
COPYRIGHT IBM
2002

Tom Ross
SHARE Session: 8239
August, 2003

What is ILC and how to use it

COBOL, PL/I and C/C++

What is ILC: topics

Introduction

HLL parameter passing basics

#pragma-less ILC for C/C++

Optional parameters in 3 languages

Language Environment ILC enhancements
Performance and CICS improvements for COBOL

COBOL-PL/I ILC Migration

Introduction, what is ILC?

Interlanguage communication under Language Environment
COBOL, PL/I and C/C++ are covered

Assembler is not a language in terms of ILC

Java not covered, it is a special case

 Pure OO, no programs, no CALL statements, interoperability through CLASS inheritance

Java only runs in Unix Systems services, BPXPATCH, or special support of CICS and IMS

See Sessions 8246, 1:30 Thurs, OS/390 Java and COBOL,
 and 8247, 3:00 Thurs, OS/390 Java and PL/I

This presentation focuses on direct program CALLs
Different rules, fewer restrictions under CICS with
EXEC CICS LINK/XCTL

Same rules for CALLs under CICS

Introduction, why ILC?

When a subroutine you need is written in another language

When programmers on a team want to use different
programming languages

To be avoided for retaining sanity
Using one language is easiest to maintain

Often rewriting a subroutine to maintain single language is easier in long term

Sometimes ILC is unavoidable
No choice to rewrite mandated subroutines

Calling TCP/IP and other services

Other vendor products

Introduction: CALL linkages

Static CALL means programs statically bound in same
module

Dynamic COBOL calls equivalent to FETCH in PL/I and
C/C++

DLL linkage: common facility for linkage between separately
linked parts
Many compilers now support DLL linkage:

Enterprise COBOL Version 3

Enterprise PL/I version 3,

COBOL for OS/390 & VM

C/C++ for OS/390 and z/OS

See session 8130, Wed 9:30 PM, Using Dynamic Link Libraries with LE!! Ooooops

Introduction: HLL Parameter passing

Review 'Normal' S/390 parameter passing

R1 points to 'Parameter List'

Parameter list is a list of pointers to parameters

Assembler and COBOL support 'normal' parameter passing

PL/I is mostly normal except for operand descriptors
Still pointed to by addresses in parm list

C/C++ introduce a new way
Parameter values IN the parm list (sometimes)

Introduction: 'Normal' Parameter passing
77 X PIC S9(9) BINARY VALUE 32767.
77 Y PIC X(23) VALUE 'THIS IS THE SECOND PARM'.
77 Z POINTER.

SET Z TO ADDRESS OF Y.
CALL 'SUB1' USING X, Y, Z

R1 ADDR(X)
ADDR(Y)
ADDR(Z)

00007FFF

THIS IS THE SECOND PARM

098FB0C4

Introduction: 'C Style' Parameter passing

{ int x; char y(23); char *z;
 x = 32767;
 strcpy(y, "THIS IS THE SECOND PARM");
 z = y;

 sub1(x,y,z);
 }

R1 00007FFF
ADDR(Y)
098FB0C4

THIS IS THE SECOND PARM

Introduction: 'C Style' Parameter passing
What is a #pragma ?
C compiler directive statement
In C++, the equivalent is EXTERN
EX: #pragma linkage(cobrtn,COBOL)

What does #pragma linkage COBOL do?
Changes parameter passing to match 'normal 390' style
Changes writeable static processing for RENT programs to work
for 'dynamic' ILC with older COBOL compilers

Example of C calling COBOL:
#pragma linkage (cobrtn,COBOL)
 { int x;
 x = 5;
 cobrtn(&x);
 }

Introduction: 'C Style' Parameter passing
Example:
#pragma linkage (cobrtn,COBOL)
 { int x,y;
 x = 5;
 y = 99;
 cobrtn(x,&y); }
WITH #pragma COBOL, a ptr to x would be passed:

WITHOUT #pragma COBOL, x is passed in parm list:

x: 0005
&y: addr(y)

x: addr(copy of x)
&y: addr(y)

R1

R1

extern-less ILC for COBOL w/C++
Example:
extern "COBOL" {void cobsub (int, int*);}
int main()
{ int x,y;
 x = 5;
 y = 99;
 cobsub(x,&y); }
With no extern, can't even call C or COBOL programs
'Name mangling' is done to store information about function in
 function name

Use extern "C" for ILC with C++ and COBOL
Turns off name mangling
Use 'C style' coding in COBOL programs

Can still use extern "COBOL"
like #pragma linkage COBOL in C
Adds a level of indirection to parameters
Turns off name mangling
C callers would have to use COBOL style

C/C++ and COBOL parameter passing basics

Choices for COBOL with C/C++:
Use COBOL-style linkage in all programs to be shared

Use #pragma in C code, EXTERN COBOL in C++
Use C-style linkage in all programs to be shared

#pragma-less in C code, EXTERN C in C++
Use different linkage for each combination

