<|lI!

IBM XL C for AIX, V13.1.3

Compiler Reference

Version 13.1.3

SC27-4239-02

<|lI!

IBM XL C for AIX, V13.1.3

Compiler Reference

Version 13.1.3

SC27-4239-02

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 631]

First edition

This edition applies to IBM XL C for AIX, V13.1.3 (Program 5765-J06; 5725-C71) and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document.
Who should read this document
How to use this document
How this document is organized
Conventions
Related information
IBM XL C information
Standards and specifications
Other IBM information
Other information .
Technical support
How to send your comments

Chapter 1. Complllng and I|nk|ng

applications .

Invoking the compiler .
Command-line syntax

Types of input files .

Types of output files.

Specifying compiler options

Specifying compiler options on the command 11ne
Specifying compiler options in a configuration file

Specifying compiler options in program source

files

Resolving confhctmg compller optlons

Specifying compiler options for

architecture-specific compilation .
Reusing GNU C compiler optrons with gxlc

gxlc syntax . .
Preprocessing.

Directory search sequence for 1ncluded flles
Linking. .

Order of 11nk1ng

Redistributable libraries .

Compatibility with earlier versions
Compiler messages and listings.

Compiler messages .

Compiler return codes.

Compiler listings

Message catalog errors. .

Paging space errors during compllatlon .

Chapter 2. Configuring compller
defaults
Setting environment vanables .
Compile-time and link-time envrronment
variables
Runtime env1r0nment Varlables .
Environment variables for parallel processmg .
Using custom compiler configuration files .
Creating custom configuration files
Configuring the gxlc option mapping.

© Copyright IBM Corp. 1996, 2015

. ix
. ix
. ix

. xiii
. xiii
. Xiv
. XV
. XV
. XV
. XV

.11
.11
.12
.12
.13
.14
.14
. 15
. 16
. 16
.18
.19
.21
.22

. 23
.23

.24
.24
. 25
. 38
. 39
.42

Chapter 3. Tracking and reporting
compiler usage .

Understanding utilization tracking and reporting.

Overview . .
Four usage scenarios
Preparing to use this feature.
Time synchronization .
License types and user 1nf0rmat10n
Central configuration . .
Concurrent user considerations .
Usage file considerations .
Regular utilization checking .
Testing utilization tracking
Configuring utilization tracking

Editing utilization tracking conflguratlon flle

entries .
Understanding the utlhzatlon reportlng tool

Utilization reporting tool command-line options

Generating usage reports .
Understanding usage reports
Pruning usage files .

Diagnostic messages from utlhzatlon tracklng and

reporting . . .
Tracking compiler usage w1th Software Llcense
Metric Tags logging

. 45
.45
.45
. 46
. 54
. 54
. 54
. 55
. 55
. 56
. 58
. 58
. 60

. 60
. 64

64

. 68
. 68
.71
.72

.72

Chapter 4. Compiler options reference 75

Summary of compiler options by functional
category

Output Control

Input control . .

Language element control

Floating-point and integer control .

Object code control . .

Error checking and debuggmg

Listings, messages, and compiler 1nformat10n .

Optimization and tuning .

Linking.

Portability and mlgratlon

Compiler customization .

Deprecated options . .
Individual option descriptions .

-# (pound sign) .

-q32, -q64 .

-qaggreopy

-qalias .

-qalign .

-qalloca, -ma

-qaltivec .

-qarch .

-qasm .

-qasm_as .

-qassert

-qattr .

-b

.75
.75
. 76
.77
.78
.79
. 81
. 84
. 85
. 89
. 90
.91
.91
.92
. 93
. 94
. 95
. 96
. .98

. 100

. 101

. 102

. 105

. 107

. 108

. 108

. 109

iii

B . . .
-gbitfields.
-bmaxdata
-brtl

< .

-C, _Cl
-qcache
-qchars
-qcheck
-qcompact
-qeconcurrentupdate
-qcplusemt .
-qcrt
-qc_stdinc
-D .

—qdatalmported -qdatalocal -qtocdata .

-qdbgfmt .
-qdbxextra
-qdfp .
-qdigraph
-qdirectstorage .
-qdollar
-qdpcl .

e .

-E .
-genum
-qexpfile .
-qextchk .

e S
-Fooo.
-qfdpr .
-qflag .
-qfloat .
-gflttrap .
-qformat .
-qfullpath
-qfuncsect .
-qfunctrace .
g .

-G . ..
-qgenproto
-ghalt .
—qhaltonmsg
-gheapdebug
-ghelp .
-ghot .

S S
—q1d1rf1rst
-qignerrno
-qignprag.
-ginclude .
-qinfo .
-ginitauto.
-ginlglue .
-qinline
-qipa . . .
-qisolated_ call .
-gkeepparm .
-gkeyword
e
-L .

iv XLC Compiler Reference

. 110
. 111
. 112
. 113
. 114
. 115
. 116
. 118
. 119
. 122
. 123
. 123
. 124
. 125
. 126
. 127
. 129
. 130
. 131
. 132
. 133
. 133
. 134
. 135
. 136
. 137
. 141
. 141
. 142
. 143
. 144
. 145
. 146
. 151
. 155
. 156
. 157
. 158
. 160
. 163
. 164
. 165
. 166
. 167
. 169
. 169
. 172
. 173
. 174
. 175
. 176
. 178
. 186
. 188
. 189
. 193
. 199
. 202
. 203
. 204
. 205

-glanglvl .
-qlargepage .

-qlib

-qlibansi .
-qlibmpi .
-glinedebug .
-qlist

-qlistfmt .
-qlistopt .
-qlonglit .
-qlonglong
-ma.

-qmacpstr
-qmakedep, -M .
-qmaxerr .
-qgmaxmem .
-qmbcs, -qdbcs .
-MF
-qminimaltoc
-qmkshrobj .
0
-O, -qoptlmlze .
-qoptdebug .
-qoptfile .

P, -Pg, qproflle
P
-qpath. .o
-qpdfl, -qpdf2 .
-qphsinfo.
-gpic . .
-qppline .
-qprefetch
-gprint

-qprocimported, —qproclocal -qprocunknown

-qproto

S S
-qreport .
-qreserved_reg .
-qrestrict .

-qro

-qroconst .
-qroptr

s L.

-S

-gsaveopt.
-qshowinc
-qgshowmacros .
-qshowpdf
-gsimd
-gskipsrc .
-gsmallstack .
-qsmp .
-qsource .
-gsourcetype.

-gspeculateabsolutes .

-qspill .
-qsrcmsg .
-gstackprotect
-gstatsym.
-gstdinc

-qldbl128, -qlongdouble

. 206
. 211
. 212
. 213
. 214
. 215
. 216
. 217
. 218
. 221
. 222
. 223
. 224
. 224
. 226
. 228
. 229
. 230
. 231
. 232
. 233
. 235
. 236
. 239
. 241
. 243
. 244
. 245
. 247
. 253
. 254
. 255
. 256
. 259

260

. 262
. 263
. 263
. 265
. 266
. 267
. 268
. 270
. 271
. 271
. 272
. 275
. 276
. 277
. 278
. 280
. 281
. 281
. 286
. 287
. 288
. 289
. 290
. 291
. 292
. 292

-qstrict
-gstrict_induction .
-qsuppress
-qsymtab .
—qsyntaxonly
-t

-qtabsize .
-qtbtable .
-qthreaded
-qtimestamps
-qtls
-qtocmerge .
-qtrigraph
-qtune .

U . .
-qunroll
-qunwind.
-qupconv .
-qutf

v, -V .
-qvecnvol.
-qversion .
-qvisibility
WL
W
-qwarn64 .
-qweakexp
-qweaksymbol .
-qxcall.
-qxref .

v .

-Z .

Chapter 5. Compiler pragmas

reference .
Pragma directive syntax.
Scope of pragma directives .

Summary of compiler pragmas by functlonal

category . .
Language element Control .
Floating-point and integer control
Error checking and debugging.
Optimization and tuning
Object code control
Portability and migration
Deprecated directives.

Individual pragma descriptions
#pragma align .

#pragma alloca .

#pragma block_loop .
#pragma chars .

#pragma comment.

#pragma disjoint

#pragma enum . .o
#pragma execution frequency
#pragma expected_value
#pragma fini

#pragma GCC Vlslblhty push #pragma GCC

visibility pop .
#pragma ibm 1ndependent loop
#pragma ibm iterations .

. 294
. 299
. 299
. 301
. 302
. 303
. 304
. 305
. 306
. 307
. 307
. 309
. 310
. 310
. 313
. 314
. 317
. 318
. 319
. 319
. 320
. 321
. 323
. 325
. 326
. 327
. 328
. 329
. 330
. 330
. 332
. 333

. 335
. 335
. 336

. 336
. 336
. 337
. 337
. 337
. 338
. 339
. 339
. 339
. 340
. 340
. 340
. 343
. 343
. 345
. 346
. 346
. 348
. 349

. 349
. 351
. 352

#pragma ibm max_iterations 353

#pragma ibm min_iterations 354
#pragma ibm snapshot355
#pragmainfo355
#pragmainit355
#pragma isolated_call356
#pragma langlvl356
#pragma leaves.356
#pragma loopid357
#pragmamap358
#pragmamc_func.35
#pragma nofunctrace.36l
#pragma nosimd362
#pragma novector.362
#pragma options362
#pragma option_override 364
#pragmapack366
#pragma reachable369
#pragma reg_killed_ by370
#pragma simd_level 372
#pragma STDC CX_LIMITED_ RANGE . . .373
#pragma stream_unroll374
#pragma strings37
#pragma unroll, #pragma nounroll37
#pragma unrollandfuse375
#pragma weak 377
Pragma directives for parallel processmg .. .380

Chapter 6. Compiler predefined
macros 403

General macros.403
Macros indicating the XL C compller 404
Macros related to the platform 405
Macros related to compiler features 405
Macros related to compiler option settings. . . 406
Macros related to architecture settings 407
Macros related to language levels 408

Chapter 7. Compiler built-in functions 413

Fixed-point built-in functions 413
Absolute value functions 413
Assert functions414
Bit permutation functions 414
Comparison functions 414
Count zero functions.415
Division functions.415
Load functions.417
Multiply functions. 417
Population count functions. 418
Rotate functions419
Store functions420
Trap functions . . . B A |

Binary floating-point bu11t-1n functlons T)
Absolute value functions422
Add functions422
Conversion functions.423
FPSCR functions425
Multiply functions. . . T 2
Multiply-add/subtract functlons S ... 428
Reciprocal estimate functions 429

Contents V

Rounding functions
Select functions.
Square root functions.
Software division functions.
Store functions .

Binary-coded decimal buﬂt—m functlons
BCD add and subtract .
BCD test add and subtract for overﬂow
BCD comparison .
BCD load and store

Decimal floating-point built-in functlons
Absolute value functions
Coefficient functions .
Comparison functions
Conversion functions.
Exponent functions
NaN functions . .
Register transfer functlons .
Rounding functions
Test functions .
Miscellaneous functions .

Synchronization and atomic built-in funct1ons

Check lock functions .

Clear lock functions . .

Compare and swap functions .

Fetch functions .

Load functions .

Store functions . .

Synchronization functlons .
Cache-related built-in functions

Data cache functions .

Prefetch built-in functions .
Cryptography built-in functions .

Advanced Encryption Standard funct1ons

Secure Hash Algorithm functions.
Miscellaneous functions .
Block-related built-in functions

__bcopy .
bzero . .
Vector built-in functlons
vec_abs
vec_abss .
vec_add .
vec_addc .
vec_adds .
vec_add_ul28 .
vec_addc_ul28 .
vec_adde_ul28 .
vec_addec_ul28
vec_all_eq
vec_all_ge
vec_all_gt
vec_all_in
vec_all_le.
vec_all_lt.
vec_all_nan .
vec_all_ne
vec_all_nge .
vec_all_ngt .
vec_all_nle
vec_all_nlt

vi XLC Compiler Reference

. 430
. 431
. 431
. 432
. 433
. 433
. 433
. 434
. 435
. 436
. 437
. 437
. 438
. 439
. 440
. 445
. 446
. 447
. 448
. 450
. 455
. 456
. 456
. 457
. 458
. 459
. 461
. 462
. 462
. 464
. 464
. 466
. 474
. 474
. 476
. 477
. 479
. 479
. 480
. 480
. 481
. 481
. 482
. 482
. 483
. 484
. 484
. 484
. 485
. 485
. 486
. 488
. 489
. 489
. 490
. 491
. 492
. 493
. 494
. 494
. 495

vec_all_numeric

vec_and .
vec_andc .

vec_any_eq .
vec_any_ge .
vec_any_gt .

vec_any_le
vec_any_lt

vec_any_nan
vec_any_ne .
vec_any_nge.
vec_any_ngt.
vec_any_nle .
vec_any_nlt . .
vec_any_numeric .
vec_any_out.

vec_avg .
vec_bperm
vec_ceil
vec_cmpb.
vec_cmpeq
vec_cmpge
vec_cmpgt
vec_cmple
vec_cmplt
vec_cntlz .
vec_cpsgn
vec_ctd
vec_ctf
vec_cts
vec_ctsl
vec_ctu
vec_ctul .
vec_cvf
vec_div
vec_dss
vec_dssall
vec_dst
vec_dstst .
vec_dststt
vec_dstt .
vec_eqv
vec_expte.

vec_extract .

vec_floor .
vec_gbb .
vec_insert
vec_ld.
vec_lde
vec_ldl
vec_loge .
vec_lvsl
vec_lvsr .
vec_madd

vec_madds .

vec_max .

vec_mergee .
vec_mergeh .
vec_mergel .
vec_mergeo .
vec_mfvscr .

. 495
. 496
. 497
. 498
. 499
. 501
. 502
. 503
. 504
. 505
. 506
. 507
. 507
. 508
. 508
. 509
. 509
. 510
. 510
. 511
. 511
. 512
. 513
. 514
. 515
. 516
. 516
. 517
. 517
. 518
. 518
. 519
. 519
. 520
. 520
. 521
. 521
. 521
. 522
. 522
. 523
. 523
. 525
. 525
. 526
. 526
. 527
. 528
. 529
. 530
. 531
. 532
. 532
. 533
. 534
. 534
. 535
. 536
. 537
. 538
. 539

vec_min .
vec_mladd
vec_mradds .
vec_msub
vec_msum
vec_msums .
vec_mtvscr .
vec_mul .
vec_mule.
vec_mulo.
vec_nabs .
vec_nand.
vec_neg .
vec_nmadd .
vec_nmsub .
vec_nor
vec_or.
vec_orc
vec_pack .
vec_packpx .
vec_packs
vec_packsu .
vec_perm.
vec_permi
vec_popent .
vec_promote.
vec_re .
vec_revb .
vec_reve .
vec_rl .
vec_round
vec_roundc .
vec_roundm.
vec_roundp .
vec_roundz .
vec_rsqrte
vec_sel
vec_sl .
vec_sld
vec_sldw .
vec_sll.
vec_slo
vec_splat .
vec_splats
vec_splat_s8.
vec_splat_s16
vec_splat_s32
vec_splat_u8.
vec_splat_ul6
vec_splat_u32
vec_sqrt .
vec_sr .
vec_sra
vec_srl
vec_sro
vec_st .
vec_ste
vec_stl.
vec_sub
vec_sub_ul28
vec_subc .

. 539
. 540
. 541
. 541
. 542
. 543
. 543
. 544
. 544
. 545
. 546
. 546
. 548
. 548
. 549
. 549
. 550
. 552
. 553
. 554
. 554
. 555
. 556
. 556
. 557
. 558
. 559
. 559
. 560
. 561
. 561
. 562
. 562
. 563
. 563
. 564
. 564
. 565
. 566
. 567
. 568
. 569
. 570
. 570
. 571
. 571
. 572
. 572
. 573
. 573
. 574
. 574
. 575
. 576
. 577
. 577
. 579
. 580
. 581
. 582
. 583

vec_subc_ul28b583

vec_sube ul28.58
vec_subec_ ul2858
vecsubs.bs4
vecsum2sbh8
vecsum4s58
vec_sums.586
vec_trunc.586
vecunpackh586
vec_unpackl.58
veexl.58
vecxl.be.58
veexld259
veexlds59
veexlwd.59
vec_xorh93
vecxstb%
vecxstbe59%
vecxstd2.bh%
vec_xstw4d 597
GCC atomic memory access bullt—m functlons (IBM
extension) . . . 598
Atomic lock, release and synchroruze functlons 599
Atomic fetch and operation functions 600
Atomic operation and fetch functions 603
Atomic compare and swap functions 606
Miscellaneous built-in functions 607
Optimization-related functions 607
Move to/from register functions 608
Memory-related functions610
Built-in functions for parallel processmg ... 612
IBM SMP built-in functions.613
Transactional memory built-in functlons . . .613

Chapter 8. OpenMP runtime functions
for parallel processing 621

omp_get_max_active_levels621
omp_set_max_active_levels.621
omp_get_schedule.622
omp_set_schedule.622
omp_get_thread_limit623
omp_get_level 623
omp_get_ancestor_thread num623
omp_get_team_size623
omp_get_active_level.624
omp_get num_threads624
omp_set_ num_threads624
omp_get_max_threads625
omp_get_thread num625
omp_get num_procs625
omp_in_final625
omp_in_parallel625
omp_set_dynamic.626
omp_get_dynamic.626
omp_set nested626
omp_get_nested 627
omp_init_lock, omp_init_nest_ lock ... 627
omp_destroy_lock, omp_destroy_nest_lock . . . 627
omp_set_lock, omp_set_nest_lock. 627
omp_unset_lock, omp_unset_nest_lock. 628
omp_test_lock, omp_test_nest lock 628

Contents Vil

omp_get_ wtime628
omp_get wtick.629

Notices.631
Trademarks633

vili XL C Compiler Reference

Index .

. 635

About this document

This document is a reference for the IBM® XL C for AIX® V13.1.3 compiler.
Although it provides information about compiling and linking applications written
in C, it is primarily intended as a reference for compiler command-line options,
pragma directives, predefined macros, built-in functions, environment variables,
error messages, and return codes.

Who should read this document

This document is for experienced C developers who have some familiarity with the
XL C compilers or other command-line compilers on AIX operating systems. It
assumes thorough knowledge of the C programming language and basic
knowledge of operating system commands. Although this information is intended
as a reference guide, programmers new to XL C can still find information about
the capabilities and features unique to the XL C compiler.

How to use this document

Throughout this document, the xlc command invocation is used to describe the
behavior of the compiler. You can, however, substitute other forms of the compiler
invocation command if your particular environment requires it, and compiler
option usage remains the same unless otherwise specified.

While this document covers topics such as configuring the compiler environment,
and compiling and linking C applications using the XL C compiler, it does not
include the following topics:

* Compiler installation: see the XL C Installation Guide.

* The C programming language: see the XL C Language Reference for information
about the syntax, semantics, and IBM implementation of the C programming
language.

* Programming topics: see the XL C Optimization and Programming Guide for
detailed information about developing applications with XL C, with a focus on
program portability and optimization.

How this document is organized

[Chapter 1, “Compiling and linking applications,” on page 1| discusses topics related
to compilation tasks, including invoking the compiler, preprocessor, and linker;
types of input and output files; different methods for setting include file path
names and directory search sequences; different methods for specifying compiler
options and resolving conflicting compiler options; how to reuse GNU C compiler
options through the use of the compiler utility gxlc; and compiler listings and
messages.

[Chapter 2, “Configuring compiler defaults,” on page 23| discusses topics related to
setting up default compilation settings, including setting environment variables,
customizing the configuration file, and customizing the gxlc option mappings.

© Copyright IBM Corp. 1996, 2015 ix

[Chapter 3, “Tracking and reporting compiler usage,” on page 45| discusses topics
related to tracking compiler utilization. This chapter provides information that
helps you to detect whether compiler utilization exceeds your floating user license
entitlements.

[Chapter 4, “Compiler options reference,” on page 75| provides a summary of
options according to their functional category, through which you can look up and
link to options by function. This chapter also includes individual descriptions of
each compiler option sorted alphabetically.

[Chapter 5, “Compiler pragmas reference,” on page 335 provides a summary of
pragma directives according to their functional category, which allows you to look
up and link to pragmas by function. This chapter includes individual descriptions
of pragmas sorted alphabetically, including OpenMP and SMP directives.

[Chapter 6, “Compiler predefined macros,” on page 403| provides a list of compiler
macros grouped according to their category.

[Chapter 7, “Compiler built-in functions,” on page 413| contains individual
descriptions of XL C built-in functions for Power® architectures, categorized by
their functionality.

[Chapter 8, “OpenMP runtime functions for parallel processing,” on page 621|
contains individual descriptions of OpenMP runtime library functions for parallel
processing.

Conventions

Typographical conventions

The following table shows the typographical conventions used in the IBM XL C for
AIX, V13.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable | The compiler provides basic
names, compiler options, and invocation commands, xl¢, along with
directives. several other compiler invocation

commands to support various C
language levels and compilation

environments.
italics Parameters or variables whose Make sure that you update the size
actual names or values are to be parameter if you return more than
supplied by the user. Italics are the size requested.
also used to introduce new terms.
underlining The default setting of a parameter |nomaf | maf
of a compiler option or directive.
monospace Programming keywords and To compile and optimize
library functions, compiler builtins, | myprogram.c, enter: x1c myprogram.c
examples of program code, -03.
command strings, or user-defined
names.

X XL C: Compiler Reference

Qualifying elements (icons)

In descriptions of language elements where a feature is exclusive to the C11
standard, or where a feature is an IBM extension of the C standard, this
information uses icons to delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

IBM extension begins The text describes a feature that is an IBM extension to the

b BM | standard language specifications.

LBV <

IBM extension ends

C11 begins The text describes a feature that is introduced into standard C
b C11 | as part of C11.

__C11 <

C11 ends

Syntax diagrams

Throughout this information, diagrams illustrate XL C syntax. This section helps
you to interpret and use those diagrams.

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a command, directive, or statement.

The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued
from the previous line.

The —<« symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.

* Required items are shown on the horizontal line (the main path):

»»—keyword—required argument »<

* Optional items are shown below the main path:

»»—keyword >
I—opt ional_argumen t—l

* If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

»—keyword—[requi red_argument] ><
required_argumen t2—|

About this document X1

xii

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»—keyword
i:zpt iona l_argument]:l

ptional_argument2:

A\
A

* An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

Y
A

»»—keyword

repeatable_argument

* The item that is the default is shown above the main path.

efault_argumen t—l
»>—keyword lternate_argument

* Keywords are shown in nonitalic letters and should be entered exactly as shown.

* Variables are shown in italicized lowercase letters. They represent user-supplied
names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

(1) (2) (3) (4) (5) : (9) (10)

prag omment- (ompiler.

ati
timestamp
(6)
copyright
us er—l I_ (7) (8)
"—token_sequence—"

Notes:
This is the start of the syntax diagram.
The symbol # must appear first.
The keyword pragma must appear following the # symbol.

1
2
3
4 The name of the pragma comment must appear following the keyword pragma.
5 An opening parenthesis must be present.

6

The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

XL C: Compiler Reference

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment (date)
#pragma comment (user)
#pragma comment(copyright,"This text will appear in the module")

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|dlel,e]... name_list{name list}...

The following list explains the syntax statement:
* Enter the keyword EXAMPLE.

e Enter a value for char_constant.

e Enter a value for a or b, but not for both.

* Optionally, enter a value for c or d.

* Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

* Optionally, enter the value of at least one name for name_list. If you enter more
than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information

The following sections provide related information for XL C:

IBM XL C information
XL C provides product information in the following formats:
* Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C for AIX, V13.1.3. It is located by default in the XL C directory and in the
\quickstart directory of the installation DVD.

* README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C directory and in the root directory of the installation DVD.

* Installable man pages

Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C for AIX, V13.1.3 Installation Guide.

