What 1s ILC and how to use It

COBOL, PL/lI and C/C++

Tom RO0SS
SHARE Session: 8239
August, 2003

IBM So_ftware

IIIIIIIIIIII
2002

What is ILC: topics

¥ Introduction

mHLL parameter passing basics

W #pragma-less ILC for C/C++

m Optional parameters in 3 languages

mLanguage Environment ILC enhancements

— Performance and CICS improvements for COBOL

m COBOL-PL/I'ILC Migration

Introduction, what is ILC?

® Interlanguage communication under Language Environment

— COBOL, PL/l and C/C++ are covered
— Assembler is not a language in terms of ILC

—Java not covered, it is a special case
» Pure OO, no programs, no CALL statements, interoperability through CLASS inheritance
» Java only runs in Unix Systems services, BPXPATCH, or special support of CICS and IMS

» See Sessions 8246, 1:30 Thurs, OS/390 Java and COBOL,
and 8247, 3:00 Thurs, OS/390 Java and PL/I

m This presentation focuses on direct program CALLs

- Different rules, fewer restrictions under CICS with
EXEC CICS LINK/XCTL

- Same rules for CALLs under CICS

Introduction, why ILC?

®mWhen a subroutine you need is written in another language

®mWhen programmers on a team want to use different
programming languages

®To be avoided for retaining sanity
— Using one language is easiest to maintain

— Often rewriting a subroutine to maintain single language is easier in long term

mSometimes ILC is unavoidable
- No choice to rewrite mandated subroutines

— Calling TCP/IP and other services

— Other vendor products

Introduction: CALL linkages

m Static CALL means programs statically bound in same
module

m Dynamic COBOL calls equivalent to FETCH in PL/l and
C/C++

mDLL linkage: common facility for linkage between separately
linked parts

— Many compilers now support DLL linkage:
» Enterprise COBOL Version 3
» Enterprise PL/I version 3,

» COBOL for OS/390 & VM

» C/C++ for OS/390 and z/OS

— See session 8130, Wed 9:30 PM, Using Dynamic Link Libraries with LE!! Ooooops

Introduction: HLL Parameter passing

® Review 'Normal' S/390 parameter passing
—R1 points to 'Parameter List'

— Parameter list is a list of pointers to parameters
m Assembler and COBOL support 'normal’ parameter passing

mPL/l'is mostly normal except for operand descriptors

— Still pointed to by addresses in parm list

m C/C++ Iintroduce a new way

— Parameter values IN the parm list (sometimes)

Introduction: 'Normal* Parameter passing

77 X PIC S9(9) BINARY VALUE 32767.
/7Y PIC X(23) VALUE 'THIS IS THE SECOND PARM'.
/7 ZPOINTER.

SET Z TO ADDRESS OF Y.
CALL 'SUB1' USING X, Y, Z

ADDR(Y) ———m 114i5 IS THE SECOND PARM

ADDR(2)
- —al(98FBOCA

Introduction: 'C Style' Parameter passing

{ Int x; char y(23); char *z;
X = 32767,
strcpy(y, "THIS IS THE SECOND PARM");

=Y,

subl1(x,y,z);
}

R1 ——"|00007FFF

ADDR(Y) [——®| THIS IS THE SECOND PARM
098FB0C4

Introduction: 'C Style' Parameter passing

mWhat is a #pragma ?
—C compiler directive statement
—In C++, the equivalent is EXTERN
—EX: #pragma linkage(cobrtn,COBOL)

®What does #pragma linkage COBOL do?

—Changes parameter passing to match 'normal 390' style

— Changes writeable static processing for RENT programs to work
for 'dynamic' ILC with older COBOL compilers

m Example of C calling COBOL.:
#pragma linkage (cobrtn,COBOL)
{int Xx;
X = 5;
cobrtn(&x);
}

Introduction: 'C Style' Parameter passing

Example:
#pragma linkage (cobrtn,COBOL)
{int x,y;

X =09;

y =99;

cobrtn(x,&y); }

WITH #pragma COBOL, a ptr to x would be passed:

R1 —— x: addr(copy of x)
&y: addr(y)

WITHOUT #pragma COBOL, x is passed in parm list:

R1 ——® x: 0005
&y: addr(y)

extern-less ILC for COBOL w/C++

m Example:
extern "COBOL" {void cobsub (int, int*);}
Int main()
{int x,y;
X = 3;
y =99;
cobsub(x,&y); }
mWith no extern, can't even call C or COBOL programs

—'Name mangling' is done to store information about function in
function name

mUse extern "C" for ILC with C++ and COBOL

—Turns off name mangling
—Use 'C style' coding in COBOL programs

m Can still use extern "COBOL"
—like #pragma linkage COBOL in C
—Adds a level of indirection to parameters
—Turns off name mangling
—C callers would have to use COBOL style

C/C++ and COBOL parameter passing basics

m Choices for COBOL with C/C++:
—Use COBOL-style linkage in all programs to be shared
e Use #pragma in C code, EXTERN COBOL in C++
—Use C-style linkage in all programs to be shared
e #pragma-less in C code, EXTERN C in C++
—Use different linkage for each combination
e Makes sharing routines more difficult

C/C++ and COBOL parameter passing basics

Now COBOL can also use C-style linkage conventions
— USING BY VALUE, Z literals, RETURNING, and POINTERS

Common mistake: passing strings between C and COBOL

*pass a null-terminated string to a C function
CALL 'FOO' USING BY CONTENT Z'abc'.

