
application.

By using IBM CMIS for FileNet Content Manager, you can specify that a
case is to be created whenever an instance of a specified document class is
created. When the document is created, the Content Platform Engine event
handler automatically names the case folder according to IBM Case
Manager naming requirements and places it in the appropriate folder
under the case type.

In Case Manager Builder, you can specify that whenever a document of a
specific document class is created anywhere in the target object store, a
case folder is created automatically under a specific case type of the target
solution. The document is then filed as a child of the new case folder and
the CmAcmInitiatingDocument property of the new case folder is set to
reference the document.

© Copyright IBM Corp. 2010, 2018 97

It does not matter where in the folder hierarchy the document is created.
When IBM CMIS for FileNet Content Manager creates the case folder, it
automatically files the document referentially as a child folder.

Creating a case by creating the case folder

Tip: The preferred method for creating a case folder is to use the cases
resource provided by the IBM Case Manager REST protocol.

You can use IBM CMIS for FileNet Content Manager to enable a case
worker to create a case by creating the case folder as an immediate child of
the case type folder. The properties that you specify for the case folder
become the properties of the case. The case properties are global to all the
tasks in the case and to all the workflows of those tasks.

The system automatically renames the case folder by assigning the next
available sequence number for the case type as the new folder name. The
system then moves the new folder to the bottom of the case type
folder/Cases/yyyy/mm/dd/hh subfolder hierarchy, creating any missing
parts of the yyyy/mm/dd/hh subhierarchy as necessary.

Related reference:
“Getting and changing case information” on page 52
“Cases resource” on page 53
Related information:

IBM CMIS for FileNet Content Manager Development

98 Development Guide

http://www.ibm.com/support/knowledgecenter/SSEUEX_3.0.3/com.ibm.developingeuc.doc/cmidv000.htm

Configuring a solution to create a case when a document is
added to the object store

You can configure your solution to create cases programmatically when a
document is added to the target object store. You use the initiating document
setting when you create the case type in Case Manager Builder, and then configure
the addition of the document to the object store in one of several ways.

When you add the solution in Case Manager Builder, you specify the properties of
each case type. For a solution that will include starting cases when documents are
added to the object store, you must first specify that setting when you configure
the case type.

After you create the solution in Case Manager Builder, you configure the
applications or workflows to add the document classes that will initiate cases in
the deployed solution.

Content Engine Java API
You can use the Content Engine Java API to develop a custom application
that receives the document from the user. The application uses the API to
set the document class to the correct starting document class, and to check
the document into the object store. The checkin of the document triggers
the IBM Case Manager event handler to create a case.

CE_Operations
You can define a workflow that is either internal or external to the
solution. Include the CE_Operations create document step in the workflow.
The step creates a document that has the same document class as the
starting document for the case type. When the CE_Operation step is
executed, a case is automatically created by the IBM Case Manager event
handler.

External applications, such as Datacap Studio
Configure an external application, such as Datacap Studio, to inject
documents into the target object store. The documents must have the type
the same as the starting document class for the case. When the document
is created in the object store, the case is automatically created by the IBM
Case Manager event handler.

© Copyright IBM Corp. 2010, 2018 99

100 Development Guide

Getting case data from an external data source

IBM Case Manager stores case data in Content Platform Engine. However, you can
use an external data service with a solution to access data from a different
repository or other data source. This data is then incorporated into the case and
stored with the rest of the case data in Content Platform Engine.

About this task

For example, you might have a database that contains detailed customer records.
When a case worker enters a customer’s serial number, the external data service
can get the name and address of the customer from that database. These values are
then incorporated into the case data and stored in Content Platform Engine.

In addition to getting property values, you can use an external data source to
modify property attributes such as minimum value or maximum value. The
external data service must work within any constraints placed on the property
attributes in Content Platform Engine. For example, if a minimum value is
specified for the property in Content Platform Engine, the external data service
cannot make the setting less restrictive. That is, the service can set the minimum
only to a larger value. It cannot decrease the minimum value.

You can also use the external data service to define dependencies between
properties. By using this feature, you can implement dynamic behavior in your
solution. For example, you might specify a dependency between a state property
and a city property. When a case worker selects a state, the choice list that is
associated with the city property contains only cities that are in that state.

Procedure

To get data from an external data source:
1. Use the IBM Case Manager APIs to implement a service to extract case data

from the external data source.
2. Use the IBM Case Manager configuration tool to register the external data

service for use with your solution.

Restriction: You can register only one external data service for a solution.
3. Deploy or redeploy the solution.

Results

After you register the external data service, Case Manager Client communicates
with the service to get case data whenever case workers create cases or modify
cases. This communication is handled automatically through the IBM Case
Manager APIs.

For properties that are associated with an external data service choice list, only the
value, not the display name, is persisted IBM Case Manager. The Search widget,
which generates a result set for the Case List widget, does not call the external
data service to retrieve the display names for these properties. However, selecting
the case from the Case List widget does cause the external data service to retrieve
the property display names.

© Copyright IBM Corp. 2010, 2018 101

|
|
|
|
|
|

Important: You use the external data service only for retrieving data from an
external source. For example, when a case worker creates or modifies a case, Case
Manager Client saves the data that was received from the external data source in
Content Platform Engine. If the case worker modifies this data, Case Manager
Client does not update the corresponding data in the external data source.

“Implementing an external data service by using the REST protocol”

Implementing an external data service by using the REST protocol
To use external data with your solution, you must create a service that implements
the external data service REST protocol that is provided with IBM Case Manager.
This protocol provides for the communication between Case Manager Client and
the external data source.

About this task

In addition to implementing the REST protocol, the external data service must
implement any authentication that is required by the external data source.

Procedure

To implement an external data service:
1. Implement the POST method for the particular object type resource. This method

is called automatically by the IBM Case Manager REST protocol in response to
requests from Case Manager Client to create or modify a case. The external
data service must submit the data for the case properties that it manages back
to the IBM Case Manager REST protocol in the response to the POST method.

2. If the service modified any attributes for the case properties that it manages,
retrieve the property attributes. To retrieve property attributes, you can use the
Content Engine Java protocol or IBM CMIS for FileNet Content Manager in the
external data service.

3. If the external data service needs to authenticate users, configure authentication
for users.
“Particular object type resource”
“Authentication for external data services” on page 113
“Persistence of case data” on page 114
“Example data flow for case creation” on page 114

Particular object type resource
The particular object type resource represents a case type in which property values
are obtained from an external data source. When a case of the specified case type
is created or modified, the IBM Case Manager REST protocol uses this resource to
obtain data for that case from the external data source.

You do not use this resource directly in your case management application.
Instead, the IBM Case Manager REST protocol calls the POST method for resource
automatically when a case is being added or modified to communicate with the
external data service. The service then returns the required information in the
response to this method call.

“POST method for the particular object type resource” on page 103
“Request modes” on page 106
“Client context for work items” on page 107

102 Development Guide

“Response to a request for case data” on page 108
“Error responses for an external data service” on page 113

POST method for the particular object type resource
The POST method provides the means for obtaining data from an external data
source for a case of a specific case type. You do not call this method directly.
Instead, the IBM Case Manager REST protocol calls this method automatically
when a case is being added or modified.

When the IBM Case Manager REST protocol calls the POST method, the request
payload contains the current value for each case property. The current value can be
one of the following values:
v The default value
v The value persisted for the property in the repository
v The working value that the case worker entered for the property

The response payload that the external data service returns includes changes to the
properties that it manages. The service can modify attributes of properties in
addition to modifying property values.

The IBM Case Manager REST protocol then merges these changes into the case
data and returns the data to the Case Manager Client.

URI syntax
/type/{object type name}

The URI for the POST method includes the following path element:

Table 88. Path elements for the POST method

Name Type Description

{object type name} String The symbolic name of case type that defines the case that is being
updated.

Request content
{

"repositoryId":"<target object store name>",
"objectId" : "<GUID of the case folder>",
"requestMode" : "<request context>",
"externalDataIdentifier" : "<identifier for service">,

"properties":
[
{

"symbolicName" : "<property name>",
"value" : <current value>,

}

// More properties ...

],

"clientContext":
{

"Key1":"Value1",

Getting case data from an external data source 103

"Key2":"Value2"
}

}

Table 89. Request parameters for the POST method

Name Type Required? Description

repositoryId String Yes The symbolic name of the object store that contains the case type.

A symbolic name is called a unique identifier in IBM Case Manager.

objectId String No The GUID that identifies the root folder of an existing case. This parameter is
not specified when the POST method is called to create a case.

requestMode String Yes One of the following request modes that indicates the reason that the POST
method is being called:

v initialNewObject

v initialExistingObject

v inProgressChanges

v finalNewObject

v finalExistingObject

externalData
Identifier

String Yes, for
certain

request
Mode
settings

A string that indicates the state of the data that was returned by the external
data service. The request must include this identifier if the requestMode
parameter is set to one of these values:

v inProgressChanges

v finalNewObject

v finalExistingObject

properties Array Yes An array that contains values for the properties that are defined for the case
type. For each property, the request contains the symbolic name and the
property value.

clientContext Array No An array that contains a series of key value pairs that specify contextual
information for a specific work item. This parameter is used to send
information to an external data service when a case worker opens the work
item.

Response codes

Table 90. Response codes for the POST method

Code Description

200 OK The method completed successfully. The response that is returned by the POST method
includes the updated information for the case.

400 Bad Request One of the required parameters was missing or a parameter value was invalid.

404 Not Found The case type that was specified in the request was not found. This error does not indicate
that the case type is invalid. Instead, it indicates that the external data service does not
manage any property values for the case type. The IBM Case Manager REST protocol does
not return an error to the Case Manager Client.

500 Internal Server
Error

A server error occurred. For information about the error, see the userMessage element in the
JSON response.

Example: POST method request

This sample code submits a request to an external data service when a case worker
selects a value for the state property, DH2_State. The service then updates the
choice list for the city property, DH2_City, which depends on the State property.

104 Development Guide

POST /testservice/ICMEDREST/type/DH2_MyCase
{

"repositoryId": "CMTOSDH",
"requestMode": "inProgressChanges",
"externalDataIdentifier": "-1,0",
"properties": [

// Non-external data related properties

{
"symbolicName": "CmAcmCaseIdentifier",
"value": null

},
{

"symbolicName": "CmAcmCaseState",
"value": 0

},

// ...

{
"symbolicName": "DH2_State",
"value": "CA"

},
{

"symbolicName": "DH2_PropOne",
"value": null

},
{

"symbolicName": "DH2_MVInt",
"value": [
0,
100

]
},
{

"symbolicName": "DH2_MVString",
"value": []

},
{

"symbolicName": "DH2_City",
"value": null

}
]

}

Example: POST method response

This sample code shows the information that is returned by the external data
service when a case worker selects a value for the state property, DH2_State:
{

"externalDataIdentifier": "1,0",
"properties": [
{

"symbolicName": "DH2_City",
"hidden": false,
"required": true,
"hasDependentProperties": false,
"choiceList": {
"displayName": "CityChoiceList",
"choices": [

{
"displayName": "Los Angeles",
"value": "Los Angeles"

},
{

Getting case data from an external data source 105

"displayName": "San Diego",
"value": "San Diego"

},
{
"displayName": "San Francisco",
"value": "San Francisco"

}
]

}
}

]
}

Related reference:
“Request modes”
“Common JSON payload for cases and case types” on page 23
“Response to a request for case data” on page 108
“Client context for work items” on page 107

Request modes
When a case is created or modified in Case Manager Client, the IBM Case Manager
REST protocol calls the POST method for the particular object type resource to
submit a request to the external data service. This request contains a request mode
that indicates the action that is being performed.

You must configure the external data service to respond with the data that is
required for that action. For example, if the request is to create a case, the service
needs to respond with the initial property values that are defined for the case type.

The requestMode parameter indicates the action that is being performed in Case
Manager Client. This action determines the response that is returned by the
external data service.

The requestMode parameter can have the following values:

initialNewObject
This value indicates that the external data service is being called for the
first time in a sequence of exchanges to create a case. For each property,
the input payload contains the symbolic name and the default value that is
defined in the case type.

The input payload does not contain the externalDataIdentifier
parameter. Instead, this parameter is set by the external data service and
returned in the response payload. Subsequent requests made during the
creation of the case include the externalDataIdentifier parameter to
indicate the current state of the data to the service.

initialExistingObject
Indicates that the external data service is being called for the first time in a
sequence of exchanges to modify an existing case. For each property, the
input payload that is passed to the service contains the symbolic name and
the value that is currently stored in the repository.

The input payload also contains the objectId parameter that specifies the
GUID of the root folder for the case. The service can use this GUID to refer
to the case. However, remember that the values stored in the repository for
the case can change. Therefore, the values that are provided in the input
payload might not match the values that are currently stored in the
repository for the case.

106 Development Guide

The input payload does not contain the externalDataIdentifier
parameter. Instead, this parameter is set by the external data service and
returned in the response payload. Subsequent requests made during the
update of the case include the externalDataIdentifier parameter to
indicate the current state of the data to the service.

inProgressChanges
Indicates that the external data service is being called in response to
changes in one or more properties that have dependent properties. The
input payload can contain the following information:
v The current working value for each property in the case.
v The externalDataIdentifier parameter, which indicates to the service

the previous state of any properties that it updated.
v For an existing case, the objectId parameter, which specifies the GUID

of the root folder for the case.

The external data service responds to this request if the attributes or
working value of any property that it manages changed. The service also
responds to return a custom validation error.

finalNewObject
Indicates that the external data service is being called for the final time in
the sequence of exchanges to create a case. After this call, the new case is
created and the property values are persisted in the repository.

For each property, the input payload that is passed to the service contains
the working values for all properties that are defined by the case type.

finalExistingObject
Indicates that the external data service is being called for the final time in
the sequence of exchanges to update an existing case. After this call, the
updated case property values are persisted in the repository.

For each property, the input payload that is passed to the service contains
the working values for all properties that are defined by the case type.

Client context for work items
The clientContext parameter provides contextual information about a work item
that a case worker opened. An external data service can use this information to
determine the appropriate response. For example, an account identifier might
typically be read-only. However, if the work item is to open an account, the
external data service can set the account identifier to be writable.

For the IBM Case Manager widgets, Case Manager Client automatically includes
the clientContext parameter in the request when a case worker opens a work
item.

The client context is defined by the clientContext parameter. The following table
describes the keys that this parameter can contain.