About this document Xiii

* Online product documentation

The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at |http:/ /www.ibm.com /support/knowledgecenter /SSGH2K_13.1.3/|
[com.ibm.compilers.aix.doc/welcome.html

¢ PDF documents

PDF documents are available on the web at fhttp:/ /www.ibm.com /support/|
[docview.wss?uid=swg27036590}

The following files comprise the full set of XL C product information:

Table 3. XL C PDF files

PDF file
Document title name Description
IBM XL C for AIX, V13.1.3 |install.pdf |Contains information for installing XL C and
Installation Guide, configuring your environment for basic
5C27-4238-02 compilation and program execution.
Getting Started with IBM | getstart.pdf | Contains an introduction to the XL C product,
XL C for AIX, V13.1.3, with information about setting up and
5C27-4237-02 configuring your environment, compiling and

linking programs, and troubleshooting
compilation errors.

IBM XL C for AIX, V13.1.3 | compiler.pdf | Contains information about the various
Compiler Reference, compiler options, pragmas, macros,
S5C27-4239-02 environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C for AIX, V13.1.3 | Tangref.pdf |Contains information about the C programming
Language Reference, languages, as supported by IBM, including
SC27-4240-02 language extensions for portability and
conformance to nonproprietary standards.

IBM XL C for AIX, V13.1.3 | proguide.pdf | Contains information about advanced

Optimization and programming topics, such as application
Programming Guide, porting, interlanguage calls with Fortran code,
5C27-4241-02 library development, application optimization

and parallelization, and the XL C
high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
[http:/ /www.adobe.com|

More information related to XL C, including IBM Redbooks® publications, white
papers, and other articles, is available on the web at |http://www.ibm.com /|
[support/docview.wss?uid=swg27036590}

For more information about C/C++, see the C/C++ café at |Ettps: //
www.ibm.com /developerworks/community /groups/service /html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3}

Standards and specifications

XL C is designed to support the following standards and specifications. You can
refer to these standards and specifications for precise definitions of some of the
features found in this information.

* Information Technology - Programming languages - C, ISO/IEC 9899:1990, also
known as C89.

xiv XL C: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSGH2K_13.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGH2K_13.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036590
http://www.ibm.com/support/docview.wss?uid=swg27036590
http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036590
http://www.ibm.com/support/docview.wss?uid=swg27036590
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3

* Information Technology - Programming languages - C, ISO/IEC 9899:1999, also
known as C99.

¢ Information Technology - Programming languages - C, ISO/IEC 9899:2011, also
known as C11. (Partial support)

* AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
Ihttp: / /www.freescale.com/files/32bit/doc/ref_manual/ ALTIVECPIM.pdﬂ

* Information Technology - Programming Languages - Extension for the programming
language C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This
draft technical report has been submitted to the C standards committee, and is
available at |http://www.open-std.org /JTC1/SC22/WG14/www /docs/|
in1176.pdf|

* ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

* OpenMP Application Program Interface Version 3.1 (full support), and OpenMP
Application Program Interface Version 4.0 (partial support), available at
[http:/ / www.openmp.org]

Other IBM information

* Parallel Environment for AIX: Operation and Use

+ The IBM Systems Information Center, at |http:/ /publib.boulder.ibm.com /|
[infocenter /systems /index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm)
is a resource for AIX information.

You can find the following books for your specific AIX system:

- AIX Commands Reference, Volumes 1 - 6

— Technical Reference: Base Operating System and Extensions, Volumes 1 & 2
— AIX National Language Support Guide and Reference

— AIX General Programming Concepts: Writing and Debugging Programs

— AIX Assembler Language Reference

Other information
* Using the GNU Compiler Collection available at [http:/ / gcc.gnu.org /onlinedocs|

Technical support

Additional technical support is available from the XL C Support page at

[http:/ /www.ibm.com /support/entry/portal /product/rational /xI_c_for_aix} This
page provides a portal with search capabilities to a large selection of Technotes and
other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XI. C, visit the product information site at
Ihttp: / /www.ibm.com/software/products/en/ xlcaixl

How to send your comments

Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL C
information, send your comments to compinfo@ca.ibm.com.

About this document XV

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/product/rational/xl_c_for_aix
http://www.ibm.com/software/products/en/xlcaix

Be sure to include the name of the manual, the part number of the manual, the
version of XL C, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xvi XLC: Compiler Reference

Chapter 1. Compiling and linking applications

By default, when you invoke the XL C compiler, all of the following phases of
translation are performed:

* Preprocessing of program source
* Compiling and assembling into object files
* Linking into an executable

These different translation phases are actually performed by separate executables,
which are referred to as compiler components. However, you can use compiler
options to perform only certain phases, such as preprocessing, or assembling. You
can then reinvoke the compiler to resume processing of the intermediate output to
a final executable.

The following sections describe how to invoke the XL C compiler to preprocess,
compile, and link source files and libraries:

+ |[“Invoking the compiler”]

* [“Types of input files” on page 3|

+ [“Types of output files” on page 4|

* |“Specifying compiler options” on page 5|

* ["“Reusing GNU C compiler options with gxlc” on page 11|

* [“Preprocessing” on page 12|

* [“Linking” on page 13|

+ [“Compiler messages and listings” on page 16|

Invoking the compiler

Different forms of the XL C compiler invocation commands support various levels
of the C language. In most cases, you can use the xlc command to compile C
source files.

You can use other forms of the command if your particular environment requires
it. lists the different basic commands, with the special versions of each
basic command. Special commands are described in [Table 5 on page 2|

Note: For each invocation command, the compiler configuration file defines
default option settings and, in some cases, macros; for information about the
defaults implied by a particular invocation, see the /opt/IBM/xlc/13.1.3/etc/
xle.cfg file for your system.

Table 4. Compiler invocations

Equivalent special

Basic invocations Description invocations

xlc Invokes the compiler for C source files. This command xlc_t, xlc_r7, x1c128,
supports all of the ISO C99 standard features, and most x1c128_r, x1c128_r4,
IBM language extensions. This invocation is recommended | xlc128_r7
for all applications.

99 Invokes the compiler for C source files. This command c99_r, ¢99_r4, c99_r7,
supports all ISO C99 language features, but does not €99_128, c99_128 1,

support IBM language extensions. Use this invocation for c99_128_r4, c99_128_r7
strict conformance to the C99 standard.

© Copyright IBM Corp. 1996, 2015

Table 4. Compiler invocations (continued)

Equivalent special

Basic invocations Description invocations
c89 Invokes the compiler for C source files. This command c89_r, c89_r4, c89_r7,
supports all ANSI C89 language features, but does not c89_128, c89_128 r,

support IBM language extensions. Use this invocation for c89_128_r4, c89_128_r7
strict conformance to the C89 standard.

cc Invokes the compiler for C source files. This command cc_r, cc_r4, cc_r7, ccl28,
supports pre-ANSI C, and many common language ccl128_r, cc128_r4, cc128_r7
extensions. You can use this command to compile legacy
code that does not conform to standard C.

gxle Invokes the compiler for C source files. This command

accepts many common GNU C options, maps them to their
XL C option equivalents, and then invokes xlc. For more
information, see ["Reusing GNU C compiler options with|

|gxlc” on page 11.|

Table 5. Suffixes for special invocations

128-suffixed
invocations

_r-suffixed
invocations

All 128-suffixed invocation commands are functionally similar to their corresponding base
compiler invocations. They specify the -qldbl128 option, which increases the length of Tong
doubTe types in your program from 64 to 128 bits. They also link with the 128-bit versions of
the C runtime libraries.

All _r-suffixed invocations allow for threadsafe compilation and you can use them to link
the programs that use multithreading. Use these commands if you want to create threaded
applications.

The _r7 invocations are provided to help migrate programs based on Posix Draft 7 to Posix
Draft 10. The _r4 invocations should be used for icati
information about DCE, see |What is DCE?l in the |CICS® Transaction Server for z/OS°®
[Information Center

Related information
+ |“-glanglvl” on page 206|

Command-line syntax

You invoke the compiler using the following syntax, where invocation can be
replaced with any valid XL C invocation command listed in [Table 4 on page 1}

»—invocation——input_files

Y
A

|—command_l ine_opt ions—l

The parameters of the compiler invocation command can be the names of input
files, compiler options, and linker options.

Your program can consist of several input files. All of these source files can be
compiled at once using only one invocation of the compiler. Although more than
one source file can be compiled using a single invocation of the compiler, you can
specify only one set of compiler options on the command line per invocation. Each
distinct set of command-line compiler options that you want to specify requires a
separate invocation.

2 XLC Compiler Reference

http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/dfhtm/dfhtm0a.htm
http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/prod/home.html
http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/prod/home.html

Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions.

By default, the invocation command calls both the compiler and the linker. It passes
linker options to the linker. Consequently, the invocation commands also accept all
linker options. To compile without linking, use the -c compiler option. The -c
option stops the compiler after compilation is completed and produces as output,
an object file file_name.o for each file_name.nnn input source file, unless you use the
-0 option to specify a different object file name. The linker is not invoked. You can
link the object files later using the same invocation command, specifying the object
files without the -c option.

Related information
* [“Types of input files”|

Types of input files

The compiler processes the source files in the order in which they are displayed. If
the compiler cannot find a specified source file, it produces an error message and
the compiler proceeds to the next specified file. However, the linker does not run
and temporary object files are removed.

By default, the compiler preprocesses and compiles all the specified source files.
Although you usually want to use this default, you can use the compiler to
preprocess the source file without compiling; see [“Preprocessing” on page 12| for
details.

You can input the following types of files to the XL C compiler:

C source files
These are files containing C source code.

To use the C compiler to compile a C language source file, the source file
must have a .c (lowercase c) suffix, unless you compile with the
-qsourcetype=c option.

Preprocessed source files
Preprocessed source files have a .i suffix, for example, file_name.i. The
compiler sends the preprocessed source file, file_name.i, to the compiler
where it is preprocessed again in the same way as a .c file. Preprocessed
files are useful for checking macros and preprocessor directives.

Object files
Object files must have a .o suffix, for example, file_name.o. Object files,
library files, and unstripped executable files serve as input to the linker.
After compilation, the linker links all of the specified object files to create
an executable file.

Assembler files
Assembler files must have a .s suffix, for example, file_name.s, unless you
compile with the -qsourcetype=assembler option. Assembler files are
assembled to create an object file.

Unpreprocessed assembler files
Unpreprocessed assembler files must have a .S suffix, for example,
file_name.S, unless you compile with the -qsourcetype=assembler-with-
cpp option. The compiler compiles all source files with a .S extension as if
they are assembler language source files that need preprocessing.

Chapter 1. Compiling and linking applications 3

Shared library files
Shared library files generally have a .a suffix, for example, file_name.a,
but they can also have a .so suffix, for example, file_name.so.

Unstripped executable files
Extended Common Object File Format (XCOFF) files that have not been
stripped with the operating system strip command can be used as input to
the compiler. See the strip command in the AIX Commands Reference and
the description of a.out file format in the AIX Files Reference for more
information.

Related information:

[“Input control” on page 76]

Types of output files

You can specify the following types of output files when invoking the XL C
compiler:

Executable files
By default, executable files are named a.out. To name the executable file
something else, use the -o file_name option with the invocation command.
This option creates an executable file with the name you specify as
file_name. The name you specify can be a relative or absolute path name for
the executable file.

The format of the a.out file is described in the |AIX Files Referencel

Object files
If you specify the -c option, an output object file, file_name.o, is produced
for each input file. The linker is not invoked, and the object files are placed
in your current directory. All processing stops at the completion of the
compilation. The compiler gives object files a .o suffix, for example,
file_name.o, unless you specify the -o file_name option, giving a different
suffix or no suffix at all.

You can link the object files later into a single executable file by invoking
the compiler.

Shared library files
If you specify the -qmkshrobj option, the compiler generates a single
shared library file for all input files. The compiler names the output file
shr.o, unless you specify the -o file_name option, and give the file a .so
suffix.

Assembler files
If you specify the -S option, an assembler file, file_name.s, is produced for
each input file.

You can then assemble the assembler files into object files and link the
object files by reinvoking the compiler.

Preprocessed source files
If you specify the -P option, a preprocessed source file, file_name.i, is
produced for each input file.

You can then compile the preprocessed files into object files and link the
object files by reinvoking the compiler.

Listing files
If you specify any of the listing-related options, such as -qlist or -qsource,

4 XLC: Compiler Reference

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm

a compiler listing file, file_name.lst, is produced for each input file. The
listing file is placed in your current directory.

Target files
If you specify the -qmakedep or -M option, a target file suitable for
inclusion in a makefile, file_name.u is produced for each input file. You can
use the -MF option to specify the name or location for the dependency
output files that are generated by the -qmakedep or -M option.

Related information:

[“Output control” on page 75|

Specifying compiler options

Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions. You can specify compiler options in one
or more of the following ways:

* |On the command line|

* |[In a custom configuration file|, which is a file with a .cfg extension

+ [In your source program|

* |As system environment variables|

e In a makefile

The compiler assumes default settings for most compiler options not explicitly set
by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and
incompatibilities to occur. The XL C compiler resolves most of these conflicts and
incompatibilities in a consistent fashion, as follows:

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:

1. Pragma statements in source code override compiler options specified on the
command line.

2. Compiler options specified on the command line override compiler options
specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified in the same command line
compiler invocation, the subsequent option in the invocation takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file, command line or source
program override compiler default settings.

Option conflicts that do not follow this priority sequence are described in
[“Resolving conflicting compiler options” on page 8.

Specifying compiler options on the command line

Most options specified on the command line override both the default settings of
the option and options set in the configuration file. Similarly, most options
specified on the command line are in turn overridden by pragma directives, which
provide you a means of setting compiler options right in the source file. Options
that do not follow this scheme are listed in [“Resolving conflicting compiler]
[options” on page 8|

Chapter 1. Compiling and linking applications 5

There are two kinds of command-line options:
* -qoption_keyword (compiler-specific)
* Flag options

-q options

»»—-q—option_keyword
—=—'subopti0n]—|

Command-line options in the -qoption_keyword format are similar to on and off
switches. For most -q options, if a given option is specified more than once, the last
appearance of that option on the command line is the one used by the compiler.
For example, -gsource turns on the source option to produce a compiler listing,
and -qnosource turns off the source option so no source listing is produced. For
example:

x1c -gnosource MyFirstProg.c -gsource MyNewProg.c

would produce a source listing for both MyNewProg.c and MyFirstProg.c because
the last source option specified (-qsource) takes precedence.

You can have multiple -qoption_keyword instances in the same command line, but
they must be separated by blanks. Option keywords can appear in either
uppercase or lowercase, but you must specify the -q in lowercase. You can specify
any -qoption_keyword before or after the file name. For example:

x1c -qLIST -gfloat=nomaf file.c
xlc file.c -gxref -gsource

You can also abbreviate many compiler options. For example, specifying -qopt is
equivalent to specifying -qoptimize.

Some options have suboptions. You specify these with an equal sign following the
-qoption. If the option permits more than one suboption, a colon (:) must separate
each suboption from the next. For example:

xlc -qflag=w:e -gattr=full file.c

compiles the C source file file.c using the option -qflag to specify the severity
level of messages to be reported. The -qflag suboption w (warning) sets the
minimum level of severity to be reported on the listing, and suboption e (error)
sets the minimum level of severity to be reported on the terminal. The -qattr with
suboption full will produce an attribute listing of all identifiers in the program.

Flag options

XL C supports a number of common conventional flag options used on UNIX
systems. Lowercase flags are different from their corresponding uppercase flags.
For example, -c and -C are two different compiler options: -c specifies that the
compiler should only preprocess and compile and not invoke the linker, while -C
can be used with -P or -E to specify that user comments should be preserved.

XL C also supports flags directed to other programming tools and utilities (for
example, the 1d command). The compiler passes on those flags directed to 1d at
link time.

Some flag options have arguments that form part of the flag. For example:

6 XLC Compiler Reference

x1c stem.c -F/home/tools/test3/new.cfg:xlc
where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:
xlc -Ocv file.c

has the same effect as:
xlc -0 -c -v file.c

and compiles the C source file file.c with optimization (-O), reports on compiler
progress (-v), and does not invoke the linker (-c).

A flag option that takes arguments can be specified as part of a single string, but
you can only use one flag that takes arguments, and it must be the last option
specified. For example, you can use the -o flag (to specify a name for the
executable file) together with other flags, only if the -o option and its argument are
specified last. For example:

xlc -Ovo test test.c

has the same effect as:
xlc -0 -v -otest test.c

Most flag options are a single letter, but some are two letters. Note that specifying
-pg (extended profiling) is not the same as specifying -p -g (-p for profiling, and -g
for generating debug information). Take care not to specify two or more options in
a single string if there is another option that uses that letter combination.

Specifying compiler options in a configuration file
The default configuration file (/opt/IBM/xlc/13.1.3/etc/xlc.cfg) defines values and
compiler options for the compiler. The compiler refers to this file when compiling
C programs.

The configuration file is a plain text file. You can edit this file, or create an
additional customized configuration file to support specific compilation
requirements. For more information, see [“Using custom compiler configuration|
[files” on page 38

Specifying compiler options in program source files
You can specify some compiler options within your program source by using
pragma directives. A pragma is an implementation-defined instruction to the
compiler. For those options that have equivalent pragma directives, you can have
several ways to specify the syntax of the pragmas:

* Using #pragma options option_name syntax

You can use command-line options with the #pragma options syntax, which
takes the same name as the option, and suboptions with a syntax identical to
that of the option. For example, if the command-line option is:

-ghalt=w

The pragma form is:

#pragma options halt=w

The descriptions for each individual option indicates whether this form of the
pragma is supported. For details, see [“#pragma options” on page 362

Chapter 1. Compiling and linking applications 7

* Using #pragma name syntax

Some options also have corresponding pragma directives that use a
pragma-specific syntax, which may include additional or slightly different
suboptions. Throughout the section [“Individual option descriptions” on page 92|
each option description indicates whether this form of the pragma is supported,
and the syntax is provided.

* Using the standard C99 _Pragma operator

For options that support either forms of the pragma directives listed above, you
can also use the C99 _Pragma operator syntax.

Comilete details on pragma syntax are provided in [‘Pragma directive syntax” on|
page 335,

Other pragmas do not have equivalent command-line options; these are described
in detail throughout |[Chapter 5, “Compiler pragmas reference,” on page 335

Options specified with pragma directives in program source files override all other
option settings, except other pragma directives. The effect of specifying the same
pragma directive more than once varies. See the description for each pragma for
specific information.

Pragma settings can carry over into included files. To avoid potential unwanted
side effects from pragma settings, you should consider resetting pragma settings at
the point in your program source where the pragma-defined behavior is no longer
required. Some pragma options offer reset or pop suboptions to help you do this.
These suboptions are listed in the detailed descriptions of the pragmas to which

they apply.

Resolving conflicting compiler options

In general, if more than one variation of the same option is specified (with the
exception of -qxref and -qattr), the compiler uses the setting of the last one
specified. Compiler options specified on the command line must appear in the
order you want the compiler to process them. However, some options have
cumulative effects when they are specified more than once; examples are the
-Idirectory and -Ldirectory options.

When options such as -qcheck, -qfloat, and -gstrict are specified with suboptions
for multiple times, each suboption overrides previous specifications of that
suboption, but different suboptions are cumulative.

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:

1. Pragma statements in source code override compiler options specified on the
command line.

2. Compiler options specified on the command line override compiler options
specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified on the command line, the option
appearing later on the command line takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file override compiler default
settings.

8 xrLc Compiler Reference

Not all option conflicts are resolved using the preceding rules. The following table
summarizes exceptions and how the compiler handles conflicts between them.
Rules for resolving conflicts between compiler mode and architecture-specific

options are discussed in [“Specifying compiler options for architecture-specifid

Option

Conflicting options

Resolution

[-qalias=allptrs|

[-qalias=noansil

-qalias=noansi

| qalias=typeptr

| qalias=noansi

-qalias=noansi

Multiple severities specified by -ghalt

Lowest severity specified

-qnoprint]

|-axref] [-qattr] Fgsourcel |-qlistopt] [-qlist

-gnoprint

[-qfloat=rsqrt| [-qnoignerrno| Last option specified
-qxref=full
-qattr=full

|- gfloat=hsflY

|- gfloat=spnans|

-qfloat=hsflt

-gfloat=hssngl|

[-qfloat=spnans|

-gfloat=hssngl

HHE E

FH FdEol S P

= #

E @ _B/ _t/ 'W/ 'qpath
-gpathl E -qpath

H H s

-gnostdinc

Specifying compiler options for architecture-specific

compilation

You can use the -q32, -q64, -qarch, and -qtune compiler options to optimize the
output of the compiler to suit:

* The broadest possible selection of target processors

* A range of processors within a given processor architecture family
* A single specific processor

Generally speaking, the options do the following:

-q32 selects 32-bit execution mode.
-q64 selects 64-bit execution mode.

-qarch selects the general family processor architecture for which instruction

code should be generated. Certain -qarch settings produce code that will run
only on systems that support all of the instructions generated by the compiler in
response to a chosen -qarch setting.

* -qtune selects the specific processor for which compiler output is optimized.
Some -qtune settings can also be specified as -qarch options, in which case they
do not also need to be specified as a -qtune option. The -qtune option influences
only the performance of the code when running on a particular system but does
not determine where the code will run.

The compiler evaluates compiler options in the following order, with the last

allowable one found determining the compiler mode:

1. Internal default (32-bit mode)

9

Chapter 1. Compiling and linking applications

A

OBJECT_MODE environment variable setting
Configuration file settings
Command line compiler options (-q32, -q64, -qarch, and -qtune)

Source file statements (#pragma options tune=suboption)

The compilation mode actually used by the compiler depends on a combination of
the settings of the -q32, -q64, -qarch, and -qtune compiler options, subject to the
following conditions:

Compiler mode is set according to the last-found instance of the -q32 or -q64
compiler options. If neither of these compiler options is set, the compiler mode
is set by the value of the OBJECT_MODE environment variable. If the
OBJECT_MODE environment variable is also not set, the compiler assumes
32-bit compilation mode.

Architecture target is set according to the last-found instance of the -qarch
compiler option, provided that the specified -qarch setting is compatible with
the compiler mode setting. If the -qarch option is not set, the compiler sets -qarch
to the appropriate default based on the effective compiler mode setting.

Tuning of the architecture target is set according to the last-found instance of the
-qtune compiler option, provided that the -qtune setting is compatible with the
architecture target and compiler mode settings. If the -qtune option is not set, the
compiler assumes a default -qtune setting according to the -qarch setting in use.
If -qarch is not specified, the compiler sets -qtune to the appropriate default
based on the effective -qarch as selected by default based on the effective
compiler mode setting.

Allowable combinations of these options are found in [’-qtune” on page 310

The following list describes possible option conflicts and compiler resolution of
these conflicts:

-q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides the -qarch option; compiler issues a
warning message, sets -qarch to its default setting, and sets the -qtune option
accordingly to its default value.

-qarch option is incompatible with user-selected -qtune option.

Resolution: Compiler issues a warning message, and sets -qtune to the -qarch
setting's default -qtune value.

Selected -qarch or -qtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -qarch and -qtune to their
default settings. The compiler mode (32-bit or 64-bit) is determined by the
OBJECT_MODE environment variable or -q32 or -q64 compiler settings.

Related information

“-garch” on page 10

“-gtune” on page 310

“-q32, -q64” on page 94|

10 xLcC: Compiler Reference

Reusing GNU C compiler options with gxic

The gxlc utility accepts GNU C compiler options and translates them into
comparable XL C options. It uses the XL C options to create an xlc invocation
command, which the utility uses to invoke XL C. The gxlc utility is provided to
facilitate the reuse of makefiles created for applications previously developed with
GNU C. However, to fully exploit the capabilities of XL C, it is recommended that
you use the XL C invocation command xlc and its associated options.

The actions of gxlc are controlled by the configuration file /opt/IBM/xlc/13.1.3/
etc/gxlc.cfg. The GNU C options that have an XL C counterpart are shown in this
file. Not every GNU option has a corresponding XL C option. The gxlc utility
returns a warning for any GNU C option it cannot translate.

