
VS COBOL II Release 3.2 and Release 4.0
Performance Tuning

May 18, 1994

R. J. Arellanes

IBM Corporation
Software Solutions
555 Bailey Avenue

San Jose, CA 95141

Abstract

This paper identifies some of the factors that can affect the performance of COBOL programs when using
VS COBOL II. The tuning methods discussed here are intended to assist users in selecting from the various

| options which are available for compiling and executing COBOL programs with VS COBOL II Release 3.2
| and Release 4.0. These methods provide the COBOL programmer with the opportunity to tune the run-

time environment for better CPU time performance and better use of system resources.

Distribution Notice

Permission is granted to distribute this paper to IBM customers. IBM retains all other rights to this paper,
including the right for IBM to distribute this paper to others.

| Third Edition, May 1994

| This edition applies to VS COBOL II Release 3.2 and Release 4.0, and to all subsequent releases and mod-
| ifications until otherwise indicated in new editions.

| This edition replaces all previous editions of this document. All changes made in the third edition are
| marked with change bars as indicated to the left of this paragraph.

Second Edition, August 1992

All changes made in the second edition are marked with change bars as indicated to the left of this para-
graph.

First Edition, December 1990

 Copyright IBM Corporation 1990, 1994

Contents

Introduction . 1
The Language Performance Evaluation Department . 1

Tuning the Run-Time Environment . 3
Compiler options that affect run-time performance . 3

NUMPROC - NOPFD, MIG, or PFD . 3
TRUNC - BIN, STD, or OPT . 3
SSRANGE or NOSSRANGE . 4
FASTSRT or NOFASTSRT . 4
OPTIMIZE or NOOPTIMIZE . 4
AWO or NOAWO . 5
TEST or NOTEST . 5
CMPR2 or NOCMPR2 . 5
DYNAM or NODYNAM . 5
RESIDENT or NORESIDENT . 5
RENT or NORENT . 6

Run-time options that affect run-time performance . 6
LIBKEEP . 6
RTEREUS . 6
Calling IGZERRE . 7
AIXBLD . 7
WSCLEAR . 7
SSRANGE . 7
STAE . 8
MIXRES . 8
Space management tuning . 8
COBPACKs . 9
Library in the LPA/ELPA (MVS) or SVA (VSE) . 9

Other factors that affect run-time performance . 9
Mixing old COBOL and VS COBOL II . 9
Main program not COBOL . 10
Using CALLs . 10
IMS . 10
CICS . 11

Efficient COBOL Coding Techniques . 12
Data Files . 12

QSAM or SAM files . 12
Variable length files . 12
VSAM files . 12

Data Types . 13
Program Design . 14

Performance Improvements . 16

A Performance Checklist . 17

Summary . 18

| Appendix A. Coding Examples . 19
| Using IGZERRE . 19
| COBOL Example - COBPGM . 21

Contents iii

iv VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

Introduction

First, as background information, we will briefly discuss the role of the Language Performance Evaluation
Department in order to acquaint the reader with its work. Then, we will look at some compile and run-time
options that affect the run-time performance of a COBOL program. Next, we will look at some efficient
COBOL coding techniques that can be used to further reduce the run-time performance. Finally, we will
look at a check list of items to be aware of if a performance problem is encountered with VS COBOL II.

Throughout this paper, all references to old COBOL will refer to both OS/VS COBOL and DOS/VS
COBOL, unless otherwise indicated. Also, all references to MVS refer to MVS/SP, MVS/XA, and
MVS/ESA; all references to CMS refer to CMS under VM/SP, VM/XA, and VM/ESA; and all references to
VSE refer to VSE/ESA, unless otherwise indicated. Additionally, several items will have page number refer-
ences after them. They are in bold face, enclosed in parentheses beginning with APG:, followed by MVS and
the page numbers and/or VSE and the page numbers. These refer to pages in the VS COBOL II Release 3.2
Application Programming Guide for MVS and CMS, SC26-4045-4 and the VS COBOL II Release 3.2
Application Programming Guide for VSE, SC26-4697-0, respectively. The Application Programming Guides
contains additional information regarding the topics that are discussed in this paper and it is strongly recom-
mended that they be used in conjunction with this paper to get the most benefit from the information con-
tained herein.

The Language Performance Evaluation Department

The Language Performance Evaluation Department at IBM is responsible for monitoring the performance of
the various high level language products that IBM offers. In particular, our department monitors and ana-
lyzes the performance of COBOL, FORTRAN, PASCAL, and PL/I. Although we are not part of the devel-
opment group, we do work very closely with them both in defining the performance characteristics of the
products and in resolving performance problems that we encounter.

Most of our measurements are done on MVS batch and CMS, but we also measure the language products
on CICS and IMS. In measuring the performance of the language products on MVS batch and CMS, we
use a variety of different tools that we have developed specifically for this purpose. Our tools can collect data
such as CPU time used by a program (Virtual and Total CPU Time on CMS and TCB Time on MVS),
SIO or EXCP counts, virtual storage usage, and paging activity (CMS only). When measuring on CICS and
IMS, we usually enlist the help of other departments that are more familiar with transaction environments in
collecting and analyzing data from CICSPARS, IMSPARS, RMF, and SMF.

For a more detailed analysis of the performance of a specific application or if we encounter a performance
problem, we use another set of tools to help us isolate the problem. With these tools, we can either modify
the application program to put in calls to a timing routine or we can run the application program under an
execution time sampler program which produces a histogram of where the CPU time is being spent. From
these, we are usually able to isolate the problem to a specific area of the program (e.g., in the generated code
or in a library routine). Additionally on CMS, we have other tools that collect data on SVC usage and
instruction counts. Using all of these tools, we are able to identify and isolate a performance problem. After
doing this, we present our findings to the appropriate development group for resolution of the problem.

In measuring a language product (for example, VS COBOL II), we have three different types of benchmarks:
compile only, compile and execute, and kernels. The compile only set is designed to be compiled but not
executed. They measure the compiler performance as a function of program size and range from 200 state-
ments to more than 7,000 statements. The compile and execute set are either subsets of real application
programs or are entire application programs. These are somewhat representative of "real" customer applica-
tion programs. Some are actual customer programs and the rest have been written by IBM. The kernel set
is a collection of specific language statements enclosed in a loop of 1,000 to 100,000 times. Each kernel
program consists of several of these loops, with each loop having a different variation of that language state-
ment. Each loop is surrounded by a call to a timing routine so that we can measure the performance of the

Introduction 1

individual statements. These kernel programs will usually identify a performance problem with a specific type
of statement.

Finally, we also work with the account SEs to help them resolve any performance problems that they have
been unable to resolve themselves after working with the customer. We have been able to resolve most of
these problems by using the techniques that will be identified throughout this paper. This paper is a
summary of the performance experiences that we have had with VS COBOL II. By writing this paper, we
hope to reach and benefit a wider audience than would otherwise be possible.