Tip: Unless otherwise stated in the table, you can obtain a value for a key by
using the Process Engine REST service to query the systemProperties object for
the step.

Getting case data from an external data source 107

Table 91. Keys in the clientContext parameter

Key
Data type of
value Description

connectionPoint String The name of the isolated region in the workflow
system database that contains the workflow
definition for the task.

For a custom widget, you can obtain this value by
querying the solution space attributes.

stepId Integer The identifier of the step.

mapName String The name of map that the work item locates.

workflowNumber String The unique identifier that is assigned to the
workflow that is associated with the task.

workflowName String The name of the workflow that is associated with
the task.

caseTaskId String The unique identifier that is assigned to the task in
this case.

stepName String The name of current step.

workObjectNumber String The unique identifier that is assigned to the work
item.

authoredMapName String The map name according to the current locale of
the user.

queueName String The name of the queue with which the work item
is associated.

For a custom widget, you can obtain this value by
querying the in-basket attributes.

originator String The identifier assigned to the case worker who
launch the work flow.

subject String The workflow subject of current task. For an
automatic task or a manual task, the subject is the
name assigned to the task in Case Manager Builder.
For a user-created task, the subject is the name that
the case worker assigned to the task.

launchDate DateTime The date that the workflow was launched.

role String The role that the case worker is currently using.

For a custom widget, you can obtain this value by
querying the in-basket attributes.

Related reference:
“Cases resource” on page 53
“Particular case type resource” on page 44
“Particular case instance resource” on page 56
“Common JSON payload for cases and case types” on page 23
“POST method for the particular object type resource” on page 103

Response to a request for case data
The external data service responds to a POST method that was submitted by the
IBM Case Manager REST API. The response payload contains values for the
properties that are managed by the service.

108 Development Guide

Response content

The response to the request must include a JSON payload that contains the
following parameters:
{

"externalDataIdentifier" : "<opaque identifier meaningful to service>",

"properties":
[
{

"symbolicName" : "<symbolic_name>",
"value" : <potential new value>,
"customValidationError" : "Description of an invalid reason",
"customInvalidItems" : [0,3,4,8], // invalid multi-value items
"displayMode" : "<readonly/readwrite>",
"required" : <true or false>,
"hidden" : <true or false>,
"maxValue" : <overridden max value>,
"minValue" : <overridden min value>,
"maxLength" : <underlying max>,

"choiceList" :
{
"displayName" : "<display_name>",
"choices" :
[

{
"displayName" : "<name>",
"value" : <value>

},

{
"displayName" : "<name>",
"value" : <value>

},

// More choices ...
]

}

"hasDependentProperties" : <true or false>,

}

// More properties ...

]

}

Getting case data from an external data source 109

Table 92. Response parameters for the POST method

Name Type Required? Description

externalData
Identifier

String Yes The identifier provides contextual information to indicate the state of the data
that the service is returning.

You implement this parameter with values that are meaningful for your data
source. Typically, the parameter references the specific configurations that
define attributes other than the property value such as the minimum value,
maximum value, or the choice list. These configurations can be selected
dynamically based on other property values. In this situation, the service can
use the externalDataIdentifier parameter to determine that the configuration
changed since the previous call.

If the external data service does not modify property attributes dynamically,
you might not need to capture the data state. In this situation, you might
implement the parameter to return a fixed string value.

If the external data service returns data that is dynamic, you must capture the
data state. For example, the service might manage a property whose value or
other attributes are determined by the value of another property. In this
situation, you must implement the parameter to return a value that references
the specific configuration that was used to determine the value or other
attributes of the dependent property. The parameter must capture enough
information to identify changes in property data when the
externalDataIdentifier parameter is returned to the service in an
inProgressChanges request.

For example, assume that a list of conditions is used to select a set of
configurations based on the working property values. The data that is
captured in the externalDataIdentifier parameter might include the indexes
of the matching conditions.

properties Array Yes An array that contains values for the properties that are managed by the
external data service. For each property, you can specify the symbolic name
and the attributes, such as value, choice list, and maximum length.

Property attributes

The Properties parameter contains the following attributes for each property that
is managed by the external data service. The external data service can determine
many of these values dynamically so that the service can return a different value in
each response.

Table 93. Attributes of properties in the response payload

Name Type Required? Description

symbolicName String Yes The symbolic name of the property. The name must match the
symbolic name that was specified in the request payload.

value Determined
by setting in
the case
type

No The value of the property. The value that is set by the external data
service must correspond to the data type that is specified for the
property in the case type.

The external data service can determine the property value
dynamically based on the values of another other property.

If the service does not specify a value, the current working value for
the property is unchanged.

110 Development Guide

Table 93. Attributes of properties in the response payload (continued)

Name Type Required? Description

custom
Validation
Error

String No A message that describes why a property value is invalid.

You can configure the external data service to validate the current
value of a property. If the value is invalid, the service can leave the
value unchanged and return an error message in the
customValidationError parameter.

For example, the service might determine that an account number is
invalid. However, you do not want the service to replace the account
number. Instead, you can configure the service to return an error
message in the customValidationError parameter.

If this parameter is included in the response, the property value is
deemed invalid. However, the absence of this attribute indicates only
that the parameter passed the validation by the external data service.
The value might still be invalid based on attributes that are not
validated by the service.

custom
Invalid
Items

Array of
indexes

No An array of indexes for a list of values for a multi-valued property.

When the external data service validates a multi-valued property, it
can return this parameter to indicate the specific values that are
invalid. If a multi-valued property is invalid and this parameter is not
set, the property value as a whole is considered invalid.

This attribute is applicable only if the customValidationError
parameter indicates that the property is invalid.

displayMode String No A string that specifies whether Case Manager Client is to display the
property value as read-only.

The external data service can set this parameter to one of the
following values:

readonly
The user can view the property value but cannot modify it.

readwrite
The case worker can modify the property value. This setting
is the default value.

If the property value is set to readonly in the case type, the
external data service cannot make the value writable. In this
situation, a value of readwrite is ignored.

required Boolean No A Boolean value that is set to true to indicate that a value is required
for the property.

The external data service can determine this setting dynamically
based on the values of other properties. However, the service cannot
override the required parameter if it is set to true in the case type.

hidden Boolean No A Boolean value that is set to true to indicate that the property is to
be hidden in Case Manager Client.

The external data service can determine this setting dynamically
based on the values of other properties.

If this parameter is not specified, the value specified in the case type
is used.

Getting case data from an external data source 111

Table 93. Attributes of properties in the response payload (continued)

Name Type Required? Description

maxValue Integer,
float, or
date-time

No A number that indicates the maximum value of the property.

The external data service can determine this setting dynamically
based on the values of other properties.

If a maximum value is specified for the property in Content Platform
Engine, the service cannot make the setting less restrictive. That is,
the service can set the maximum only to a smaller value. It cannot
increase the maximum value. For example, if the maximum value in
Content Platform Engine is 100, the service can set the value to 50,
but not to 150.

minValue Integer,
float, or
date-time

No A number that indicates the minimum value of the property.

The external data service can determine this setting dynamically
based on the values of other properties.

If a minimum value is specified for the property in Content Platform
Engine, the service cannot make the setting less restrictive. That is,
the service can set the minimum only to a larger value. It cannot
decrease the minimum value. For example, if the minimum value in
Content Platform Engine is 100, the service can set the value to 150,
but not to 50.

maxLength Integer No A number that indicates the maximum length of the property value.

The external data service can determine this setting dynamically
based on the values of other properties.

If a maximum length is specified for the property in Content Platform
Engine, the service cannot make the setting less restrictive. That is,
the service can set the maximum length only to a smaller value. It
cannot increase the maximum length. For example, if the maximum
length in Content Platform Engine is 100, the service can set the value
to 50, but not to 150.

choiceList Object No An array that defines a list of choices for the property value.

The external data service can specify a choice list only if one is not
defined for the property in Content Platform Engine. The service can
determine the choices in the list dynamically based on the values of
other properties.

The choiceList value can contain a flat list of choices:

"choiceList" :
{
"displayName" : "<display name for the choice list>",
"choices" :
[

{
"displayName" : "<display name for a specific choice>
"value" : <value>

},

{
"displayName" : "<display name for a specific choice>",
"value" : <value>

},

// More choices ...
]

}

112 Development Guide

Table 93. Attributes of properties in the response payload (continued)

Name Type Required? Description

hasDependent
Properties

Boolean No A Boolean value that is set to true if other properties depend on the
value of this property.

When this parameter is set to true, the POST method is called to
update the dependent properties based on the new value whenever
this property is updated.

By default, this parameter is set to false.

Error responses for an external data service
If the POST method call fails, the response code that the IBM Case Manager REST
protocol returns indicates the type of error that occurred.

For example, the response code 404 Not Found indicates that the method did not
find a resource, such as the specified solution or case type. The response code 400
Bad Request indicates that a required parameter was not provided or that an
incorrect value was specified for a parameter.

The JSON response that is returned by the method contains additional information
about the error condition. The following example shows the format that the
response uses to provide that information:
#Response
HTTP/1.1 404 Not Found
Content-Type: application/json;charset-UTF-8
{

"userMessage":
{
"text":"The specified object type is not a valid object type.",

}
"underlyingDetails":
{
"causes":
[

"More detailed message 1",
"More detailed message 2",

]
}

}

Authentication for external data services
If your external data service needs to authenticate users, it must participate in the
same single sign-on authentication configuration as the other IBM Case Manager
components, such as Case Manager Client or the IBM Case Manager REST
protocol.

If Content Platform Engine and the external data service do not use the same
WebSphere Application Server profile, you must set up Lightweight Third Party
Authentication (LTPA) security between the applications in WebSphere Application
Server. Begin by exporting the LTPA key from the Content Platform Engine server.

The IBM Case Manager REST protocol passes one of the following headers to the
external data service:

Basic If basic authentication is used, the protocol passes an authorization header
that contains the keyword Basic that is followed by the encoded user
name and password pair.

Getting case data from an external data source 113

LtpaToken2
If LTPA authentication is used, the protocol passes an LTPA token with the
cookie LtpaToken2.

If the request contains either of these authentication values, WebSphere Application
Server first authenticates with the LDAP server, if one is configured. WebSphere
Application Server then sets up a JAAS subject in the calling context of the
external data service. To retrieve this JAAS subject, you can use one of the
WebSphere Application Server Java APIs. Alternatively, you can use the helper
method javax.security.auth.Subject getAmbientSubject() that is defined for
the UserContext class in the Content Engine Java API.

Persistence of case data
When a case worker saves a new case or an updated case, the IBM Case Manager
REST protocol makes a final call to the external data service. The REST protocol
uses the response returned by the service to determine which values are to be
saved to the repository for the case.

For the final call to the external data service, the requestMode parameter is set to
finalNewObject for a new case or finalExistingObject for an updated case.

The IBM Case Manager REST protocol evaluates each property as follows:
v A value that is explicitly passed to the protocol by Case Manager Client is

checked against any property attributes that are returned by the external data
service. If the value passes validation, that value is saved for the case in Content
Platform Engine. If the value does not pass validation, the protocol returns an
error.

v If a value is not explicitly passed by Case Manager Client and the service passes
a value for the property, that value is saved for the case in Content Platform
Engine.

v If a value is not explicitly passed by Case Manager Client and the service does
not pass a value, the default value for a new case is saved for the case in
Content Platform Engine. For an existing case, the current value is unchanged.
However, the REST protocol checks the default value or current value against
any property values returned by the service. If the value does not pass
validation, the REST protocol returns an error.

Typically, if the requestMode parameter is set to finalNewObjector
finalExistingObject, the external data service overrides the current working value
of a property if that value is invalid. Typically, the service validates property
values in earlier requests, so this situation rarely occurs. However, you can
implement the service to override invalid property values. In particular, the service
can override a property value when the display mode is set to read-only. The case
worker cannot change the property value in this situation.

Example data flow for case creation
If an external data service is registered for a solution, data for a new case is
automatically obtained from that service. The IBM Case Manager REST protocol
handles the exchange of data between Case Manager Client and the external data
service.

“Retrieval of initial information for a new case” on page 115
“Update of a property that has dependencies” on page 120
“Creation of the new case” on page 123

114 Development Guide

Retrieval of initial information for a new case
The first step in creating a case is to retrieve the properties that are defined for the
case type. As part of this process, the IBM Case Manager REST API obtains data
from the external data service for any properties that the service manages.

The following steps show the flow of data in the retrieval of the properties for a
case type called DH2_MyCase:
1. The case worker clicks Add Case and selects the appropriate case type.
2. Case Manager Client submits a request to the IBM Case Manager REST API to

obtain a complete list of the case properties and their attributes, including their
default values. The request is submitted by calling the GET method of the
particular case type resource:
GET /CaseManager/CASEREST/v1/casetype/DH2_MyCase

3. The IBM Case Manager REST API passes the default case data to the external
data service by calling the POST method particular object type resource:
POST /testservice/ICMEDREST/type/DH2_MyCase
{

"repositoryId": "CMTOSDH",
"requestMode": "initialNewObject",
"properties": [

// Payload may include additional properties
// not meaningful to the external data service

{
"symbolicName": "CmAcmCaseIdentifier",
"value": null

},
{

"symbolicName": "CmAcmCaseState",
"value": 0

},

// ...

{
"symbolicName": "DH2_State",
"value": null

},
{

"symbolicName": "DH2_PropOne",
"value": null

},
{

"symbolicName": "DH2_MVInt",
"value": []

},
{

"symbolicName": "DH2_MVString",
"value": []

},
{

"symbolicName": "DH2_City",
"value": null

}
]

}

4. The external data service responds with the changes to the attributes for the
properties that it manages. The response also includes the initial setting for the
external data identifier.