The gxlc option mappings are modifiable. For information on adding to or editing
the gxlc configuration file, see [‘Configuring the gxlc option mapping” on page 42|

gxic syntax

The following diagram shows the gxlc syntax:

»»—gxlc filename———><
i:- vﬂ |—-WX ,—xlc_opt ions—| |—gcc_opt ions—|

'A%

where:

filename
Is the name of the file to be compiled.

-v Verifies the command that is used to invoke XL C. The utility displays the
XL C invocation command that it has created, before using it to invoke the
compiler.

-vv Runs a simulation. The utility displays the XL C invocation command that
it has created, but does not invoke the compiler.

-Wx, xlc_ options
Sends the given XL C options directly to the xlc invocation command. The
utility adds the given options to the XL C invocation it is creating, without
attempting to translate them. Use this option with known XL C options to
improve the performance of the utility. Multiple xlc_options are delimited
by a comma.

-gcc_options
The GNU C options that are translated to XL C options. The utility emits a
warning for any option it cannot translate. The GNU C options that are

currently recognized by gxlc are in the configuration file gxlc.cfg. Multiple
-gcc_options are delimited by the space character.

Examples

To use the GCC -fstrict-aliasing option to compile the C version of the Hello
World program, you can use:

gxlc -fstrict-aliasing hello.c

which translates into:
x1c -galias=ansi hello.c

Chapter 1. Compiling and linking applications 11

This command is then used to invoke the XL C compiler.

Related information
+ [“Configuring the gxlc option mapping” on page 42|

Preprocessing

Preprocessing manipulates the text of a source file, usually as a first phase of
translation that is initiated by a compiler invocation. Common tasks accomplished
by preprocessing are macro substitution, testing for conditional compilation
directives, and file inclusion.

You can invoke the preprocessor separately to process text without compiling. The
output is an intermediate file, which can be input for subsequent translation.
Preprocessing without compilation can be useful as a debugging aid because it
provides a way to see the result of include directives, conditional compilation
directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

Option Description

[-E” on page 136] |Preprocesses the source files and writes the output to standard output.
By default, #1ine directives are generated.

[-P” on page 244] |Preprocesses the source files and creates an intermediary file with a .i
file name suffix for each source file. By default, #1ine directives are
not generated.

“-qppline” on page|| Toggles on and off the generation of #11ine directives for the -E and -P
255 options.

“-C, -C!” on page| |Preserves comments in preprocessed output.
115

[-D” on page 126 |Defines a macro name from the command line, as if in a #define
directive.

[-gmakedep, -M”| | Produces the dependency files that are used by the make tool for each

|on page 226| source file.

[-U” on page 313| |Undefines a macro name defined by the compiler or by the -D option.

Emits macro definitions to preprocessed output.
on page 276

Note:

1. For details about the option, see the GNU Compiler Collection online documentation at
|http:/ / gcc.gnu.org /onlinedocs/|

Directory search sequence for included files

The XL C compiler supports the following types of included files:

* Header files supplied by the compiler (referred to throughout this document as
XL C headers)

* Header files mandated by the C standard (referred to throughout this document
as system headers)

* Header files supplied by the operating system (also referred to throughout this
document as systerm headers)

e User-defined header files

12 xLcC: Compiler Reference

http://gcc.gnu.org/onlinedocs/

You can use any of the following methods to include any type of header file:

Use the standard #include <file_name> preprocessor directive in the including

source file.

Use the standard #include "file_name" preprocessor directive in the including

source file.

Use the -qinclude compiler option.

If you specify the header file using a full (absolute) path name, you can use these
methods interchangeably, regardless of the type of header file you want to include.
However, if you specify the header file using a relative path name, the compiler
uses a different directory search order for locating the file depending on the
method used to include the file.

Furthermore, the -qidirfirst and -qstdinc compiler options can affect this search
order. The following summarizes the search order used by the compiler to locate
header files depending on the mechanism used to include the files and on the
compiler options that are in effect:

1.

Header files included with -qinclude only: The compiler searches the current
(working) directory from which the compiler is invoked

Header files included with -qinclude or #include "file_name": The compiler
searches the directory in which the source file is located.'

All header files: The compiler searches each directory specified by the -I
compiler option, in the order that it displays on the command line.

All header files: The compiler searches the standard directory for the XL C
headers. The default directory for these headers is specified in the compiler
configuration file. This is normally /opt/IBM/xlc/13.1.3/include. But the
search path can be changed with -qc_stdinc compiler option.

All header files: The compiler searches the standard directory for the system
headers. The default directory for these headers is specified in the compiler
configuration file. This is normally /usr/include/. But the search path can be
changed with -qc_stdinc.

Note:

1.

2.

If the -qidirfirst compiler option is in effect, step 3 is performed before steps
and 2.

If the -qnostdinc compiler option is in effect, steps 4 and 5 are omitted.

Related information

“_]” on page 172|

“_gc_stdinc” on page 125|

“-qgidirfirst” on page 173|

“-ginclude” on page 17

“-gstdinc” on page 292

1

Linking

The linker links specified object files to create one executable file. Invoking the
compiler with one of the invocation commands automatically calls the linker
unless you specify one of the following compiler options:

-C
-E
-P

Chapter 1. Compiling and linking applications

13

-5

* -gqsyntaxonly
. -#

* -ghelp

* -qversion

Input files
Object files, unstripped executable files, and library files serve as input to
the linker. Object files must have a .o suffix, for example, filename.o.
Library file names have a .a or .so suffix, for example, filename.a, or
filename.so..

Output files
The linker generates an executable file and places it in your current
directory. The default name for an executable file is a.out. To name the
executable file explicitly, use the -o file_name option with the compiler
invocation command, where file_name is the name you want to give to the
executable file. For example, to compile myfile.c and generate an
executable file called myfile, enter:

xlc myfile.c -o myfile

If you use the -qmkshrobj option to create a shared library, the default
name of the shared object created is shr.o. You can use the -o option to
rename the file and give it a .so suffix.

You can invoke the linker explicitly with the 1d command. However, the compiler
invocation commands set several linker options, and link some standard files into
the executable output by default. In most cases, it is better to use one of the
compiler invocation commands to link your object files. For a complete list of
options available for linking, see [“Linking” on page 89|

Related information
* |“-gmkshrobj” on page 233

Order of linking
The compiler links libraries in the following order:
1. System startup libraries
2. User .o files and libraries
3. XL C libraries
4. C standard libraries

Related information

+ [“Linking” on page 89|

+ [“Redistributable libraries”|

* 1d in the AIX Commands Reference, Volume 5: s through u

Redistributable libraries

If you build your application using XL C, it might use one or more of the
following redistributable libraries. If you ship the application, ensure that the users
of your application have the filesets that contain the libraries. To make sure the
required libraries are available to the users of your application, take one of the
following actions:

14 xLcC: Compiler Reference

* Ship the filesets that contain the redistributable libraries with your application.
The filesets are stored under the runtime/ directory on the installation CD.

¢ Direct the users of your application to download the appropriate runtime
libraries from the Latest updates for supported IBM C and C++ compilers link from

the XL C support website at |http: / /www.ibm.com/support/entry/portal /|

Iproduct /rational/ xl_c_for_aixl

For information about the licensing requirements related to the distribution of
these filesets, see the LicenseAgreement.pdf file in the installed compiler package.

Table 6. Redistributable libraries

Fileset

Libraries (and default installation path)

Description

xlsmp.rte

/usr/include/omp.h
/usr/1pp/x1smp/default_msg/smprt.cat

SMP runtime environment

xlsmp.aix61.rte

Jusr/1pp/x1smp/aix61/1ibx1smp.a
/usr/1pp/x1smp/aix61/1ibxTomp_ser.a

SMP runtime libraries for AIX 6.1,
AIX 7.1, and AIX 7.2

xlsmp.msg.en_US.rte

/usr/1ib/n1s/msg/en_US/smprt.cat

SMP runtime messages (English,

ISO8859-1)

xlsmp.msg. EN_US.rte | /usr/1ib/n1s/msg/EN_US/smprt.cat SMP runtime messages (English,
UTF-8)

xlsmp.msg.ja_JP.rte /usr/1ib/n1s/msg/ja_JP/smprt.cat SMP runtime messages (Japanese,
IBM-euc]P)

xlsmp.msg.Ja_JP.rte /usr/1ib/n1s/msg/Ja_JP/smprt.cat SMP runtime messages (Japanese,
IBM-943)

xlsmp.msg.JA_JP.rte /usr/1ib/n1s/msg/JA_JP/smprt.cat SMP runtime messages (Japanese,
UTF-8)

xlsmp.msg.zh_CN.rte | /usr/1ib/n1s/msg/zh_CN/smprt.cat SMP runtime messages (Chinese,
IBM-eucCN)

xlsmp.msg.ZH_CN.rte |/usr/1ib/n1s/msg/ZH_CN/smprt.cat SMP runtime messages (Chinese,
UTE-8)

xlsmp.msg.Zh_CN.rte | /usr/1ib/n1s/msg/Zh_CN/smprt.cat SMP runtime messages (Chinese,
GBK)

xlccmp.13.1.3.1ib /opt/IBM/x1c/13.1.3/1ib/aix61/1ibx1.a XL C libraries for AIX 6.1, AIX 7.1,

/opt/IBM/x1c/13.1.3/1ib/aix61/1ibx1opt.a and AIX 7.2

memdbg.adt

/usr/vac/1ib/1ibhm.a
/usr/vac/1ib/Tibhm_r.a
/usr/vac/1ib/1ibhmd.a
/usr/vac/1ib/1ibhmd_r.a
/usr/vac/1ib/1ibhmu.a
/usr/vac/1ib/1ibhmu_r.a
/usr/vac/1ib/1ibhu.a
/usr/vac/1ib/1ibhu_r.a
/usr/vac/1ib/profiled/1ibhm.a
/usr/vac/1ib/profiled/1ibhm_r.a
/usr/vac/1ib/profiled/1ibhmd.a
/usr/vac/1ib/profiled/1ibhmd_r.a
/usr/vac/1ib/profiled/1ibhmu.a
/usr/vac/1ib/profiled/1ibhmu_r.a
/usr/vac/1ib/profiled/1ibhu.a
/usr/vac/1ib/profiled/Tibhu_r.a

User heap/memory debug toolkit

Compatibility with earlier versions

This section describes issues about compatibility with earlier versions and their

workarounds.

Chapter 1. Compiling and linking applications 15

http://www.ibm.com/support/entry/portal/product/rational/xl_c_for_aix
http://www.ibm.com/support/entry/portal/product/rational/xl_c_for_aix

Compiler option compatibility issues

In IBM XL C for AIX, V13.1.3, the implementation of the threadprivate data, that is,
OpenMP threadprivate variable, has been improved. The operating system thread
local storage is used instead of the runtime implementation. The new
implementation might improve performance on some applications.

If you plan to mix the object files .o that you have compiled with levels prior to
11.1 with the object files that you compiled with IBM XL C for AIX, V13.1.3, and
the same OpenMP threadprivate variables are referenced in both old and new
object files, different implementations might cause incompatibility issues. A link
error, a compile time error or other undefined behaviors might occur. To support
compatibility with earlier versions, you can use the -qsmp=noostls suboption to
switch back to the old implementation. You can recompile the entire program with
the default suboption -qsmp=ostls to get the benefit of the new implementation.

If you are not sure whether the object files you have compiled with levels prior to
11.1 contain any old implementation, you can use the nm command to determine
whether you need to use the -qsmp=noostls suboption. The following code is an

example that shows how to use the nm command:

> nm oldfiles.o

._x1GetThStorageBlock U -
._x1GetThValue U -

In the preceding example, if _x1GetThStorageBlock or _x1GetThValue is found, this
means the object files contain old implementation. In this case, you must use
-gqsmp=noostls; otherwise, use the default suboption -qsmp=ostls.

Compiler messages and listings

The following sections discuss the various information generated by the compiler
after compilation.

+ [“Compiler messages”|

* [“Compiler return codes” on page 18|

+ [“Compiler listings” on page 19|

+ [“Message catalog errors” on page 21|

* |“Paging space errors during compilation” on page 22|

Compiler messages

When the compiler encounters a programming error while compiling a C source
program, it issues a diagnostic message to the standard error device, or to a
if you compile with the -qsource option. These diagnostic messages are specific
to the C language.

If you specify the compiler option -qsrcmsg and the error is applicable to a
particular line of code, the reconstructed source line or partial source line is
included with the error message. A reconstructed source line is a preprocessed
source line that has all the macros expanded.

You can control the diagnostic messages issued, according to their severity, using

either the -qflag option or the -w option. To get additional informational messages
about potential problems in your program, use the -qinfo option.

16 XxLcC: Compiler Reference

Related reference:

[“-gsource” on page 286

[-gsremsg” on page 290|

[-gflag” on page 145|

[-w” on page 325|

[“-ginfo” on page 178|

Compiler message format
Diagnostic messages have the following format:
"file", line line_number.column_number: 15dd-number (severity) text.

where

file

Is the name of the C source file with the error.

line_number
Is the source code line number where the error was found.

column_number
Is the source code column number where the error was found.

15 Is the compiler product identifier.

dd Is a two-digit code indicating the compiler component that issued the message.
dd can have the following values:

00 - code generating or optimizing message

01 - compiler services message

05 - message specific to the C compiler

06 - message specific to the C compiler

86 - message specific to interprocedural analysis (IPA)
number

Is the message number.

severity
Is a letter representing the severity of the error. See [“Message severity levels|
fand compiler response”| for a description of these.

text
Is a message describing the error.

If you compile with -qsremsg, diagnostic messages have the following format:
x - 15dd-nnn(severity) text.

where x is a letter referring to a finger in the finger line.

Message severity levels and compiler response

The XL C compiler uses a multilevel classification scheme for diagnostic messages.
Each level of severity is associated with a compiler response. The table below
provides a key to the abbreviations for the severity levels and the associated
default compiler response.

You can adjust the default compiler response by using any of the following
options:

* -ghalt halts the compilation phase at a lower severity level than the default.

Chapter 1. Compiling and linking applications 17

* -qmaxerr halts the compilation phase as soon as a specific number of errors at a
specific severity level is reached.

* -ghaltonmsg halts the compilation phase as soon as a specific error is

encountered.

Table 7. Compiler message severity levels

Letter Severity Compiler response

I Informational Compilation continues and object code is generated.
The message reports conditions found during
compilation.

W Warning Compilation continues and object code is generated.
The message reports valid but possibly unintended
conditions.

E Error Compilation continues and object code is generated.
The compiler can correct the error conditions that are
found, but the program might not produce the
expected results.

S Severe error Compilation continues, but object code is not

generated. The compiler cannot correct the error
conditions that are found.

* If the message indicates a resource limit (for
example, file system full or paging space full),
provide additional resources and recompile.

* If the message indicates that different compiler
options are needed, recompile using those options.

* Check for and correct any other errors reported
prior to the severe error.

* If the message indicates an internal compile-time
error, the message should be reported to your IBM
service representative.

Related information

+ [“-ghalt” on page 165|

* [“-gmaxerr” on page 228§|

+ [“-ghaltonmsg” on page 166|

* |“Listings, messages, and compiler information” on page 84|

Compiler return codes

At the end of compilation, the compiler sets the return code to zero under any of
the following conditions:

* No messages are issued.

* The highest severity level of all errors diagnosed is less than the setting of the
-ghalt compiler option, and the number of errors did not reach the limit set by
the -qmaxerr compiler option.

* No message specified by the -qhaltonmsg compiler option is issued.

Otherwise, the compiler sets the return code to one of the following values:

Return code Error type

1 Any error with a severity level higher than the setting of the -qhalt
compiler option has been detected.

40 An option error or an unrecoverable error has been detected.

18 xLcC: Compiler Reference

41 A configuration file error has been detected.

249 A no-files-specified error has been detected.

250 An out-of-memory error has been detected. The compiler cannot
allocate any more memory for its use.

251 A signal-received error has been detected. That is, an unrecoverable
error or interrupt signal has occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or
written to.

254 A fork error has been detected. A new process cannot be created.

255 An error has been detected while the process was running.

Note: Return codes can also be displayed for runtime errors. For example, a
runtime return code of 99 indicates that a static initialization has failed.

gxic return codes

Like other invocation commands, gxlc returns output, such as listings, diagnostic
messages related to the compilation, warnings related to unsuccessful translation of
GNU options, and return codes. If gxlc cannot successfully call the compiler, it sets
the return code to one of the following values:

40 A gxlc option error or unrecoverable error has been detected.

25 An error has been detected while the process was running.

a1

Compiler listings
A listing is a compiler output file (with a .Ist suffix) that contains information
about a particular compilation. As a debugging aid, a compiler listing is useful for
determining what has gone wrong in a compilation. For example, any diagnostic
messages emitted during compilation are written to the listing.

To produce a listing, you can compile with any of the following options, which
provide different types of information:

.

e |glistop
¢ |gatt

Q Q
X
=

=3[0

Listing information is organized in sections. A listing contains a header section and
a combination of other sections, depending on other options in effect. The contents
of these sections are described as follows.

Header section
Lists the compiler name, version, release, the source file name, and the
date and time of the compilation.

Source section
If you use the -qsource option, lists the input source code with line
numbers. If there is an error at a line, the associated error message is
displayed after the source line. Lines containing macros have additional

Chapter 1. Compiling and linking applications 19

lines showing the macro expansion. By default, this section only lists the
main source file. Use the -qshowinc option to expand all header files as
well.

Options section
Lists the options that were in effect during the compilation. By default, it
lists the specified options. To get all options, specify the -qlistopt option.

Attribute and cross-reference listing section
If you use the -qattr or -qxref options, provides information about the
variables used in the compilation unit, such as type, storage duration,
scope, and where they are defined and referenced. Each of these options
provides different information about the identifiers used in the
compilation.

File table section
Lists the file name and number for each main source file and include file.
Each file is associated with a file number, starting with the main source
file, which is assigned file number 0. For each file, the listing shows from
which file and line the file was included. If the -qshowinc option is also in
effect, each source line in the source section has a file number to indicate
which file the line came from.

PDF report section
The following information is included in this section when you use the
-qreport option with the -qpdf2 option:

Loop iteration count
The most frequent loop iteration count and the average iteration
count, for a given set of input data, are calculated for most loops in
a program. This information is only available when the program is
compiled at optimization level -O5.

Block and call count
This section covers the Call Structure of the program and the
respective execution count for each called function. It also includes
Block information for each function. For non-user defined functions,
only execution count is given. The Total Block and Call Coverage,
and a list of the user functions ordered by decreasing execution
count are printed in the end of this report section. In addition, the
Block count information is printed at the beginning of each block
of the pseudo-code in the listing files.

Cache miss
This section is printed in a single table. It reports the number of
Cache Misses for certain functions, with additional information
about the functions such as: Cache Level , Cache Miss Ratio, Line
Number, File Name, and Memory Reference.

Note: You must use the option -qpdfl=level=2 to get this report.
You can also select the level of cache to profile using the
environment variable PDF_PM_EVENT during run time.

Relevance of profiling data
This section shows the relevance of the profiling data to the source
code during the -qpdf1 phase. The relevance is indicated by a
number in the range of 0 - 100. The larger the number is, the more
relevant the profiling data is to the source code, and the more
performance gain can be achieved by using the profiling data.

20 xLcC: Compiler Reference

Missing profiling data
This section might include a warning message about missing
profiling data. The warning message is issued for each function for
which the compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated
profiling data. The compiler issues this warning message for each
function that is modified after the -qpdf1 phase. The warning
message is also issued when the optimization level changes from
the -qpdf1 phase to the -qpdf2 phase.

Transformation report section
If the -qreport option is in effect, this section displays pseudo code that
corresponds to the original source code, so that you can see parallelization
and loop transformations that the -qhot or -qsmp option has generated.
This section of the report also shows additional loop transformation and
parallelization information about loop nests if you compile with -qsmp
and -qhot=level=2.

This section also reports the number of streams created for a given loop
and the location of data prefetch instructions inserted by the compiler. To
generate information about data prefetch insertion locations, use the
optimization level of -qhot, -O3 -qhot, -O4 or -O5 together with -qreport.

Data reorganization section
Displays data reorganization messages for program variable data during
the IPA link pass when -qreport is used with -qipa=level=2 or -O5.
Reorganization information includes:
* array splitting
* array transposing
* memory allocation merging
* array interleaving
* array coalescing

Compilation epilogue section
Displays a summary of the diagnostic messages by severity level, the
number of source lines read, and whether the compilation was successful.

Object section
If you specify the -qlist option, the Object section lists the object code
generated by the compiler. This section is useful for diagnosing
execution-time problems, if you suspect the program is not performing as
expected due to code generation error.

Related information
+ [“Listings, messages, and compiler information” on page 84|

Message catalog errors

Before the compiler can compile your program, the message catalogs must be
installed and the environment variables LANG and NLSPATH must be set to a
language for which the message catalog has been installed.

If you see the following message during compilation, the appropriate message
catalog cannot be opened:

Error occurred while initializing the message system in
file: message_file

Chapter 1. Compiling and linking applications 21

where message_file is the name of the message catalog that the compiler cannot
open. This message is issued in English only.

You must then verify that the message catalogs and the environment variables are
in place and correct. If the message catalog or environment variables are not
correct, compilation can continue, but diagnostic messages are suppressed and the
following message is issued instead:

No message text for message_number

where message_number is the compiler internal message number. This message is
issued in English only.

To determine which message catalogs are installed on your system, assuming that
you have installed the compiler to the default location, you can list all of the file
names for the catalogs by the following command:

1s /opt/IBM/x1c/13.1.3/msg/$LANG/*.cat

where LANG is the environment variable on your system that specifies the system
locale.

The compiler calls the default message catalogs in /opt/IBM/x1c/13.1.3/exe/
default_msg/ when the locale has never been changed from the default, C.

* The message catalogs for the locale specified by LANG cannot be found.

* The locale has never been changed from the default, C.

For more information about the NLSPATH and LANG environment variables, see
your operating system documentation.

Paging space errors during compilation

If the operating system runs low on paging space during a compilation, the
compiler issues one of the following messages:

1501-229 Compilation ended due to lack of space.
1501-224 fatal error in ../exe/x1Ccode: signal 9 received.

If lack of paging space causes other compiler programs to fail, the following
message is displayed:
Killed.

To minimize paging-space problems, take any of the following actions and
recompile your program:

* Reduce the size of your program by splitting it into two or more source files
* Compile your program without optimization
* Reduce the number of processes competing for system paging space

* Increase the system paging space

To check the current paging-space settings enter the command: Isps -a or use the
AIX System Management Interface Tool (SMIT) command smit pgsp.

For more information about paging space and how to allocate it, see your
operating system documentation.

22 XLC: Compiler Reference

Chapter 2. Configuring compiler defaults

When you compile an application with XL C, the compiler uses default settings
that are determined in a number of ways:

* Internally defined settings. These settings are predefined by the compiler and
you cannot change them.

* Settings defined by system environment variables. Certain environment variables
are required by the compiler; others are optional. You might have already set
some of the basic environment variables during the installation process. For
more information, see the [XL C Installation Guide} [“Setting environment|
provides a complete list of the required and optional environment
variables you can set or reset after installing the compiler, including those used
for parallel processing.

* Settings defined in the compiler configuration file, x1c.cfg. The compiler
requires many settings that are determined by its configuration file. Normally,
the configuration file is automatically generated during the installation
procedure. For more information, see the [XL C Installation Guide]| However, you
can customize this file after installation, to specify additional compiler options,
default option settings, library search paths, and other settings. Information on
customizing the configuration file is provided in [‘Using custom compiler|
fconfiguration files” on page 38.|

* Settings defined by the GCC options configuration file. If you are using the gxlc
utility to map GCC options, the default option mappings are defined in the
/opt/IBM/xlc/13.1.3/etc/gxlc.cfg file. You can customize this file to suit your

requirements. For more information, see [“Configuring the gxlc option mapping”|
h

Setting environment variables

To set environment variables in Bourne, Korn, and BASH shells, use the following
commands:

variable=value
export variable

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set environment variables in the C shell, use the following command:
setenv variable value

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set the variables so that all users have access to them, in Bourne, Korn, and
BASH shells, add the commands to the file /etc/profile. To set them for a specific
user only, add the commands to the file .profile in the user's home directory. In C
shell, add the commands to the file /etc/csh.cshrc. To set them for a specific user
only, add the commands to the file .cshrc in the user's home directory. The
environment variables are set each time the user logs in.