2 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

Tuning the Run-Time Environment

This section will focus on some of the options that are available for tuning an application as well as the
overall VS COBOL II run-time environment for better performance without modifying the source code. This
may not produce high performing code since both the coding style and the data types can have a significant
impact on the performance of the application. In fact, the coding style and data types usually have a far
greater impact on the performance of an application than that of tuning the application via external means
(e.g., compiler options, run-time options, space management tuning, setting up the COBPACKs, and placing
the library routines in shared storage). But first, we will look at each of these external options in a little
more detail. (APG: MVS pp 173-183; VSE pp 165-176)

Compiler options that affect run-time performance

This, by far, has been the cause of a vast majority of the performance problems. Many customers are not
aware of the performance implications that many of the compiler options have at run time, in particular, the
NUMPROC, TRUNC, SSRANGE, FASTSRT, OPTIMIZE, AWO, TEST, CMPR2, DYNAM, RESI-
DENT, and RENT options. Let's look at each of these options to see how they might affect the perform-
ance of an application program. (APG: MVS pp 173-178, 291; VSE pp 165-172, 269)

Note: Under VSE, since the VS COBOL II compiler is larger than the DOS/VS COBOL compiler, it is
recommended that you place the compiler in the SVA in order to minimize the size of the partition required
to compile your programs. If you do not do this, you may have to increase the partition size. Addition
information on placing the compiler in the SVA can be found in IBM publication SC26-4696, "VS COBOL
II Release 3.2 Installation and Customization for VSE".

NUMPROC - NOPFD, MIG, or PFD

Using the NUMPROC(PFD) compiler option generates significantly more efficient code for numeric com-
parisons. It also avoids the generation of extra code that NUMPROC(NOPFD) or NUMPROC(MIG) gen-
erates for most references to COMP-3 and DISPLAY numeric data items to ensure a correct sign is being
used. With NUMPROC(NOPFD), sign fix-up processing is done for all references to these numeric data
items. With NUMPROC(MIG), sign fix-up processing is done only for receiving fields (and not for sending
fields) of arithmetic and MOVE statements. With NUMPROC(PFD), the compiler assumes that the data
has the correct sign and bypasses this sign fix-up processing. NUMPROC(MIG) generates code that is
similar to that of old COBOL. Using NUMPROC(NOPFD) or NUMPROC(MIG) may also inhibit some
other types of optimizations. However, not all external data files contain the proper sign for COMP-3 or
DISPLAY signed numeric data, and hence, using NUMPROC(PFD) may not be applicable for all applica-
tion programs. For performance sensitive applications, the use of NUMPROC(PFD) is recommended where
possible. (APG: MVS pp 68, 175, 306-307; VSE pp 65-66, 169, 280-281)

TRUNC - BIN, STD, or OPT

When using the TRUNC(BIN) compiler option, all binary (COMP) sending fields are treated as either
halfword, fullword, or doubleword values, depending on the PICTURE clause, and code is generated to
truncate all binary receiving fields to the corresponding halfword, fullword, or doubleword boundary (base 2
truncation). The full content of the field is significant. This adds a significant amount of degradation since
typically some data conversions must be done which may require the use of some library subroutines. This is
usually the slowest of the three sub-options for TRUNC. When using the TRUNC(STD) compiler option,
the final intermediate result of an arithmetic expression, or the sending field in the MOVE statement, is trun-
cated to the number of digits in the PICTURE clause of the binary (COMP) receiving field (base 10 trun-
cation). This can add a significant amount of degradation since typically the number is divided by some
power of ten (depending on the number of digits in the PICTURE clause) and the remainder is used; a
divide instruction is one of the more expensive instructions. However, with TRUNC(OPT), the compiler
assumes that the data conforms to the PICTURE and USAGE specifications and manipulates the result

Tuning the Run-Time Environment 3

based on the size of the field in storage (fullword or halfword). TRUNC(STD) conforms to the ANSI and
SAA standards, whereas TRUNC(BIN) and TRUNC(OPT) do not. TRUNC(OPT) is provided as a per-
formance tuning option and should be used only when the data in the application program conforms to the
PICTURE and USAGE specifications. For performance sensitive applications, the use of TRUNC(OPT) is
recommended where possible. (APG: MVS pp 177-178, 313-315; VSE pp 171-172, 282-284)

SSRANGE or NOSSRANGE

Using SSRANGE generates additional code to verify that all subscripts, indexes, and reference modification
expressions are within the proper bounds. This code occurs at every reference to a subscripted or variable
length data item, as well as at every reference modification expression, and can result in some degradation at
run time. This degradation is substantially less than that of VS COBOL II Release 2 since the SSRANGE
code is done in a library routine whereas the Release 3 SSRANGE code is done in-line. In general, if you
only need to verify the subscripts a few times in the application instead of at every reference, coding your
own checks may be faster than using the SSRANGE option. For performance sensitive applications, the use
of NOSSRANGE is recommended. (APG: MVS pp 177, 312; VSE pp 171, 281-282)

FASTSRT or NOFASTSRT

For eligible sorts, the FASTSRT compiler option specifies that the SORT product will handle all of the I/O
and that COBOL does not need to do it. This eliminates all of the overhead of returning control to COBOL
after each record is read in or after processing each record that COBOL returns to sort. The use of
FASTSRT is recommended when direct access devices are used for the sort work files since the compiler will
then determine which sorts are eligible for this option and generate the proper code. If the sort is not eligible
for this option, the compiler will still generate the same code as if the NOFASTSRT option was in effect. A
list of requirements for using the FASTSRT option can be found in the Application Programming Guide.
(APG: MVS pp 125-127, 174-175, 298; VSE pp 122-124, 168-169, 279)

OPTIMIZE or NOOPTIMIZE

As with old COBOL, VS COBOL II does some optimizations automatically. However, the ones that VS
COBOL II does automatically are not necessarily the same as the ones that old COBOL does automatically.
To ensure that you get good optimized code, you should use the OPTIMIZE compiler option. With the
OPTIMIZE option in effect, you get all of the optimizations that old COBOL provided, plus more. These
include:

eliminating unnecessary branches

simplifying inefficient branches

simplifying the code for the out-of-line PERFORM statement, moving the performed paragraphs in-line,
where possible

simplifying the code for a CALL to a contained (nested) program, moving the called statements in-line,
where possible

subscript optimization

eliminating duplicate computations

eliminating constant computations

aggregating moves of contiguous, equal-sized items into a single move

deleting unreachable code

Many of these optimizations were not available with old COBOL. NOOPTIMIZE is generally used during
program development time when frequent compiles are necessary. NOOPTIMIZE also allows for easier
debugging of the program since code is not moved and is required when using the TEST compiler option.
OPTIMIZE requires more CPU time for compiles than NOOPTIMIZE, but generally produces more effi-

4 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

cient code at run time. For production runs, the use of OPTIMIZE is recommended. (APG: MVS pp
171-173, 175-176, 308; VSE pp 165-167, 169-170, 279)

AWO or NOAWO

The AWO compiler option causes the APPLY WRITE-ONLY clause to be in effect for all physical sequen-
tial, variable length, blocked files, even if the APPLY WRITE-ONLY clause is not specified in the program.
With APPLY WRITE-ONLY in effect, the file buffer is written to the output device when there is not
enough space in the buffer for the next record. Without APPLY WRITE-ONLY, the file buffer is written to
the output device when there is not enough space in the buffer for the maximum size record. If the applica-
tion has a large variation in the size of the records to be written, using APPLY WRITE-ONLY can result in
a performance savings since this will generally result in fewer calls to Data Management Services to handle
the I/Os. (APG: MVS pp 41, 174, 293; VSE pp 39-40, 168, 277)

TEST or NOTEST

The TEST compiler option generates additional code so that the program can be run under the debugger.
This can cause a significant performance degradation when used in a production environment since this addi-
tional code occurs at each COBOL statement. The TEST option should only be used when debugging an
application. Additionally, with TEST, the OPTIMIZE option is disabled. For production runs, the use of
NOTEST is recommended. (APG: MVS pp 177, 313; VSE pp 171, 295)

CMPR2 or NOCMPR2

The CMPR2 compiler option generates code that is compatible with code generated by VS COBOL II
Release 2 (ANSI 1974 Standard) and does not allow the use of many of the new features available with VS
COBOL II Release 3 (ANSI 1985 Standard). NOCMPR2 allows the full use of all supported 1985 Standard
COBOL language features. Since additional features are available when using NOCMPR2 than when using
CMPR2, there may be times when CMPR2 is faster than NOCMPR2.