Getting case data from an external data source 115

{
"externalDataIdentifier": "-1,0",
"properties": [
{

"symbolicName": "DH2_State",
"required": true,
"maxLength": 2,
"hasDependentProperties": true,
"choiceList": {
"displayName": "StateChoiceList",
"choices": [
{

"displayName": "New York",
"value": "NY"

},
{

"displayName": "California",
"value": "CA"

},
{

"displayName": "Nevada",
"value": "NV"

}
]

}
},
{

"symbolicName": "DH2_PropOne",
"maxValue": 10,
"minValue": 1,
"hasDependentProperties": false

},
{

"symbolicName": "DH2_MVInt",
"value": [
0,
100

],
"maxValue": 1000,
"minValue": 0,
"hasDependentProperties": true

},
{

"symbolicName": "DH2_MVString",
"required": true,
"maxLength": 24,
"hasDependentProperties": false,
"choiceList": {
"displayName": "MVStringChoiceList",
"choices": [
{

"displayName": "One",
"value": "One"

},
{

"displayName": "Two",
"value": "Two"

},
{

"displayName": "Three",
"value": "Three"

},
{

"displayName": "Ten",
"value": "Ten"

},
{

116 Development Guide

"displayName": "Eleven",
"value": "Eleven"

},
{

"displayName": "Twelve",
"value": "Twelve"

}
]

}
},
{

"symbolicName": "DH2_City",
"value": null,
"displayMode": "readonly",
"hidden": true,
"required": true,
"hasDependentProperties": false

}
]

}

5. The IBM Case Manager REST API merges this information with the default
case data and returns the updated values to Case Manager Client:
{

"Properties": [

// Non-external data related properties

{
"SymbolicName": "CmAcmCaseIdentifier",
"DisplayName": "Case Identifier",
"Value": null,
"DisplayMode": "readwrite",
"Description": "A specially formatted identifier for Case Folder

instances, consists of Case Folder subclass symbolic class name,
\"_\" and then a 12 digit sequence number with leading zeros.",

"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": false,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": true,
"DefaultValue": null,
"MaxLength": 85,
"HasDependentProperties": false

},
{

"SymbolicName": "CmAcmCaseState",
"DisplayName": "Case State",
"Value": 0,
"DisplayMode": "readwrite",
"Description": "An integer choice property that defines

the possible states of Case Folder instance.",
"PropertyType": "integer",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": true,
"DefaultValue": 0,
"MaxValue": null,
"MinValue": null,
"ChoiceList": {

Getting case data from an external data source 117

"DisplayName": "CmAcmCaseStateChoiceList",
"Choices": [
{

"ChoiceName": "New",
"Value": 0

},
{

"ChoiceName": "Initializing",
"Value": 1

},
{

"ChoiceName": "Working",
"Value": 2

},
{

"ChoiceName": "Complete",
"Value": 3

},
{

"ChoiceName": "Failed",
"Value": 4

}
]

},
"HasDependentProperties": false

},

// ...

{
"SymbolicName": "DH2_State",
"DisplayName": "State",
"Value": null,
"DisplayMode": "readwrite",
"Description": "State where home office is located",
"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxLength": 2,
"ChoiceList": {
"DisplayName": "StateChoiceList",
"Choices": [
{

"ChoiceName": "New York",
"Value": "NY"

},
{

"ChoiceName": "California",
"Value": "CA"

},
{

"ChoiceName": "Nevada",
"Value": "NV"

}
]

},
"HasDependentProperties": true

},
{

"SymbolicName": "DH2_PropOne",
"DisplayName": "Prop One",

118 Development Guide

"Value": null,
"DisplayMode": "readwrite",
"Description": "An integer property",
"PropertyType": "integer",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": false,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxValue": 10,
"MinValue": 1,
"HasDependentProperties": false

},
{

"SymbolicName": "DH2_MVInt",
"DisplayName": "MVInt",
"Value": [

0,
100

],
"DisplayMode": "readwrite",
"Description": "Multi-value integer property",
"PropertyType": "integer",
"Cardinality": "multi",
"RequiresUniqueElements": false,
"Updatability": "readwrite",
"Required": false,
"Queryable": true,
"Orderable": false,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxValue": 1000,
"MinValue": 0,
"HasDependentProperties": true

},
{

"SymbolicName": "DH2_MVString",
"DisplayName": "MVString",
"Value": [],
"DisplayMode": "readwrite",
"Description": "Multi-value string property",
"PropertyType": "string",
"Cardinality": "multi",
"RequiresUniqueElements": false,
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": false,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxLength": 24,
"ChoiceList": {

"DisplayName": "MVStringChoiceList",
"Choices": [
{

"ChoiceName": "One",
"Value": "One"

},
{

"ChoiceName": "Two",
"Value": "Two"

},

Getting case data from an external data source 119

{
"ChoiceName": "Three",
"Value": "Three"

},
{

"ChoiceName": "Ten",
"Value": "Ten"

},
{

"ChoiceName": "Eleven",
"Value": "Eleven"

},
{

"ChoiceName": "Twelve",
"Value": "Twelve"

}
]

},
"HasDependentProperties": false

},
{

"SymbolicName": "DH2_City",
"DisplayName": "City",
"Value": null,
"DisplayMode": "readonly",
"Description": "City where home office is located",
"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": true,
"Inherited": false,
"DefaultValue": null,
"MaxLength": 64,
"HasDependentProperties": false

}
],
"CaseType": "DH2_MyCase",
"Description": "A simple case type",
"CaseTitleProperty": "CmAcmCaseIdentifier",
"DisplayName": "My Case",
"ExternalDataIdentifier": "-1,0"

}

Update of a property that has dependencies
The new case is displayed with the property values that are returned by the IBM
Case Manager REST protocol. The case worker then edits the values as needed. If
the case worker changes the value of a property that has dependent properties,
another call is made to the external data service to update the values of the
dependent properties.

The following steps show the flow of data when a case worker updates properties
for a new case of type DH2_MyCase:
1. The user selects a value for the State property on which the City property

depends.
2. Case Manager Client calls the POST method of the particular case type resource

to submit the value to the IBM Case Manager REST protocol. The request
payload includes the working property values, including the value that is
selected for the State property:

120 Development Guide

POST /CaseManager/CASEREST/v1/casetype/DH2_MyCase
{

"TargetObjectStore": "CMTOSDH",
"ExternalDataIdentifier": "-1,0",
"Properties": [

// Properties not related to external data

{
"SymbolicName": "CmAcmCaseIdentifier",
"Value": null

},
{

"SymbolicName": "CmAcmCaseState",
"Value": 0

},

// ...

{
"SymbolicName": "DH2_State",
"Value": "CA"

},
{

"SymbolicName": "DH2_PropOne",
"Value": null

},
{

"SymbolicName": "DH2_City",
"Value": null

},
{

"SymbolicName": "DH2_MVInt",
"Value": [

0,
100

]
},
{

"SymbolicName": "DH2_MVString",
"Value": []

}
]

}

3. The IBM Case Manager REST protocol passes the values to the external data
service by calling the POST method for the particular object type resource:
POST /testservice/ICMEDREST/type/DH2_MyCase
{

"repositoryId": "CMTOSDH",
"requestMode": "inProgressChanges",
"externalDataIdentifier": "-1,0",
"properties": [

// Non-external data related properties

{
"symbolicName": "CmAcmCaseIdentifier",
"value": null

},
{

"symbolicName": "CmAcmCaseState",
"value": 0

},

// ...

Getting case data from an external data source 121

{
"symbolicName": "DH2_State",
"value": "CA"

},
{

"symbolicName": "DH2_PropOne",
"value": null

},
{

"symbolicName": "DH2_MVInt",
"value": [
0,
100

]
},
{

"symbolicName": "DH2_MVString",
"value": []

},
{

"symbolicName": "DH2_City",
"value": null

}
]

}

4. The external data service responds with the choice list options for the City
property based on the selected state. The response also includes an updated
value for the external data identifier:
{

"externalDataIdentifier": "1,0",
"properties": [
{

"symbolicName": "DH2_City",
"hidden": false,
"required": true,
"hasDependentProperties": false,
"choiceList": {
"displayName": "CityChoiceList",
"choices": [
{

"displayName": "Los Angeles",
"value": "Los Angeles"

},
{

"displayName": "San Diego",
"value": "San Diego"

},
{

"displayName": "San Francisco",
"value": "San Francisco"

}
]

}
}

]
}

5. The IBM Case Manager REST protocol merges the changes from the external
data service into the working values for the case and returns the updated
values to the Case Manager Client:
{

"Properties": [
{

"SymbolicName": "DH2_City",
"DisplayName": "City",
"Value": null,

122 Development Guide

"DisplayMode": "readwrite",
"Description": "City where home office is located",
"PropertyType": "string",
"Cardinality": "single",
"Updatability": "readwrite",
"Required": true,
"Queryable": true,
"Orderable": true,
"Hidden": false,
"Inherited": false,
"DefaultValue": null,
"MaxLength": 64,
"ChoiceList": {

"DisplayName": "CityChoiceList",
"Choices": [
{

"ChoiceName": "Los Angeles",
"Value": "Los Angeles"

},
{

"ChoiceName": "San Diego",
"Value": "San Diego"

},
{

"ChoiceName": "San Francisco",
"Value": "San Francisco"

}
]

},
"HasDependentProperties": false

}
],
"CaseType": "DH2_MyCase",
"ExternalDataIdentifier": "1,0"

}

Creation of the new case
After the case worker enters the data for the case, the final step in creating a case
is to add the case to the repository. The external data service is called again to
validate the data.

The following steps show the flow of data when a case worker adds a case to the
repository:
1. The case worker finishes updating the case properties and clicks Add.
2. Case Manager Client submits the working property values to the IBM Case

Manager REST protocol by calling the POST method of the cases resource:
POST /CaseManager/CASEREST/v1/cases
{

"TargetObjectStore": "CMTOSDH",
"CaseType": "DH2_MyCase",
"ExternalDataIdentifier": "1,1",
"Properties": [

// Non-external data related properties

{
"SymbolicName": "CmAcmCaseIdentifier",
"Value": null

},
{

"SymbolicName": "CmAcmCaseState",
"Value": 0

},

Getting case data from an external data source 123

// ...

{
"SymbolicName": "DH2_State",
"Value": "CA"

},
{

"SymbolicName": "DH2_PropOne",
"Value": 7

},
{

"SymbolicName": "DH2_City",
"Value": "San Diego"

},
{

"SymbolicName": "DH2_MVInt",
"Value": [
0,
101,
200,
210

]
},
{

"SymbolicName": "DH2_MVString",
"Value": [
"One",
"Three",
"Thirty"

]
}

]
}

3. The IBM Case Manager REST protocol submits the property values to the
external data service by calling the POST method of the particular object type
resource:
POST /testservice/ICMEDREST/type/DH2_MyCase
{

"repositoryId": "CMTOSDH",
"requestMode": "finalNewObject",
"externalDataIdentifier": "1,1",
"properties": [

// Non-external data related properties

{
"symbolicName": "CmAcmCaseIdentifier",
"value": null

},
{

"symbolicName": "CmAcmCaseState",
"value": 0

},

// ...

{
"symbolicName": "DH2_State",
"value": "CA"

},
{

"symbolicName": "DH2_PropOne",
"value": 7

},
{

"symbolicName": "DH2_MVInt",

124 Development Guide

"value": [
0,
101,
200,
210

]
},
{

"symbolicName": "DH2_MVString",
"value": [

"One",
"Three",
"Thirty"

]
},
{

"symbolicName": "DH2_City",
"value": "San Diego"

}
]

}

4. The external data service responds with values for the properties that it
manages:
{

"externalDataIdentifier": "1,1",
"properties": [
{

"symbolicName": "DH2_State",
"required": true,
"maxLength": 2,
"hasDependentProperties": true,
"choiceList": {

"displayName": "StateChoiceList",
"choices": [
{

"displayName": "New York",
"value": "NY"

},
{

"displayName": "California",
"value": "CA"

},
{

"displayName": "Nevada",
"value": "NV"

}
]

}
},
{

"symbolicName": "DH2_PropOne",
"maxValue": 10,
"minValue": 1,
"hasDependentProperties": false

},
{

"symbolicName": "DH2_MVInt",
"maxValue": 1000,
"minValue": 0,
"hasDependentProperties": true

},
{

"symbolicName": "DH2_MVString",
"required": true,
"maxLength": 24,
"hasDependentProperties": false,

Getting case data from an external data source 125

"choiceList": {
"displayName": "MVStringChoiceList",
"choices": [
{

"displayName": "One",
"value": "One"

},
{

"displayName": "Two",
"value": "Two"

},
{

"displayName": "Three",
"value": "Three"

},
{

"displayName": "Twenty",
"value": "Twenty"

},
{

"displayName": "Thirty",
"value": "Thirty"

},
{

"displayName": "Fourty",
"value": "Fourty"

}
]

}
},
{

"symbolicName": "DH2_City",
"hidden": false,
"required": true,
"hasDependentProperties": false,
"choiceList": {
"displayName": "CityChoiceList",
"choices": [
{

"displayName": "Los Angeles",
"value": "Los Angeles"

},
{

"displayName": "San Diego",
"value": "San Diego"

},
{

"displayName": "San Francisco",
"value": "San Francisco"

}
]

}
}

]
}

5. The IBM Case Manager REST protocol validates the values that are submitted
by the Case Manager Client with the final external data constraints. If no errors
occur, the protocol creates the case and returns details for the new case:
{

"CaseTitle": "DH2_MyCase_000000100602",
"CaseIdentifier": "DH2_MyCase_000000100602",
"CaseFolderId": "{7F390468-7FAD-43EB-B373-675D2255BB61}"

}

126 Development Guide

Content Platform Engine add-on extensions for IBM Case
Manager

IBM Case Manager includes Content Platform Engine add-on extensions that are
used by Case Manager Builder and Case Manager Client. These add-on extensions
are modules that contain custom metadata and data that is stored in the design
and target object stores. The custom metadata includes classes that are derived
from base Content Engine classes. These add-on extensions provide the core object
model, history, and analytics support for IBM Case Manager.

Using the Content Engine APIs, you can extend some of the custom classes to
develop a customized solution. These custom classes include the Case Folder and
Case Task classes, which are basic components of an IBM Case Manager solution.
Both the Case Folder and Case Task classes are abstract classes and must be
subclassed for a solution. Other classes, such as Deployed Solution, Deployed Case
Type, and Case Comment, can be used as-is or can be subclassed. All of these
custom classes are enabled to support case history and analytics.

As an example, you might want to extend the Case Folder class to add
application-specific metadata. The base Case Folder class includes a few properties
that reflect the type of case, the case state, the case ID, and the document that
initiated the case. A subclass of the Case Folder class might be added to represent
an insurance policy application. To this subclass, you might add properties for the
name of the applicant, contact information, date of birth, requested policy amount,
or other information. Some of the operations you can perform in a customized
solution include:
v Querying for cases
v Creating a case
v Updating case properties
v Retrieving the metadata for case classes and document classes
v Adding a folder in a case folder
v Adding a document to a case

“IBM Case Manager design object store extensions”
“IBM Case Manager target object store extensions” on page 130
“IBM Case Manager history and analytics extensions” on page 135
“IBM Case Manager subscriptions and events” on page 136

IBM Case Manager design object store extensions
The IBM Case Manager design object store extensions include metadata that is
required for IBM Case Manager design object store functions. The extensions
provide property templates and implement custom classes, instances, and
properties.