The following sections discuss the environment variables you can set for XL C and
applications you have compiled with it:

© Copyright IBM Corp. 1996, 2015 23

+ [“Compile-time and link-time environment variables”|

+ [“Runtime environment variables”|

Compile-time and link-time environment variables

The following environment variables are used by the compiler when you are
compiling and linking your code. Many are built into the AIX operating system.
With the exception of LANG and NLSPATH, which must be set if you are using a
locale other than the default en_US, all of these variables are optional.

LANG
Specifies the locale for your operating system. The default locale used by
the compiler for messages and help files is United States English, en_US,
but the compiler supports other locales. For a list of these, see
[language support|in the XL C Installation Guide. For more information on
setting the LANG environment variable to use an alternate locale, see your
operating system documentation.

NLSPATH
Specifies the directory search path for finding the compiler message and
help files. You only need to set this environment variable if the national
language to be used for the compiler message and help files is not English.
For information on setting the NLSPATH, see [Enabling the XL C error]
in the XL C Installation Guide.

OBJECT_MODE
Optionally specifies the bit mode for compilation to either 32 or 64 bits.
This is equivalent to the -q32 and -q64 compiler options. Set the
OBJECT_MODE environment variable to a value of 32 for 32-bit
compilation mode, or 64 for 64-bit compilation mode. If unspecified, the
default compilation mode is 32 bits. See also [-g32, -q64” on page 94 for
more information.

PATH Specifies the directory search path for the executable files of the compiler.
Executables are in /opt/IBM/xlc/13.1.3/bin/ if installed to the default location.

TMPDIR
Optionally specifies the directory in which temporary files are created
during compilation. The default location, /tmp/, may be inadequate at high
levels of optimization, where paging and temporary files can require
significant amounts of disk space, so you can use this environment variable
to specify an alternate directory.

XLC_USR_CONFIG
Specifies the location of a custom configuration file to be used by the
compiler. The file name must be given with its absolute path. The compiler
will first process the definitions in this file before processing those in the
default system configuration file, or those in a customized file specified by
the -F option; for more information, see [“Using custom compiler|
fconfiguration files” on page 38|

Runtime environment variables

The following environment variables are used by the system loader or by your
application when it is executed. All of these variables are optional.

LIBPATH
Specifies an alternate directory search path for dynamically linked libraries
at application run time. If shared libraries required by your application
have been moved to an alternate directory that was not specified at link

24 XLC: Compiler Reference

time, and you do not want to relink the executable, you can set this
environment variable to allow the dynamic linker to locate them at run
time. For more information about this environment variable, see your
operating system documentation.

MALLOCALIGN=16
Specifies that dynamic memory allocations return 16-byte aligned
addresses. See also [’-gipa” on page 193 |

PDFDIR
Optionally specifies the directory in which profiling information is saved
when you run an application that you have compiled with the -qpdf1
option. The default value is unset, and the compiler places the profile data
file in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. When you recompile or relink your program with the -qpdf2
option, the compiler uses the data saved in this directory to optimize the
application. It is recommended that you set this variable to an absolute

path if you use profile-directed feedback (PDF). See [“-qpdf1, -qpdf2” on|

for more information.

PDF_PM_EVENT
When you run an application compiled with -qpdfl=level=2 and want to
gather different levels of cache-miss profiling information, set the
PDF_PM_EVENT environment variable to LIMISS, L2MISS, or L3MISS (if
applicable) accordingly.

PDF_BIND_PROCESSOR
If you want to bind your process to a particular processor, you can specify
the PDF_BIND_PROCESSOR environment variable to bind the process tree
from the executable to a different processor. Processor 0 is set by default.

PDF_WL_ID

This environment variable is used to distinguish the sets of PDF counters
that are generated by multiple training runs of the user program. Each run
receives distinct input.

By default, PDF counters for training runs after the first training run are
added to the first and the only set of PDF counters. This behavior can be
changed by setting the PDF_WL_ID environment variable before each PDF
training run. You can set PDF_WL_ID to an integer value in the range 1 -
65535. The PDF runtime library then uses this number to tag the set of
PDF counters that are generated by this training run. After all the training
runs complete, the PDF profile file contains multiple sets of PDF counters,
each set with an ID number.

XL_AR
To use your own archive files when generating a nonexecutable package
with -r -gipa=relink, you can use the ar tool and set the XL.__AR
environment variable to point to it. See |-qipa| for more information.

Environment variables for parallel processing

The XLSMPOPTS environment variable sets options for program run time using
loop parallelization. For more information about the suboptions for the
XLSMPOPTS environment variables, see [“XLSMPOPTS” on page 26

Chapter 2. Configuring compiler defaults 25

If you are using OpenMP constructs for parallelization, you can also specify
runtime options using the OMP environment variables, as discussed in
[“Environment variables for OpenMP” on page 31|

When runtime options specified by OMP and XLSMPOPTS environment variables
conflict, OMP options will prevail.

Related information
* [“Pragma directives for parallel processing” on page 380|
* |“Built-in functions for parallel processing” on page 612|

XLSMPOPTS

You can specify runtime options that affect parallel processing by using the
XLSMPOPTS environment variable. This environment variable must be set before
you run an application. The syntax is as follows:

r

»»—XLSMPOPTS— :—L——'—runtime_option_name— =——option_setting o] ><

You can specify option names and settings in uppercase or lowercase. You can add
blanks before and after the colons and equal signs to improve readability.
However, if the XLSMPOPTS option string contains imbedded blanks, you must
enclose the entire option string in double quotation marks ().

For example, to have a program run time create 4 threads and use dynamic
scheduling with chunk size of 5, you can set the XLSMPOPTS environment
variable as shown below:

XLSMPOPTS=PARTHDS=4:SCHEDULE=DYNAMIC=5

The following are the available runtime option settings for the XLSMPOPTS
environment variable:

Scheduling options are as follows:

schedule
Specifies the type of scheduling algorithms and chunk size (1) that are used for
loops to which no other scheduling algorithm has been explicitly assigned in
the source code.

Work is assigned to threads in a different manner, depending on the
scheduling type and chunk size used. Choosing chunking granularity is a
tradeoff between overhead and load balancing. The syntax for this option is
schedule=suboption, where the suboptions are defined as follows:

affinity[=n]
The iterations of a loop are initially divided into n partitions, containing
ceiling(number_of _iterations /number_of_threads) iterations. Each partition is
initially assigned to a thread and is then further subdivided into chunks
that each contain 7 iterations. If n is not specified, then the chunks consist
of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

When a thread becomes free, it takes the next chunk from its initially
assigned partition. If there are no more chunks in that partition, then the
thread takes the next available chunk from a partition initially assigned to
another thread.

26 XLC: Compiler Reference

The work in a partition initially assigned to a sleeping thread will be
completed by threads that are active.

The affinity scheduling type is not part of the OpenMP API standard.

Note: This suboption has been deprecated and might be removed in a
future release. Instead, you can use the guided suboption.

dynamic[=n]
The iterations of a loop are divided into chunks that contain #n contiguous
iterations each. The final chunk might contain fewer than 7 iterations. If n
is not specified, the default chunk size is one.

Each thread is initially assigned one chunk. After threads complete their
assigned chunks, they are assigned remaining chunks on a "first-come,
first-do" basis.

guided[=n]
The iterations of a loop are divided into progressively smaller chunks until
a minimum chunk size of n loop iterations is reached. If # is not specified,
the default value for n is 1 iteration.

Active threads are assigned chunks on a "first-come, first-do" basis. The
first chunk contains ceiling(number_of_iterations /number_of _threads)
iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /
number_of _threads) iterations. The final chunk might contain fewer than n
iterations.

static[=n]
The iterations of a loop are divided into chunks containing # iterations
each. Each thread is assigned chunks in a "round-robin" fashion. This is
known as block cyclic scheduling. If the value of n is 1, then the scheduling
type is specifically referred to as cyclic scheduling.

If n is not specified, the chunks will contain floor(number_of_iterations/
number_of _threads) iterations. The first remainder(number_of_iterations/
number_of_threads) chunks have one more iteration. Each thread is assigned
one of these chunks. This is known as block scheduling.

If a thread is asleep and it has been assigned work, it will be awakened so
that it may complete its work.

n Must be an integral assignment expression of value 1 or greater.
If you specify schedule with no suboption, the scheduling type is determined
at run time.

Parallel environment options are as follows:

parthds=num
Specifies the number of threads (num) requested, which is usually equivalent to
the number of processors available on the system.

Some applications cannot use more threads than the maximum number of
processors available. Other applications can experience significant performance
improvements if they use more threads than there are processors. This option
gives you full control over the number of user threads used to run your
program.

The default value for num is the number of processors available on the system.

Chapter 2. Configuring compiler defaults 27

usrthds=num
Specifies the maximum number of threads (num) that you expect your code
will explicitly create if the code does explicit thread creation. The default value
for num is 0.

stack=num
Specifies the largest amount of space in bytes (num) that a thread's stack needs.
The default value for num is 4194304.

Set num so it is within the acceptable upper limit. num can be up to 256 MB for
32-bit mode, or up to the limit imposed by system resources for 64-bit mode.
An application that exceeds the upper limit may cause a segmentation fault.

stackcheck[=num]
When the -qsmp=stackcheck is in effect, enables stack overflow checking for
slave threads at runtime. num is the size of the stack in bytes, and it must be a
nonzero positive number. When the remaining stack size is less than this value,
a runtime warning message is issued. If you do not specify a value for num,
the default value is 4096 bytes. Note that this option only has an effect when
the -qsmp=stackcheck has also been specified at compile time. For more
information, see [“-gsmp” on page 281.

startproc=cpu_id
Enables thread binding and specifies the cpu_id to which the first thread binds.
If the value provided is outside the range of available processors, a warning
message is issued and no threads are bound.

procs=cpu_id[,cpu_id,...]
Enables thread binding and specifies a list of cpu_id to which the threads are
bound.

stride=num
Specifies the increment used to determine the cpu_id to which subsequent
threads bind. num must be greater than or equal to 1. If the value provided
causes a thread to bind to a CPU outside the range of available processors, a
warning message is issued and no threads are bound.

bind=SDL=n1,n2,n3
Specifies different system detail levels to bind threads by using the Resource
Set API. This suboption supports binding a thread to multiple logical
processors.

SDL stands for System Detail Level and can be MCM, L2CACHE,
PROC_CORE, or PROC. If the SDL value is not specified, or an incorrect SDL
value is specified, the SMP runtime issues an error message.

The list of three integers n1,1n2,n3 determines how to divide threads among
resources (one of SDLs). n1 is the starting resource_id, n2 is the number of
requested resources, and n3 is the stride, which specifies the increment used to
determine the next resource_id to bind. n1,n2,n3 must all be specified;
otherwise, the SMP runtime issues an error message and default binding rules

apply.
When the number of resources specified in bind is greater than the number of
threads, the extra resources are ignored.

When the number of threads ¢ is greater than the number of resources x, ¢
threads are divided among x resources according to the following formula:

The ceil(t/x) threads are bound to the first (f mod x) resources. The floor(t/x)
threads will be bound to the remaining resources.

28 XLC: Compiler Reference

With the XLSMPOPTS environment variable being set as in the following
example, a program runs with 16 threads. It binds threads to PROC 0, 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30.

XLSMPOPTS="bind=PR0OC=0,16,2"

Notes:

* The bind suboption takes precedence over the startproc/stride and procs
suboptions. However, bindlist takes precedence over bind.

* Resource Set can only be used by a user account with the
CAP_NUMA_ATTACH and CAP_PROPAGATE capabilities. These
capabilities are set on a per-user basis by using the chuser command as
follows:
chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" username

* If the resource_id specified in bind is outside the range of 0 to INT32_MAX,
where INT32_MAX is 2147483647 as defined in stdint.h, the SMP runtime
issues an error message and default binding rules apply.

* The SMP runtime verifies that the resource_id exists. If the resource_id does
not exist, a warning message is issued and the thread is left unbound.

* If you change the number of threads inside the program, for example,
through omp_set_num_threads() or num_threads clause, the following
situation occurs:

— If the number of threads in the application is increased, rebinding takes
place based on the environment variable settings.

— If the number of threads is reduced after binding, the original binding
remains.

bindlist=SDL=i1,i2,...ix
Specifies different system detail levels to bind threads by using the Resource
Set API. This suboption supports binding a thread to multiple logical
processors.

SDL stands for System Detail Level and can be MCM, L2CACHE,
PROC_CORE, or PROC. If the SDL value is not specified, or an incorrect SDL
value is specified, the SMP runtime issues an error message.

The list of x integers i1,i2...ix enumerates the resources (one of SDLs) to be
used during binding. When the number of integers in the list is greater than or
equal to the number of threads, the position in the list determines the thread
ID that will be bound to the resource.

When the number of resources specified in bindlist is greater than the
number of threads, the extra resources are ignored.

When the number of threads t is greater than the number of resources x, ¢
threads will be divided among x resources according to the following formula:

The ceil(t/x) threads are bound to the first (t mod x) resources. The floor(t/x)
threads will be bound to the remaining resources.

For example:

XLSMPOPTS="bind1ist=MCM=0,1,2,3"

This example code shows that threads are bound to MCM 0,1,2,3. When the
program runs with four threads, thread 0 is bound to MCM 0, thread 1 is
bound to MCM 1, thread 2 is bound to MCM 2, and thread 3 is bound to

Chapter 2. Configuring compiler defaults 29

MCM 3. When the program runs with six threads, threads 0 and 1 are bound
to MCM 0, threads 2 and 3 are bound to MCM 1, thread 4 is bound to MCM 2,
and thread 5 is bound to MCM 3.

With the XLSMPOPTS environment variable being set as in the following
example, a program runs with eight (or fewer) threads. It binds all
even-numbered threads to LZCACHE 0 and all odd-numbered threads to
L2CACHE 1.

XLSMPOPTS="bind1ist=L2CACHE=0,1,0,1,0,1,0,1"

Notes:

* The bindlist suboption takes precedence over the startproc/stride, procs,
and bind suboptions.

* Resource Set can only be used by a user account with the
CAP_NUMA_ATTACH and CAP_PROPAGATE capabilities. These
capabilities are set on a per-user basis by using the chuser command as
follows:
chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" username

* The SMP runtime verifies that the thread ID specified for a resource is not
less than 0 nor greater than the available resources. Otherwise, the SMP
runtime issues a warning message and the thread is left unbound.

 If you change the number of threads inside the program, for example,
through omp_set_num_threads() or num_threads clause, the following
situation occurs:

— If the number of threads in the application is increased, rebinding takes
place based on the environment variable settings.

— If the number of threads is reduced after binding, the original binding
remains.

Performance tuning options are as follows:

spins=num
Specifies the number of loop spins, or iterations, before a yield occurs.

When a thread completes its work, the thread continues executing in a tight
loop looking for new work. One complete scan of the work queue is done
during each busy-wait state. An extended busy-wait state can make a
particular application highly responsive, but can also harm the overall
responsiveness of the system unless the thread is given instructions to
periodically scan for and yield to requests from other applications.

A complete busy-wait state for benchmarking purposes can be forced by
setting both spins and yields to 0.

The default value for num is 100.

yields=num
Specifies the number of yields before a sleep occurs.

When a thread sleeps, it completely suspends execution until another thread
signals that there is work to do. This provides better system utilization, but
also adds extra system overhead for the application.

The default value for num is 100.

delays=num
Specifies a period of do-nothing delay time between each scan of the work
queue. Each unit of delay is achieved by running a single no-memory-access
delay loop.

30 xLcC Compiler Reference

The default value for num is 500.

Dynamic profiling options are as follows:

profilefreq=num
Specifies the frequency with which a loop should be revisited by the dynamic
profiler to determine its appropriateness for parallel or serial execution. The
runtime library uses dynamic profiling to dynamically tune the performance of
automatically parallelized loops. Dynamic profiling gathers information about
loop running times to determine if the loop should be run sequentially or in
parallel the next time through. Threshold running times are set by the
parthreshold and seqthreshold dynamic profiling options, which are
described below.

The valid values for this option are the numbers from 0 to 32. If num is 0, all
profiling is turned off, and overheads that occur because of profiling will not
occur. If num is greater than 0, running time of the loop is monitored once
every num times through the loop. The default for num is 16. Values of num
exceeding 32 are changed to 32.

Note: Dynamic profiling is not applicable to user-specified parallel loops.

parthreshold=num
Specifies the time, in milliseconds, below which each loop must execute
serially. If you set num to 0, every loop that has been parallelized by the
compiler will execute in parallel. The default setting is 0.2 milliseconds,
meaning that if a loop requires fewer than 0.2 milliseconds to execute in
parallel, it should be serialized.

Typically, num is set to be equal to the parallelization overhead. If the
computation in a parallelized loop is very small and the time taken to execute
these loops is spent primarily in the setting up of parallelization, these loops
should be executed sequentially for better performance.

seqthreshold=num
Specifies the time, in milliseconds, beyond which a loop that was previously
serialized by the dynamic profiler should revert to being a parallel loop. The
default setting is 5 milliseconds, meaning that if a loop requires more than 5
milliseconds to execute serially, it should be parallelized.

seqthreshold acts as the reverse of parthreshold.
Environment variables for OpenMP

OpenMP runtime options affecting parallel processing are set by OMP environment
variables. These environment variables use syntax of the form:

»»—env_variable—=—option_and_args ><

If an OMP environment variable is not explicitly set, its default setting is used.

For information about the OpenMP specification, see [http:/ /www.openmp.org}

OMP_DISPLAY_ENV: When a program that uses the OpenMP runtime is
invoked and the OMP_DISPLAY_ENV environment variable is set, the OpenMP
runtime displays the values of the internal control variables (ICVs) associated with
the environment variables and the build-specific information about the runtime
library.

Chapter 2. Configuring compiler defaults 31

http://www.openmp.org

OMP_DISPLAY_ENV is useful in the following cases:

* When the runtime library is statically linked with an OpenMP program, you can
use OMP_DISPLAY_ENV to check the version of the library that is used during
link time.

* When the runtime library is dynamically linked with an OpenMP program, you
can use OMP_DISPLAY_ENYV to check the library that is used at run time.

* You can use OMP_DISPLAY_ENYV to check the current setting of the runtime
environment.

By default, no information is displayed.

The syntax of this environment variable is as follows:

»»—(OMP_DISPLAY_ENV—= |:TRUE ><

FALSEﬂ
VERBOSE

Note: The values TRUE, FALSE, and VERBOSE are not case-sensitive.

TRUE
Displays the OpenMP version number defined by the _OPENMP macro and the
initial ICV values for the OpenMP environment variables.

FALSE
Instructs the runtime environment not to display any information.

VERBOSE
Displays build-specific information, ICV values associated with OpenMP
environment variables, and the setting of the XLSMPOPTS environment
variable.

Examples
Example 1

If you enter the export OMP_DISPLAY_ENV=TRUE command, you will get
output that is similar to the following example:

OPENMP DISPLAY ENVIRONMENT BEGIN
OMP_DISPLAY_ENV='TRUE'

_OPENMP='201107"
OMP_DYNAMIC='FALSE'
OMP_MAX_ACTIVE_LEVELS='5'
OMP_NESTED="FALSE"
OMP_NUM_THREADS="96"
OMP_PROC_BIND="'FALSE'
OMP_SCHEDULE="STATIC,0"
OMP_STACKSIZE='4194304"
OMP_THREAD_LIMIT='96"
OMP_WAIT POLICY='PASSIVE'
OPENMP DISPLAY ENVIRONMENT END

Example 2

If you enter the export OMP_DISPLAY_ENV=VERBOSE command, you will get
output that is similar to the following example:

32 XLC: Compiler Reference

OPENMP DISPLAY AFFINITY BEGIN

OMP_PLACES="{0},{1},{2},{3},{
THREADS_PER_PLACE='{1},{1},{1
OPENMP DISPLAY AFFINITY END

Related information:
[“XLSMPOPTS” on page 26|
[“OMP_PROC_BIND” on page 35|

OMP_DYNAMIC: The OMP_DYNAMIC environment variable controls dynamic
adjustment of the number of threads available for running parallel regions.

TRUE
»»—OMP_DYNAMIC—= I_FALSE_|

A\
A

If OMP_DYNAMIC is set to TRUE, dynamic adjustment is enabled. The number of

threads that are available for executing parallel regions can be adjusted at run time
to make the best use of system resources. For more information, see the description
for profilefreq=num in ["XLSMPOPTS” on page 26,

If OMP_DYNAMIC is set to FALSE, dynamic adjustment is disabled.
The default setting is TRUE.

Related information

[“OMP_PROC_BIND” on page 35|

OMP_MAX_ACTIVE_LEVELS:

The OMP_MAX_ACTIVE_LEVELS environment variable sets the
max-active-levels-var internal control variable. This controls the maximum number of
active nested parallel regions.

»>—OMP_MAX_ACTIVE_LEVELS=n ><

n is the maximum number of nested active parallel regions. It must be a positive
scalar integer. The maximum value that you can specify is 5.

In programs where nested parallelism is enabled, the initial value is greater than 1.
The function omp_get_max_active_levels can be used to retrieve the
max-active-levels-var internal control variable at run time.

OMP_NESTED: The OMP_NESTED environment variable enables or disables
nested parallelism. The syntax is as follows:

A\
A

FALSE
»»—OMP_NESTED= |_TRUE —l

If you set this environment variable to TRUE, nested parallelism is enabled, which
means that the runtime environment might deploy extra threads to form the team
of threads for the nested parallel region. If you set this environment variable to
FALSE, nested parallelism is disabled, which means nested parallel regions are
serialized and run in the encountering thread.

Chapter 2. Configuring compiler defaults 33

The default value for OMP_NESTED is FALSE.

The setting of the omp_set_nested routine overrides the OMP_NESTED setting.
The OMP_NESTED setting overrides the setting of the -qsmp=nested_par |

nonested_par option.

Note: If the number of threads in a parallel region and its nested parallel regions
exceeds the number of available processors, your program might suffer
performance degradation.

OMP_NUM_THREADS: The OMP_NUM_THREADS environment variable
specifies the number of threads to use for parallel regions.

The syntax of the environment variable is as follows:

»»—OMP_NUM_THREADS=—num_list =

num_list
A list of one or more positive integer values separated by commas.

If you do not set OMP_NUM_THREADS, the number of processors available is
the default value to form a new team for the first encountered parallel construct. If
nested parallelism is disabled, any nested parallel constructs are run by one thread.

If num_list contains a single value, dynamic adjustment of the number of threads is
enabled (OMP_DYNAMIC is set to TRUE), and a parallel construct without a
num_threads clause is encountered, the value is the maximum number of threads
that can be used to form a new team for the encountered parallel construct.

If num_list contains a single value, dynamic adjustment of the number of threads is
not enabled (OMP_DYNAMIC is set to FALSE), and a parallel construct without a
num_threads clause is encountered, the value is the exact number of threads that
can be used to form a new team for the encountered parallel construct.

If num_list contains multiple values, dynamic adjustment of the number of threads
is enabled (OMP_DYNAMIC is set to TRUE), and a parallel construct without a
num_threads clause is encountered, the first value is the maximum number of
threads that can be used to form a new team for the encountered parallel
construct. After the encountered construct is entered, the first value is removed
and the remaining values form a new num_lIist. The new num_list is in turn used in
the same way for any closely nested parallel constructs inside the encountered
parallel construct.