Note: CMPR2 is provided as a migration aid to allow you to gradually convert your applications to the
1985 Standard support provided by NOCMPR2. All future enhancements to VS COBOL II will be provided
only under NOCMPR2. Therefore, it is recommended that all applications be converted to NOCMPR2 as
soon as possible. (APG: MVS pp 294, 433; VSE pp 273, 367)

DYNAM or NODYNAM

The DYNAM compiler option specifies that all subprograms invoked through the CALL statement will be
loaded dynamically at run time. This allows you to share common subprograms among several different
applications, allowing for easier maintenance of these subprograms since the application will not have to be
re-linkedited if the subprogram is changed. DYNAM also allows you to control the use of virtual storage in
that when a subprogram is no longer needed, you can free the virtual storage used by that subprogram with
the CANCEL statement. However, when using the DYNAM option, you pay a slight performance penalty
since the call must go through a library routine, whereas with the NODYNAM option, the call goes directly
to the subprogram. Hence, the path length is slightly longer with DYNAM than with NODYNAM. (APG:
MVS pp 174, 296; VSE pp 168, 277)

RESIDENT or NORESIDENT

The RESIDENT compiler option specifies that all COBOL library subroutines (except IGZEBST) are to be
loaded dynamically at run time instead of being link-edited with the COBOL program. This allows for easier
maintenance of the VS COBOL library since application programs would not have to be link-edited again
after applying service updates to the library. Additional features supported with the RESIDENT compiler
option are: running on CICS, running above the 16 MB line on an XA system, dynamic calls, debugging
with the TEST compiler option, and sharing the library. The RESIDENT compiler option provides for full

Tuning the Run-Time Environment 5

function support of VS COBOL II, whereas the NORESIDENT compiler option does not. When using the
RESIDENT option, you pay a slight performance penalty since with the first invocation of a library routine,
there will be some additional overhead to locate and load the library routine; subsequent invocations of the
library routine will not have this additional overhead. Some of this overhead can be reduced by tailoring the
COBPACKs which we will address later. Although the individual application path length may be slightly
longer when using the RESIDENT compiler option, the overall system performance will usually be better
when the environment is properly tuned. (APG: MVS pp 176-177, 310; VSE pp 170-171, 278)

RENT or NORENT

Using the RENT compiler option causes the compiler to generate some additional code to ensure that the
program is reentrant. This allows for the program to be placed in shared storage like the LPA or ELPA on
MVS or the SVA on VSE. Also, the RENT option will allow the program to run above the 16 MB line on
MVS/XA. Additionally, using RENT option causes the RESIDENT compiler option to be in effect.
Because of producing reentrant code, there may be a slight increase in path length when using the RENT
option. (APG: MVS pp 176, 308-309; VSE pp 170, 278-279)

Run-time options that affect run-time performance

Selecting the proper run-time options is another area that affects the performance of a COBOL application.
Because of this, it is important for the system programmer responsible for installing and setting up the VS
COBOL II environment to work with the application programmers so that the proper run-time options are
set up correctly for your installation. We will next look at some of the options that can help to improve the
performance of the individual application as well as the overall VS COBOL II run-time environment.
(APG: MVS pp 178-180, 348-353; VSE pp 172-174, 323-328)

LIBKEEP

This option keeps the VS COBOL II library routines initialized and in storage for use by subsequent appli-
cation programs in the address space or region. Using this option will reduce part of the initialization and
termination overhead in a given address space or region because once the library routines have been loaded,
they remain loaded until the address space or region terminates. Using STOP RUN does not cause this
portion of COBOL initialization to be terminated. Using LIBKEEP improves the performance of applica-
tions where non-COBOL drivers repeatedly call COBOL main programs (for example, an IMS environment
or an assembler driver). Using LIBKEEP does not affect the semantics of the COBOL main program (i.e.,
each COBOL main program will be entered in its initial state). However, LIBKEEP will force NOENDJOB
processing when the run unit contains at least one old COBOL program. This means that all old COBOL
programs, as well as all COBOL library routines, will remain in storage until the address space or region
terminates. LIBKEEP can only be used with the RESIDENT compiler option in non-CICS environments.
(APG: MVS pp 157, 178, 350; VSE pp 152, 172, 325)

RTEREUS

This option causes the VS COBOL II run-time environment to be initialized for reusability when the first
COBOL program is invoked. The VS COBOL II run-time environment remains initialized (all COBOL
programs and their work areas are kept in storage) in addition to keeping the library routines initialized and
in storage. This means that for subsequent invocations of VS COBOL II programs, most of the run-time
environment initialization will be bypassed. Most of the run-time termination will also be bypassed, unless a
STOP RUN is executed or unless an explicit call to terminate the environment is made (using STOP RUN
will result in control being returned to the caller of the routine that invoked the first COBOL program,
cleaning up the COBOL run-time environment. However, if the LIBKEEP option is also in effect, the
library routines will remain initialized and in storage.). Because of the effect that the STOP RUN statement
has on the run-time environment, you should change all STOP RUN statements to GOBACK statements in
order to get the benefit of RTEREUS. The most noticeable impact will be on the performance of a

6 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

non-COBOL driver repeatedly calling a COBOL subprogram (for example, an IMS environment or an
assembler driver that repeatedly calls COBOL applications). The RTEREUS option will help this case.
However, using the RTEREUS option does affect the semantics of the COBOL application: each COBOL
program will now be considered as a subprogram and will be entered in its last used state on subsequent
invocations (if you want the program to be entered in its initial state, you can use the INITIAL clause on
the PROGRAM-ID statement). In particular, this means that storage that is acquired during the execution
of the application will not be freed. Therefore, RTEREUS may not be applicable to all environments.
(APG: MVS pp 160, 179, 350; VSE pp 155, 173, 325)

Calling IGZERRE

Another way to set up a reusable run-time environment for VS COBOL II is by calling IGZERRE. This
module can be invoked to explicitly initialize and terminate the VS COBOL II run-time environment. It
allows a non-COBOL program to initialize the COBOL run-time environment, thereby effectively estab-
lishing itself as the main COBOL program. As a result of this, the use of STOP RUN will cause control to
be returned to the caller of the routine that invoked the IGZERRE initialization. IGZERRE is an enhanced
version of ILBOSTP0 (for OS/VS COBOL) and ILBDSET0 (for DOS/VS COBOL) that accomplishes the
same results as ILBOSTP0 and ILBDSET0, except that IGZERRE has been designed for the VS COBOL
II run-time environment only. Using IGZERRE has the added benefits of supporting applications running
above the 16 MB line on an XA system, allowing the application to terminate the COBOL run-time envi-
ronment, and improving the performance of the application compared to using ILBOSTP0 or ILBDSET0
(using ILBOSTP0 or ILBDSET0 in a VS COBOL II environment will set up both the old COBOL and the
VS COBOL II environments whereas using IGZERRE will only setup the VS COBOL II environment).
The semantic changes and performance benefits of using this method are the same as when using the
RTEREUS COBOL run-time option. (APG: MVS pp 160-162, 180-181; VSE pp 155-156, 174-175)