You can use IBM Administration Console for Content Platform Engine to view the
metadata. You can also view the following properties for the design object store
AddOn:

Display name
<Release>Case Manager Design Object Store Extensions.

© Copyright IBM Corp. 2010, 2018 127

XML import data
CM_CMDOS_CEExtensions.xml

Installation type
Optional.

Prerequisites
Base Content Engine Extensions.

Required by
None.

Important: Do not modify the values for properties on object classes that are
created by IBM Case Manager. Changing these values can cause application
behavior issues. In addition, do not extend the classes for other software
applications.

Choice lists

The IBM Case Manager design object store extensions define choice lists that
provide collections of predefined property values that you can use to present users
with a list of values from which to choose. To review these choice lists in IBM
Administration Console for Content Platform Engine:
1. In the domain navigation pane, select the design object store.
2. In the object store navigation pane, click Data Design > Choice Lists.

The following table lists the choice lists that are defined by the IBM Case Manager
design object store extensions:

Display name Description

CmAcmIntegrationTypeChoiceList Defines choices for the types of repository in which case
documents are stored. By default, this value is set to
FileNet P8 repositories for solutions, project areas, target
environments, and target object stores. You can use the
Configure IBM Content Manager Host Properties task in
the IBM Case Manager configuration tool to set this value
to IBM Content Manager repositories.

CmAcmRuleTypeChoiceList Defines choices that indicate whether a business rule is
text-based or table-based.

CmAcmTargetEnvironmentTypeChoiceList Defines choices that indicate whether the target
environment is a development environment or a
production environment.

CmAcmTypeChoiceList Defines choices that indicate the type of a page. The
choice list is used by the Type (CmAcmType) property of
the Page (CmAcmPage) class.

CmAcmVcsStatusChoiceList Defines the choices that indicate the status of the Commit
and Deliver actions in Case Manager Builder, which are
related to version control system (VCS) integration. The
choice list is used by the Commit Status
(CmAcmVcsCommitStatus) and Deliver Status
(CmAcmVcsDeliverStatus) properties of the VCS
Execution State (CmAcmVcsExecutionState).

128 Development Guide

Custom object classes

The IBM Case Manager design object store extensions define custom objects that
are used to track solution artifact definitions and solution locks. To review these
custom objects in IBM Administration Console for Content Platform Engine:
1. In the domain navigation pane, select the design object store.
2. In the object store navigation pane, click Data Design > Classes > Custom

Object.

The following table lists the custom objects that are defined by the IBM Case
Manager design object store extensions:

Display name (symbolic name) Description

Draft Area (CmAcmDraftArea) Defines an area that contains the saved solution artifact
definitions.

Solution Lock Control (CmAcmSolutionLockControl) Defines the definition entries for locks in a solution and
tracks the save sequence number for the solution.

Document classes

The IBM Case Manager design object store extensions define classes that represent
various document objects that are associated with a solution. To review these
document classes in IBM Administration Console for Content Platform Engine:
1. In the domain navigation pane, select the design object store.
2. In the object store navigation pane, click Data Design > Classes > Document.

The following table lists the document classes that are defined by the IBM Case
Manager design object store extensions:

Display name (symbolic name) Description

Connection Definition (CmAcmConnectionDefinition) Defines the Case Manager Builder or Case Manager
Client association with the target environment. One
connection definition exists for each target environment
to which a case management solution is deployed.

Page (CmAcmPage) Defines an IBM Case Manager page, which contains the
widgets that are required to complete a task.

Rule (CmAcmRule) Defines a business rule in IBM Case Manager.

VCS Execution State (CmAcmVcsExecutionState) Defines the status of actions that are related to the
version control system for a solution, such as commit and
deliver.

View (CmAcmView) Defines a view for the Properties widget.

Widgets Package (CmAcmWidgetsPackage) Defines a package of widgets that can be used with IBM
Case Manager.

Folder classes

The IBM Case Manager design object store extensions define classes that represent
various folder objects that are used as containers for solution objects. To review
these document classes in IBM Administration Console for Content Platform
Engine:
1. In the domain navigation pane, select the design object store.

Content Platform Engine add-on extensions for IBM Case Manager 129

2. In the object store navigation pane, click Data Design > Classes > Folder.

The following table lists the folder classes that are defined by the IBM Case
Manager design object store extensions:

Display name (symbolic name) Description

ReinitArtifacts (CmAcmReinitArtifacts) Defines a folder that contains artifacts that are used when
the test environment is reset. These artifacts include code
modules and documents from the target object store, the
manifest of the target environment, and the status of the
most recent (current or past) reset of the test
environment.

Solution Folder (CmAcmSolutionFolder) Defines a folder for a solution.

Related concepts:

Administering Content Platform Engine

Base Content Engine Extensions

IBM Case Manager target object store extensions
The IBM Case Manager target object store extensions provide metadata that is
required for IBM Case Manager target object store functions. The extensions
provide property templates and implements custom classes, instances, and
properties.

You can use IBM Administration Console for Content Platform Engine to view the
following metadata:

Display name
<Release> Case Manager Target Object Store Extensions.

XML import data
CM_CMTOS_CEExtensions.xml

Installation type
Optional.

Prerequisites
Base Content Engine Extensions.

Required by
IBM Case Manager history and analytics extensions.

Choice lists

The IBM Case Manager target object store extensions define choice lists that
provide collections of predefined property values that you can use to present users
with a list of values from which to choose. To review these choice lists in IBM
Administration Console for Content Platform Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Choice Lists.

The following table lists the folder classes that are defined by the IBM Case
Manager target object store extensions:

130 Development Guide

http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.admin.tasks.doc/p8pcc000.htm
http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.admin.tasks.doc/featureaddons/ceaddon/_start_here_ce.htm

Display name Description

CmAcmActionChoiceList Defines choices that indicate the type of a comment.

CmAcmAuditConfigurationStateChoiceList Defines choices that indicate the status of an applied
audit configuration.

CmAcmCaseStateChoiceList Defines choices that indicate that state of a case folder.

CmAcmDeploymentStateChoiceList Defines choices that indicate the deployment state of a
deployed solution folder.

CmAcmDisabledStateChoiceList Defines choices that indicate the disabled state of a task.

CmAcmGroupModeChoiceList Defines choices that indicate whether a task is not
grouped, in an exclusive group, or in an inclusive group.

CmAcmIntegrationTypeChoiceList Defines choices that indicate the type of repository with
which IBM Case Manager is integrated.

CmAcmLaunchModeChoiceList Defines choices that indicate the launch mode state of a
task.

CmAcmPreconditionStateChoiceList Defines choices that indicate the state of a task
precondition.

CmAcmRelationshipTypeChoiceList Defines choices that indicate the type of relationship
between two cases.

CmAcmRequiredStateChoiceList Choice items for the possible required states for a case
task.

CmAcmSecurityConfigurationStateChoiceList Defines choices that indicate the status of an applied
security configuration.

CmAcmTargetEnvironmentTypeChoiceList Defines choices that indicate whether the target
environment is a development environment or a
production environment.

CmAcmTriggerTypeChoiceList Defines choices that indicate the trigger type for a task
type.

CmAcmUserLaunchedTaskWorkflowTypeChoiceList Defines choices that indicate whether a workflow is a
Content Platform Engine workflow or an IBM Business
Process Manager workflow.

IcnRepositoryTypeChoiceList Defines choices that indicate the type of IBM Content
Navigator repository that is used for an external
document.

Custom object classes

The IBM Case Manager target object store extensions define custom objects that are
used to track task types, precondition parameters, and workflow parameters. To
review these custom objects in IBM Administration Console for Content Platform
Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Classes > Custom

Object.

The following table lists the custom objects that are defined by the IBM Case
Manager target object store extensions:

Display name (symbolic name) Description

Deployed Task Type Info (CmAcmDeployedTaskTypeInfo) Represents a task type that is deployed for a solution.

Content Platform Engine add-on extensions for IBM Case Manager 131

Display name (symbolic name) Description

Precondition Checker Parameters
(CmAcmPreconditionCheckerParameters)

Tracks the options and filters that are passed as
parameter values for the precondition checker.

Task Workflow Parameters
(CmAcmTaskWorkflowParameters)

Represents the mapping of the parameters that are used
in a task workflow.

Document class

The IBM Case Manager target object store extensions define a class that represents
an external document that is associated with a case. To review this document class
in IBM Administration Console for Content Platform Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Classes > Document.

Display name (symbolic name) Description

External Document (IcnExternalDocument) Represents a document that is stored in a repository other
than this case management target object store.

Folder classes

The IBM Case Manager target object store extensions define classes that represent
various folder objects that are used as containers for solution and case objects. To
review these document classes in IBM Administration Console for Content
Platform Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Classes > Folder.
3. For certain classes, expand the parent class as indicated in the following table.

The following table lists the folder classes that are defined by the IBM Case
Manager target object store extensions:

Display name (symbolic name) Description

Base Case (CmAcmBaseCase) Represents the base abstract class for the Case Folder and
Case Subfolder classes.

Case Folder (CmAcmCaseFolder) Represents the base, abstract class for Case Folder
instances. The Case Folder class is the class from which
subclasses for case types that are part of a solution are
derived.

To view this class, click Base Class in the object store
navigation pane.

Case Subfolder (CmAcmCaseSubfolder) Represents a subfolder under a Case Folder instance.

To view this class, click Base Class in the object store
navigation pane.

Case Type Subfolder (CmAcmCaseTypeSubfolder) Represents a folder that is used to enable security
inheritance from a Deployed Case Type folder down to a
Case folder.

Deployed Case Type (CmAcmDeployedCaseType) Represents a Case Type instance within a Deployed
Solution. Certain artifacts of that case type are in this
folder hierarchy.

132 Development Guide

Display name (symbolic name) Description

Deployed Solution (CmAcmDeployedSolution) Represents a Case Solution folder in a deployed solution.
Certain solution artifacts and the case types and instances
are in this folder hierarchy.

Other classes

The IBM Case Manager target object store extensions define other classes that
represent different types of comments and tasks, subscriptions, and case
relationships. To review these other classes in IBM Administration Console for
Content Platform Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Classes > Other

Classes.
3. For certain classes, expand the parent class as indicated in the following table.

Display name (symbolic name) Description

Case Comment (CmAcmCaseComment) Represents the base class for comments that are
associated with a specific case. A case comment can be
associated with the case or with a document, task, or
work item in the case.

To view this class, click Annotation in the object store
navigation pane.

Case File Event (CmAcmCaseFileEvent) Records the filing of a document into a case for auditing
purposes.

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Case Related Event (CmAcmCaseRelatedEvent) Records the creation of a relationship between two cases
for auditing purposes.

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Case Relationship (CmAcmCaseRelationship) Represents the relationship between two cases.

To view this class, click Link in the object store
navigation pane.

Case Task (CmAcmCaseTask) Represents the base, abstract class for a Case Task.

To view this class, click Task in the object store
navigation pane.

Case Unfile Event (CmAcmCaseUnfileEvent) Records the unfiling of a document from a case for
auditing purposes.

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Directory Validation Event
(CmAcmDirectoryValidationEvent)

Validates the presence of the rules repository directory on
the Content Platform Engine server.

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Content Platform Engine add-on extensions for IBM Case Manager 133

Display name (symbolic name) Description

Document Create Case Subscription
(CmAcmDocumentCreateCaseSubscription)

Represents a synchronous subscription to the Create
event on Document classes. Class subscriptions of this
class are created by the solution deployment tool.

To view this class, click Class Subscription in the object
store navigation pane.

Dynamic Task (CmAcmDynamicTask) Represents a custom task that a user creates in Case
Manager Client.

To view this class, click Task > Case Task in the object
store navigation pane.

Rule Deployment Event (CmAcmRuleDeploymentEvent) Causes rules to be deployed to the rules repository
directory on the Content Platform Engine server.

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Rule Export Event (CmAcmRuleExportEvent) Causes the rules in a solution to be exported to a package
and uploaded to the design object store

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Rule Reset Event (CmAcmRuleResetEvent) Causes the rules repository directory to be reset.

To view this class, click Event > Object Change Event >
Custom Event in the object store navigation pane.

Task Comment (CmAcmTaskComment) Represents a comment for a case task.

To view this class, click Annotation > Case Comment in
the object store navigation pane.

Task With Initiating Document
(CmAcmTaskWithInitiatingDocument)

Represents the base, abstract class for a Case Task that
has a file precondition.

To view this class, click Task > Case Task in the object
store navigation pane.

Task Workflow Launch Subscription
(CmAcmTaskWorkflowLaunchSubscription)

Represents an asynchronous subscription to the Change
State event of a Case Task.

To view this class, click Class Subscription in the object
store navigation pane.

Version Series Comment (CmAcmVersionSeriesComment) Represents a comment for a document in a case.

To view this class, click Annotation > Case Comment in
the object store navigation pane.

Work Item Comment (CmAcmWorkItemComment) Represents a comment for a case work item.

To view this class, click Annotation > Case Comment >
Task Comment in the object store navigation pane.

Related concepts:

Administering Content Platform Engine

Base Content Engine Extensions
Related reference:
“IBM Case Manager history and analytics extensions” on page 135

134 Development Guide

http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.admin.tasks.doc/p8pcc000.htm
http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.admin.tasks.doc/featureaddons/ceaddon/_start_here_ce.htm

IBM Case Manager history and analytics extensions
The IBM Case Manager history and analytics extensions include metadata that
configures Content Platform Engine for auditing of analytical and historical
information by IBM Case Manager client applications.

The IBM Case Manager history and analytics extensions consist of an event class
and event class properties, and is deployed to the IBM Case Manager target object
store. You can use IBM Administration Console for Content Platform Engine to
view the metadata.

Display Name
<Release> Case Manager History and Analytics Extensions.

XML Import Data
CMHistoryAndAnalyticsAddOn.xml.

Installation Type
Optional.

Prerequisites
IBM Case Manager target object store extensions.

Required By
None.