Makes sharing routines more difficult

C/C++ and COBOL parameter passing basics

Now COBOL can also use C-style linkage conventions
USING BY VALUE, Z literals, RETURNING, and POINTERs

Common mistake: passing strings between C and COBOL

*pass a null-terminated string to a C function
 CALL 'FOO' USING BY CONTENT Z'abc'.

int FOO(char* x) (same as char x[])
 { printf("%s \n",x}

Won't work, high order bit set in parameter list
 for 'abc#'
C does math on addresses

C/C++ and COBOL parameter passing basics
How to handle strings between C and COBOL?
Always use pointers to strings like C does

A better way to pass strings between C and COBOL

MOVE Z'abc' TO X.
SET X-PTR TO ADDRESS OF X.
CALL 'FOO' USING BY VALUE X-PTR.

int FOO(char* x)
 { printf("%s \n",x}

Will work, high order bit not set in parameter
 list for X-PTR when USING BY VALUE
No #pragma linkage COBOL required!

#pragma-less ILC for COBOL and C/C++
Rules for #pragma-less ILC:
Use PROCEDURE DIVISION USING BY VALUE

 in COBOL programs receiving parms passed from C

Use CALL xxx USING BY VALUE
 in COBOL programs for passing parms to C

Use CALL xxx RETURNING
 in COBOL programs that CALL C functions

Use PROCEDURE DIVISION RETURNING
 in COBOL programs that will be invoked as functions by C programs

Dynamic CALL statements from COBOL to reentrant C
Use COBOL for OS/390 & VM 2.2 or later
Use LE for OS/390 V2R9 or later

Using fetch() in reentrant C to COBOL
Use COBOL for OS/390 & VM 2.2 or later
Use LE for OS/390 V2R9 or later

Can also use DLL support instead of fetch() or dynamic CALL

#pragma-less ILC for COBOL and C/C++

C Function calls from COBOL:

CALL 'getaddr' RETURNING X-PTR.
SET ADDRESS OF LS-ITEM TO X-PTR.

int getaddr (x_ptr pointer);
 { return x_ptr;}

#pragma-less ILC for COBOL and C/C++

COBOL Function calls from C:

int callgetaddr (x_ptr pointer);
 { x_ptr = getaddr();}

PROGRAM-ID. GETADDR.

PROCEDURE DIVISION RETURNING X-PTR.

SET X-PTR TO ADDRESS OF WS-ITEM.
GOBACK.

ILC Parameter Passing - optional parms

COBOL, PL/I and C/C++ all support optional parms
One common use is for LE callable services
Example: omitting the FC parameter

Also allows for flexible use of common subroutines
Pass different numbers of parms when called for different purposes
This has been done in past, was never officially supported without using
omitted parameters

ILC Parameter Passing - optional parms
COBOL:

Call 'sub1' Using PARM1, OMITTED, PARM3

Program-ID. SUB1.
Procedure Division Using RPARM1, RPARM2, RPARM3

 If ADDRESS OF RPARM2 = NULL Then
 Display 'No 2nd PARM was passed this time'
 Else
 Perform Process-Parm-2
 End-If

ILC Parameter Passing - optional parms
PL/I:

CALL sub1 (PARM1, *, PARM3);

SUB1: PROCEDURE (RPARM1, RPARM2, RPARM3);

 If ADDR(RPARM2) = SYSNULL() Then
 Display ('No 2nd PARM was passed this time')
 Else
 Call Process_Parm_2;

ILC Parameter Passing - optional parms
C/C++:

sub1 (PARM1, NULL, PARM3);

void SUB1 (RPARM1, RPARM2, RPARM3)

 { If (RPARM2 == NULL)
 printf ('No 2nd PARM was passed this time')
 Else
 Process_parm_2();
 }

COBOL-specific ILC enhancements
Performance
COBOL <-> PL/I ILC has 80% less overhead than pre-LE
COBOL <-> C/C++ ILC has 80% less overhead than pre-LE
C/C++ <-> PL/I ILC about equivalent to pre-LE

CICS improvements
Under OS/VS COBOL, no CALLs allowed at all

EXEC CICS LINK/XCTL only

Under VS COBOL II, static and dynamic CALLs between VS COBOL II pgms
EXEC CICS LINK/XCTL to other languages or OS/VS COBOL

Under LE, static and dynamic CALLs to other languages
All programs compiled with LE-conforming compilers

#pragma-less ILC for COBOL and C/C++

COBOL:PL/I, COBOL:C ILC Migration
All interlanguage communications applications that have
COBOL must be relinked before moving to LE
Can relink prior to moving using COBOL-PL/I, COBOL-C Migration Aid
PN69803 & PN69804 for OS PL/I V2

OS/VS COBOL programs cannot call PL/I programs under LE
PL/I programs can't call OS/VS COBOL programs either
Must do source conversion and recompile with newer COBOL compiler

PL/I multitasking applications have restrictions under LE
Can only call COBOL in one 'task' (thread)
Unless COBOL programs compiled with THREAD option!

Enterprise COBOL for z/OS and OS/390 Version 3