AIXBLD

This option allows the COBOL program to build the alternate indexes at run-time. However, this may
adversely affect the run-time performance of the application. It is much more efficient to use Access Method
Services to build the alternate indexes before running the COBOL application and then using the
NOAIXBLD run-time option. (APG: MVS pp 167, 178, 229, 349, 422; VSE pp 161, 172, 218, 324)

WSCLEAR

This option clears all external data records acquired by a program to binary zeros when the storage for the
external data is allocated. Additionally, the working storage acquired by a RENT program is cleared to
binary zeros (unless a VALUE clause is used on the data item) when the program is first called, or, for
dynamic calls, when the program is cancelled and then called again; storage is not cleared on subsequent calls
to the program. This can result in a slight amount of overhead at run time depending on the number of
external data records in the program and the size of the working storage section. (APG: MVS pp 179-180,
350; VSE pp 173-174, 325)

SSRANGE

This option activates the additional code generated by the SSRANGE compiler option, which requires more
CPU time resources for the verification of the subscripts, indexes, and reference modification expressions.
Using the NOSSRANGE run-time option deactivates this code, but still requires some additional CPU time
resources at every use of a subscript, index, or reference modification expression to determine that this check
is not desired during the particular run of the program. This option only has an effect on a program that has
been compiled with the SSRANGE compiler option. (APG: MVS pp 179, 349; VSE pp 173, 324)

Tuning the Run-Time Environment 7

STAE

This option allows COBOL to intercept an abnormal termination (abend), provide the abend information,
and then terminate the COBOL run-time environment. NOSTAE prevents COBOL from intercepting the
abend. In general, there will not be any significant impact on the performance of a COBOL application
when using STAE. However, in the case of COBOL calling non-COBOL which then calls COBOL, the
abend intercept routine is set upon each invocation of COBOL from the non-COBOL program and can-
celled upon each return back to the non-COBOL program. This can result in some additional overhead (to
set and cancel the intercept routine each time the COBOL program is called). Specifying NOSTAE will
eliminate this overhead. (APG: MVS p 349; VSE p 324)

MIXRES

This option allows a mixture of RES and NORES programs to run within a single application (which can
be a mixture of old COBOL and VS COBOL II) and only applies when the application contains at least one
NORES program. MIXRES is provided as a migration aid to allow you to gradually convert your NORES
applications to RES. Using MIXRES is slower than NOMIXRES for a NORES application, and you
should consider re-compiling the application to be all RES if you encounter performance problems using
MIXRES. (APG: MVS pp 150, 350, 357; VSE pp 145, 325, 331)

Space management tuning

Space management tuning can reduce the overhead involved in getting and freeing storage for the application
program. If proper tuning is done, this can eliminate several unnecessary GETMAIN and FREEMAIN
calls. To better understand the need for space management tuning, let's look at how the space manager
works.

First of all, the space manager was designed to not keep any block of storage any longer than is necessary.
This means that during the execution of a VS COBOL II program, if any block of storage becomes empty, it
will be freed. This can be beneficial in a transaction environment (or any environment) where you want
storage to be freed up as soon as possible so that other transactions (or applications) can make efficient use
of the storage. However, it can also be detrimental if the last block of storage does not contain enough free
space to satisfy a storage request by a library routine, for example. Let's suppose that this library routine
needs 2K of storage but there is only 1K of storage available in the last block of storage. The library routine
will call the space manager to request 2K of storage. The space manager will determine that there is not
enough storage in the last block and issue a GETMAIN to acquire this storage (this GETMAINed size can
also be tuned). The library routine will use it and then, when it is done, it will call the space manager to
indicate that it no longer needs this 2K of storage. The space manager, seeing that this block of storage is
now empty, will issue a FREEMAIN to release the storage back to the operating system. Now, if this library
routine, or any other library routine that needs more than 1K of storage, is called often, this can result in a
significant amount of CPU time degradation because of the amount of GETMAIN and FREEMAIN
activity.

Fortunately, we have a way to compensate for this with VS COBOL II; it is called space management
tuning. The SPOUT run-time option can help you in determining the values to use for any specific applica-
tion program. You use the value returned by the SPOUT option as the size of the initial block of storage on
the IGZTUNE macro for both the INIBLOW and the INIABOV parameters. This will prevent the above
from happening in an all VS COBOL II environment. However, if the application contains a mixture of old
COBOL programs and VS COBOL II programs that are being CALLed frequently, the SPOUT option may
not indicate a need for additional storage. Increasing these initial values can also eliminate some space man-
agement activity in this mixed environment. (APG: MVS pp 180, 352-353; VSE pp 174, 327-328)

8 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

COBPACKs

If the application program has been compiled with the RESIDENT compiler option, tailoring the
COBPACKs can also affect the performance by reducing the directory search and program fetch time to load
the VS COBOL II library routines. The ideal COBPACKs are those that only have those library routines in
them that are needed by the application program. This will reduce the amount of overhead required to load
the COBPACKs as well as reduce the amount of virtual storage required by not having unused library rou-
tines loaded. When properly tuned, the number of library routines loaded can be reduced to a total of six.
However, this may not be practical since the COBPACKs will generally be shared among several different
applications and cannot be tuned for one specific application. In this case, the COBPACKs should have, as
a minimum, all library routines that are common to all application programs. Others can be added as virtual
storage is available. Additional information on using COBPACKs can be found in IBM publications
SC26-4048, "VS COBOL II Release 3.2 Installation and Customization for MVS", SC26-4213, "VS COBOL
II Release 3.2 Installation and Customization for CMS", and SC26-4696, "VS COBOL II Release 3.2 Instal-
lation and Customization for VSE".

Library in the LPA/ELPA (MVS) or SVA (VSE)

In addition to tailoring the COBPACKs, you can place them in the Link Pack Area (LPA) or Extended
Link Pack Area (ELPA) on an MVS system or the Shared Virtual Area (SVA) on a VSE system. This will
reduce the real storage requirements for the entire system for all VS COBOL II applications that are com-
piled with the RESIDENT compiler option since the COBPACKs can be shared by all applications instead
of each application having its own copy of the library routines. If you want the COBPACKs to go above the
16 MB line, you must be careful to only include those library routines that have AMODE 31 and RMODE
ANY in the COBPACKs (a list of the eligible library routines with their AMODE and RMODE attributes
can be found in the appropriate VS COBOL II Installation and Customization manual). Placing the
COBPACKs in a shared area will also reduce the I/O activity since they are loaded only once when the

| system is started and not for each application program. When not using RTEREUS or LIBKEEP for a
| non-COBOL main program that is repeatedly calling COBOL, placing the library routines (IGZCPAC,
| IGZCPCO, IGZCTCO, IGZEINI, IGZEPCL, and IGZEPSU) in the shared area will reduce the overhead
| for loading them for each first-level COBOL program. Additional information on placing COBPACKs in

the LPA or ELPA can be found in IBM publication SC26-4048, "VS COBOL II Release 3.2 Installation
and Customization for MVS" and information on placing COBPACKs in the SVA can be found in IBM
publication SC26-4696, "VS COBOL II Release 3.2 Installation and Customization for VSE".