The IBM Case Manager history and analytics extensions configure several
properties on source object classes to be audited individually. Only the individual
properties are then recorded, rather than the entire source object on the audited
event. For a property to be audited on a source object, the corresponding property
definition on the class must be configured for auditing. Specifically, the AuditAs
property of the property definition must be set to an event property that holds the
value of the source object property.

The classes contain properties that are audited by default and where their
corresponding values are found on the event objects.

For a property that is not audited by default, you can set the AuditAs property in
the property definition to audit that property. When an event is raised on the
object, the property is then audited.

To set the AuditAs property in IBM Administration Console for Content Platform
Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Classes and then click

the class.
3. On the Properties Definition tab, click the property that you want to audit to

open the Property Definition dialog box. Click the More tab.
4. From the Audit as list, select the event property template that is to be used to

audit the property.

The following table lists the auditable classes that are defined by the IBM Case
Manager target object store extensions:

Content Platform Engine add-on extensions for IBM Case Manager 135

Display name (symbolic name) Description

Case Comment (CmAcmCaseComment) Represents the base class for comments that are
associated with a specific case. A case comment can be
associated with the case or with a document, task, or
work item in the case.

Case Folder (CmAcmCaseFolder) The Case Folder class and its subclasses are extended
with auditing configuration settings that are accessible by
the applications that you configure for case analytics and
for case history.

Case Subfolder (CmAcmCaseSubfolder) Represents a subfolder under a Case Folder instance.

Case Task (CmAcmCaseTask) Represents the base, abstract class for a Case Task.

Document (Document) A single version of a document stored in an object store.

Task Comment (CmAcmTaskComment) Represents a comment for a case task.

Version Series Comment (CmAcmVersionSeriesComment) Represents a comment for a document in a case.

Work Item Comment (CmAcmWorkItemComment) Represents a comment for a case work item.

Related concepts:

Administering Content Platform Engine

Content Engine APIs: property auditing
Related reference:
“IBM Case Manager target object store extensions” on page 130

IBM Case Manager subscriptions and events
The IBM Case Manager subscriptions, event actions, and code module are
deployed to the IBM Case Manager target object store. You can use IBM
Administration Console for Content Platform Engine to view the metadata.

Important: Although in IBM Administration Console for Content Platform Engine,
you can change events from synchronous to asynchronous or from asynchronous
to synchronous, doing so for IBM Case Manager events can cause unintended
behavior.

The following table lists the event and subscription classes that are defined by the
IBM Case Manager target object store extensions. To review these choice lists in
IBM Administration Console for Content Platform Engine:
1. In the domain navigation pane, select the target object store.
2. In the object store navigation pane, click Data Design > Classes > Other

Classes. Then, to view an event class, click Event > Object Change Event >
Custom Event. To view a subscription class, click Class Subscription.

Display name (symbolic name) Description

Case File Event (CmAcmCaseFileEvent) Represents an event that occurs when a Case Folder or
Case Subfolder has its file method called to file a
Document object.

Case Related Event (CmAcmCaseRelatedEvent) Represents an event that occurs when a relationship is
established between two cases.

Case Unfile Event (CmAcmCaseUnfileEvent) Represents an event that occurs when a document is
unfiled from a case.

136 Development Guide

http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.admin.tasks.doc/p8pcc000.htm
http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.dev.ce.doc/audit_concepts.htm#property_auditing

Display name (symbolic name) Description

Directory Validation Event
(CmAcmDirectoryValidationEvent)

Represents an event that occurs when IBM Case Manager
must verify that the Rules repository directory is present
on the Content Platform Engine server.

Document Create Case Subscription
(CmAcmDocumentCreateCaseSubscription)

Represents a synchronous subscription to the Create
event on Document classes. Class subscriptions of this
class are created by the solution deployment tool.

Rule Deployment Event (CmAcmRuleDeploymentEvent) Represents an event that occurs when a business rule is
deployed.

Rule Export Event (CmAcmRuleExportEvent) Represents an event that occurs when a business rule is
exported.

Rule Reset Event (CmAcmRuleResetEvent) Represents an event that occurs when a business rule is
reset.

Task Workflow Launch Subscription
(CmAcmTaskWorkflowLaunchSubscription)

Represents an asynchronous subscription to the Change
State event of a Case Task.

Related concepts:

Administering Content Platform Engine

Subscribable and Auditable Events

Content Engine APIs: subscription concepts

Content Platform Engine add-on extensions for IBM Case Manager 137

http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.admin.tasks.doc/p8pcc000.htm
http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.dev.ce.doc/events_reference.htm
http://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.ce.dev.ce.doc/subscription_concepts.htm

138 Development Guide

Using external properties

External properties are ad-hoc properties that are not defined within the properties
of a case or task, but that can be rendered within their associated views in IBM
Case Manager, for example, the Properties widget. External properties are defined,
retrieved, and persisted by using an external data source such as a JAVA servlet,
JSON file, or data service. The binding of external properties is handled by the
Properties area in the model layer.

General use case: Most organizations maintain several Systems of Record data
sources. These data sources often contain the most current single source of truth.
Easy access to this information helps case workers complete their goals. It is often
necessary and efficient to access this data live and not store a copy.

Scenario: While working a customer claim, an agent opens a case to view the
details of the case. In addition to claim-specific data, the agent can see the
customer's contact information, which is pulled live from the customer database. A
list of past transactions with the customer is also conveniently displayed, which
saves the agent from having to access the transaction system for this information.

“Defining external properties at run time”
“Defining external properties by using the Script Adapter widget” on page 140
“Retrieving and persisting external properties” on page 143

Related information:

Adding external properties to the properties view

Defining external properties at run time
This simple and quick example demonstrates the extensibility, flexibility, and
portability of external properties.

About this task

Procedure

To define and bind an external property at run time:
1. Log on to Case Manager Builder.
2. From the Add Case page or the Case Details page, add a Script Adapter widget

to the page.
3. On the Script Adapter widget:

a. Click the Edit Wiring icon and wire the widget to receive 'Send new case
information' events.

b. Click the Edit Settings icon and paste the following JavaScript in the
window. This JavaScript defines an external property called PhoneNumber.
require([
"icm/model/properties/controller/ControllerManager",
"icm/base/Constants"], function(ControllerManager, Constants) {

// Get the editable and coordination objects from the event payload.
var coordination = payload.coordination;
var editable = payload.caseEditable;
var model;

© Copyright IBM Corp. 2010, 2018 139

http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.help.doc/acmsdh73.htm

// Participate in the BEFORELOADWIDGET topic to bind the external
// properties into the controller.
payload.coordination.participate(Constants.CoordTopic.BEFORELOADWIDGET,

function(context, complete, abort) {
model = {

properties: {
"PhoneNumber": {

id: "PhoneNumber",
name: "Phone Number",
type: "string",
cardinality: "single",
value: "949-559-2213"

}
}

};
var collectionController = ControllerManager.bind(editable);
collectionController.bind("External", "External", model);
complete();

});

// Participate in the AFTERLOADWIDGET topic to release
// the controller binding.
payload.coordination.participate(Constants.CoordTopic.AFTERLOADWIDGET,

function(context, complete, abort) {
ControllerManager.unbind(editable);
complete();

});
});

Important: All external property-related binding typically should happen in
the handler for the BEFORELOADWIDGET.

4. Save the page, then save and deploy your changes to the solution.
5. Open the solution in Case Client and add a case. Notice that the external

property, Phone Number, appears with the case properties on the page for the
new case.

Defining external properties by using the Script Adapter widget
This example shows how to define external properties by using JavaScript in a
Script Adapter widget for the Properties widget in Case Client.

About this task

Procedure

To define external properties by using the Script Adapter widget:
1. Define an external properties collection in the model layer as a single object.

For example, provide a collection of property objects:
var model = {

properties: {
"name": {

id: "name",
type: "string",
value: "Rip Van Winkle"

},
"age": {

id: "age",
type: "integer",

140 Development Guide

value: 200
},

},
}

2. Implement the definition, retrieval, and persistence of external properties by
using custom code. Typically, this custom code is implemented in the Script
Adapter widget.
Your custom code can call the bind method of the PropertyCollectionController
class, as shown below, to include your external properties collection in the set
of properties that are associated with the view. You can bind as many
collections as you wish. Specify a unique collection identifier for each
collection.
controller.bind(collectionId, collectionName, model);

The PropertyCollectionController class supports standard model signatures
with which it can bind implicitly. In some cases, your application might need to
support a non-standard model signature that is associated with your
application. If so, you can provide an Integration object as part of the binding
to instruct the controller how to interact with the associated model.
controller.bind(collectionId, collectionName, model, integration);

The PropertyCollectionController class automatically updates the state of the
model as changes occur within the view.

3. Set up wiring for the Script Adapter widget.
It is important to specify an incoming event for the Script Adapter widget that
is loaded before the actual widget loads on the page. For example, for the Add
Cases page, wire the Script Adapter widget to the Page Container's 'Send new
case information' event. Similarly, you can use the Page Container's 'Send case
information event' for the Case Details page and the Page Container's 'Send
work item' event for the Work Details page. These events allow the Script
Adapter widget to execute the JavaScript code so that the external properties
are bound to the Properties widget before it is loaded.

4. Use external properties that are defined by using a model object.
The following example illustrates the definition of a typical collection of
external properties of various data types.
{

properties: {
"description": {

id: "description",
name: "Description",
label: "Description",
type: "string",
cardinality: "single",
value: "description here"

},
"price": {

id: "price",
name: "Price",
label: "Price",
type: "float",
cardinality: "single",
value: 22.2

},
"booleantest": {

id: "booleantest",
name: "booleantest",
label: "booleantest",
type: "boolean",
cardinality: "single"

},

Using external properties 141

"datetimeTEST": {
id: "datetimeTEST",
name: "datetimeTEST",
label: "datetimeTEST",
type: "datetime",
cardinality: "single"

},
"quantityINT": {

id: "quantityINT",
name: "quantityINT",
label: "quantityINT",
type: "integer",
cardinality: "single"

},
"total": {

id: "total",
name: "Total",
label: "Total",
type: "float",
cardinality: "single",

},
"MyMultiInteger": {

id: "MyMultiInteger",
type: "integer",
cardinality: "multi",
value: [1, 2, 3]

},
"multiCategory": {

id: "multiCategory",
name: "MultiCategory",
label: "MultiCategory",
type: "integer",
cardinality: "multi",
choices: [{

label: "Small",
value: 0

},
{

label: "Large",
value: 1

}
]

}
}

}

5. Create an Integration object.
Creating a custom Integration object is useful when you are working with a
third-party model object with a different signature than the default signature
that is supported by the controller. Some examples include an incoming JSON
object from a web service or an object from within your existing model layer.
You can create a custom Integration object that tells the controller how to map
its attributes to fields of the custom object.
The following script demonstrates how to create the Integration object that is
used for such a binding. The bold below shows the parts that are important to
note for custom integration configuration.
// Create the external properties model with the custom model signature.
var model = {

props: {
"PhoneNumber": {

symbolicName: "PhoneNumber",
name: “Phone Number”,
type: "string",
multiValue: false,
value: "949-559-2213"

142 Development Guide

}
}

};

// Create a custom integration object for the custom model signature.
var integration = new Integration();
integration.mergeConfiguration(basicIntegrationConfiguration);
integration.mergeConfiguration(customIntegrationConfiguration);

// Add a binding for the external properties to the controller.
collectionController.bind("External", "External", model, integration);

The following script illustrates the custom integration configuration object that
is required for the custom integration in the previous script. Typically, this
configuration object is implemented in a separate Dojo module. Merge the basic
integration configuration before you merge your custom integration
configuration as shown in the previous script.
var customIntegrationConfiguration = {

bindings: {
collection: {

attributes: {
properties: {
//Get the properties from the "props" member of the model.

get: "props"
}

}
},
property: {

attributes: {
common: {

id: {
//Get the id from the "symbolicName" member of
//the model object.
get: "symbolicName"

},
cardinality:

// Compute the cardinality from the "multiValue"
//member of the model object.
get: function(model) {

return model.multiValue ? "multi" : "single";
}

}
}

}
}

}

Retrieving and persisting external properties
The retrieval and persistence of external properties depends entirely on your
unique application requirements. It must therefore be implemented in custom code.

In one scenario, external properties might be located in a database. In another
scenario, they might be from a web service. A third scenario might simply use the
data to update the visible status of a widget.

Typically, you coordinate the retrieval of external properties with the rendering of a
page and you coordinate the persistence of external properties with the persistence
of a page. A Coordination object is provided to organize these activities among the
various widgets on a page. Your custom code in the Script Adapter widget can
participate in this coordination as demonstrated by the code that follows. Note that

Using external properties 143

getExternalProperties and setExternalProperties are application-specific
methods that are provided in your custom code.
require(["icm/base/Constants", "icm/model/properties/controller/ControllerManager"],

function(Constants, ControllerManager) {
/* Get the coordination and editable objects from the event payload. */
var coordination = payload.coordination;
var editable = payload.caseEditable;
/* Use the BEFORELOADWIDGET coordination topic handler to obtain the

controller binding for the editable and to update the properties. */
coordination.participate(Constants.CoordTopic.BEFORELOADWIDGET,

function(context, complete, abort) {
/* Obtain the controller binding for the editable. */
var controller = ControllerManager.bind(editable);
/* Retrieve the external properties and bind them to the controller. */
var externalProperties = getExternalProperties();
/* You must provide this function. */
controller.bind("Ext1", "Ext1", externalProperties);
/* You can optionally provide an integration object if a

non-standard model is used. */
/* Call the coordination completion method. */
complete();

});
/* Use the SAVE coordination topic handler to release the controller binding

for the editable. */
coordination.participate(Constants.CoordTopic.SAVE,

function(context, complete, abort) {
/* Release the controller binding for the editable. */
ControllerManager.unbind(editable);
/* Will automatically release the external properties binding. */
/* Save the external properties. */
saveExternalProperties(externalProperties);
/* You must provide this function. */
/* Call the coordination completion method. */
complete();

});
});

144 Development Guide

Creating custom property editors and controllers

You can create custom editors and controls to use with properties views. For
example, you might create a custom editor and controller to display a record from
an external data source such as a customer relationship management system.

About this task

To use your custom editors and controllers, you must create and add an extensions
package to your IBM Case Manager environment. The following procedure
provides an overview of the steps that are required to create a custom property
editor and controller and the extensions package. For detailed instructions on
creating the editor and controller, see Creating custom property editors and
controllers in IBM Case Manager V5.2.1 on the IBM developerWorks® website.