If num_list contains multiple values, dynamic adjustment of the number of threads
is not enabled (OMP_DYNAMIC is set to FALSE), and a parallel construct without
a num_threads clause is encountered, the first value is the exact number of threads
that can be used to form a new team for the encountered parallel construct. After
the encountered construct is entered, the first value is removed and the remaining
values form a new num_list. The new num_list is in turn used in the same way for
any closely nested parallel constructs inside the encountered parallel construct.

Note: If the number of parallel regions is equal to or greater than the number of

values in num_list, the omp_get_max_threads function returns the last value of
num_list in the parallel region.

34 XxLC: Compiler Reference

If the number of threads requested exceeds the system resources available, the
program stops.

The omp_set_num_threads function sets the first value of num_list. The
omp_get_max_threads function returns the first value of num_list.

If you specify the number of threads for a given parallel region more than once
with different settings, the compiler uses the following precedence order to
determine which setting takes effect:

1. The number of threads set using the num_threads clause takes precedence over

that set using the omp_set_num_threads function.

2. The number of threads set using the omp_set_num_threads function takes
precedence over that set using the OMP_NUM_THREADS environment
variable.

3. The number of threads set using the OMP_NUM_THREADS environment
variable takes precedence over that set using the parthds suboption of the
XLSMPOPTS environment variable.

Example

export OMP_NUM_THREADS=3,4,5
export OMP_DYNAMIC=false

// omp_get_max_threads() returns 3

#pragma omp parallel

{
// Three threads running the parallel region
// omp_get_max_threads() returns 4

#pragma omp parallel if(0)
{

// One thread running the parallel region
// omp_get max_threads() returns 5

#pragma omp parallel

{
// Five threads running the parallel region
// omp_get max_threads() returns 5

}
}

OMP_PROC_BIND: The OMP_PROC_BIND environment variable controls
whether OpenMP threads can be moved between places.

OMP_PROC_BIND syntax

»»—OMP_PROC_BIND=—TRUE

|—FALS E—|

TRUE
Binds the threads to places.

FALSE
Allows threads to be moved between places.

Chapter 2. Configuring compiler defaults

35

Usage

The OMP_PROC_BIND and XLSMPOPTS environment variables interact with
each other according to the following rules:

Table 8. Thread binding rule summary

OMP_PROC_BIND settings XLSMPOPTS settings Thread binding results
OMP_PROC_BIND is not set XLSMPOPTS is not set. Threads are not bound.
XLSMPOPTS is set to startproc/stride, Threads are bound according to
procs, bind, or bindlist. the settings in XLSMPOPTS.
XLSMPOPTS setting is invalid. Threads are not bound.
OMP_PROC_BIND=TRUE XLSMPOPTS is not set. Threads are bound.
XLSMPOPTS is set to startproc/stride, [Threads are bound according to
procs, bind, or bindlist. the settings in XLSMPOPTSY
XLSMPOPTS setting is invalid. Threads are bound.
OMP_PROC_BIND=FALSE XLSMPOPTS is not set. Threads are not bound.
XLSMPOPTS is set to startproc/stride,
procs, bind, or bindlist.
XLSMPOPTS setting is invalid.

Note:

1. If procs is set and the number of CPU IDs specified is smaller than the number of threads that are used by the
program, the remaining threads are also bound to the listed CPU IDs but not in any particular order. If
XLSMPOPTS=startproc is used, the value specified by startproc is smaller than the number of CPUs, and the
value that is specified by stride causes a thread to bind to a CPU outside the range of available places, some of
the threads are bound and some are not.

The OMP_PROC_BIND environment variable provides a portable way to control
whether OpenMP threads can be migrated. The startproc/stride, procs, bind, or
bindlist suboption of the XLSMPOPTS environment variable, which is an IBM
extension, provides a finer control to bind OpenMP threads to places. If portability
of your application is important, use only the OMP_PROC_BIND environment
variable to control thread binding.

Related information:
["XLSMPOPTS” on page 26|

OMP_SCHEDULE: The OMP_SCHEDULE environment variable specifies the
schedule type used for loops that are explicitly assigned to runtime schedule type
with the OpenMP schedule clause.

For example:
OMP_SCHEDULE="guided, 4"

Valid options for schedule type are:
* auto

e dynamic][, n]

* guided[, n]

* static[, n]

If specifying a chunk size with n, the value of n must be a positive integer.

The default schedule type is auto.

36 XLC: Compiler Reference

Related reference:

[‘omp_set_schedule” on page 622

[“omp_get_schedule” on page 622]

OMP_STACKSIZE:
The OMP_STACKSIZE environment variable specifies the size of the stack for
threads created by the OpenMP run time. The syntax is as follows:

»>—OMP_STACKSIZE= size >«
SizeB
sizek
sizeM-
SsizeG
size

is a positive integer that specifies the size of the stack for threads that are
created by the OpenMP run time.

IIBII’ IIKII’ IIMII’ IIGII
are letters that specify whether the given size is in Bytes, Kilobytes, Megabytes,
or Gigabytes.

If only size is specified and none of "B", "K", "M", "G" is specified, size is in
Kilobytes by default. This environment variable does not control the size of the
stack for the initial thread.

The value assigned to the OMP_STACKSIZE environment variable is case
insensitive and might have leading and trailing white space. The following
examples show how you can set the OMP_STACKSIZE environment variable.

export OMP_STACKSIZE="10M"
export OMP_STACKSIZE=" 10 M "

If the value of OMP_STACKSIZE is not set, the initial value is set to the default
value. The default value is 4194304B. The maximum value for 32-bit mode is 256M.
For 64-bit mode, the maximum is up to the limit imposed by system resources.

If the compiler cannot deliver the stack size specified by the environment variable,
or if OMP_STACKSIZE does not conform to the valid format, the compiler sets
the environment variable to the default value.

The OMP_STACKSIZE environment variable takes precedence over the stack
suboption of the XLSMPOPTS environment variable.

OMP_THREAD_LIMIT:
The OMP_THREAD_LIMIT environment variable sets the number of OpenMP
threads to use for the whole program.

»»—(OMP_THREAD LIMIT—=—n ><

n The number of OpenMP threads to use for the whole program. It must be a
positive scalar integer that is less than 65536.

Chapter 2. Configuring compiler defaults 37

Usage

When OMP_THREAD_LIMIT=1, the parallel regions are run sequentially rather
than in parallel. However, when OMP_THREAD_LIMIT is much smaller than the
number of threads that are required in the program, the parallel region might still
run in parallel but with fewer threads. When there are nested parallel regions,
some parallel regions might run in parallel, some might run sequentially, and some
might run in parallel but with threads that are recycled from other regions.

If the OMP_THREAD_LIMIT environment variable is not set and the
OMP_NUM_THREADS environment variable is set to a single value, the default
value for OMP_THREAD_LIMIT is the value of OMP_NUM_THREADS or the
number of available processors, whichever is greater.

If the OMP_THREAD_LIMIT environment variable is not set and the
OMP_NUM_THREADS environment variable is set to a list, the default value for
OMP_THREAD_LIMIT is the multiplication of all the numbers in the list or the
number of available processors, whichever is greater.

If neither the OMP_THREAD_LIMIT nor OMP_NUM_THREADS environment
variable is set, the default value for OMP_THREAD_LIMIT is the number of
available processors.

Related information:
[“OMP_NUM_THREADS” on page 34|

OMP_WAIT_POLICY:
The OMP_WAIT_POLICY environment variable provides hints about the preferred
behavior of waiting threads during program execution. The syntax is as follows:

|—P/-\SS I VE—l
»—OMP_WAIT_POLICY= ACTIVE ><

Use ACTIVE if you want waiting threads to mostly be active. That is, the threads
consume processor cycles while waiting. For example, waiting threads can spin
while waiting. The ACTIVE wait policy is recommended for maximum performance
on the dedicated machine.

Use PASSIVE if you want waiting threads to mostly be passive. That is, the threads
do not consume processor cycles while waiting. For example, waiting threads can
sleep or yield the processor to other threads.

The default value of OMP_WAIT_POLICY is PASSIVE.
Note: If you set the OMP_WAIT_POLICY environment variable and specify the

spins, yields, or delays suboptions of the XLSMPOPTS environment variable,
OMP_WAIT_POLICY takes precedence.

Using custom compiler configuration files

The XL C compiler generates a default configuration file /opt/IBM/xlc/13.1.3/etc/
xlc.cfg.nn , where nn indicates which OS version the configuration file is for). The
configuration file specifies information that the compiler uses when you invoke it.

38 xLC: Compiler Reference

If you are running on a single-user system, or if you already have a compilation
environment with compilation scripts or makefiles, you might want to leave the
default configuration file as it is.

If you want users to be able to choose among several sets of compiler options, you
might want to use custom configuration files for specific needs. For example, you
might want to enable -qlist by default for compilations using the xlc compiler
invocation command. This is to avoid forcing your users to specify this option on
the command line for every compilation, because -qnolist is automatically in effect
every time the compiler is called with the xlc command.

You have several options for customizing configuration files:

* You can directly edit the default configuration file. In this case, the customized
options will apply for all users for all compilations. The disadvantage of this
option is that you will need to reapply your customizations to the new default
configuration file that is provided every time you install a compiler update.

* You can use the default configuration file as the basis of customized copies that
you specify at compile time with the |-F| option. In this case, the custom file
overrides the default file on a per-compilation basis.

Note: This option requires you to reapply your customization after you apply
service to the compiler.

* You can create custom, or user-defined, configuration files that are specified at
compile time with the XLC_USR_CONFIG environment variable. In this case,
the custom user-defined files complement, rather than override, the default
configuration file, and they can be specified on a per-compilation or global basis.
The advantage of this option is that you do not need to modify your existing,
custom configuration files when a new system configuration file is installed
during an update installation. Procedures for creating custom, user-defined
configuration files are provided below.

Related reference:

[-F” on page 143

Creating custom configuration files

If you use the XLC_USR_CONFIG environment variable to instruct the compiler to
use a custom user-defined configuration file, the compiler examines and processes
the settings in that user-defined configuration file before looking at the settings in
the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify
multiple levels of the use attribute. The user-defined configuration file can
reference definitions specified elsewhere in the same file, as well as those specified
in the system configuration file. For a given compilation, when the compiler looks
for a given stanza, it searches from the beginning of the user-defined configuration
file and follows any other stanza named in the use attribute, including those
specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza
currently being processed, the search for the use stanza starts from the beginning
of the user-defined configuration file. This is the case for stanzas A, C, and D
which you see in the following example. However, if the stanza in the use attribute
has the same name as the stanza currently being processed, as is the case of the
two B stanzas in the example, the search for the use stanza starts from the location
of the current stanza.

Chapter 2. Configuring compiler defaults 39

The following example shows how you can use multiple levels for the use
attribute. This example uses the options attribute to help show how the use
attribute works, but any other attributes, such as libraries can also be used.

A: use =DEFLT

options=<set of options A>
B: use =B

options=<set of options BIl>
B: use =D

options=<set of options B2>
C: use =A

options=<set of options C>
D: use =A

options=<set of options D>
DEFLT:

options=<set of options Z>

Figure 1. Sample configuration file

In this example:
* stanza A uses option sets A and Z
+ stanza B uses option sets B1, B2, D, A, and Z
* stanza C uses option sets C, A, and Z
 stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the
options are specified is important for option resolution. Ordinarily, if an option is
specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of
values specified in previously processed stanzas. For example, assume that the
XLC_USR_CONFIG environment variable is set to point to the user-defined
configuration file at ~/userconfigl. With the user-defined and default configuration
files shown in the following example, the compiler references the xlc¢ stanza in the
user-defined configuration file and uses the option sets specified in the
configuration files in the following order: Al1, A, D, and C.

xlc: use=xlc xTc: use=DEFLT
options= <AI> options=<A>

DEFLT: use=DEFLT DEFLT:
options=<D> options=<(C>

Figure 2. Custom user-defined configuration Figure 3. Default configuration file xlc.cfg
file ~/userconfig1

Overriding the default order of attribute values
You can override the default order of attribute values by changing the assignment
operator(=) for any attribute in the configuration file.

40 xLcC: Compiler Reference

Table 9. Assignment operators and attribute ordering

Assignment

Operator Description

-= Prepend the following values before any values determined by the default
search order.

= Replace any values determined by the default search order with the
following values.

+= Append the following values after any values determined by the default
search order.

For example, assume that the XLC_USR_CONFIG environment variable is set to
point to the custom user-defined configuration file at ~/userconfig?.

Custom user-defined configuration file
~luserconfig2 Default configuration file xlc.cfg

xTc_prepend: use=xlc xlc: use=DEFLT
options-=<BI> options=
x1c_replace: use=xlc
options:=<B2> DEFLT:
xTc_append: use=x1c options=<C>
options+=<B3>

DEFLT: use=DEFLT
options=<D>

The stanzas in the preceding configuration files use the following option sets, in
the following orders:

1. stanza xlc uses B, D, and C

2. stanza xlc_prepend uses B1, B, D, and C

3. stanza xlc_replace uses B2

4. stanza xlc_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For
example:

x1c:
use=x1c
options-=-Isome_include_path
options+=some options

Figure 4. Using additional assignment operations

Examples of stanzas in custom configuration files

DEFLT: use=DEFLT This example specifies that the -g option is to
options = -g be used in all compilations.
xlc: use=xlc options+=-qlist This example specifies that -qlist is to be used

for any compilation called by the xlc and xlc_r
commands. This -qlist specification overrides
the default setting of -qlist specified in the
system configuration file.

xTc_r: use=xlc_r
options+=-qlist

DEFLT: use=DEFLT This example specifies that all compilations
libraries=-L/home/user/1ib,-1mylib should link with /home/user/lib/libmylib.a.

Chapter 2. Configuring compiler defaults 41

Configuring the gxlc option mapping

The gxlc utility uses the configuration file /opt/IBM/xlc/13.1.3/etc/gxlc.cfg to
translate GNU C options to corresponding XL C options. Each entry in gxlc.cfg
describes how the utility should map a GNU C option to an XL C option and how
to process it.

An entry consists of a string of flags for the processing instructions, a string for the
GNU C option, and a string for the XL C option. The three fields must be
separated by white space. If an entry contains only the first two fields and the XL
C option string is omitted, the GNU C option in the second field will be
recognized by gxlc and silently ignored.

The # character is used to insert comments in the configuration file. A comment
can be placed on its own line, or at the end of an entry.

The following syntax is used for an entry in gxlc.cfg:

abcd "gcc_option" "xlc_option"
where:
a Lets you disable the option by adding no- as a prefix. The value is either y

for yes, or n for no. For example, if the flag is set to y, then finline can be
disabled as fno-inline, and the entry is:

ynn* "-finline" "-ginline"

If given -fno-inline, then the utility will translate it to -qnoinline.

b Informs the utility that the XL C option has an associated value. The value
is either y for yes, or n for no. For example, if option -fmyvalue=n maps to
-qmyvalue=n, then the flag is set to y, and the entry is:

nynx "-fmyvalue" "-gmyvalue"
The utility will then expect a value for these options.

c Controls the processing of the options. The value can be any of the
following;:

n Tells the utility to process the option listed in the gcc_option field.

i Tells the utility to ignore the option listed in the gcc_option field.
The utility will generate a message that this has been done, and
continue processing the given options.

e Tells the utility to halt processing if the option listed in the
gec_option field is encountered. The utility will also generate an
error message.

For example, the GCC option -I- is not supported and must be ignored by
gxlc. In this case, the flag is set to i, and the entry is:

nni= toI-"
If the utility encounters this option as input, it will not process it and will
generate a warning.

d Lets gxlc or gxle++ include or ignore an option based on the type of
compiler. The value can be any of the following:

c Tells the utility to translate the option only for C.

42 XLC: Compiler Reference

* Tells gxlc or gxlc++ to translate the option for C.

For example, -fwritable-strings is supported by both compilers, and maps
to -qnoro. The entry is:

nnn* "-fwritable-strings" "-gnoro"

"gcc_option"
Is a string representing a GNU C option. This field is required and must
appear in double quotation marks.

"xlc__option"

Is a string representing an XL C option. This field is optional, and, if
present, must appear in double quotation marks. If left blank, the utility
ignores the gcc_option in that entry.

It is possible to create an entry that will map a range of options. This is
accomplished by using the asterisk (*) as a wildcard. For example, the GCC -D
option requires a user-defined name and can take an optional value. It is possible
to have the following series of options:

-DCOUNT1=100

-DCOUNT2=200

-DCOUNT3=300
-DCOUNT4=400

Instead of creating an entry for each version of this option, the single entry is:

nnn* II_D*II II_D*II
where the asterisk will be replaced by any string following the -D option.

Conversely, you can use the asterisk to exclude a range of options. For example, if
you want gxlc to ignore all the -std options, then the entry would be:

nni= "-stdx"

When the asterisk is used in an option definition, option flags a and b are not
applicable to these entries.

The character % is used with a GNU C option to signify that the option has
associated parameters. This is used to insure that gxlc will ignore the parameters
associated with an option that is ignored. For example, the -isystem option is not
supported and uses a parameter. Both must be ignored by the application. In this
case, the entry is:

nni= "-isystem %"

For a complete list of GNU C and XL C option mappings, see the following web
page: fhttp:/ /www.ibm.com /support/docview.wss?uid=swg27039014|

Related information
+ The GNU Compiler Collection online documentation at |http://gcc.gnu.org /|

Chapter 2. Configuring compiler defaults 43

http://www.ibm.com/support/docview.wss?uid=swg27039014
http://gcc.gnu.org/onlinedocs
http://gcc.gnu.org/onlinedocs

44 xLC: Compiler Reference

Chapter 3. Tracking and reporting compiler usage

You can use the utilization tracking and reporting feature to record and analyze
which users in your organization are using the compiler and the number of users
using it concurrently. This information can help you determine whether your
organization's use of the compiler exceeds your compiler license entitlements.

To use this feature, follow these steps:

1. Understand how the feature works. See [“Understanding utilization tracking]
for more information.
2. Investigate how the compiler is used in your organization, and decide how you

track the compiler usage accordingly. See [“Preparing to use this feature” onf
for more information.

3. Configure and enable utilization tracking. See [“Configuring utilization|
[tracking” on page 60| for more information.

4. Use the utilization reporting tool to generate usage reports or prune usage files.
See |“Generating usage reports” on page 68| or [“Pruning usage files” on page 71|
for more information.

Understanding utilization tracking and reporting

The utilization tracking and reporting feature provides a mechanism for you to
detect whether your organization's use of the compiler exceeds your compiler
license entitlements. This section introduces the feature, describes how it works,
and illustrates its typical usage scenarios.

Overview

When utilization tracking is enabled, all compiler invocations are recorded in a file.
This file is called a usage file and it has the .cuf suffix. You can then use the
utilization reporting tool to generate a report from one or more of these usage files,
and optionally prune the usage files.

You can use the utilization tracking and reporting feature in various ways based
on how the compiler is used in your organization. The ["Four usage scenarios” on|
section illustrates the typical usage scenarios of this feature.

The following sections introduce the configuration of the utilization tracking
functionality and the usage of the utilization reporting tool.

Utilization tracking

A utilization tracking configuration file urtx1c1302aix.cfg is included in the
default compiler installation. You can use this file to enable utilization tracking and
control different aspects of the tracking.

A symlink urt_client.cfg is also included in the default compiler installation. It
points to the location of the utilization tracking configuration file. If you want to
put the utilization tracking configuration file in a different location, you can
modify the symlink accordingly.

For more information, see [‘Configuring utilization tracking” on page 60|

© Copyright IBM Corp. 1996, 2015 45

Note: Utilization tracking is disabled by default.
Utilization reporting tool

The utilization reporting tool generates compiler usage reports based on the
information in the usage files. You can optionally prune the usage files with the
tool. For more information, see |“Generating usage reports” on page 68/ and
[“Pruning usage files” on page 71/

Four usage scenarios

This section describes four possible scenarios for managing the compiler usage, for
recording the compiler usage information and for generating reports from this
information.

The following scenarios describe some typical ways that your organization might
be using the compiler and illustrate how you can use this feature to track compiler

usage in each case.

Note: Actual usage is not limited to these scenarios.

[“Scenario: One machine, one shared .cuf file”|

[“Scenario: One machine, multiple .cuf files” on page 47|

[“Scenario: Multiple machines, one shared .cuf file” on page 50|

[“Scenario: Multiple machines, multiple .cuf files” on page 52|

Scenario: One machine, one shared .cuf file
This scenario describes an environment where all the compilations are done on one
machine and all users share one .cuf file.

The advantage of using the approach in this scenario is that it simplifies report
generation and usage file pruning, because the utilization report tool only need to
access one .cuf file. The disadvantage is that all compiler users need to compete
for access to this file. Because the file might become large, it might have an impact
on performance. Some setup work is also required to create the shared .cuf file
and to give all compiler users write access. The [“The number of usage files” on|
section provides detailed information about using a single usage file for all
compiler users.

In this scenario, compiler users run the compiler on the same machine and their
utilization information is recorded in a shared .cuf file. The utilization tracking
configuration file for the compiler is modified to point to the location of the .cuf
file. When the compiler is invoked, it writes the utilization information to that file.
You can then use the utilization reporting tool to retrieve the utilization
information from the file and generate usage reports.

The following diagram illustrates this scenario.

46 XLC: Compiler Reference

Utilization tracking Utilization reporting

@] User: user1 @ User: user3

|

Invoke the compiler Read report Invoke urt with
-qusagefileloc=/xyz
Compiler Report
| e
Read Write to file in /xyz
¢ ¢ Generate
Utilization tracking .
configuration file ad < Read/write — urt <
T T Read
Read Write to file in /xyz ¢

urt configuration file
Compiler 9

Invoke the compiler

I
@ User: user2

1. Both userl and user2 need write access to the .cuf file in /xyz.

2. user3 needs read access to the .cuf file in/xyz to generate the usage report, and write access to prune the .cuf
file.

3. A cron job can be created to run urt automatically on a regular basis.

Figure 5. Compiler users use a single machine, with a shared .cuf file

The diagram reflects the following points:

1. userl and user2 use the same utilization tracking configuration file, which
manages the tracking functionality centrally. A common location /xyz is created
to keep a shared .cuf file.

2. When userl and user2 invoke the compiler, the utilization information is
recorded in the .cuf file under the common directory /xyz.

3. user3 invokes urt with -qusagefileloc=/xyz to generate usage reports.

Note: Regular running of the utilization reporting tool can prevent these files from
growing too big, because you can prune the usage files with this tool.

Scenario: One machine, multiple .cuf files
This scenario describes an environment where all the compilations are done on one
machine and all users have their own .cuf files.

The approach in this scenario has the following advantages:

Chapter 3. Tracking and reporting compiler usage 47

* Compiler users do not have to compete for access to a single .cuf file, and this
might result in better performance.

* You do not need to set up write access to a single common location for all
compiler users. They already have write access to their own home directories.

However, using multiple .cuf files that are automatically created in each user's
home directory might have the following issues:

* Compiler users might not know that the file has been created or what it is when
they see the file. In this case, they might delete the file.

* Some users' home directories might be on file systems that are mounted from a
remote system. This causes utilization tracking to use a remote file, which might
affect performance.

* Compiler users might not want .cuf files to take up space in their home
directories.

Instead of using each user's home directory, the .cuf files for each user can be
created in a common location. The [“Usage file location” on page 56 section
provides detailed information about how to create these files in a common
location.

In this scenario, two compiler users run the compiler on the same machine and
they have their own .cuf files. When the compiler is invoked, it automatically
creates a .cuf file for each user and writes the utilization information to that file.
You can then use the utilization reporting tool to retrieve the utilization
information from the .cuf files and generate usage reports.

The following diagram illustrates this scenario.