Other factors that affect run-time performance

It is important to understand VS COBOL II's interaction with other products in order to obtain the best
performance for the application. We will now look at some additional factors that should be considered for
the application.

Mixing old COBOL and VS COBOL II

If the application program is an old COBOL program using the VS COBOL II library or if the application
program has a mixture of old COBOL and VS COBOL II, there will be some degradation at run time since
both the old COBOL environment and the VS COBOL II environment must be initialized and cleaned up.
Converting the entire application to VS COBOL II will eliminate the need for setting up both environments.
(APG: MVS p 181; VSE p 175)

Tuning the Run-Time Environment 9

Main program not COBOL

If the first program in the application is not COBOL, there can be a significant degradation if COBOL is
repeatedly called since the COBOL environment must be initialized and terminated each time a COBOL
main program is invoked. This overhead can be reduced by using one of the following:

you can use the run-time option LIBKEEP to keep the COBOL library routines initialized and in
| storage (this will eliminate the overhead of subsequent loading and deleting of the COBOL library rou-
| tines)

you can use the run-time option RTEREUS to initialize the COBOL environment for reusability,
making all COBOL main programs become subprograms

you can call IGZERRE from the first program of the application to make it appear as the COBOL
main program and to initialize the COBOL environment for reusability

you can call the first program of the application from a COBOL stub program (a program that just has
a call statement to the original first program)

you can call ILBOSTP0 (when using OS/VS COBOL) or ILBDSET0 (when using DOS/VS COBOL)
from the first program of the application to make it appear as the COBOL main program (this is pro-
vided for compatibility with old COBOL; calling IGZERRE is preferred over calling ILBOSTP0 or
ILBDSET0)

| you can put IGZCPAC, IGZCPCO, IGZCTCO, IGZEINI, IGZEPCL, and IGZEPSU in the shared
| area (LPA/ELPA or SVA)

Make sure that you fully understand the implications of each one before you use them. (APG: MVS pp
147, 157-162, 181; VSE pp 143-144, 152-156, 175)

Using CALLs

When using CALLs, be sure to consider using nested programs when possible. The performance of a CALL
to a nested program is faster than an external static CALL. External dynamic calls are the slowest. CALL
identifier is slower than dynamic CALL literal. Additionally, you should consider space management tuning
(mentioned earlier in this paper) for all CALL intensive applications.

| For dynamic call identifier, use PIC X(8) for the data name. This is faster than using less than 8 bytes.
(APG: MVS pp 133-134, 137-139; VSE pp 130-131, 134-136)

IMS

If the application is running under IMS, preloading the application program and the library routines can help
to reduce the load/search overhead, as well as reducing the I/O activity (this is especially true for the library
routines since they are used by every COBOL program). When the application program is preloaded, subse-
quent requests for the program are handled faster since it is does not have to be fetched from external
storage. The RENT and RESIDENT compiler options are required for preloaded applications. (If you are
using a release of IMS/VS prior to Version 3 Release 1, the data for the IMS application program must
reside below the 16 MB line, and hence, the DATA(24) compiler option is also required if you are using
IMS services.)

| WARNING: If the RTEREUS run-time option is used, the top level COBOL programs of all applications
| must be preloaded. Note that using RTEREUS will keep the COBOL environment up until the region goes
| down or until a STOP RUN is issued by a COBOL program. This means that every program and its

working storage (from the time the first COBOL program was initialized) is kept in the region. Although this
is very fast, you may find that the region may soon fill to overflowing, especially if there are many different
COBOL programs that are invoked.

When not using either LIBKEEP or RTEREUS, it is recommended that the RENT and RESIDENT com-
piler options be used and the applications and library routines (IGZCPAC, IGZCPCO, IGZEINI,

10 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

IGZEPCL, IGZEPSU, and IGZCTCO) be preloaded when possible. (You can tailor the COBPACKs,
IGZCPAC and IGZCPCO, to eliminate any library routines that you do not need. You can also remove all
AMODE 24, RMODE 24 routines from the COBPACKs to allow the COBPACKs to reside above the 16
MB line. In this case, you should also preload any of the below the line routines that you need.) However,
it is recommended that at least the LIBKEEP run-time option be used for better overall system perform-

| ance. When using LIBKEEP, all COBOL library routines remain loaded in the IMS region after they are
| loaded by the first COBOL transaction.

Note: Using LIBKEEP causes all ENDJOB processing in OS/VS COBOL to be converted to
NOENDJOB. Additionally, all GETMAINed areas acquired by the library routines are retained.

If your IMS RES applications include a large number of non-preloaded subprograms that are dynamically
called from COBOL programs, you should consider writing a BLDL user exit routine to maintain directory
information look-aside tables to improve run-time performance. By doing this, load time for the subpro-
grams is reduced because the look-aside table is searched, instead of the DASD directory, each time the sub-
program is dynamically called. Additional information on using BLDL user exits can be found in IBM
publication SC26-4048, "VS COBOL II Release 3.2 Installation and Customization for MVS".

Additional information on using VS COBOL II in an IMS environment can be found in IBM publication
G320-9538, "Programming Language Considerations in an IMS Environment - VS COBOL II". (APG:
MVS pp 181-182, 200-202, 347)

CICS

The RESIDENT, RENT, and NODYNAM compiler options are required for an application running under
CICS.

VS COBOL II supports static calls to VS COBOL II subprograms containing EXEC CICS commands.
Under CICS 1.7 and later, VS COBOL II supports dynamic calls to VS COBOL II subprograms that do
not have CICS commands or dependencies. Under CICS 2.1 and later, VS COBOL II supports dynamic
calls to VS COBOL II subprograms that have CICS commands or dependencies. Static calls are done with
the CALL literal statement and dynamic calls are done with the CALL identifier statement. Old COBOL
does not have this support. Converting EXEC CICS LINKs to COBOL CALLs can improve transaction
response time and reduce virtual storage usage. Additional information on some of these improvements can
be found in IBM publication GG09-1001, "VS COBOL II Improvements Using CICS and MVS/XA".

VS COBOL II does not support calls to or from old COBOL programs in a CICS environment. In this
case, EXEC CICS LINK must be used. (APG: MVS pp 182, 198-199, 347; VSE pp 175-176, 189-191,
322)

| If you are using the COBOL CALL statement to call a program that has been translated with the CICS
| translator, you must pass DFHEIB and DFHCOMMAREA as the first two parameters on the CALL state-
| ment. However, if you are calling a program that has not been translated, you should not pass DFHEIB and
| DFHCOMMAREA on the CALL statement.

As long as your usage of all binary (COMP) data items in the application conforms to the PICTURE and
USAGE specifications, you can use TRUNC(OPT) to improve transaction response time. This is recom-
mended in performance sensitive CICS applications. For additional information on the TRUNC option,

| please refer to the compiler options section of this paper. Note: This is the most up-to-date information for
| using TRUNC with CICS applications and may be different than recommended in the Application Pro-
| gramming Guide. (APG: MVS p 193; VSE p 186)

Under VSE, since VS COBOL II uses more virtual storage than DOS/VS COBOL, increasing the partition
size may also help.