Procedure

To create an extensions package for a custom property editor and controller:
1. Create a web project that contains the following folders for your extensions

package:

Folder Content

ProjectName/ProjectNamePlugin Contains the files that are used to create the
JAR file for the IBM Content Navigator
plug-in.

ProjectName/ProjectNamePlugin/src/
PackageName

Contains the files that are used to create the
JAR file for the IBM Content Navigator
plug-in.

ProjectName/ProjectNamePlugin/src/
PackageName/WebContent

Contains the main JavaScript plug-in file and
the root folder of your custom editors and
controller code. It can have subfolder
structures to organize the code packages.

ProjectName/ICMRegistry Contains the Extension.json file that are
used to register the extensions package and
optionally the translated Extension.json in
the nls subfolder.

2. Create the registry files and place them in the ICMRegistry folder:
a. Create a file called Extension.json. This JSON-format file indicates the ID,

title, description, type, packages, CSS, and a bootstrap class of the
extensions.

b. Optional: For a different locale, you can create the translated
Extension.json files, and put them in the corresponding language folders
under the nls subfolder. For example, create ICMRegistry/nls/fr/
Extension.json for a French locale.

3. Create a standard Content Navigator plug-in in the ProjectName/
ProjectNamePlugin folder, to hold the source code for your custom editors and
controllers. Create the following items in the WebContent folder of the plug-in:
a. Create a self-contained Dojo widget to represent the customer editor that

you want to use in the properties view.

© Copyright IBM Corp. 2010, 2018 145

https://www.ibm.com/developerworks/community/blogs/e8206aad-10e2-4c49-b00c-fee572815374/resource/ACM_LP/PropertyEditorsControllersICM.pdf
https://www.ibm.com/developerworks/community/blogs/e8206aad-10e2-4c49-b00c-fee572815374/resource/ACM_LP/PropertyEditorsControllersICM.pdf

b. Create a registry file to describe the custom editor, and specify the types of
the properties that are suitable to use with the editor in the registry. This
registry file is used to register the editor into Properties View Designer.

c. Optional: If you want to interact with custom data types, you can create a
custom controller to use with the editor and the custom data type. You must
also create a custom integration configuration file to ingest the custom
controller in the integration configuration.

d. Create a bootstrap class to register the custom editor and custom
controllers.

4. Create a extensions package that contains the custom the custom plug-in and
registration file:
a. Create a build.xml script that builds the following components:
v The ICMRegistry folder that includes the extension definitions
v A JAR file that contains the IBM Content Navigator plug-in

5. In the IBM Case Manager configuration tool, run the Deploy and Register
Extensions Package task to register and deploy your extensions package.

Important: If you run this task in a cluster environment, you must ensure that
the plug-in is loaded on each node of the cluster. Either restart the cluster to
force the plug-in to be loaded on all nodes or manually load the plug-in on
each node by using the IBM Content Navigator administration client.

6. In Case Manager Builder, use Properties View Designer to choose the custom
properties editor for a property in a properties view.

7. Deploy and test your solution.

146 Development Guide

Creating custom inline messages and prompts

When a text-box field, such as a Number Text Box Editor, is empty, Case Manager
Client displays a prompt message as a popup tooltip. After the user enters data in
the field, the tooltip goes away. In addition, Case Manager Client displays default
messages if the user enters a value that is invalid or outside the range for the
property.

You can provide custom prompts and messages by creating a custom JavaScript
that uses the set method for the Controller class as shown in the following
example:
var propertyController =
controller.getPropertyController("F_CaseFolder", "ABC_Property1");
propertyController.set(’promptMessage", "Enter your favorite color");
propertyController.set("invalidMessage",
"The value that you entered is not valid.");
propertyController.set("rangeMessage", "Enter a value between {0} and {1}");

© Copyright IBM Corp. 2010, 2018 147

148 Development Guide

Creating custom page widgets and actions

You can create custom page widgets to use with or in place of the IBM Case
Manager page widgets. For example, you might create a custom widget to display
a record from an external data source such as a customer relationship management
system. You might create a widget that replaces the IBM Case Manager Search
widget with a user interface that customizes the display of search properties for
your users.

Before you begin

Case Manager Client and the page widgets run in IBM Content Navigator.
Therefore, before you create custom widgets, you must set up your development
environment to customize and extend IBM Content Navigator. For information, see
section 5.1, "Preparing for IBM Content Navigator customization," in the IBM
Redbooks® publication Customizing and Extending IBM Content Navigator.

About this task

The following procedure provides an overview of the steps that are required to
create a custom page widget. For detailed instructions and samples, see Creating
custom widgets with the IBM Case Manager JavaScript API on the IBM
developerWorks website.

Procedure

To create a custom page widget:
1. Create a web project that contains the following folders for your widget

package:

Folder Content

ProjectName/ProjectNamePlugin Contains the files that are used to create the
JAR file for the IBM Content Navigator
plug-in.

ProjectName/ProjectNamePlugin/src/
PackageName

Contains the files that are used to create the
JAR file for the IBM Content Navigator
plug-in.

ProjectName/ProjectNamePlugin/src/
PackageName/WebContent

Contains the CSS files, the main JavaScript
plug-in file and related files such as images.

ProjectName/ICMRegistry Contains the JSON files that are used to
register the widget package and the page
widgets.

Optionally, this folder can contain folders for:

v Images that are used in the widget
package, such as icons or thumbnails

v Translated resource files

ProjectName/ProjectNameWidget Contains the files that are used to define the
user interface for a custom page widget.

ProjectName/
ProjectNameWidget.PackageName/pgwidget

Contains the files that are used to define the
custom page widgets.

© Copyright IBM Corp. 2010, 2018 149

http://www.redbooks.ibm.com/redbooks/pdfs/sg248055.pdf
https://www.ibm.com/developerworks/mydeveloperworks/blogs/e8206aad-10e2-4c49-b00c-fee572815374/resource/ACM_LP/ICM52CustomWidgets.pdf
https://www.ibm.com/developerworks/mydeveloperworks/blogs/e8206aad-10e2-4c49-b00c-fee572815374/resource/ACM_LP/ICM52CustomWidgets.pdf

Folder Content

ProjectName/
ProjectNameWidget.PackageName/action

Contains the files that are used to define the
custom actions that are used by the custom
page widgets.

For more information, see section 5.2.1, “General structure of a plug-in
project,” in the IBMRedbooks publication Customizing and Extending IBM
Content Navigator.

2. Create the registry files and place them in the ICMRegistry folder:
a. Create a file called Catalog.JSON. This JSON-format file identifies the

widget category and the page widgets that the package contains.
b. For each page widget, create a definition file in JSON format that identifies

the properties, toolbars, menus, and actions that can be configured for the
widget.

3. Create a self-contained widget that is based on Dojo to represent the user
interface component of the custom page widget.
Do not include the business logic for the page widget in this file. Instead, use
this file to define the visual representation of the widget that is displayed to
users in Case Manager Client. In addition, include a destroy method to be
called to close the widget when the page that contains the widget is closed.

4. Create a wrapper file that defines a custom class to represent the page widget.
You define the wrapper JS file in the Dojo Asynchronous Module Definition
(AMD) format by calling the Dojo.declare() method.
The class for the page widget must:
v Extend the user interface component that you create in step 3.
v Mix in the icm.base.BasePageWidget class. This class mixes in the

icm.base._EventStub class that includes methods for publishing and
broadcasting events.

v If the page widget contains a toolbar or menu that uses the IBM Case
Manager action framework, mix in the icm/base/BaseActionContext class.

v If the page widget must interact with other page widgets to perform tasks
such as adding or saving cases, tasks, or work items, participate in
coordination.

5. If your page widget uses custom actions, define a class for each action.
An IBM Case Manager action extends the ecm.model.Action class. To make a
standard IBM Content Navigator action work in IBM Case Manager, the
com.ibm.ecm.extension.PluginAction implementation must override the
getAdditionalConfiguration method to provide the action definition.
To define the class for a custom action, you extend the icm.action.Action
class. You must implement an execute method in the class to define the
operation logic for the action. Optionally, you can implement an isEnabled
method and an isVisible method to check the state.

Tip: You can customize the dialog boxes that are used to display error
messages and confirmation messages for your custom actions. To override the
default dialog boxes, use the showConfirmationDialog method and
showErrDialog method that are defined for the icm.action.Action JavaScript
class.

6. Create the IBM Content Navigator plug-in for the widget package. The
plug-in contains the web browser logic that enables users to call the page
widget.

150 Development Guide

http://www.redbooks.ibm.com/redbooks/pdfs/sg248055.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248055.pdf

For more information, see section 5.2.2, “Create a plug-in project from the
samplePlugin code,” in the IBMRedbooks publication Customizing and
Extending IBM Content Navigator.

7. Create a widget package that contains the custom page widgets and actions:
a. Create a build.xml script that builds the following components:
v An EAR file that contains the runtime code that implements the page

widgets and actions
v The ICMRegistry folder that includes the page widget definitions
v A JAR file that contains the IBM Content Navigator plug-in, including

the bootstrap file and the action definitions
b. Create a zip file that contains the files and folder from the previous step.

8. Create a MANIFEST.MF file that is in the ProjectNamePlugin/src/META-INF folder
that contains t:he following reference to the Custom plug-in.js file:
Plugin-Class: Custom plug-in

9. In the IBM Case Manager configuration tool, make and run a copy of the
Deploy and Register Widgets Package task to register your widget package
and to deploy it in your design environment.

Important: If you run this task in a cluster environment, you must ensure that
the plug-in is loaded on each node of the cluster. Either restart the cluster to
force the plug-in to be loaded on all nodes or manually load the plug-in on
each node by using the IBM Content Navigator administration client.

The Deploy and Register Widgets Package task modifies only those
components within the application server for IBM Content Navigator
application server. For environments where client requests are routed through
an HTTP server such as IBM HTTP Server, a load balancer, or so on, ensure
that the endpoints are configured correctly. In addition, ensure that the HTTP
server plug-ins are regenerated to allow clients access to the runtime code
with the deployed EAR application.

10. In Case Manager Builder, use Page Designer to add the custom page widget
to a page and configure the properties and actions for the page widget.

11. Deploy and test the solution.
“Defining registry files for custom actions, properties, page widgets, and
events”

Related information:

Class icm.action.Action

Creating custom widgets with the IBM Case Manager JavaScript API

Defining registry files for custom actions, properties, page widgets,
and events

You can include certain properties in the registry files for your custom action,
properties, page widget, or event.

“Defining the widget package catalog file” on page 152
“Defining a page widget definition file” on page 156
“Defining an action definition file” on page 158
“Defining a property for a page widget or an action” on page 160
“Defining a property type” on page 161

Creating custom page widgets and actions 151

|
|
|
|

|
|
|
|
|
|
|

http://www.redbooks.ibm.com/redbooks/pdfs/sg248055.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248055.pdf
http://www.ibm.com/support/knowledgecenter/SSCTJ4_5.3.3/com.ibm.casemgmt.development.doc/jsdoc/symbols/icm.action.Action.html
https://www.ibm.com/developerworks/mydeveloperworks/blogs/e8206aad-10e2-4c49-b00c-fee572815374/resource/ACM_LP/ICM52CustomWidgets.pdf

“Defining a widget event” on page 163

Defining the widget package catalog file
The widget package catalog file is a JSON file that identifies the custom page
widgets that are contained in your widget package. This file, which must be
named Catalog.JSON, is in the ICMRegistry or ICMRegistry/nls folder of your
widget package.

The following example shows the structure of the Catalog.json file.
{

"Name":"IBM Case Manager Widget package",
"Description":"Description of package",
"Locale":"",
"Version":"5.3.3",
"Categories":[

{
"id":"EducationWidgets",
"title":"Education Widgets"

}
],
"Widgets":[

{

"id":"CustomInbasket",
"title":"Custom Inbasket",
"category":"EducationWidgets",
"description":"EN description of Custom Inbasket",
"definition":"CustomInbasket.json",
"preview":"images/custom/custominbasket_preview.gif",
"icon":"images/custom/custominbasket_icon.gif",
"runtimeClassName":"icm.pgwidget.inbasket.CustomInbasket",
"previewThumbnail":"images/custom/custominbasket_thumb.gif"

}
]

]

The following table describes the properties that are supported for the
Catalog.json file.

Table 94. Catalog.json supported properties

Property Required or Optional Type Description

Name Required String A name for the
custom page widget
package. Specify a
unique name for the
package to avoid
overriding an existing
page widget package.

Description Required String A description of the
custom page widget
package.

152 Development Guide

Table 94. Catalog.json supported properties (continued)

Property Required or Optional Type Description

Locale Required String The two-character
locale code for the
current catalog. For
example, zh is the
locale code for simple
Chinese.

The code is added as
a subfolder name
when the widget
definition file is
retrieved.

By default, the locale
is set to "".

Version Optional String The version number
that is assigned to the
widget package.

Categories Optional String The categories in
Case Manager
Builder in which the
custom page widgets
in this package are
listed.

You can choose to list
the page widgets in
one of the following
categories, which are
provided by IBM
Case Manager:

v CaseWidgets

v GenericWidgets

For each category,
you must provide an
identifier and title.

Categories/id Required String A unique identifier
for the widget
category.

Categories/title Required String The name that is to
be displayed in Case
Manager Builder for
the widget category.

Creating custom page widgets and actions 153

Table 94. Catalog.json supported properties (continued)

Property Required or Optional Type Description

Widgets Required JSON array An array that
identifies the custom
page widgets in this
package.

For each page widget,
you must provide the
following
information:

v id

v category

v title

v description

v definition

v preview

v icon

v runtimeClassName

v previewThumbnail

Widgets/id Required String A unique identifier
for the page widget.

Widgets/category Required String The identifier of the
category in which the
page widget is to be
listed in Case
Manager Builder.

Widgets/title Required String The name to be
displayed for the
page widget in Case
Manager Builder.

Widgets/description Required String A description of the
page widget. This
text is used as hover
help for the widget in
Case Manager
Builder.

Widgets/definition Required String The full path and
name of the
definition file for the
page widget.

154 Development Guide

Table 94. Catalog.json supported properties (continued)

Property Required or Optional Type Description

Widgets/preview Required String The relative path and
name of the resource
file that contains the
preview image for the
page widget. For
example, the value
might be
images/
myWidget_prv.png.