Int FOO(char* x) (same as char x[])
{ printf("%s \n" x}

Won't work, high order bit set in parameter list

for ‘abc#
- C does math on addresses

C/C++ and COBOL parameter passing basics
How to handle strings between C and COBOL?

—Always use pointers to strings like C does

A better way to pass strings between C and COBOL

MOVE Z'abc' TO X.
SET X-PTR TO ADDRESS OF X.
CALL 'FOO' USING BY VALUE X-PTR.

Int FOO(char* x)
{ printf("%s \n",x}

Will work, high order bit not set in parameter
list for X-PTR when USING BY VALUE

No #pragma linkage COBOL required!

#pragma-less ILC for COBOL and C/C++

W Rules for #pragma-less ILC:
—Use PROCEDURE DIVISION USING BY VALUE

e in COBOL programs receiving parms passed from C
—Use CALL xxx USING BY VALUE
e in COBOL programs for passing parms to C
—Use CALL xxx RETURNING
e in COBOL programs that CALL C functions
—Use PROCEDURE DIVISION RETURNING
e in COBOL programs that will be invoked as functions by C programs
—Dynamic CALL statements from COBOL to reentrant C
e Use COBOL for OS/390 & VM 2.2 or later
e Use LE for OS/390 V2R9 or later
—Using fetch() in reentrant C to COBOL

e Use COBOL for OS/390 & VM 2.2 or later
e Use LE for OS/390 V2R9 or later

—Can also use DLL support instead of fetch() or dynamic CALL

#pragma-less ILC for COBOL and C/C++

C Function calls from COBOL:

CALL 'getaddr' RETURNING X-PTR.
SET ADDRESS OF LS-ITEM TO X-PTR.

Int getaddr (X _ptr pointer);
{ return x_ptr;}

#pragma-less ILC for COBOL and C/C++

COBOL Function calls from C:

Int callgetaddr (x_ptr pointer);
{ x_ptr = getaddr();}

PROGRAM-ID. GETADDR.
PROCEDURE DIVISION RETURNING X-PTR.

SET X-PTR TO ADDRESS OF WS-ITEM.
GOBACK.

ILC Parameter Passing - optional parms

mCOBOL, PL/l and C/C++ all support optional parms

mOne common use iIs for LE callable services

- Example: omitting the FC parameter

m Also allows for flexible use of common subroutines

- Pass different numbers of parms when called for different purposes

—This has been done in past, was never officially supported without using
omitted parameters

ILC Parameter Passing - optional parms
COBOL.:

Call 'sub1' Using PARM1, OMITTED, PARM3

Program-1D. SUB1.
Procedure Division Using RPARM1, RPARM2, RPARMS3

If ADDRESS OF RPARMZ2 = NULL Then
Display 'No 2nd PARM was passed this time'
Else

Perform Process-Parm-2
End-If

ILC Parameter Passing - optional parms
PL/I:

CALL subl (PARM1, *, PARM3);

SUB1: PROCEDURE (RPARM1, RPARM2, RPARMB3);

If ADDR(RPARM2) = SYSNULL() Then

Display ('No 2nd PARM was passed this time')
Else

Call Process Parm_2;

ILC Parameter Passing - optional parms
C/C++:

subl (PARM1, NULL, PARM3);

void SUB1 (RPARM1, RPARM2, RPARMS3)

{ If RPARM2 == NULL)
printf (‘'No 2nd PARM was passed this time')
Else
Process parm_2();

}

COBOL-specific ILC enhancements

m Performance
—COBOL <->PL/I ILC has 80% less overhead than pre-LE
—COBOL <-> C/C++ ILC has 80% less overhead than pre-LE
—C/C++ <-> PL/I ILC about equivalent to pre-LE

m CICS improvements

= Under OS/VS COBOL, no CALLs allowed at all
e EXEC CICS LINK/XCTL only

—Under VS COBOL I, static and dynamic CALLs between VS COBOL Il pgms
e EXEC CICS LINK/XCTL to other languages or OS/VS COBOL

—Under LE, static and dynamic CALLs to other languages

e All programs compiled with LE-conforming compilers

m#pragma-less ILC for COBOL and C/C++

COBOL:PL/I, COBOL:C ILC Migration

m All interlanguage communications applications that have
COBOL must be relinked before moving to LE

— Can relink prior to moving using COBOL-PL/I, COBOL-C Migration Aid
—PN69803 & PN69804 for OS PL/I V2

mOS/VS COBOL programs cannot call PL/I programs under LE
—PL/l programs can't call OS/VS COBOL programs either

—Must do source conversion and recompile with newer COBOL compiler

m PL/I multitasking applications have restrictions under LE
—Can only call COBOL in one 'task' (thread)

—Unless COBOL programs compiled with THREAD option!
e Enterprise COBOL for z/OS and OS/390 Version 3