Tuning the Run-Time Environment 11

Efficient COBOL Coding Techniques

This section will focus on some of the options that are available for tuning a program for better performance
by modifying the source code. This can produce the higher performing code since the coding style as well as
the data types can have a significant impact on the performance of the application. This usually has a far
greater impact than that of tuning the application via compiler and run-time options, but may not be a
viable option for many existing applications since it does require modifying the source code and at times may
even require an extensive knowledge of how the program works. However, these techniques should be con-
sidered for all new applications.

Data Files

Planning how the files will be created and used is an important factor in determining the most efficient file
characteristics for the application. Some of the characteristics that affect the performance of file processing
are: the file organization, the access method, the record format, and the blocksize. Some of these are dis-
cussed in more detail below. (APG: MVS p 19-26; VSE p 17-24)

QSAM or SAM files

When using QSAM (MVS) or SAM (VSE) files, use large block sizes whenever possible by using the
BLOCK CONTAINS clause on your file definitions (the default with COBOL is to use unblocked files). If
you are using DFP Version 3.1 or later, you can specify the BLOCK CONTAINS 0 clause for any new files
that you are creating and omit the BLKSIZE parameter in your JCL for this file and the system will deter-
mine the optimal blocksize for you. This should significantly reduce the file processing time (both in CPU
time and elapsed time).

| Additionally, increasing the number of I/O buffers for heavy I/O jobs can improve both the CPU and
| elapsed time performance, at the expense of using more storage. This can be accomplished by using the
| BUFNO subparameter of the DCB parameter in the JCL or by using the RESERVE clause of the SELECT
| statement in the FILE-CONTROL paragraph. Note that if you do not use either the BUFNO subparam-
| eter or the RESERVE clause, the system default will be used. (APG: MVS pp 26, 166; VSE pp 24, 160)

Variable length files

When writing to variable length blocked sequential files, use the APPLY WRITE-ONLY clause for the file
or use the AWO compiler option. This can reduce the number of calls to Data Management Services to
handle the I/Os. (APG: MVS pp 41, 166; VSE pp 39-40, 160)

VSAM files

When using VSAM files, increase the number of data buffers for sequential access or index buffers for
random access. Also, select a control interval size (CISZ) that is appropriate for the application (a smaller
CISZ results in faster retrieval for random processing at the expense of inserts, whereas a larger CISZ is more
efficient for sequential processing). In general, using large CI and buffer space VSAM parameters may help
to improve the performance of the application.

| Sequential access is the most efficient, dynamic access the next, and random access is the least efficient.
| Random access results in an increase in I/O activity because VSAM must access the index for each request.
| Note: This is the most up-to-date information for using VSAM files and may be different than recommended
| in the Application Programming Guide.

If you use alternate indexes, it is more efficient to use the Access Method Services to build them than to use
the AIXBLD run-time option. Avoid using multiple alternate indexes when possible since updates will have

12 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

to be applied through the primary paths and reflected through the multiple alternate paths. (APG: MVS pp
21, 167, 229, 242-243; VSE pp 19, 161, 218, 231-232)

Data Types

When using binary (COMP) data items, the use of the SYNCHRONIZED clause ensures that the binary
data items will be properly aligned on halfword, fullword, or doubleword boundaries. This may enhance the

| performance of certain operations on some machines. Additionally, using signed data items with eight or
| fewer digits produces the best code for binary items. The following shows the performance considerations
| (from most efficient to least efficient) for the number of digits of precision for signed binary data items (using
| PICTURE S9(n) COMP):

| n is from 1 to 8

| for n from 1 to 4, arithmetic is done in halfword instructions where possible

| for n from 5 to 8, arithmetic is done in fullword instructions where possible

| n is from 10 to 17

| arithmetic is done in doubleword format

| n is 9

| fullword values are converted to doubleword format and then doubleword arithmetic is used (this is
| SLOWER than any of the above)

| n is 18

| doubleword values are converted to a higher precision format and then arithmetic is done using this
| higher precision (this is the SLOWEST of all for binary data items)

| Note: Using 9 digits is slower than using 10 digits. (APG: MVS pp 73-74; VSE pp 70-71)

Conversion to a common format is necessary for certain types of numeric operations when mixed data types
are involved in the computation. This results in additional processing time and storage for these conversions.
In order to minimize this overhead, it is recommended that these guidelines for data types be followed.
(APG: MVS pp 70-71; VSE pp 67-68)

Avoid using USAGE DISPLAY data items for computations (especially in areas that are heavily used for
computations). When a USAGE DISPLAY data item is used, additional overhead is required to convert the
data item to the proper type both before and after the computation. In some cases, this conversion is done
by a call to a library routine which can be expensive compared to using the proper data type that does not
require any conversion. (APG: MVS pp 71, 167; VSE pp 68, 161)

When using packed decimal (COMP-3) data items in computations, use 15 or fewer digits in the PICTURE
specification to avoid the use of library routines for multiplication and division. A call to the library routine
is very expensive when compared to doing the calculation in-line. Additionally, using a signed data item with
an odd number of digits produces the most efficient code since this uses an integral multiple of bytes in
storage for the data item. (APG: MVS pp 165-167; VSE pp 159-161)

Plan the use of fixed point and floating point data types. You can enhance the performance of an application
by carefully determining when to use fixed point and floating point data. When conversions are necessary,
binary (COMP) and packed decimal (COMP-3) data with 9 or fewer digits require the least amount of over-
head when being converted to or from floating point (COMP-1 or COMP-2) data. Also, when using fixed
point exponentiations with large exponents, the calculation can be done more efficiently by using operands
that force the exponentiation to be evaluated in floating point. (APG: MVS pp 167-168; VSE pp 161-162)

Using indexes to address a table is more efficient than using subscripts since the index already contains the
displacement from the start of the table and does not have to be calculated at run time. Subscripts, on the
other hand, contain an occurrence number that must be converted to a displacement value at run time

Efficient COBOL Coding Techniques 13

before it can be used. When using subscripts to address a table, use a binary (COMP) signed data item with
8 or fewer digits (for example, using PICTURE S9(8) COMP for the data item). This will allow fullword

arithmetic to be used during the calculations. Additionally, in some cases, using 4 or fewer digits for the data
item may also offer some added reduction in CPU time since halfword arithmetic can be used. (APG:
MVS pp 94-96, 111, 167-170; VSE pp 91-93, 108, 161-164)

When using OCCURS DEPENDING ON (ODO) data items, ensure that the ODO objects are binary
(COMP) to avoid unnecessary conversions each time the variable length items are referenced. Some perform-
ance degradation is expected when using ODO data items since special code must be executed every time
that a variable length data item is referenced. This code determines the current size of the item every time the
item is referenced. It also determines the location of variably located data items. Because this special code is
out-of-line, it may inhibit some optimizations. Furthermore, code to manipulate variable-length data items is
substantially less efficient than that for fixed-length data items. For example, the code to compare or move a
variable-length data item may involve calling a library routine, and is significantly slower than the equivalent
code for fixed-length data items. If you do use variable-length data items, copying them into a fixed-length
data item prior to a period of high-frequency use can reduce some of this overhead. (APG: MVS pp 167,
170; VSE pp 161, 164)

Program Design

Examine the underlying algorithms that have been selected before looking at the COBOL specifics.
Improving the algorithms usually has a much greater impact on the performance than does improving the
detailed implementation of the algorithm. As an example, consider two search algorithms, a sequential search
and a binary search. Clearly, both of them will produce the same results and may, in fact, have almost the
same performance for small tables. However, as the table size increases, the binary search will be much faster
than the sequential search. As in this case of the two searches, you may have to do some additional coding
to maintain a sorted table for the binary search, but the additional effort spent here is more than saved
during the execution of the program. (APG: MVS p 163; VSE p 157)