48 XxLC: Compiler Reference

Utilization tracking Utilization reporting

|
@ User: user1 @ User: user3

Invoke the compiler Read report Invoke urt with

l l -qusagefileloc=/home/user1:/home/user2

Compiler | — Write —» .cuf Report
to file in
| /home/user1 A
Read

¢ Generate

Utilization tracking “————— Read —

| | urt 4—

,————————— Read —
I

Read

T
Read
| v l

Compiler — Write —p .cuf urt configuration file
to file in
/home/user2

configuration file

Invoke the compiler

@ User: user2

1. user3 needs read access to .cuf files in /home/userl and /home/user2 to generate the usage report, and write
access to prune the usage files.

2. A cron job can be created to run urt automatically on a regular basis.

Figure 6. Compiler users use one machine, with separate .cuf files

This diagram reflects the following points:

1. userl and user2 use the same utilization tracking configuration file, which
manages the tracking functionality centrally.

2. When userl and user2 invoke the compiler, the utilization information is
recorded in the two .cuf files under their respective home directories,
/home/userl and /home/user2.

3. user3 invokes urt with -qusagefileloc=/home/userl:/home/user2 to generate
usage reports.

Note: If you need to find out which home directories contain usage files, you
can invoke urt as follows:

urt -qusagefileloc=/home -gmaxsubdirs=1

In this case, urt looks for all the .cuf files under /home directory.

Chapter 3. Tracking and reporting compiler usage 49

Scenario: Multiple machines, one shared .cuf file
This scenario describes an environment where the compilations are done on
multiple machines but all users share a single .cuf file.

The advantage of the approach in this scenario is that using one .cuf file can
simplify the report generation and the usage file pruning process. The section
lnumber of usage files” on page 57| provides detailed information about using a
single usage file for all compiler users. The .cuf file is already on the machine
where the utilization reporting tool is installed. You do not need to copy the file to
that machine or install the tool on multiple machines to prune the .cuf files.

This approach has the following disadvantages:

* The compiler users must compete for access to one usage file. Because the file
might become large, it might have an impact on performance.

* Some setup work is required to create the shared .cuf file and to give all
compiler users write access on a network file system.

* The efficiency of the whole process depends on the speed and reliability of the
network file system, because the compilers and the .cuf file are on different
machines. For example, some file systems are better than others in supporting
file locking, which is required for concurrent access by multiple users.

In this scenario, two compiler users run the compilers on separate machines and
they use one shared .cuf file on a network file system, such as NFS, DFS, or AFS™,
When the compiler is invoked, it writes the utilization information to that file. You
can then use the utilization reporting tool to retrieve the utilization information

from the file and generate usage reports.

The following diagram illustrates this scenario.

50 xLcC: Compiler Reference

Utilization tracking

@ User: user1

Machine A

Invoke the compiler

Compiler | — Write to—» .cuf
file in /xyz

Read .
¢ NFS
1
Utilization tracking 1
configuration file

@ User: user2

1

)

1

Machine B '

'
Invoke the compiler NII=S
Compiler — Write to —» .cuf

filein/xyz @ ..
Read

v

Utilization tracking
configuration file

- -

1.

the .cuf file, from which the usage report is generated.

Utilization reporting

@ User: user3

Machine C

Invoke the urt

g S .cuf
<

Read report

Generate

v

Report

urt configuration file

Figure 7. Compiler users use multiple machines, with a shared .cuf file

This diagram reflects the following points:

1. Utilization tracking is configured respectively on Machine A and Machine B.

Notes:

On Machine A and Machine B, mount point /xyz is created to Machine C. All compiler utilization is recorded in

 Although each machine has its own configuration file, the contents of these
files must be the same.

* Centrally managing the utilization tracking functionality can reduce your
configuration effort and eliminate possible errors. The

Chapter 3. Tracking and reporting compiler usage

51

fconfiguration” on page 55| section provides detailed information about how
you can use a common configuration file shared by compiler users using
different machines.

2. A network file system is set up for the central management of the .cuf files.
When userl and user2 invoke the compilers from Machine A and Machine B,
the utilization information of both compilers is written to the .cuf file on
Machine C.

3. user3 invokes urt to generate usage reports from the .cuf file on Machine C.

Note: You can use the utilization reporting tool to prune the usage files regularly
to prevent them from growing too big.

Scenario: Multiple machines, multiple .cuf files
This scenario describes an environment where the compilations are done on
multiple machines and all users have their own usage files.

In this scenario, two compiler users run the compilers on separate machines and
they have their own .cuf files. When the compiler is invoked, it writes the
utilization information to that file. You can then use the utilization reporting tool to
retrieve the utilization information from the file and generate usage reports. This
tool can be run on either of the machines on which the compiler is installed or on
a different machine.

Note: The utilization reporting tool requires read access to all the .cuf files.
You can use either of the following methods to make the files accessible in this
example:

* Use a network file system, such as NFS, DFS, or AFS.

* Copy the files from their original locations to the machine where you plan to
run the utilization reporting tool. You can use ftp, rcp, rsync or any other
remote copy command to copy the files.

The following diagram illustrates this scenario.

52 XLC: Compiler Reference

Utilization tracking Utilization reporting

@ User: user1 @ User: user3

Machine A Machine C
Invoke the compiler Invoke the urt
Read report
Compiler | — Write —» .cuf urt
to file in (—
I fhome/user1 Read | Generate
Read
Read
¢ Copy
1
Utilization tracking L Report
configuration file < cuf

urt configuration file

@ User: user2

Machine B

Invoke the compiler

Copy
Compiler | — Write —» .cuf
to file in
| /home/user2

Read

v

Utilization tracking
configuration file

1. user3 copies the .cuf files to Machine C. A cron job can be created to copy the files automatically on a regular
basis.

Figure 8. Compiler users use multiple machines, with multiple .cuf files

This diagram reflects the following points:
1. Utilization tracking is configured respectively on Machine A and Machine B.

Notes:

 Although each machine has its own configuration file, the contents of these
files must be the same.

* Centrally managing the utilization tracking functionality can reduce your
configuration effort and eliminate possible errors. The

Chapter 3. Tracking and reporting compiler usage 53

fconfiguration” on page 55| section provides detailed information about how
you can use a common configuration file shared by compiler users using
different machines.

2. When userl and user2 invoke the compilers, the utilization information is
recorded in the two .cuf files under their respective home directories,
/home/userl and /home/user2.

Note: These .cuf files can also be created in another common location, for
example, /var/tmp. The [“Usage file location” on page 56| section provides
detailed information about how to create these files in a common location.

3. user3 copies the two .cuf files from Machine A and Machine B to Machine C.
4. user3 invokes urt to generate usage reports from the .cuf files on Machine C.

Related information

* [“Preparing to use this feature”]

+ [“Configuring utilization tracking” on page 60|
* ["Generating usage reports” on page 68|

* [“Pruning usage files” on page 71|

Preparing to use this feature

Before enabling utilization tracking within your organization, you must consider
certain factors related to how the compiler is used in your organization.

The following sections describe those considerations in detail:

Time synchronization

If you plan to track the utilization of the compiler on more than one machine, you
must consider synchronizing the time across the machines.

The usage report generated by the utilization reporting tool lists the time when the
compiler invocations start and end. The report also determines which invocations
are concurrent. The accuracy and validity of this information will be affected if
time is not synchronized across these machines.

If you are unable to synchronize time across different machines, you can use the
option to instruct the utilization reporting tool to adjust the times

that have been recorded.

License types and user information

Before you start to use this feature, you need the number and type of license
entitlements for your organization.

The license and user information that you need are as follows:

* The number of Concurrent User licenses that you have for this compiler. This
information is required for the -qgmaxconcurrentusers|entry in the utilization
tracking configuration file.

* The users who have their own Authorized User license for this compiler. This
information is used for the [-gexemptconcurrentusers| entry in the utilization
tracking configuration file.

* The users who use the compiler with multiple accounts. This information is used
for the option for the utilization reporting tool.

54 XxLC: Compiler Reference

Note: It is not mandatory to specify the users who have their own Authorized
User license and the users who use the compiler with multiple accounts, but
specifying them improves the accuracy of the usage reports generated by the
utilization reporting tool. For detailed information, see [“Concurrent user|
[considerations.”]

Central configuration

Configuring utilization tracking the same for all compiler users is very important,
because it can ensure the accuracy of your utilization tracking, and minimize your
configuration and maintenance effort. You can achieve this by ensuring that all
users use the same utilization tracking configuration file.

If you have only one installation of the compiler, you can directly edit the
utilization tracking configuration file. Every compiler user can automatically use
that configuration file.

If you have multiple installations of the compiler, you need to maintain a single
utilization tracking config file and reference it from all installations. Any changes
you make to the utilization tracking configuration file, including enabling or
disabling utilization tracking, can automatically apply to all compiler installations
when users invoke the compiler. In each installation, there is a symlink named
urt_client.cfg, located in /opt/IBM/x1c/13.1.3/urt. Modify the symlink to point
to this shared instance of the configuration file.

If the compiler is installed on multiple machines, the utilization tracking
configuration file needs to be placed on a network file system, such as NFS, DFS,
or AFS, to be used by the compiler on each machine.

Note: If it is not possible for you to use a single utilization tracking configuration
file for all compiler users, you must ensure all utilization tracking configuration
files for each compiler installation are consistent. Using different configurations for
the same compiler is not supported.

Concurrent user considerations

Invocations of the compiler are considered concurrent when their start time and
end times overlap. This section provides the information about how the utilization
reporting tool counts concurrent users and the ways to increase the accuracy of the
usage reports.

When the utilization reporting tool counts concurrent users, it looks at the user
account information that has been captured in the usage files. The account
information consists of a user name, a user ID, and a host name. By default, each
unique combination of this account information is considered and counted as a
different user. However, invocations of the compiler by the following users must
not be included in the count of concurrent users:

* Users who have their own Authorized User license are considered exempt users,
because their use of the compiler does not consume any Concurrent User
licences.

* Users who have multiple accounts. Because the accounts belong to the same
user, invocations of the compiler while logged on using those accounts are
counted as usage by a single user.

Chapter 3. Tracking and reporting compiler usage 55

The utilization reporting tool can account for the above situations if you provide it
with information regarding exempt users and users with multiple accounts. Here is
how you can provide the information:

* Specify the Fgexemptconcurrentusers| entry in the utilization tracking
configuration file. This entry specifies users with Authorized User licenses.

* Specify the urt command-line option. This option specifies users

with multiple accounts.

Notes:

* When the number of concurrent users is adjusted with -qexemptconcurrentusers
or -gsameuser, the utilization reporting tool generates a message to indicate that
the concurrent usage information is adjusted.

* The number of concurrent users might be zero if all concurrent invocations are
invoked by exempt users. The tool also generates a message with this
information.

Usage file considerations

Usage (.cuf) files are used to store compiler usage information. This section
provides information that helps you decide how you want to generate and use
these files.

Usage file location
Usage files can be created in each user's home directory, or they can be created in a
central location for all users.

With utilization tracking enabled, when a compiler user compiles a program, a
.cuf file is automatically created in the user's home directory in case the file does
not exist. This is convenient for testing the utilization tracking feature because
users already have write access to their own home directories, which means no
additional setup is required. However, this might have the following issues:

* Compiler users might not know that the file has been created or what it is when
they see the file. In this case, they might delete the file.

* Some users' home directories might be on file systems that are mounted from a
remote system. This causes utilization tracking to use a remote file, which might
affect performance.

* Compiler users might not want usage files to take up space in their home
directory.

A good alternative is to set up a central location where the usage files can be
created, and provide appropriate access to that location for both the compiler users
and the utilization reporting tool users. This can be set up by using the
other/world permissions or by using group permissions.

For example, if the central location is a directory named /var/tmp/
track_compiler_use, you can modify the entry in the utilization
tracking configuration file as follows:
-qusagefileloc=/var/tmp/track_compiler_use/$LOGNAME.cuf

This creates a .cuf file for each user in the specified location, such as userl.cuf or
user2.cuf. It is easier to run the utilization reporting tool to generate the usage
report from the .cuf files in this central location. You only need to pass the path of
the location, /var/tmp/track_compiler_use to the utilization reporting tool , and
then the tool can read all the .cuf files in that location.

56 XLC: Compiler Reference

If the compiler users are running the compiler on more than one machine, you
need to add $HOSTNAME to the entry to ensure that there are no
collisions in the file names. For example, you can specify the -qusagefileloc entry

as follows:
-qusagefileloc=/var/tmp/track compiler use/$HOSTNAME $LOGNAME.cuf

This creates a .cuf file for each user, and the name of that .cuf file also contains
the name of the host on which the compiler is used, such as hostl_userl.cuf.

The number of usage files
You can use one usage file or separate usage files for different compiler users.

Using separate usage files for different compiler users

The advantages of using separate usage files are as follows:

* It might provide better performance because compiler users access their own
usage files instead of competing for access to a shared one and separate usage
files are usually smaller.

» Usage file for a user can be automatically created when the user uses the
compiler to compile a program. There is no need to explicitly create a usage file
for each user beforehand. For more information, see [“Usage file location” on|

* When generating utilization reports, you usually include all compiler users.
However, if there are circumstances in which you want to exclude some users,
you can simply omit their usage files when you invoke the utilization reporting
tool. For example, you might want to omit users who have their own
Authorized User license.

The disadvantage is that you might have to maintain separate usage files for
different users.

Using a single usage file for all compiler users

The advantage of using a shared usage file for all users is that you only need to

maintain a single file instead of multiple files. However, with a single usage file,

you lose the flexibility and possible performance benefits of using multiple usage
files, as described in the preceding subsection.

The compiler provides an empty usage file urtstub.cuf in the
opt/IBM/x1c/13.1.3/urt directory. You can create a usage file for all compiler users
by copying the empty usage file to a directory where they all have write access. In
this case, you need to change the entry in the utilization tracking
configuration file to point to the location of the usage file.

Usage files on multiple machines
If you use the compiler on multiple machines, you need to decide how to make the
usage files available for the utilization reporting tool.

You can use various methods to make the usage files available for the utilization
reporting tool to generate usage reports and prune the usage files. Choose one of
the following approaches to manage usage files on multiple machines:

* Copy the usage files from the machines where the compiler is used to the
machine where the utilization reporting tool is installed. You can use any remote
copy command, for example, ftp, rcp, scp, and rsync. In this case, the usage files

Chapter 3. Tracking and reporting compiler usage 57

are being accessed locally by both the compiler, for utilization tracking, and by
the utilization reporting tool, for generating the usage report. Accessing the files
locally yields the best performance.

* Use a distributed file system to export the file system from the machines where
the compiler is used, and mount those file systems on the machine where the
utilization reporting tool is installed. When you run the utilization reporting
tool, it can access the usage files remotely via the mounted file systems.

* You can also export the file system from the machine where the utilization
reporting tool is installed, and mount that file system on each machine where
the compiler is used, using it as the location of the usage files where the
compiler is recording its utilization. In this approach, the compiler records
utilization in a remote usage file, and the utilization reporting tool reads the
usage file locally.

Note: If you find this degrades the performance of the compiler, consider using
one of the first two approaches instead.

Usage file size

You need to consider the fact that the size of the usage files might grow quickly,
especially when you use a shared file for all compiler users. If the usage file gets
too large, it might affect utilization tracking performance.

To keep the usage files from growing quickly, you can optionally prune the usage
files when you generate usage reports. You can also prune the files regularly using
cron.

For more information about how to prune files, see [“Pruning usage files” on page|

Regular utilization checking

You can run the utilization reporting tool on a regular basis to verify whether the
usage of the compiler is compliant with the Concurrent User licenses you have
purchased. You can create a cron job to do this automatically.

If the usage files need to be copied to the machine where the utilization reporting
tool is running, you can also automate the copying task with a cron job.

Another reason for running the tool regularly is to prune the usage files to control
the size of these files.

Note: To reduce contention for read and write access to the usage files, run the
utilization reporting tool or copy the usage files when the compiler is not being
used.

Testing utilization tracking

Before you begin to track the compiler usage for all users in your organization,
you can test the feature with a limited number of users or with a separate compiler
installation. During this testing, you can try different configurations so as to decide
the best setup for your organization.

Testing with a limited number of users

To enable compiler utilization tracking for a limited number of users, you can use
a separate utilization tracking configuration file and ask only these users to use the

58 XxLcC: Compiler Reference

file. Other users of the same installation use the default utilization tracking
configuration file in which utilization tracking is disabled, and their use of the
compiler is therefore not recorded.

The default compiler configuration file, xlc.cfg.61 or xlc.cfg.71 contains two entries,

xlurt_cfg_path and xlurt_cfg_name, which specify the location of the utilization
tracking configuration file. You need to perform the following tasks to let the
specified users use the separate utilization tracking configuration file:

1. Create a separate compiler configuration file or stanza, in which the

xlurt_cfg_path and xlurt_cfg_name entries specify the location of the utilization

tracking configuration file you want to use.

2. Ask these users to use the following compiler option or environment variable

to instruct the compiler to use the separate compiler configuration file or
stanza, which in turn allows them to use the separate utilization tracking
configuration file.

* The @ option
¢ The |XLC_USR_CONFIG kenvironment variable

Example 1

When you use the default configuration file and a new stanza xIc_urt to compile

your program myprogram.c, follow two steps:

1. Create the stanza in corresponding x1c.cfg.61 or xTc.cfg.71 compiler
configuration file. For example:

xTc_urt: use = DEFLT
xlurt_cfg_path=$location_of_separate_utilization_conf_file
xlurt_cfg_name=$name_of_separate_utilization_conf_file

crt = /1ib/crt0.0

mcrt = /1ib/mcrt0.0

gcrt = /1ib/gcrt0.o

libraries = -L/opt/IBM/x1c/13.1.3/1ib,-1xlopt,-1x1,-1c

proflibs = -L/1ib/profiled,-L/usr/1ib/profiled

options = -qlanglvi=extc99,-qcpluscmt,-gkeyword=inline,-qalias=ansi

2. Use the following command to compile myprogram.c:
xTc myprogram.c -F:xIc_urt

Example 2

When you use the newly created compiler configuration file myconfig.cfg to

compile your program myprogram.c, follow two steps:

1. Set xlurt_cfg_path and xlurt_cfg_name entries to the location and name of
separate utilization tracking configuration file accordingly. For example:

DEFLT_C:
use =DEFLT
xlurt_cfg_path=$location_of_separate_utilization_conf_file
xlurt_cfg_name=$name_of_separate_utilization_conf_file

DEFLT_CPP:
use =DEFLT
xlurt_cfg_path=$location_of_separate_utilization_conf_file
xlurt_cfg_name=$name_of_separate_utilization_conf _file

2. Use either one of the following commands to compile myprogram.c:

export XLC_USR_CONFIG="$location_of _newly created_configuration_file/myconfig.cfg"
x1c myprogram.c

or

x1c myprogram.c -F$Tocation_of newly created_configuration_file/myconfig.cfg

Chapter 3. Tracking and reporting compiler usage

59

Note: This approach is only for testing the utilization tracking feature. Do not use
it for tracking all compiler utilization in your organization unless you can ensure
that all compiler invocations are done with the -F option or the
XLC_USR_CONFIG environment variable set.

Testing with a separate compiler installation

You can install a separate instance of the compiler for testing utilization tracking.
In this case, you can directly modify the utilization tracking configuration file in
that installation to enable and configure utilization tracking. The compiler users
involved in the testing do not need to perform any task for the tracking.

When you are satisfied that you have found the best utilization tracking
configuration for your organization, you can enable it for all compiler users in
your organization.

Related information
+ |[“Configuring utilization tracking”]

Configuring utilization tracking

You can use the utilization tracking configuration file to enable and configure the
utilization tracking functionality.

The default location of the configuration file is /opt/IBM/x1c/13.1.3/urt and its
file name is urtx1cl302aix.cfq.

The compiler uses a symlink to specify the location of the utilization tracking

configuration file. The symlink is also located in /opt/IBM/x1c/13.1.3/urt and its

name is urt_client.cfg. In the following situations, you might need to change the

symlink:

* If you want to use a utilization tracking configuration file in a different location,
change the symlink to point to that location.

* If you have multiple installations of the same compiler, and you plan to use a
single utilization tracking configuration file, change the symlink in each
installation to point to that file. For more information, see
[configuration” on page 55|

Note: Installing a PTF update does not overwrite the utilization tracking
configuration file.

You can use the entries in the utilization tracking configuration file to configure
how compiler usage is tracked. For details about the specific entries in that file and
how thefr can be modified, see [“Editing utilization tracking configuration file|

entries.”

Editing utilization tracking configuration file entries

You can configure different aspects of utilization tracking by editing the entries in
the utilization tracking configuration file.

The entries are divided into two categories.

1. The entries in the Product information category identify the compiler. Do not
modify these entries.

60 XxLC: Compiler Reference

2. The entries in the Tracking configuration category can be used to configure
utilization tracking for this product. Changes to these entries take effect in the
usage file upon the next compiler invocation. In this case, the compiler emits a
message to indicate that the new configuration values have been saved in the
usage file. When you generate a report from the usage file, the new values are
used.

The following rules apply when you modify the entries:

* The following entries are written to the usage files whenever you change them,
and they are used the next time the utilization reporting tool generates a report
from the usage files. These configuration entries must be the same for all
compiler users.

— -gqmaxconcurrentusers
— -qexemptconcurrentusers
— -qqualhostname

* If -qqualhostname is changed, you must discard any existing usage files and
start tracking utilization again with new usage files. Otherwise some invocations
are recorded with qualified host names and some are recorded with unqualified
host names.

Notes:

* The entries are not compiler options. They can only be used in the utilization
tracking configuration file.

* If the -qexemptconcurrentusers entry is specified multiple times in the
utilization tracking configuration file, all the specified instances are used. If other
entries are specified multiple times, the value of the last one overrides previous
ones.

* The compiler generates a message if you specify the above entries with different
values for different users when using more than one utilization tracking
configuration file. You must modify the entries to keep them consistent, or make
sure all compiler users use a single utilization configuration file.

Product information

-gprodId=product identifier string
Indicates the unique product identifier string.

-gprodVer=product_version
Indicates the product version.

-gprodRel=product_release
Indicates the product release.

-qprodName=product_name
Indicates the product name.

-qconcurrentusagescope=prod | ver | rel
Specifies the level at which concurrent users are counted, and their numbers
are limited. The suboptions are as follows:

* prod indicates the product level.
* ver indicates the version level.

¢ rel indicates the release level.

Default: -qconcurrentusagescope=prod

Chapter 3. Tracking and reporting compiler usage 61

Tracking configuration

-gmaxconcurrentusers=number

Specifies the maximum number of concurrent users. It is the number of
Concurrent User licenses that you have purchased for the product. When the
utilization reporting tool generates a report from the usage file, it determines
whether your compiler usage in your organization has exceeded this maximum
number of concurrent users.

Note: You must update this entry to reflect the actual number of Concurrent
User licenses that you have purchased.

Default: 0

-gexemptconcurrentusers ="user account_info 1 [| user_account _info 2 | ...
| user_account_info_n]"

Specify exempt users who have their own Authorized User license. Exempt
users can have as many concurrent invocations of the compiler as they want,
without affecting the number of Concurrent User licenses available in your
organization. When the utilization reporting tool generates a usage report, it
does not include such users in the count of concurrent users.

user_account_info can be any combination of the following items:
* name(user_name)

* uid(user_ID)

* host(host_name)

Users whose information matches the specified criteria are considered exempt

users. For example, to indicate that user1@hostl and user2@host1 are exempt

users, you can specify this entry in either of the following forms:

* -gexemptconcurrentusers="name(userl)host(hostl)"
-gexemptconcurrentusers="name(user2)host (host1)"

* -gexemptconcurrentusers="name (userl)host(hostl) | name(user2)host(host1)"

For user_name, user_ID, and host_name, you can also use a list of user names,
user IDs, or hostnames separated by a space within the parentheses. For
example:

-gexemptconcurrentusers="name(userl user2)host(hostl)"
This is equivalent to the previous examples.