The image can be a
.png file or a .gif file.

This image is not
used in IBM Case
Manager V5.2.

Widgets/icon Required String The relative path and
name of the resource
file that contains the
icon image for the
page widget. For
example, the value
might be
images/
myWidget_icon.png.

The image can be a
.png file or a .gif file.

This image represents
the page widget in
the Case Manager
Builder palette.

Widgets/
runtimeClassName

Required String The class name for
the page widget as
specified in the
runtime plug-in for
the widget package.

Widgets/
previewThumbnail

Required String The relative path and
name of the resource
file that contains the
thumbnail image for
the page widget. For
example, the value
might be
images/
myWidget_thnl.png.

The image can be a
.png file or a .gif file.

This image is not
used in IBM Case
Manager V5.2.

Related reference:
“Defining a page widget definition file” on page 156

Creating custom page widgets and actions 155

“Defining an action definition file” on page 158
“Defining a property for a page widget or an action” on page 160
“Defining a property type” on page 161
“Defining a widget event” on page 163

Defining a page widget definition file
The page widget definition file is a JSON file that provides detailed information
about a custom page widget. You must provide a definition file for each page
widget in your custom widget package.

The following table describes the properties that are supported for a page widget
definition file.

Table 95. Supported properties for page widget definition files

Property Required or Optional Type Description

id Required String A unique identifier
for the page widget.

category Required String The identifier of the
category in which the
page widget is to be
listed in Case
Manager Builder.

title Required String The name to be
displayed for the
page widget in Case
Manager Builder.

description Required String A description of the
page widget.

definition Required String The full path and
name of the
definition file for the
page widget.

preview Required String The relative path and
name of the resource
file that contains the
preview image for the
page widget. For
example, the value
might be
images/
myWidget_prv.png.

The image can be a
.png file or a .gif file.

This image is not
used in IBM Case
Manager V5.2.

156 Development Guide

Table 95. Supported properties for page widget definition files (continued)

Property Required or Optional Type Description

icon Required String The relative path and
name of the resource
file that contains the
icon image for the
page widget. For
example, the value
might be
images/
myWidget_icon.png.

The image can be a
.png file or a .gif file.

This image represents
the page widget in
the Case Manager
Builder palette.

runtimeClassName Required String The class name for
the page widget as
specified in the
runtime plug-in for
the widget package.

previewThumbnail Required String The relative path and
name of the resource
file that contains the
thumbnail image for
the page widget. For
example, the value
might be
images/
myWidget_thnl.png.

The image can be a
.png file or a .gif file.

This image is not
used in IBM Case
Manager V5.2.

properties Required Array An array that defines
the properties that
can be set for the
page widget in Case
Manager Builder.

events Required Array An array that
identifies the events
that the page widget
publishes and
subscribes to.

The following example shows the structure of a page widget definition file. For
examples of page widget properties, see “Defining a property for a page widget or
an action” on page 160. For examples of page widget events, see “Defining a
widget event” on page 163.

Creating custom page widgets and actions 157

{
"id":"CustomInbasket",
"title":"Custom Inbasket",
"category":"EducationWidgets",
"description":"EN description of Custom Inbasket",
"definition":"CustomInbasket.json",
"preview":"images/custom/custominbasket_preview.gif",
"icon":"images/custom/custominbasket_icon.gif",
"runtimeClassName":"icm.pgwidget.inbasket.CustomInbasket",
"previewThumbnail":"images/custom/custominbasket_thumb.gif",
"properties":[
],
"events":[

]
}

Related reference:
“Defining the widget package catalog file” on page 152
“Defining an action definition file”
“Defining a property for a page widget or an action” on page 160
“Defining a property type” on page 161
“Defining a widget event” on page 163

Defining an action definition file
The action definition file is a JSON file that provides detailed information about a
custom action that is used for page widgets. You must provide a definition file for
each custom action in your custom widget package.

When you develop an action, create a Java class that inherits from the
com.ibm.ecm.extension.PluginAction class. In your class, override the
getAdditionalConfiguration() method to return a JSON object.

The following example shows a JSON object:
{"ICM_ACTION_COMPATIBLE": true,

"context": null,
"name": "Custom Add Case Action",
"description": "An action to add cases from other solution",
"properties": [

{
"id": "label",
"title": "Add a custom Case",
"defaultValue": "Custom Add Case",
"type": "string",
"isLocalized":false

},
{

"id": "solution",
"title": "Solution",
"type": "string",
"isLocalized":false

},
{

"id": "caseType",
"title": "Case Type",
"defaultValue": "",
"type": "string",
"isLocalized":false

}
],
"events":[

{

158 Development Guide

"id":"icm.OpenAddCasePage",
"title":"Open Add custom Case Page",
"direction":"published",
"type":"broadcast",
"description":"Open Add Custom Case Page"

}
]

};

The following table describes the properties that are supported for an action
definition file:

Table 96. Supported properties for an action definition file
Property Required or Optional Type Description

ICM_ACTION
_COMPATIBLE

Required Boolean Set to true if the action can be used in the IBM
Case Manager action framework. This
framework extends the IBM Content Navigator
action framework to provide case-related
functions.

Always set this property to true for IBM Case
Manager.

type Optional String Indicates special processing for the action. The
following values are valid for the type
property:

iterator
Specify this value if the action is defined
by using a method such as getIterator().
The method returns a series of items that
are rendered as buttons or menu items.

checkbox
The action is rendered as a check box in
the toolbar or menu. If you specify this
value, you must also set the fieldname
property value.

fieldname Required String If the type property is set to checkbox, set this
property to the identifier of a property that is
defined in the properties array.

If the type property is not set to checkbox, omit
the fieldname property.

description Required String A brief description of the action.

context Required Array Indicates the contexts in which the action can
be used. The array elements can take the
following formats:

[["Context 1", "Context 2"]]
The action requires both Context 1
and Context 2 to run.

["Context 1", "Context 2"]
The action requires either Context 1
or Context 2 to run.

[[“Context 1”, “Context 2”],[“Context 1”,
“Context 3”], “Context 4”]

The action requires Context 1 and
Context 2 or Context 1 and Context
3 or Context 4 to run.

[] The action does not require a
context to run.

name Required String The name that is displayed in the user interface
for the action.

properties Required Array The properties that a user can configure for an
action in a toolbar or menu for a page widget
or that are used internally by the action at run
time.

Creating custom page widgets and actions 159

Table 96. Supported properties for an action definition file (continued)
Property Required or Optional Type Description

events Required Array The events that are published by the action.
This array can be empty if the action does not
publish any events.

Related reference:
“Defining the widget package catalog file” on page 152
“Defining a page widget definition file” on page 156
“Defining a property for a page widget or an action”
“Defining a property type” on page 161
“Defining a widget event” on page 163

Defining a property for a page widget or an action
You can define a property for a custom page widget or a custom action in the
definition file. The property is used to configure the page widget or action in Case
Manager Builder.

The following table describes the properties that are supported for page widgets
and actions:

Table 97. Supported properties for page widgets and actions

Property Required or Optional Type Description

propertyType Required String A value that indicates
whether the property
is a single property or
a property group.

property
Specify this value
if the property
object contains a
single property.

group
Specify this value
if the property
object contains a
group of
properties.

type Required String A value that indicates
the type of the
property. For more
information, see
Defining a property
type.

id Required String A unique identifier
for the property.

defaultValue Optional Depends on the
property type

The default value for
the property.

required Required Boolean A value that is set to
true if the property is
required. By default,
the property is set to
false.

160 Development Guide

Table 97. Supported properties for page widgets and actions (continued)

Property Required or Optional Type Description

visibility Optional Boolean A value that is set to
true if the property is
visible. By default,
the property is set to
true.

title Required String The label that is
displayed for the
property in Case
Manager Builder.

remapNeeded Optional Boolean A value that is set to
true if the property
value needs to be
updated when the
solution is imported
and deployed to a
production
environment.

This property applies
only to a string
property.

propertiesMember Optional Array A definition of the
properties within a
property of type
group.

Related reference:
“Defining the widget package catalog file” on page 152
“Defining a page widget definition file” on page 156
“Defining an action definition file” on page 158
“Defining a property type”
“Defining a widget event” on page 163

Defining a property type
You can set the type property for a page widget property or an action property.

Set the type property for a page widget property or an action property to one of
the following values.

Table 98. Group property types

Property type Description

Tab Defines a new tab in the Edit Settings
window.

Section Defines a section that can be expanded and
collapsed.

Dropdown Defines a drop-down list that is used to
select a value from a group of properties.

propertyPanel Defines a content pane in which a group of
properties are displayed.

Creating custom page widgets and actions 161

Table 99. Generic property types

Property type Description

Boolean Defines a property that has a Boolean value.

Datetime Defines a property that has a datetime value.

Float Defines a property that has a float value.

Integer Defines a property that has an integer value.

String Defines a property that has a string value.

The following example of the properties is defined in the properties section of the
page widget definition file as follows:
{

"propertyType":"property",
"type":"integer",
"id":"integer1",
"defaultValue":20,
"required":false,
"visibility":true,
"title":"Integer property 1"

},
{

"propertyType":"property",
"type":"float",
"id":"float1",
"defaultValue":12.34,
"required":false,
"visibility":true,
"title":"Float property 1"

},
{

"propertyType":"property",
"type":"boolean",
"id":"boolean1",
"defaultValue":false,
"required":false,
"visibility":true,
"title":"Boolean property 1"

},
{

"propertyType":"property",
"type":"string",
"id":"string1",
"defaultValue":"default string",
"required":false,
"visibility":true,
"title":"String property 1"

},

The following example shows a datetime property for a custom page widget. This
property is defined in the properties section of the page widget definition file as
follows:
{

"propertyType":"property",
"type":"datetime",
"id":"datetime1",
"defaultValue":"2013-05-01T03:00:00Z",
"required":false,
"visibility":true,
"title":"Date Time 1"

},

162 Development Guide

Table 100. IBM Case Manager property types

Property type Description

caseType Displays an editor that enables users to select
a case type in Case Manager Builder.

Choicelist Displays a choice list for the property. This
value can be used with other property types
such as String.

contextualMenu Displays an editor that enables users to edit
a menu for a page widget in Case Manager
Builder.

Label Provides a read-only label that is displayed
for the property. This value must be set to
label for an action.

Order Displays an editor that enables users to
configure the order of the tabs in the Case
Information widget.

Role Displays a list of roles that are available in
the solution from which the user can select.

Task Displays a list of tasks that are available in
the solution from which the user can select.

Textarea Displays an input field in which the user can
enter a text string.

Toolbar Displays an editor that enables users to edit
a toolbar for a page widget in Case Manager
Builder.

View Displays a selection list that contains all the
views that are available for the case types in
a solution.

viewList Displays a list of case type-view pairs that
enables the user to select a view. This
property enables the user to add multiple
views into the list. The output is a list of
view identifiers.

Related reference:
“Defining the widget package catalog file” on page 152
“Defining a page widget definition file” on page 156
“Defining an action definition file” on page 158
“Defining a property for a page widget or an action” on page 160
“Defining a widget event”

Defining a widget event
You can define events as part of the page widget definition. You can define
incoming events that provide handlers for events that are received by the page
widget. You can also define outgoing events that are published by the page
widget. Outgoing events can be either broadcast or wired.

The following table lists the properties that you define for an event.

Creating custom page widgets and actions 163

Table 101. Event properties

Property Required or Optional Type Description

id Required String The unique identifier
for the event.

title Required String The title of the event
or event handler.

functionName Required String For an incoming
event, the name of
the function that
handles the event.
This property is not
used for outgoing
events.

direction Required String Indicates whether the
event is incoming or
outgoing. Set to
subscribed for an
incoming event and
published for an
outgoing event.

type Required String For an outgoing
event, indicates
whether the event is
broadcast or wired.
Set to broadcast for
an event that is
broadcast and set to
wiring for an event
that must be wired.

description Optional String A description of the
event. This text is
used as hover help
for the event in the
Wiring window.

The following code shows how events are defined in the page widget definition
file.
"events":[

{
"id":"icm.RoleChanged",
"title":"Role selected",
"functionName":"handleReceiveRole",
"direction":"subscribed",
"description":"Update the In-baskets widget to display the
in-baskets that are associated with the specified role."

},
{

"id":"icm.SelectRow",
"title":"Row selected",
"functionName":"handleSelectRow",
"direction":"published",
"type":"wiring",
"description":"The user clicked a row or pressed enter
in the in-basket to select the work item."

},
{

"id":"icm.OpenCase",
"title":"Open Case",

164 Development Guide

"functionName":"handleOpenCase",
"direction":"published",
"type":"broadcast",
"description":"Open a case object."

}
]

Related reference:
“Defining the widget package catalog file” on page 152
“Defining a page widget definition file” on page 156
“Defining an action definition file” on page 158
“Defining a property for a page widget or an action” on page 160
“Defining a property type” on page 161

Creating custom page widgets and actions 165

166 Development Guide

Tips for sizing IBM Case Manager widgets

Some size settings for IBM Case Manager widgets can cause unexpected behavior
at run time.

When you configure the widgets for your Case Manager Client application, be
aware of the following tips:
v Set the height of the Case List widget to 100% or to a specific pixel value for

Cases in Solution Pages. If you leave the height as an automatic setting, users
are not able to access overflow search results.

v When you define the height of the Case Information widget in pixels, be sure to
specify a smaller value than the height of the region. Otherwise, users encounter
difficulty when they try to scroll.

v You might encounter unexpected behavior when you change a Choice property
to a radio button set. If you change the Group alignment setting to Horizontal,
the width of the property can retain the width of the original choice property.
This causes some of the radio buttons to shift to a second line instead of using
the width of the container. To resolve this issue, change the Field width setting
to accommodate the width of your radio button set.

v You might encounter unexpected behavior when you try to change the width of
a property. After you enter a value for the Width setting, you should be able to
save the change. However, the Save button is not always enabled after you enter
a value. To resolve this issue, use the Tab key to tab out of the field. This action
enables the Save button, and it enables you to save the change.

© Copyright IBM Corp. 2010, 2018 167

168 Development Guide

Widget toolbar

Adding an event action to a widget toolbar or menu
You can add an event action to a toolbar or menu to trigger a custom event that is
to be handled by a page widget.