After deciding on the algorithm, look at the data structures and data types. Ensure that they are both appro-
priate for the selected algorithm. The algorithm may in general be a fast one, but if the wrong data structures
or types are used, the performance can degrade significantly. As an example, consider two PERFORM
VARYING loops, one using a USAGE DISPLAY data item for the loop variable and the other using a
COMPUTATIONAL data item. In the case of DISPLAY data item, data conversion must be done for each
iteration of the loop, whereas in the COMPUTATIONAL data item, binary fullword arithmetic can be
used. Once again, they will both produce the same results, but the loop using the COMPUTATIONAL data
item will be much faster than using the DISPLAY data item. (APG: MVS p 163; VSE p 157)

Examine the coding style. Ensure that the program is well structured, utilizing the structured coding con-
structs that are available with VS COBOL II. Avoid using the GO TO statement (in particular, avoid using
the altered GO TO statement) and avoid using PERFORMed procedures that involve irregular control flow
(for example, a PERFORMed procedure that cannot reach the end of the procedure). The optimizer can
optimize the code better and over larger blocks of code if the programs are well structured and don't have a
"spaghetti-like" control flow. Additionally, the programs will be easier to maintain because of the structured
logic flow.

Factor expressions where possible, especially in loops. The optimizer does not do the factoring for you. If
you want the optimizer to recognize a data item as a constant throughout the program, initialize it with a
VALUE clause and don't modify it anywhere in the program (if a data item is passed BY REFERENCE to
a subprogram, the optimizer considers it to be modified). For evaluating arithmetic expressions, the com-
piler is bound by the left to right evaluation rules for COBOL. In order for the optimizer to recognize
constant computations (that can be done at compile time) or duplicate computations (common subex-
pressions), move all constants and duplicate expressions to the left end of the expression or group them in
parentheses. (APG: MVS pp 52-58, 163-165; VSE pp 50-56, 157-159)

14 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

When using tables, evaluate the need to verify subscripts. Using the SSRANGE option to catch the errors
causes the compiler to generate special code at each subscript reference to determine if the subscript is out of
bounds. However, if subscripts only need to be checked in a few places in the application to ensure that they
are valid, then coding your own checks can improve the performance when compared to using the
SSRANGE compiler option.

| Additionally, try to use the tables so that the rightmost subscript varies the most often for references that
| occur close to each other in the program. The optimizer can then eliminate some of the subscript calcu-
| lations because of common subexpression optimization.

When using the SEARCH statement, place the most often used data near the beginning of the table for
more efficient sequential searching. For better performance, especially when searching large tables, sort the
data in the table and use the SEARCH ALL statement. This results in a binary search on the table. (APG:
MVS pp 108-109, 111; VSE pp 105-106, 108)

Efficient COBOL Coding Techniques 15

Performance Improvements

VS COBOL II has made some performance improvements in some specific areas of the compiled code and
library routines. Here is a brief summary of these improvements by release.

Release 3.2 provides the following improvements over Release 3.1:

improved EVALUATE performance (when using EVALUATE TRUE or EVALUATE FALSE)

improved performance of passing parameters of large data structures to subprograms

Release 3.1 provided the following improvements over Release 3.0:

improved INITIALIZE performance (for tables with many subordinate items)

improved INSPECT, STRING, and UNSTRING performance (some additional cases are done in-line)

Release 3.0 provided the following improvements over Release 2:

improved SSRANGE processing (code is now done in-line instead of through a library routine call, sig-
nificantly reducing the overhead of subscript range checking)

improved decimal divide library routine performance

improved INSPECT, STRING, and UNSTRING performance (some of the simple cases of these state-
ments are now done in-line instead of through a library routine call)

improved CALL performance (by reducing some of the overhead)

improved INDEX performance (when comparing INDEXes with constants and when using the
SEARCH statement)

16 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

A Performance Checklist

The following list of questions will help to isolate the problem area if a performance related problem arises
with VS COBOL II. Most of the performance related problems that have been reported in the past have
fallen under one or more of the categories below. Each of the categories below do not always apply to all
operating environments. Most of these have been discussed earlier in this paper, so we will not go into any
additional detail here. This will just serve as a checklist of things to consider when investigating a perform-
ance problem.

1. What are all of the compiler options that were used?

2. If the program is compiled with RES, how are the COBPACKs defined?

3. Is the program compiled with old COBOL using the VS COBOL II Library?

4. Does the application have a mixture of old COBOL and VS COBOL II programs?

5. If the problem is on MVS, what are the JOBLIB and STEPLIB datasets and where are the COBOL
Libraries in the search order?

6. Is the application called by any other non-COBOL programs?

7. Does the application have any calls to any other programs? If so, what languages are involved? What is
the approximate number of calls and the depth of the calls? Are the calls static or dynamic?

8. What run-time options were used? For a non-COBOL driver repeatedly calling COBOL, was
LIBKEEP, RTEREUS, or a CALL to IGZERRE used?

9. What Space Management Tuning was used? The SPOUT run-time option can help you to determine
the correct values to use.

10. For IMS, was the application and/or library preloaded? Was a BLDL user exit used?

11. In case you need to seek assistance from IBM in solving the performance problem, what other informa-
tion can you tell us to help us understand the overall program structure (e.g., heavy use of a particular
COBOL verb, the application program alters the save area in a non-standard way, subscripts that are not
COMP-4, data types used (USAGE DISPLAY, INDEX, COMP-n), etc.)?

12. What release of VS COBOL II was used? Has all current maintenance been applied? If the most current
release of VS COBOL II is not being used, you should try it before reporting the problem to IBM since
the problem may have already been addressed.

13. What environment and release was used (IMS, CICS, CMS under VM/SP, CMS under VM/XA, CMS
under VM/ESA, MVS, MVS/XA, MVS/ESA, VSE/ESA)? Has current maintenance been applied?

14. If using SORT, what release of SORT was used? Has current maintenance been applied? Was the
FASTSRT compiler option used?

A Performance Checklist 17

Summary

This paper has identified some of the factors for tuning the performance of a VS COBOL II application
through the use of compile time options, run-time options, and efficient program coding techniques. Addi-
tionally, it has identified some factors for tuning the overall run-time environment of VS COBOL II. A
variety of different tuning tips was provided for each of the above. The primary focus was on tuning the
application using the compile time and run-time options, with a secondary focus, for more in depth fine
tuning, on examining the program design, algorithms, and data structures.

For the type of tuning suggested here, the costs are relatively low, as is the skill level required, since in many
cases, the program itself is not changed (except for perhaps, data types). Hence, introducing errors is a low
risk. The performance gains from this type of tuning may be sufficient to delay or eliminate the need for
algorithmic changes, program structure changes, or further data type considerations.

In summary, there are many opportunities for the COBOL programmer to tune the VS COBOL II applica-
tion program and run-time environment for better CPU time performance and better use of system
resources. The COBOL programmer has many compile time options, run-time options, data types, and
language features from which to select, and the proper choice may lead to significantly better performance.
Conversely, making the wrong choice can lead to significantly degraded performance. The goal of this paper
is to make you aware of the various options that are available so that you (both the system programmer
installing the product as well as the COBOL programmer responsible for the application) can choose the
right ones for your application program that will lead to the best performance for your environment.