Note: Specifying this entry does not exempt users from compiler utilization
tracking. It only exempts them from being counted as concurrent users. To
optimize utilization tracking performance, the format of the specified value is
not validated until the report is produced. For more information about
counting concurrent users, see [‘Concurrent user considerations” on page 55,

-qqualhostname | -qnoqualhostname

Specifies whether host names that are captured in usage files and then listed in
compiler usage reports are qualified with domain names.

If all compiler usage within your organization is on machines within a single
domain, you can reduce the size of the usage files by using -qnoqualhostname
to suppress domain name qualification.

Default: -qqualhostname, which means the host names are qualified with
domain names.

-genabletracking | -qnoenabletracking

62 XLC: Compiler Reference

Enables or disables utilization tracking.

Default: -qnoenabletracking, which means utilization tracking is disabled.
-qusagefileloc=directory or_ file _name

Specifies the location of the usage file.

By default, a .cuf file is automatically created for each user in their home
directory. You can set up a central location where the files for each user can be
created. For more information, see [“Usage file location” on page 56

The following rules apply when you specify this entry:

* If a file name is specified, it must have the .cuf extension. If the file is a
symlink, it must point to a file with the.cuf extension. If the specified file
does not exist, a .cuf file is created, along with any parent directories that
do not already exist.

* If a directory is specified, there must be exactly one file with the .cuf
extension in the directory. A new file is not created in this case.

* The path of the specified directory can be a relative or an absolute path.
Relative paths are relative to the compiler user's current working directory.

Note: If a compiler user cannot access the file, for example, because of
insufficient permissions to use or create the file, the compiler generates a
message and the compilation continues.

You can use the following variables for this option:
* $HOME for the user's home directory. This allows each user to have a .cuf
file in their home directory or a subdirectory of their home directory.

* $USER or SLOGNAME for the user's login user name. You can use this
variable to create a .cuf file for each user and include the user's login name
in the name of the .cuf file or in the name of a parent directory.

* $HOSTNAME for the name of the host on which the compiler runs. This can
be useful when you track utilization across different hosts.
-qfileaccessmaxwait=number_of milliseconds

Specifies the maximum number of milliseconds to wait for accessing the usage
file.

Note: This entry is used to account for unusual circumstances where the
system is under extreme heavy load and there is a delay in accessing the usage
file.

Default: 3000 milliseconds

Notes:
* These entries are not compiler options. They can only be used in the utilization
tracking configuration file.

* If the -qexemptconcurrentusers entry is specified multiple times in the
utilization tracking configuration file, all the specified instances are used. If other
entries are specified multiple times, the value of the last one overrides previous
ones.

Chapter 3. Tracking and reporting compiler usage 63

Understanding the utilization reporting tool

You can use the utilization reporting tool to generate compiler usage reports from
the information in one or more usage files, and optionally prune the usage files
when you generate the reports.

The tool is located in the /opt/ibmurt/1.2/bin directory. You can use the urt
command to invoke it. The syntax of the urt command is as follows:

»—Urt

Y
A

|—command_l ine_opt ions—|

The generated report is displayed on the standard output. You can direct the
output to a file if you want to keep the report.

Command-line options control how usage reports are generated. For more
information about the options, see [“Utilization reporting tool command-line|

options.”

A default configuration file ibmurt.cfg is provided in the /opt/ibmurt/1.2/config
directory. Entries in this file take the same form as the command-line options and
have the same effect. You can also create additional configuration files and use the

option to specify their names.

You can specify the options in one or more of the following places:

* The default configuration file
* The additional configuration file specified with -qconfigfile
* The command line

The utilization reporting tool uses the options in the default configuration file
before it uses the options on the command line. When it encounters a -qconfigfile
option on the command line, it reads the options in the specified configuration file
and puts them on the command line at the place where the -qconfigfile option is
used.

If an option is specified multiple times, the last specification that the tool
encounters takes effect. Exceptions are |-qconfigfile|and |-qgsameuser} For these two
options, all specifications take effect.

Utilization reporting tool command-line options

The utilization reporting tool command-line options control the generation of the
compiler utilization report.

Use these command-line options to modify the details of your compiler utilization
report.

-qreporttype=detail | maxconcurrent

Specifies the type of the usage report to generate.

* detail specifies that all invocations of the compiler are listed in the usage
report. With this suboption, you can get a detailed report, in which the
invocations that have exceeded the allowed maximum number of concurrent
users are indicated.

64 XxLC: Compiler Reference

* maxconcurrent specifies that only the compiler invocations that have
exceeded the allowed maximum number of concurrent users are listed. With
this suboption, you can get a compact report, which does not list those
invocations within the maximum number of allowed concurrent users.

Note: The allowed maximum number of concurrent users is specified with the
fgmaxconcurrentusers| entry in the utilization tracking configuration file.

Default: -qreporttype=maxconcurrent.
-qrptmaxrecords=num | nomax

Specifies the maximum number of records to list in the report for each product.
num must be a positive integer.

Default: -qrptmaxrecords=nomax, which means all the records are listed.
-qusagefileloc=directory or_file_name

Specifies the location of the usage files for report generation or pruning. It can
be a list of directories or file names, or both, separated by colons.
The following rules apply when you specify this option:

* If one or more directories are specified, all files with the .cuf extension in
those directories are used. Subdirectories can also be searched by using the
-qmaxsubdirs option.

* The path of the specified directory can be relative or absolute. Relative paths
are relative to the compiler user's current working directory.

* A symlink does not require the .cuf extension but the file to which it points
must have that extension.

Note:

* The entry in the utilization tracking configuration file tells the

compiler which usage files to use for recording compiler utilization. This
-qusagefileloc option tells the utilization reporting tool where to find those
usage files.

Default: ..:$HOME, which means the utilization reporting tool looks for usage
files in your current working directory and your home directory.

-gmaxsubdirs=num | nomax

Specifies whether to search subdirectories for usage files, and how many levels
of subdirectories to search. num must be a non-negative integer.

If nomax is specified, all the subdirectories are searched. If 0 is specified, no
subdirectories are searched.

Default: 0.
-qconfigfile=file path
Specifies the user defined configuration file that you want to use.

For more information about how the utilization reporting tool uses the
configuration file, see [“Understanding the utilization reporting tool” on page|

Note: If you specify this option multiple times, all specified instances are used.

-gqsameuser=user_account_info

Chapter 3. Tracking and reporting compiler usage 65

66 XLC: Compiler Reference

Specifies different user accounts that belong to the same compiler user. Use
this option when a user accesses the compiler from more than one user ID or
machine to avoid having that user reported as multiple users. Invocations of
the compiler by these different accounts are counted as a single user instead of
multiple different users.

user_account_info can be any combination of the following items:
* name(user_name)

* uid(user_ID)

* host(host_name)

There are two ways to pass these rules to the utilization reporting tool. You
can supply specific lists of the user_names, user_IDs orhost_names that are
shared by the same user or you can use a more generic (=) syntax.

For example, to indicate that userl and user2 are both user names belonging to
the same person who uses the compiler on the host1 machine, use the syntax in
which you specify these user names and the host name explicitly:

-gsameuser="name (userl)host (hostl) | name(user2)host(host1)"

or
-gsameuser="name(userl user2)host(host1)"

Both of these examples use specific user names and host names to indicate
accounts that belong to the same user, but they do so in slightly different ways.
The first example uses a vertical bar to separate the different user accounts that
belong to this user, while the second example uses a list of user names within
the parentheses instead of repeating the same host information twice. They
both convey the same account information, but the second example is more
concise.

As an example of the more generic (=) syntax, you can indicate that all user
accounts with the same user name and uid belong to the same user as follows:

-gsameuser="name(=)uid(=)"

With this option, you are not specifying specific user names or uids as you did
in the previous example. User accounts that have the same user name and uid
are considered as belonging to the same user, regardless of what the specific
user names and uids are, and regardless of what the host name is. This
establishes a general rule that applies to all accounts in your organization
instead of specific ones.

The following rules apply when you specify this option:

* Each instance of the -qsameuser option must use either the list or generic
(=) syntax. You cannot combine them in the same instance of the option but
you can use multiple instances of the -qsameuser option to refine the report.

* The utilization reporting tool matches the user information based on the
order that the -qsameuser option values are specified. Once it finds a match
it stops matching the same user information against any subsequent options.
The following examples illustrate the differences:

— If you specify the -qsameuser option as follows:
-qsameuser="name (userl)" -gsameuser="uid(=)"

Specifying the -qsameuser option in this order means that user accounts
with the user name user] matches the first option and is not evaluated
against the second option. User accounts userl and user2 are not
considered the same user even if they have the same wuid.

— If you specify the -qsameuser option as follows:
-gsameuser="uid(=)" -gsameuser="name(userl)"

Specifying the -qsameuser option in this order means that user accounts
with the same uid are always considered to be the same user, and in
addition, any user accounts with a user name of userl should be
considered belonging to the same user even if they do not match by uid.

Note: Specifying this option does not prevent user information from being
listed in the usage report. For more information about concurrent users, see
[“Concurrent user considerations” on page 55.|

-qadjusttime=time adjustments

Adjusts the time that have been recorded in the usage files for the specified
machines. time_adjustments is a list of entries with the format of machine name +
| - number of seconds, separated by colons.

The following rules apply when you use this option:

* An entry of the form machine name + number of seconds causes the specified
number of seconds to be added to the start and end times of any invocations
recorded for the specified machine.

* An entry of the form machine name - number of seconds causes the specified
number of seconds to be subtracted from the start and end times of any
invocations recorded for the specified machine.

For example:

-gadjusttime="hostA+5:hostB-3"

Five seconds are added to the start and end times of the invocations on hostA,
and three seconds are subtracted from the start and end times of the
invocations on hostB.

Only use this option if the usage files contain utilization information from two
or more machines, and time is not synchronized across those machines. The
adjustments specified by this option compensate for the lack of
synchronization

Notes:

* The specified adjustments are only used for the current run of the urt
command. Specifying this option does not change the invocation information
recorded in the usage files.

* Do not specify the same machine name more than once with this option.
-qusagefilemaxage=number of days | nomax

Prunes the usage files by removing all invocations older than the specified
number of days.

Every usage file specified by the -qusagefileloc option is pruned. The usage
report contains this information to indicate the number of records that have
been pruned.

Default: -qusagefilemaxage=nomax, which means no pruning is performed.
-qusagefilemaxsize=number of MB | nomax

Prunes the usage files to keep them under the specified size. It prunes the files
by removing the oldest invocations.

Chapter 3. Tracking and reporting compiler usage 67

Every usage file specified by the -qusagefileloc option is pruned. The usage
report contains this information to indicate the number of records that have
been pruned.

Default: -qusagefilemaxsize=nomax, which means no pruning is performed.
-qtimesort=ascend | descend

Specifies the chronological order in which the usage report information is
sorted.

* Specifying ascend means new information is listed after the older
information.

* Specifying descend means the newest information is at the top of the report.

Default: -qtimesort=ascend.

Generating usage reports

You can use the utilization reporting tool to generate compiler usage reports based
on the usage information stored in the usage files.

To generate a report, use the command-line options or the urt configuration file to
specify how you want a report to be generated. For more information about these
options, see [“Utilization reporting tool command-line options” on page 64,

Notes:

* You can set up a cron service to run the utilization reporting tool on a regular
basis. If the usage files from which the tool generate reports need to be copied to
the machine where the tool is running, you can also automate this copying task
with cron.

* To reduce contention for read and write access to the usage files, do not run the
tool or copy the usage files when the compiler is being used.

The generated report is displayed on the standard output. You can direct the
output to a file if you want to keep the report.

After a usage report is generated, the utilization reporting tool uses the following

exit codes to indicate the compliance status of your compiler license:

* Exit code ="1".
The utilization reporting tool has detected that the number of Concurrent User
license entitlements specified in the |-qmaxconcurrentusers| entry in the
utilization tracking configuration file has been exceeded. See the generated
report for details and contact your IBM representative to purchase additional
Concurrent User licenses.

* Exit code ="0".

The compiler utilization is within the number of Concurrent User license
entitlements specified.

For more information about the urt command, see [“Understanding the utilization|
[reporting tool” on page 64

Understanding usage reports

You can use the report that the utilization report tool generates to analyze the
compiler usage in your organization.

68 XLC: Compiler Reference

The report has a REPORT SUMMARY section that lists the following information:
1. The date and time when the report was generated.
2. The .cuf file or a list of all .cuf files used to generate the report.

3. The options that were passed to the urt command, with default values for any
unspecified options.

4. Possible messages categorized as ERROR, WARNING, or INFO. For detailed
information about possible messages, see [“Diagnostic messages from utilization|
[fracking and reporting” on page 72

After the summary section, there is a REPORT DETAILS section for each compiler
version. This section lists all of the compiler invocations recorded in the usage files.
The content of these sections varies depending on the report type that you have
specified. For detailed information about the report types, see

Here are the sample reports generated with the two different report types:

Sample 1: A sample report generated with -qreporttype=detail
REPORT SUMMARY

DATE: 12/18/15 TIME: 01:30:24
OPTIONS USED (* indicates that a default value was used):

reporttype=detail

maxsubdirs=0
configfile="/opt/ibmurt/1.2/config/ibmurt.cfg"
rptmaxrecords=nomax

*adjusttime=
usagefileloc="/home/testrun/ibmx1compiler.cuf"
*sameuser=

timesort=ascend

usagefilemaxsize=nomax

usagefilemaxage=nomax

FILES USED:
/home/testrun/ibmx1compiler.cuf

REPORT DETAILS

USAGE INFORMATION FOR PRODUCT: IBM XL C for AIX 13.1.3
Max. Concurrent Users Exceeded? : *** YES x**

Max. Concurrent Users Allowed: 1 Max. Concurrent Users Recorded: 5
Exempt Users:

Product invocations:

Start Time End Time User Number of Concurrent Users
12/17/15 16:56:44 12/17/15 16:57:13 userl@hostl.ibm.com
12/18/15 00:58:29 12/18/15 00:58:32 user2@host2.ibm.com
12/18/15 01:16:01 12/18/15 01:16:02 user3@host3.ibm.com
12/18/15 01:16:02 12/18/15 01:16:26 user2@host2.ibm.com
12/18/15 01:16:08 12/18/15 01:16:08 user3@host2.ibm.com
12/18/15 01:16:12 12/18/15 01:16:12 user2@host1.ibm.com
12/18/15 01:16:24 12/18/15 01:16:28 userl@host2.ibm.com
12/18/15 01:26:11 12/18/15 01:27:46 user3@host3.ibm.com
12/18/15 01:26:27 12/18/15 01:27:46 userl@hostl.ibm.com

(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)
(exceeds max. allowed)

NN OTOTOT OO =

Chapter 3. Tracking and reporting compiler usage 69

12/18/15 01:29:59 12/18/15 01:30:00 user2@hostl.ibm.com 1

12/18/15 01:30:00 12/18/15 01:30:00 user2@host2.ibm.com 3 (exceeds max. allowed)
12/18/15 01:30:14 12/18/15 01:30:15 user3@hostl.ibm.com 3 (exceeds max. allowed)
12/18/15 01:30:14 12/18/15 01:30:14 user2@host2.ibm.com 3 (exceeds max. allowed)

Sample 2: A sample report generated with -qreporttype=maxconcurrent
REPORT SUMMARY

DATE: 12/18/15 TIME: 01:32:53
OPTIONS USED (* indicates that a default value was used):

reporttype=maxconcurrent

maxsubdirs=0
configfile="/opt/ibmurt/1.2/config/ibmurt.cfg"
rptmaxrecords=nomax

*adjusttime=
usagefileloc="/home/testrun/ibmx1compiler.cuf"
xsameuser=

timesort=ascend

usagefilemaxsize=nomax

usagefilemaxage=nomax

FILES USED:
/home/testrun/ibmx1compiler.cuf

REPORT DETAILS

USAGE INFORMATION FOR PRODUCT: IBM XL C for AIX 13.1.3

Max. Concurrent Users Exceeded? : #*x YES %

Max. Concurrent Users Allowed: 1 Max. Concurrent Users Recorded: 5
Exempt Users:

Dates and times where usage exceeded the maximum allowed:

Date Time Number of Concurrent Users Users

12/18/15 01:16:01 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@hostl.ibm.com
userl@host2.ibm.com

12/18/15 01:16:02 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@hostl.ibm.com
userl@host2.ibm.com

12/18/15 01:16:08 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@hostl.ibm.com
userl@host2.ibm.com

12/18/15 01:16:12 5 user3@host3.ibm.com
user2@host2.ibm.com
user3@host2.ibm.com
user2@hostl.ibm.com
userl@host2.ibm.com

12/18/15 01:16:24 5 user3@host3.ibm.com
user2@host2.ibm.com

70 XL C: Compiler Reference

user3@host2.ibm.com
user2@hostl.ibm.com
userl@host2.ibm.com

12/18/15 01:26:11 2 user3@host3.ibm.com
userl@hostl.ibm.com
12/18/15 01:26:27 2 user3@host3.ibm.com
userl@hostl.ibm.com
12/18/15 01:30:00 3 user2@host2.ibm.com

user2@hostl.ibm.com
user3@hostl.ibm.com
12/18/15 01:30:14 3 user2@host2.ibm.com
user2@hostl.ibm.com
user3@hostl.ibm.com
12/18/15 01:30:14 3 user2@host2.ibm.com
user2@hostl.ibm.com
user3@hostl.ibm.com

Note: There are circumstances under which an end time might not be recorded.

These might include:

* There was a major failure of the compiler, for example, power loss during a
compilation.

* The invocation had not ended at the time when the report was generated, or at
the time when the usage file was being copied.

* The permission to write to the usage file was revoked at some time before the
end time of the invocation was recorded.

An invocation with no end time recorded is not included in the count of
concurrent users.

Pruning usage files

Usage files grow with each compiler invocation. You can prune the usage files with
the utilization report tool.

When you generate a usage report, you can specify the following two options to
optionally prune the usage files:

* Lqusagefilemaxage} Removes the invocations older than the specified number of
days. For example, to remove all entries in the usage files older than 30 days,
use the following command:

urt -qusagefilemaxage=30

* |-qusagefilemaxsize} Removes the oldest invocations to keep the usage files
under the specified size. For example, to remove the oldest invocations to keep
the usage files under 30 MB, use the following command:

urt -qusagefilemaxsize=30

When usage files are pruned, the usage report includes an information message
that indicates the number of records that have been pruned. If you want to keep
the generated report after the files are pruned, you can redirect the output to a file.

To control the size of the usage files, you can prune the usage files on a regular
basis. You can create a cron job to do this automatically.

If you do not have the utilization reporting tool installed on each machine where

the usage files are located, you have the following options:

* Export the file system from each machine where the usage files exist and mount
it on the machine where the utilization reporting tool is installed. Then run the
tool to prune the usage files on the mounted network file system.

Chapter 3. Tracking and reporting compiler usage 71

* After copying the usage files to the machine where the utilization reporting tool
is installed, delete the files and use new usage files to capture any subsequent
compiler invocations. This approach might also speed up the report generation
because the utilization reporting tool is not accessing the usage files remotely
and it is not spending time pruning the usage files.

Pruning usage files might slow down the usage report generation process,
especially when the number or the size of the usage files is large. If you do not
want to prune the files every time you generate reports, you can set the values for
the -qusagefilemaxage and -qusagefilemaxsize options as follows:

* If you generate the report daily, you can specify these two options with very
high values so pruning does not occur. The default value nomax can be used in
this case.

* You can set appropriate values for these two options and use a separate cron job
to prune the usage files weekly.

Note: To reduce contention for read and write access to the usage files, do not run
the utilization report tool or copy the usage files when the compiler is being used.

Diagnostic messages from utilization tracking and reporting

The compiler generates diagnostic messages to indicate utilization tracking issues.
These messages can help you to fix the associated problems.

For example:

Utilization tracking configuration file could not be read due to
insufficient permissions.

This message indicates that you need read access for utilization tracking
configuration file.

When the utilization reporting tool is used to generate usage reports or prune
usage files, it also generates diagnostic messages. For example:

Unrecognized option -gmaxsubdir.
This message indicates that you have specified a wrong option.

Note: Possible error, warning, or information messages are also included in the
compiler usage report generated by the tool.

Tracking compiler usage with Software License Metric Tags logging

In addition to the utilization reporting tool, you can enable IBM Software License
Metric (SLM) Tags logging in the compiler so that IBM License Metric Tool (ILMT)
can track compiler license usage.

About this task

The compiler logs the usage of the following two types of compiler licenses:

* Authorized user licenses: Each compiler license is tied to a specific user ID,
designated by that user's uid.

¢ Concurrent user licenses: A certain number of concurrent users are authorized
to use the compiler license at any given time.

72 XLC: Compiler Reference

In IBM XL C for AIX, V13.1.3, SLM Tags logging is provided for evaluation
purposes only, and logging is enabled only when the -qxflag=slmtags compiler
option is specified to invoke the license metric logging. When logging is enabled,
the compiler logs compiler license usage in the SLM Tags format, to a file in the
/user_home/x1-s1mtags directory, where /user_home is the user's home directory.
The compiler logs each compiler invocation as either a concurrent user or an
authorized user invocation, depending on the presence of the invoking user's uid
in a file that lists the authorized users.

If your compiler license is an authorized user license, use the following steps to set
up XL compiler SLM Tags logging.

Procedure
1. Determine which user IDs are from authorized users.

2. Create a file with the name XLAuthorizedUsers in the /etc directory. The file
contains information for authorized users, one line for each user. Each line
should contain only the numeric uid of the authorized user followed by a
comma, and the Software ID (SWID) of the authorized product.

You can obtain the uid of a user ID by using the id -u username command,
where you replace username with the user ID you are looking up. Suppose that
you have three authorized users whose IDs are bsmith, rsingh, and jchen. For
these user IDs you enter the following commands and see the corresponding
output in a command shell:

$id -u bsmith

24461

$id -u rsingh

9204

$id -u jchen

7531

Then you create /etc/XLAuthorizedUsers with the following lines to authorize
these users to use the compiler:
24461,ae80b54aac3143fdb0248ec565554539

9204 ,ae80b54aac3143fdb0248ec565554539
7531,ae80b54aac3143fdb0248ec565554539

3. Set /etc/XLAuthorizedUsers to be readable by all users invoking the compiler:
chmod a+r /etc/XLAuthorizedUsers

What to do next

SLM Tags logging is enabled when you specify the -qxflag=slmtags option. You
can add this option to the compiler invocation command for a given invocation. If
you want all compiler invocations to have SLM Tags logging enabled, you can add
this option to the appropriate stanza in your compiler configuration file.

If a user's uid is listed in /etc/XLAuthorizedUsers, the compiler will log an
authorized user invocation along with the SWID of the compiler being used each
time the compiler is invoked with the -qxflag=slmtags option. Otherwise the
compiler will log a concurrent user invocation.

Note that XL compiler SLM Tags logging does not enforce license compliance. It
only logs compiler invocations so that you can use the collected data and IBM
License Metric Tool to determine whether your use of the compiler is within the
terms of your compiler license.

Related information:

Chapter 3. Tracking and reporting compiler usage 73

[[[BM License Metric Tool (ILMT)|

74 XLC: Compiler Reference

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM+License+Metric+Tool

Chapter 4. Compiler options reference

This section contains a summary of the compiler options available in XL C by
functional category, followed by detailed descriptions of the individual options.

Related information
* [“Specifying compiler options” on page 5|
* [“Reusing GNU C compiler options with gxlc” on page 11|

Summary of compiler options by functional category

The XL C options available on the AIX platform are grouped into the following
categories. If the option supports an equivalent pragma directive, this is indicated.
To get detailed information on any option listed, see the full description for that
option.

+ [“Output control”|

+ [“Input control” on page 76|

+ [“Language element control” on page 77|

+ [“Floating-point and integer control” on page 78|

s [“Error checking and debugging” on page 81|

+ |“Listings, messages, and compiler information” on page 84|

+ |[“Optimization and tuning” on page 85|

+ [“Object code control” on page 79|

* [“Linking” on page 89

+ [“Portability and migration” on page 90|

+ ["Compiler customization” on page 91|

* |“Deprecated options” on page 91|

Output control

The options in this category control the type of output file the compiler produces,
as well as the locations of the output. These are the basic options that determine
the following aspects:

* The compiler components that will be invoked
* The preprocessing, compilation, and linking steps that will (or will not) be taken
* The kind of output to be generated

Table 10. Compiler output options

Option name Equivalent pragma name Description

“-c” on page 114 None.