For example, you might add an event action to the In-basket widget toolbar for a
custom event that filters work items based on a predefined property value. You
might add an event action to the Case Information widget document menu for a
custom event that enables users to select and add a case document as an
attachment to the case.

To add an event action to a widget toolbar or menu:
1. In Case Manager Builder, open the page that contains the widget in Page

Designer.
2. Click the Edit Settings icon for the widget that you want to add the event

action to.
3. Click the Menus or Toolbars tab and, if necessary, select the specific menu or

toolbar to add the event action to.
4. Click the Add Menu Item icon or the Add Button icon.
5. From the Action list, select Event Action.
6. If you are adding an event action to a toolbar, select a position from the

Alignment list.
7. For Label, enter the display name for the event action.
8. For Menu Identifier, enter an identifier that can be used by the event handler

to determine the menu or toolbar that the event action is triggered from.
9. For Event Name, enter the name of the handler for this event.

10. From the Event Type list, select how to publish the event.

Broadcast
Select Broadcast if the event is received by any event that has a
corresponding incoming event.

Wiring
Select Wiring if the event must be wired to an incoming event.

11. For Show this event action, enter a script that is run to determine whether
the button or menu item for this event action is visible. If you do not enter a
script, the button or menu item is always visible.

12. For Enable this event action, enter a script that is run to determine whether
the button or menu item for this event action is enabled. If you do not enter a
script, the button or menu item is always enabled.

13. Click OK.
14. Save and redeploy your solution.

© Copyright IBM Corp. 2010, 2018 169

Event action payload definition

The payload for an event action contains the following properties:

Table 102. Event action payload properties

Property Description

menuId Identifier that can be used by the event
handler to identify the source of the event.

eventName Name of the handler for the event.

eventType Value that indicates how the event is
published. This property is set to Broadcast
if the event is received by any event that has
a corresponding incoming event. This
property is set to Wiring if the event must be
wired to an incoming event.

actionContext Action contexts that are set on the page
widget that this event action is triggered
from.

Example payloads
payload = {
menuId: "customSearchMenu",
eventName: "customSearchEvent",
eventType: "broadcast",
Solution: icm.model.Solution
}

In the following payload, the Folder and Document properties are arrays of
ecm.model.ContentItem objects.
payload = {
menuId: "customAttachMenu",
eventName: "customAttachEvent",
eventType: "broadcast",
Case: icm.model.CaseEditable,
CurrentFolder: ecm.model.ContentItem,
ResultSet: ecm.model.ResultSet,
Folder: ecm.model.ContentItem+,
Document: ecm.model.ContentItem+
}

Related tasks:
“Adding a script action to a widget toolbar or menu”

Adding a script action to a widget toolbar or menu
You can add a script action to run a custom script from a widget toolbar or menu.
For example, you can add a script action to the Case Information widget toolbar
that enables users to add the selected case documents as attachments to a case.

About this task

To add a script action to a widget toolbar or menu:

Procedure
1. In Case Manager Builder, open the page that contains the widget in Page

Designer.

170 Development Guide

2. Click the Edit Settings icon for the widget that you want to add the script
action to.

3. Click the Menus or Toolbars tab and, if necessary, select the specific menu or
toolbar that you want to add the script action to.

4. Click the Add Menu Item icon or the Add Button icon.
5. From the Action list, select Script Action.
6. If you are adding a script action to a toolbar, select a position from the

Alignment list.
7. For Label, enter the display name for the script action.
8. For Execute, enter the script to run when this script action is selected from the

toolbar or menu.
9. Optional: For Show this script action, enter a script that is run to determine

whether the button or menu item for this script action is visible. If you do not
enter a script, the button or menu item is always visible.

10. Optional: For Enable this script action, enter a script that is run to determine
whether the button or menu item for this script action is enabled. If you do
not enter a script, the button or menu item is always enabled.

11. Click OK.
12. Save and redeploy your solution.

Example

The following example script action is intended to run in the context of the action
implementation. For more information, see Class icm.action.Action.
var selectedDocuments = this.getActionContext("Document");
if (dojo.isArray(selectedDocuments))
{

var i;
for (i=0; i<selectedDocuments.length; i++)
{

// attach selected document: selectedDocuments[i]
...

}
}
else
{

// attach selected document: selectedDocuments
...

}

Related reference:
“Adding an event action to a widget toolbar or menu” on page 169

Widget toolbar 171

172 Development Guide

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2010, 2018 173

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
IBM Director of Licensing
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

174 Development Guide

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. 2010, 2017. All rights reserved.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these

Notices 175

http://www.ibm.com/legal/us/en/copytrade.shtml

publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
cookies that collect each user’s user name for purposes of session management,
authentication, and enhanced user usability. These cookies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at www.ibm.com/privacy and IBM’s
Online Privacy Statement at www.ibm.com/privacy/details the section entitled
“Cookies, Web Beacons and Other Technologies” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at www.ibm.com/software/info/
product-privacy.

176 Development Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

Index

A
action package

JavaScript API 7
actions

contexts 11
add-ons

Content Platform Engine 127
design object store 127
IBM Case Manager history and

analytics 135
target object store 130

authentication
external data service 113

B
base package

JavaScript API 12

C
case comments resource

GET method 83
POST method 85

case data
getting from an external data

source 101
persistence of 114

case folders
creating programmatically 54, 97
IBM Case Manager REST protocol 54
IBM CMIS for FileNet Content

Manager 97
case history resource

description 87
GET method 88

case management applications
developing with IBM Case Manager

REST protocol 21
developing with IBM CMIS for

FileNet Content Manager 97
developing with Process Engine REST

Service 93
overview 1

case page resource
description 51
GET method 51

case type
CaseType class 17

case type resource
description 44

CaseMgmtObjectStore class 17
cases

creating by adding a document 99
creating programmatically 54, 97, 99
getting and setting information 52
IBM Case Manager REST protocol 54
IBM CMIS for FileNet Content

Manager 97

cases resource
POST method 54

CE Operations 99
clientContext parameter 107
configuration

Content Engine 16
Java API 16

Content Engine
Java API 16, 99

Content Management Interoperability
Services (CMIS)

developing case management
applications 97

Content Platform Engine
add-on extensions 127

contexts
actions 11

create new task resource
GET method 74
POST method 77

custom widgets
creating 149

D
Datacap Studio 99
deployed solution

DeployedSolution class 18
dialog box package

JavaScript API 13
documents

creating programmatically 97

E
error responses

IBM Case Manager REST protocol 23
events

developing 136
extensions

history and analytics 135
IBM Case Manager history and

analytics 135
external data service

authentication 113
common JSON payload 23
getting case data 101
implementing 102
request modes 106
response content 109

external data service REST protocol
clientContext parameter 107
data flow for case creation 114

creating the case 123
retrieving initial information 115
updating dependent

properties 120
error responses

external data service REST
protocol 113

external data service REST protocol
(continued)

particular object type resource 102,
103, 113

persistence of case data 114
external properties

retrieving and persisting 143

F
finalExistingObject request mode

particular object type resource 106
finalNewObject request mode

particular object type resource 106

G
GET method

case comments resource 83
case history resource 88
case page resource 51
create new task resource 74
list of case types resource 38
list of discretionary task types

resource 42
list of solutions resource 31, 33
list of task instances resource 71
list of view definitions resource 40
particular case instance resource 57
particular case type resource 44
particular solution resource 35
related cases for a particular case

resource 69
status of particular case resource 67

I
IBM Case Manager Java API

Context 18
IBM Case Manager Java API 18

IBM Case Manager REST protocol
common JSON payload 23
developing case management

applications 21
error responses 23
getting and setting case data 52
getting information about deployed

solutions 31
resources

case comments 82
case history 87
case instance 56
case page 51
case type 44
case type status 67
case types 37
cases 54
create new task 74
list of case types 38
list of discretionary task types 42

© Copyright IBM Corp. 2010, 2018 177

IBM Case Manager REST protocol
(continued)

resources (continued)
list of solutions 31, 33
list of task instances 71
list of view definitions 40
particular solution 35
particular task instance 80
related cases 69

symbolic names 22
URIs 21

initialExistingObject request mode
particular object type resource 106

initialNewObject request mode
particular object type resource 106

inProgressChanges request mode
particular object type resource 106

J
Java API

Case class 17
CaseMgmtObjectStore class 17
CaseType class 17
configuration 16
DeployedSolution class 18
developing applications 15

JavaScript
icm.action package 7
icm.base package 12
icm.dialog package 13
icm.model package 3
icm.pgwidget package 13
icm.util package 14
icm.widget.menu package 14

JavaScript API
developing applications 3

JSON response
error messages 23

L
list of case types resource

description 38
GET method 38

list of discretionary task types resource
GET method 42

list of solutions resource
description 31, 33
GET method 31, 33

list of task instances resource
description 71
GET method 71

list of view definitions resource
description 40
GET method 40

M
model package

JavaScript API 3

O
object type resource

error responses 113
external data service 102
POST method 103
response content 109

P
page widget package

JavaScript API 13
page widgets

creating 149
particular case instance resource

GET method 57
POST method 60
PUT method 64

particular case type resource
GET method 44
POST method 47

particular solution resource
description 35
GET method 35

particular task instance resource
PUT method 80

payloads
for cases and case types 23

POST method
case comments resource 85
cases resource 54
create new task resource 77
particular case instance resource 60
particular case type resource 47
particular object type resource 103

Process Engine REST Service
developing case management

applications 93
properties

creating controllers 145
creating editors 145
external 139, 140, 143

PUT method
particular case instance resource 64
particular task instance resource 80

R
related cases for a particular case

resource
GET method 69

request modes
finalExistingObject 106
finalNewObject 106
initialExistingObject 106
initialNewObject 106
inProgressChanges 106

requestMode parameter
particular object type resource 106

resources
case comments resource 82
case instance resource 56
case type status resource 67
cases resource 54
create new task resource 74
IBM Case Manager REST protocol

case comments 82

resources (continued)
IBM Case Manager REST protocol

(continued)
case history 87
case instance 56
case page 51
case type resource 44
case type status 67
case types 37
cases 54
create new task 74
list of case types 38
list of solutions 31, 33
list of task instances 71
list of view definitions 40
particular task instance 80
related cases 69

list of discretionary task types 42
list of discretionary task types

resource
description 42

particular solution 35
particular task instance resource 80
related cases resource 69

run time
defining external properties 139

S
Script Adapter widget

defining external properties 140
solutions

getting deployment information 31
status of particular case resource

GET method 67
subscriptions

developing 136
symbolic names

IBM Case Manager REST protocol 22

U
URIs

IBM Case Manager REST protocol 21
userMessage element 23
utility package

JavaScript API 14

W
widget menu package

JavaScript API 14
widgets

creating 149
work items

updating programmatically 93
workflows

managing programmatically 93

178 Development Guide

IBM®

Product Number: 5725-A15

SC19-3682-09

	Contents
	Developing case management applications
	Developing case management applications with the JavaScript API
	IBM Case Manager JavaScript packages
	IBM Case Manager JavaScript icm.model package
	IBM Case Manager JavaScript icm.action package
	Action contexts

	IBM Case Manager JavaScript icm.base package
	IBM Case Manager JavaScript icm.dialog package
	IBM Case Manager JavaScript icm.pgwidget package
	IBM Case Manager JavaScript icm.util package
	IBM Case Manager JavaScript icm.widget.menu package

	Developing case management applications with the Java API
	Configuring your environment to use the Java API
	Configuring your environment to use the Content Engine Java API
	Java API Components
	Case class
	CaseMgmtObjectStore class
	CaseType class
	DeployedSolution class

	Example: IBM Case Manager Java API Context

	Developing case management applications with the REST protocols
	Creating and managing case objects by using the IBM Case Manager REST protocol
	Case management REST resource URIs
	Symbolic names
	Error responses
	Common JSON payload for cases and case types
	Getting information about deployed solutions
	List of document classes resource
	GET method for the list of document classes resource

	List of solutions resource
	GET method for the list of solutions resource

	Particular solution resource
	GET method for the particular solution resource

	Getting information about deployed case types
	List of case types resource
	GET method for the list of case types resource

	List of view definitions resource
	GET method for the list of view definitions resource

	List of discretionary task types resource
	GET method for the list of discretionary task types resource

	Particular case type resource
	GET method for the particular case type resource
	POST method for the particular case type resource

	Case page resource
	GET method for the case page resource

	Getting and changing case information
	Cases resource
	POST method for the cases resource

	Particular case instance resource
	GET method for the particular case instance resource
	POST method for the particular case instance resource
	PUT method for the particular case instance resource

	Status of particular case resource
	GET method for the status of particular case resource

	Related cases for a particular case resource
	GET method for the related cases for a particular case resource

	List of task instances resource
	GET method for the list of task instances resource

	Create new task resource
	GET method for the create new task resource
	POST method for the create new task resource

	Particular task instance resource
	PUT method for the particular task instance resource

	Case comments resource
	GET method for the case comments resource
	POST method for the case comments resource

	Case history resource
	GET method for the case history resource

	Managing workflows, roles, and in-baskets by using the Process Engine REST Service

	Managing case folders and documents by using IBM CMIS for FileNet Content Manager
	Configuring a solution to create a case when a document is added to the object store
	Getting case data from an external data source
	Implementing an external data service by using the REST protocol
	Particular object type resource
	POST method for the particular object type resource
	Request modes
	Client context for work items
	Response to a request for case data
	Error responses for an external data service

	Authentication for external data services
	Persistence of case data
	Example data flow for case creation
	Retrieval of initial information for a new case
	Update of a property that has dependencies
	Creation of the new case

	Content Platform Engine add-on extensions for IBM Case Manager
	IBM Case Manager design object store extensions
	IBM Case Manager target object store extensions
	IBM Case Manager history and analytics extensions
	IBM Case Manager subscriptions and events

	Using external properties
	Defining external properties at run time
	Defining external properties by using the Script Adapter widget
	Retrieving and persisting external properties

	Creating custom property editors and controllers
	Creating custom inline messages and prompts
	Creating custom page widgets and actions
	Defining registry files for custom actions, properties, page widgets, and events
	Defining the widget package catalog file
	Defining a page widget definition file
	Defining an action definition file
	Defining a property for a page widget or an action
	Defining a property type
	Defining a widget event

	Tips for sizing IBM Case Manager widgets
	Widget toolbar
	Adding an event action to a widget toolbar or menu
	Adding a script action to a widget toolbar or menu

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	O
	P
	R
	S
	U
	W