18 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

| Appendix A. Coding Examples

| Using IGZERRE
| ***
| * *
| * The IGZERRE module can be invoked to set up the COBOL Run-time *
| * Environment before the first COBOL program is called. Invoking *
| * IGZERRE will explicitly drive COBOL's initialization and termin- *
| * ation functions. *
| * *
| * For the RES environment, LOAD/DELETE of IGZERRE must be done by the *
| * user. This load module must remain loaded until after the COBOL *
| * run-time environment has been terminated (either by IGZERRE termi- *
| * nation or a STOP RUN). *
| * *
| * For the NORES environment, there must be at least one VS COBOL II *
| * program in the application if the IGZERRE initialization or *
| * termination functions are to be explicitely used. Also, the module *
| * ILBOSRV must be link-edited with the application. *
| * *
| * When a reusable run-time environment has been created via IGZERRE *
| * initialization, subsequent use of STOP RUN will result in control *
| * being returned to the caller of the routine that invoked IGZERRE *
| * initialization. *
| * *
| ***
| RRE2COB CSECT
| RRE2COB AMODE 31 This routine is 31 bit addressable
| RRE2COB RMODE ANY And can reside above or below the
| * line
| * ===
| * Save callers regs and chain save areas
| * ===
| STM 14,12,12(13) Store incoming registers
| LR 12,15 Base RRE2COB on Register 12
| USING RRE2COB,12
| *
| LA 15,SAVEAREA Get this program's save area
| ST 13,4(15) Save caller's save area pointer
| ST 15,8(,13) Save this program's save area pointer
| LR 13,15 Load standard save area Register 13
| *
| LOAD EP=IGZERRE Issue LOAD for Reusable Runtime
| * Environment INIT/TERM Routine
| ST 0,IGZERREA Save address for termination
| *
| ***
| * IGZERRE is AMODE(31), RMODE(ANY). The routine that invokes IGZERRE *
| * must do so via BASSM 14,15, if running on MVS/ESA in 24-bit mode. *
| * IGZERRE will always return via BSM 0,14, if running on MVS/ESA. *
| ***
| *
| LA 1,1 Function code for init. is "1"
| LTR 15,0 Get address of IGZERRE

Appendix A. Coding Examples 19

| BM ALTBRCH1 High bit on, so above the line
| BALR 14,15 Go initialize the COBOL environment
| B TOCHECK Check return code
| ALTBRCH1 BASSM 14,15 Go initialize the COBOL environment
| *
| ***
| * At this point, the user may wish to check the return codes: *
| * 0 - Function completed correctly *
| * 4 - COBOL already initialized (initialization only) *
| * 8 - Invalid function code (not 1 or 2) *
| * 12 - ILBOSTP0 not part of load module (NORES only) *
| * 16 - COBOL not initialized (termination only) *
| * 20 - COBTEST in use (RES termination only) *
| ***
| *
| TOCHECK LA 14,4 "4" or less is OK
| CR 14,15 Test the return Register 15
| BL ULTIMATE Leave if return higher than "4"
| * ===
| * Set up the parameter list for the COBOL program
| * ===
| LA 5,OP1 Get address of 1st parameter
| ST 5,PARM1 and store it in parm list
| LA 5,OP2 Get address of 2nd parameter
| ST 5,PARM2 and store it in parm list
| LA 1,PARMLIST Load addr of parm list in Reg 1
| * ===
| * Call the COBOL program
| * ===
| L 15,COBPGM Get the address of the COBOL program
| BALR 14,15 and branch to it
| *
| ***
| * Call or re-call as many COBOL programs as needed. Be aware that *
| * they will be treated as sub-programs because the environment will *
| * not be refreshed between calls. Also, the programs must be self- *
| * initializing. *
| ***
| *
| * ===
| * Terminate the reusable environment
| * ===
| L 15,IGZERREA Address of IGZERRE was saved here
| LA 1,2 Function code for term. is "2"
| LTR 15,15 IGZERRE might be above the line
| BM PENULTMT If so, go issue BASSM, else
| BALR 14,15 Go terminate the COBOL environment
| B ULTIMATE COBOL environment cleaned up
| * (unless return code non-zero)
| PENULTMT BASSM 14,15 Go terminate the COBOL environment
| *
| * ===
| * Ready to return to our caller
| * ===
| *
| ULTIMATE DELETE EP=IGZERRE Delete IGZERRE
| L 13,4(13) Point to incoming registers
| RETURN (14,12),RC=(15)
| *

20 VS COBOL II Release 3.2 and Release 4.0 Performance Tuning

| * ===
| * Data Constants and Parameter Lists
| * ===
| COBPGM DC V(COBPGM) Address of COBOL program
| OP1 DC X'00100C' 1st parameter for COBOL program
| OP2 DC X'00200C' 2nd parameter for COBOL program
| *
| PARMLIST DS 0F Parameter list for COBOL program
| PARM1 DS A Address of 1st parameter
| PARM2 DS A Address of 2nd parameter
| *
| SAVEAREA DC 18F'0' Standard Save Area
| IGZERREA DC A(0) Address of IGZERRE
| *
| END RRE2COB

| COBOL Example - COBPGM
| 000100 IDENTIFICATION DIVISION.
| 000200 PROGRAM-ID. COBPGM.
| 000300*
| 000400 ENVIRONMENT DIVISION.
| 000500*
| 000600 DATA DIVISION.
| 000700 WORKING-STORAGE SECTION.
| 000800*
| 000900 LINKAGE SECTION.
| 001000 01 X PIC S9(5) COMP-3.
| 001100 01 Y PIC S9(5) COMP-3.
| 001200*
| 001300 PROCEDURE DIVISION USING X Y.
| 001400 COMPUTE X = Y + 1.
| 001500*
| 001600 GOBACK.

Appendix A. Coding Examples 21

	VS COBOL II Release 3.2 and Release 4.0 Performance Tuning
	Abstract
	Distribution Notice
	Edition Notice
	Third Edition, May 1994

	Contents
	Introduction
	The Language Performance Evaluation Department

	Tuning the Run-Time Environment
	Compiler options that affect run-time performance
	NUMPROC - NOPFD, MIG, or PFD
	TRUNC - BIN, STD, or OPT
	SSRANGE or NOSSRANGE
	FASTSRT or NOFASTSRT
	OPTIMIZE or NOOPTIMIZE
	AWO or NOAWO
	TEST or NOTEST
	CMPR2 or NOCMPR2
	DYNAM or NODYNAM
	RESIDENT or NORESIDENT
	RENT or NORENT

	Run-time options that affect run-time performance
	LIBKEEP
	RTEREUS
	Calling IGZERRE
	AIXBLD
	WSCLEAR
	SSRANGE
	STAE
	MIXRES
	Space management tuning
	COBPACKs
	Library in the LPA/ELPA (MVS) or SVA (VSE)

	Other factors that affect run-time performance
	Mixing old COBOL and VS COBOL II
	Main program not COBOL
	Using CALLs
	IMS
	CICS

	Efficient COBOL Coding Techniques
	Data Files
	QSAM or SAM files
	Variable length files
	VSAM files

	Data Types
	Program Design

	Performance Improvements
	A Performance Checklist
	Summary
	Appendix A. Coding Examples
	Using IGZERRE
	COBOL Example - COBPGM