Instructs the compiler to compile or
assemble the source files only but do
not link. With this option, the output
is a .o file for each source file.

[“-C, -C!” on page 115| | None.

When used in conjunction with the
-E or -P options, preserves or
removes comments in preprocessed
output.

© Copyright IBM Corp. 1996, 2015 75

Table 10. Compiler output options (continued)

|Eage 302|

Option name Equivalent pragma name Description

[“-E” on page 136] None.

Preprocesses the source files named
in the compiler invocation, without
compiling, and writes the output to
the standard output.

[-G” on page 163] None.

Generates a shared object enabled
for runtime linking.

[“-gmakedep, -M” on| | None.

[page 226| Produces the dependency files that
are used by the make tool for each
source file.

[*-MF” on page 231 None.

Specifies the name or location for the
dependency output files that are
generated by the -qmakedep or -M
option.

“_qmkshrobj” on page| | None.

33| Creates a shared object from
generated object files.

[“-0” on page 235| None.

Specifies a name for the output
object, assembler, executable, or
preprocessed file.

[-P” on page 244 None.

Preprocesses the source files named
in the compiler invocation, without
compiling, and creates an output

preprocessed file for each input file.

[-S” on page 271] None.

Generates an assembler language file
for each source file.

[“-gshowmacros” onl None.

[page 276| Emits macro definitions to
preprocessed output.

[*-gtimestamps” on| None.

Controls whether or not implicit
time stamps are inserted into an
object file.

Input control

The options in this category specify the type and location of your source files.

Table 11. Compiler input options

Option name

Equivalent pragma name

Description

“-1” on page 172

None.

Adds a directory to the search path for
include files.

“_gidirfirst” on page|
173

#pragma options idirfirst

Searches for user included files in
directories that are specified by the -I
option before searching any other
directories.

76 XLC: Compiler Reference

Table 11. Compiler input options (continued)

|Bage 282|

Option name Equivalent pragma name |Description

“_ginclude” on page| |None.

1_76| Specifies additional header files to be
included in a compilation unit, as
though the files were named in an
#include statement in the source file.

[“-gsourcetype” on| None.

Instructs the compiler to treat all
recognized source files as a specified
source type, regardless of the actual
file name suffix.

“_gstdinc” on page|
29

#pragma options stdinc

Specifies whether the standard include
directories are included in the search
paths for system and user header files.

Language element control

The options in this category allow you to specify the characteristics of the source
code. You can also use these options to enforce or relax language restrictions and
enable or disable language extensions.

Table 12. Language element control options

Option name Equivalent pragma name |Description

“_qaltivec” on page| None

101 Enables the compiler support for
vector data types and operators.

[“-gasm” on page 105| | None
Controls the interpretation and
subsequent generation of code for
assembler language extensions.

“_gepluscmt” on page| |None.

12 Enables recognition of C++-style
comments in C source files.

[“-D” on page 126 None.
Defines a macro as in a #define
preprocessor directive.

[“-qdfp” on page 131] |None.

Enables compiler support for decimal
floating-point types and literals.

“_qdigraph” on pagel
13

#pragma options digraph

Enables recognition of digraph key
combinations to represent characters
that are not found on some keyboards.
Digraph key combinations include <:,
<%, and so on.

[“-gdollar” on page 133

#pragma options dollar

Allows the dollar-sign (§) symbol to
be used in the names of identifiers.

“-gignprag” on page|
175

#pragma options ignprag

Instructs the compiler to ignore certain
pragma statements.

77

Chapter 4. Compiler options reference

Table 12. Language element control options (continued)

Option name Equivalent pragma name |Description

“-qkeyword” on page| |None.
203 Controls whether the specified name

is treated as a keyword or as an
identifier whenever it appears in your
program source.

“_glanglvl” on pagel #pragma options langlvl,
006 #pragma langlvl Determines whether source code and
compiler options should be checked
for conformance to a specific language
standard, or subset or superset of a
standard.

“-glonglong” on page| |#pragma options long long
223 Allows IBM Tong Tong integer types in
your program.

“_gqmacpstr” on page| #pragma options macpstr
D24 Converts Pascal string literals
(prefixed by the \p escape sequence)
into null-terminated strings in which
the first byte contains the length of the
string.

[-qgmbcs, -qdbcs” onf #pragma options mbcs,)
[page 23] #pragma options dbcs Enables support for multibyte
character sets (MBCS) and Unicode

characters in your source code.

“_qtabsize” on pagel None.
304 Sets the default tab length, for the

purposes of reporting the column
number in error messages.

“_qtrigraph” on page| |None.
310 Enables the recognition of trigraph
key combinations to represent
characters not found on some
keyboards.

[-U” on page 313 None.

Undefines a macro defined by the
compiler or by the -D compiler option.

[“-qutf” on page 319| None.

Enables recognition of UTF literal
syntax.

Floating-point and integer control

Specifying the details of how your applications perform calculations can allow you
to take better advantage of your system's floating-point performance and precision,
including how to direct rounding. However, keep in mind that strictly adhering to
IEEE floating-point specifications can impact the performance of your application.
Use the options in the following table to control trade-offs between floating-point
performance and adherence to IEEE standards.

Table 13. Floating-point and integer control options

Option name Equivalent pragma name |Description

“_gbitfields” on page| |None.
111 Specifies whether bit fields are signed
or unsigned.

78 XLC: Compiler Reference

Table 13. Floating-point and integer control options (continued)

Option name

Equivalent pragma name

Description

[“-gchars” on page 118

#pragma options chars,
#pragma chars

Determines whether all variables of
type char is treated as signed or
unsigned.

[“-genum” on page 137|

#pragma options enum,
#pragma enum

Specifies the amount of storage
occupied by enumerations.

|“-gfloat” on page 146|

#pragma options float

Selects different strategies for
speeding up or improving the
accuracy of floating-point
calculations.

"gldbl128)

-glongdouble” onl

[page 212]

#pragma options 1dbl128

Increases the size of Tong double
types from 64 bits to 128 bits.

“_glonglit” on pagel
22

None.

In 64-bit mode, when determining
the implicit types for integer literals,
the compiler behaves as if an 1 or L
suffix were added to integral literals
with no suffix or with a suffix
consisting only of u or U.

|“-gstrict” on page 294|

#pragma options [no]strict
#pragma option_override
(function_name,

"opt (suboption_list)")

Ensures that optimizations that are
done by default at the -O3 and
higher optimization levels, and,
optionally at -O2, do not alter the
semantics of a program.

[“-y” on page 332

None.

Specifies the rounding mode for the
compiler to use when evaluating
constant floating-point expressions at
compile time.

Object code control

These options affect the characteristics of the object code, preprocessed code, or
other output generated by the compiler.

Table 14. Object code control options

Option name

Equivalent pragma name

Description

[‘-q32, -q64” on page|

o]

None.

Selects either 32-bit or 64-bit
compiler mode.

[“-galloca, -ma” on|

|Eage 100|

#pragma alloca

Provides an inline definition of
system function alloca when it is
called from source code that does
not include the alloca.h header.

[“-gconcurrentupdate”|

|0n page 123|

None.

Supports updating the operating
system while the kernel is
running.

Chapter 4. Compiler options reference

79

Table 14. Object code control options (continued)

Option name

Equivalent pragma name

Description

“_qexpfile” on page]

141

None.

When used together with the
-qmkshrobj or -G option, saves all

exported symbols in a designated
file.

“_ginlglue” on pagel

188

#pragma options inlglue

When used with -O2 or higher
optimization, inlines glue code
that optimizes external function
calls in your application.

[“-qpic” on page 254| None.
Generates position-independent
code suitable for use in shared
libraries.

[“-gppline” on page 255|| None.

When used in conjunction with
the -E or -P options, enables or
disables the generation of #1ine
directives.

[“-gproto” on page 262|

#pragma options proto

Specifies the linkage conventions
for passing floating-point
arguments to functions that have
not been prototyped.

[“-greserved_reg” on|

|Eage 265|

None.

Indicates that the given list of
registers cannot be used during
the compilation except as a stack
pointer, frame pointer or in some
other fixed role.

[“-gro” on page 267

#pragma options ro, #pragma

strings

Specifies the storage type for
string literals.

“_qroconst” on page]

268

#pragma options roconst

Specifies the storage location for
constant values.

272

[“-groptr” on page 270 | None.
Specifies the storage location for
constant pointers.

None.
Strips the symbol table, line
number information, and
relocation information from the
output file.

“_gsaveopt” on page| None.

Saves the command-line options
used for compiling a source file,
the user's configuration file name
and the options specified in the
configuration files, the version and
level of each compiler component
invoked during compilation, and
other information to the
corresponding object file.

80 xLcC: Compiler Reference

Table 14. Object code control options (continued)

Option name

Equivalent pragma name

Description

29

|“-gstackprotect” onl None. Provides protection against

|Eage 291| malicious input data or
programming errors that overwrite
or corrupt the stack.

“_gstatsym” on page| None.

Adds user-defined, nonexternal
names that have a persistent
storage class, such as initialized
and uninitialized static variables,
to the symbol table of the object
file.

“_qtbtable” on page]
305

#pragma options tbtable

Controls the amount of debugging
traceback information that is
included in the object files.

“_gthreaded” on page| |None.

30 Indicates to the compiler whether
it must generate threadsafe code.

[“-qtls” on page 307 None.

Enables recognition of the
__thread storage class specifier,
which designates variables that are
to be allocated thread-local
storage; and specifies the
threadlocal storage model to be
used.

“-qweakexp” on page| |None.

32 When used with the -qmkshrobj
or -G option, includes or excludes
global symbols marked as weak
from the export list generated
when you create a shared object.

[“-qweaksymbol” on| None.

[page 329 Enables the generation of weak
symbols.

[“-gxcall” on page 330 |None.

Generates code to treat static
functions within a compilation
unit as if they were external
functions.

Error checking and debugging

The options in this category allow you to detect and correct problems in your

source code. In some cases, these options can alter your object code, increase your
compile time, or introduce runtime checking that can slow down the execution of
your application. The option descriptions indicate how extra checking can impact

performance.

To control the amount and type of information you receive regarding the behavior
and performance of your application, consult the options in [Listings, messages |

[and compiler information” on page 84

Chapter 4. Compiler options reference

81

For information on debugging optimized code, see the XL C Optimization and
Programming Guide.

Table 15. Error checking and debugging options

Option name Equivalent pragma name Description

[“-# (pound sign)” on| |None.
[page 93 Previews the compilation steps
specified on the command line,
without actually invoking any
compiler components.

[-qcheck” on page 119|| #pragma options check

Generates code that performs certain
types of runtime checking.

“-qdbgfmt” on page] |None Specifies the format for the
129 debugging information in object files.

“-qdbxextra” on page| #pragma options dbxextra
130) When used with the -g option,

specifies that debugging information

is generated for unreferenced typedef
declarations, struct, union, and enum

type definitions.

[“-gdpcl” on page 134 | None.

Generates symbols that tools based
on the IBM Dynamic Probe Class
Library (DPCL) can use to see the
structure of an executable file.

“_gextchk” on page| #pragma options extchk
141 Generates link-time type checking

information and checks for
compile-time consistency.

“_gflttrap” on page| #pragma options flttrap

151 Determines what types of
floating-point exceptions to detect at
run time.

“_gformat” on page| None.

155 Warns of possible problems with
string input and output format
specifications.

“_gfullpath” on pagel #pragma options fullpath
156 When used with the -g or

-qlinedebug option, this option
records the full, or absolute, path
names of source and include files in
object files compiled with debugging
information, so that debugging tools
can correctly locate the source files.

“_qfunctrace” on page| | None. Calls the tracing routines to trace the
158] entry and exit points of the specified
functions in a compilation unit.

[“-¢” on page 160| None.

Generates debugging information for
use by a symbolic debugger, and
makes the program state available to
the debugging session at selected
source locations.

82 xLcC Compiler Reference

Table 15. Error checking and debugging options (continued)

Option name Equivalent pragma name | Description

[“-ghalt” on page 165| |#pragma options halt

Stops compilation before producing

any object, executable, or assembler

source files if the maximum severity
of compile-time messages equals or

exceeds the severity you specify.

|“-ghaltonmsg” onl None.

[page 166| Stops compilation before producing
any object files, executable files, or

assembler source files if a specified
error message is generated.

|“-gheapdebug” on| None.
[page 167] Enables debug versions of memory

management functions.

|“-ginfo” on page 178 #pragma options info,
#pragma info Produces or suppresses groups of
informational messages.

“-ginitauto” on page| |#pragma options initauto
18 Initializes uninitialized automatic
variables to a specific value, for
debugging purposes.

|“-gkeepparm” on| None.

IEage 202| When used with -O2 or higher
optimization, specifies whether
procedure parameters are stored on
the stack.

|“-glinedebug” on| None.

IEage 216| Generates only line number and
source file name information for a
debugger.

“_qmaxerr” on page| |None.
D2 Stops compilation when the number

of error messages of a specified
severity level or higher reaches a
specified number.

“_-goptdebug” on page| | None.

D39 When used with high levels of
optimization, produces files
containing optimized pseudocode
that can be read by a debugger.

“_gsymtab” on page| |None.

301 Determines the information that
appears in the symbol table.

[“-gsyntaxonly” on| None.
[page 302| Performs syntax checking without

generating an object file.

“_qwarn64” on page| |None.

30 Enables checking for possible data
conversion problems between 32-bit
and 64-bit compiler modes.

Chapter 4. Compiler options reference 83

Listings, messages, and compiler information

The options in this category allow your control over the listing file, as well as how
and when to display compiler messages. You can use these options in conjunction
with those described in [“Error checking and debugging” on page 81 to provide a
more robust overview of your application when checking for errors and
unexpected behavior.

Table 16. Listings and messages options

Option name Equivalent pragma name Description

[“-qattr” on page 108| #pragma options attr

Produces a compiler listing that
includes the attribute component
of the attribute and
cross-reference section of the

listing.

[“-gflag” on page 145| #pragma options flag
Limits the diagnostic messages to
those of a specified severity level
or higher.

[“-ghelp” on page 169 None. Displays the man page of the
compiler.

[“-glist” on page 217| #pragma options list

Produces a compiler listing file
that includes object and constant
area sections.

[“-glistfmt” on page 218 | None.

Creates a report in XML or
HTML format to help you find
optimization opportunities.

[“-qlistopt” on page 221 None.

Produces a compiler listing file
that includes all options in effect
at the time of compiler
invocation.

[“-gphsinfo” on page 253| | None.

Reports the time taken in each
compilation phase to standard
output.

[“-gprint” on page 259 None.

Enables or suppresses listings.

[“-greport” on page 263 None.

Produces listing files that show
how sections of code have been
optimized.

[“-gshowinc” on page 275| | #pragma options showinc

When used with -gsource option
to generate a listing file,
selectively shows user or system
header files in the source section
of the listing file.

84 xLcC Compiler Reference

Table 16. Listings and messages options (continued)

Option name

Equivalent pragma name

Description

[“-gskipsrc” on page 280

None.

When a listing file is generated
using the -qsource option,
-gskipsrc can be used to
determine whether the source
statements skipped by the
compiler are shown in the source
section of the listing file.
Alternatively, the -qskipsrc=hide
option is used to hide the source
statements skipped by the
compiler.

[“-gsource” on page 286|

#pragma options source

Produces a compiler listing file
that includes the source section of
the listing and provides
additional source information
when printing error messages.

[“-gsrcmsg” on page 290|

#pragma options srcmsg

Adds the corresponding source
code lines to diagnostic messages
generated by the compiler.

[“-gsuppress” on page 299

None.

Prevents specific informational or
warning messages from being
displayed or added to the listing
file, if one is generated.

[“-v, -V” on page 319

None.

Reports the progress of
compilation, by naming the
programs being invoked and the
options being specified to each
program.

[“-qversion” on page 321|

None.

Displays the version and release
of the compiler being invoked.

[“-w” on page 325|

None.

Suppresses warning messages.

|“-gxref” on page 330

#pragma options xref

Produces a compiler listing that
includes the cross-reference
component of the attribute and
cross-reference section of the
listing.

Optimization and tuning

The options in this category allow you to control the optimization and tuning
process, which can improve the performance of your application at run time.

Remember that not all options benefit all applications. Trade-offs sometimes occur
among an increase in compile time, a reduction in debugging capability, and the
improvements that optimization can provide.

You can also control some of these options, such as Optimize, -qcompact, or
-qgstrict, with an option_override pragma.

Chapter 4. Compiler options reference

85

In addition to the option descriptions in this section, consult the XL C Optimization
and Programming Guide for details about the optimization and tuning process as
well as writing optimization-friendly source code.

Table 17. Optimization and tuning options

Option name Equivalent pragma name Description

[“-gagercopy” on page| | None.

Enables destructive copy operations
for structures and unions.

["-qalias” on page 96| | None.
Indicates whether a program
contains certain categories of aliasing
or does not conform to C standard
aliasing rules. The compiler limits
the scope of some optimizations
when there is a possibility that
different names are aliases for the
same storage location..

[-gqarch” on page 102 | None.
Specifies the processor architecture
for which the code (instructions)
should be generated.

[“-gcache” on page 116 | None.

Specifies the cache configuration for
a specific execution machine.

“_gcompact” on page|
122]

#pragma options compact

Avoids optimizations that increase
code size.

"-qdataimported| None.

-gdatalocal, -gtocdata”| Marks data as local or imported.

on page 122]

[“-qdirectstorage” on| | None.

IBage 133| Informs the compiler that a given
compilation unit may reference
write-through-enabled or
cache-inhibited storage.

[“-gfdpr” on page 144] | None.

Provides object files with information
that the IBM Feedback Directed
Program Restructuring (FDPR®)
performance-tuning utility needs to
optimize the resulting executable file.

[“-ghot” on page 169

#pragma nosimd, #pragma
novector

Performs high-order loop analysis
and transformations (HOT) during
optimization.

“_gignerrno” on pagel
174

#pragma options ignerrno

Allows the compiler to perform
optimizations as if system calls
would not modify errno.

[“-gipa” on page 193|

None.

Enables or customizes a class of
optimizations known as
interprocedural analysis (IPA).

86 xLcC: Compiler Reference

Table 17. Optimization and tuning options (continued)

Option name

Equivalent pragma name

Description

|“-gisolated_call” onf

|Eage 199|

#pragma options
isolated_call, #pragma
isolated_call

Specifies functions in the source file
that have no side effects other than
those implied by their parameters.

“_glargepage” on page|

211

None.

Takes advantage of large pages
provided on POWER4 and higher
systems, for applications designed to
execute in a large page memory
environment.

“_qglibansi” on page]

21

#pragma options libansi

Assumes that all functions with the
name of an ANSI C library function
are in fact the system functions.

“_glibmpi” on page|

215

None.

Asserts that all functions with
Message Passing Interface (MPI)
names are in fact MPI functions and
not a user function with different
semantics.

“_qmaxmem” on page|
229

#pragma options maxmem

Limits the amount of memory that
the compiler allocates while
performing specific,
memory-intensive optimizations to
the specified number of kilobytes.

[“-gminimaltoc” on|

page 232

None.

Controls the generation of the table
of contents (TOC), which the
compiler creates for an executable
file.

1,

‘-0, -qoptimize” on|

|Eage 236|

#pragma options optimize

Specifies whether to optimize code
during compilation and, if so, at
which level.

250

[“-p, -pg, -gprofile” on| | None.

h;_,age 243| Prepares the object files produced by
the compiler for profiling.

[“-qpdf1, -qpdf2” onl None.

|Eage 242] Tunes optimizations through
profile-directed feedback (PDF), where
results from sample program
execution are used to improve
optimization near conditional
branches and in frequently executed
code sections.

“-qprefetch” on page| |None.

Inserts prefetch instructions
automatically where there are
opportunities to improve code
performance.

“_gprocimported|
-gproclocal |
-gprocunknown” on|

page 260|

#pragma options
procimported, #pragma

options proclocal, #pragma

options procunkown

Marks functions as local, imported,
or unknown.

87

Chapter 4. Compiler options reference

Table 17. Optimization and tuning options (continued)

27

Option name Equivalent pragma name Description

[“-ginline” on page 189|| None.
Attempts to inline functions instead
of generating calls to those functions,
for improved performance.

“_qrestrict” on page] None. Specifying this option is equivalent

266 to adding the restrict keyword to
the pointer parameters within the
specified functions, except that you
do not need to modify the source
file.

“-gshowpdf” on page| | None.

When used with -qpdf1 and a
minimum optimization level of -O2
at compile and link steps, creates a
PDF map file that contains additional
profiling information for all
procedures in your application.

[“-gsimd” on page 278

#pragma nosimd

Controls whether the compiler can
automatically take advantage of
vector instructions for processors that
support them.

|on page 288|

[“-gsmallstack” on| None.

IEage 281| Minimizes stack usage where
possible. Disables optimizations that
increase the size of the stack frame.

[“-gsmp” on page 281| |None.

Enables parallelization of program
code.

[“-gspeculateabsolutes”|| None.

Works with the -qtocmerge -bl:file
for non-IPA links and with the
-bl:file for IPA links to disable
speculation at absolute addresses.

[“-gstrict” on page 294|

#pragma options strict

Ensures that optimizations that are
done by default at the -O3 and
higher optimization levels, and,
optionally at -O2, do not alter the
semantics of a program.

309

[“-gstrict_induction” None.

lon page 299 Prevents the compiler from
performing induction (loop counter)
variable optimizations. These
optimizations may be unsafe (may
alter the semantics of your program)
when there are integer overflow
operations involving the induction
variables.

“_qtocmerge” on page| | None.

Enables TOC merging to reduce TOC
pointer loads and improves the
scheduling of external loads.

88 xLcC: Compiler Reference

Table 17. Optimization and tuning options (continued)

Option name

Equivalent pragma name

Description

|—gtung|

#pragma options tune

Tunes instruction selection,
scheduling, and other
architecture-dependent performance
enhancements to run best on a
specific hardware architecture.
Allows specification of a target SMT
mode to direct optimizations for best
performance in that mode.

“_qunroll” on pagel

314

#pragma options unroll,
#pragma unroll

Controls loop unrolling, for
improved performance.

“-qunwind” on pagel
31

None.

Specifies whether the call stack can
be unwound by code looking
through the saved registers on the
stack.

“_qvisibility” on page|
32

#pragma GCC visibility
push, #pragma GCC
visibility pop

Specifies the visibility attribute for
external linkage entities in object
files. The external linkage entities
have the visibility attribute that is
specified by the -qvisibility option if
they do not get visibility attributes
from pragma directives, explicitly
specified attributes, or propagation
rules.

Linking

Though linking occurs automatically, the options in this category allow you to
direct input and output to the linker, controlling how the linker processes your

object files.

Table 18. Linking options

Option name

Equivalent pragma name

Description

[“-b” on page 109|

None.

Sets special linker processing options.
This option can be repeated.

“_bmaxdata” on page]
11

None.

Sets the maximum size of the area
shared by the static data (both
initialized and uninitialized) and the
heap.

[“-brtl” on page 113|

None.

Enables runtime linking for the
output file. When you use -brtl with
the -1 option, the linker searches for a
library with the suffix of .so, as well
as of .a. Preference is given to .so over
.2 when libraries with the same name
are present in the same directory.

[“-gcrt” on page 124]

None.

Specifies whether system startup files
are to be linked.

Chapter 4. Compiler options reference 89

Table 18. Linking options (continued)

Option name Equivalent pragma name |Description

[“-e” on page 135| None.
When used together with the
-qmkshrobj option or -G option,
specifies an entry point for a shared
object.

None.
Names a file that stores a list of object
files for the compiler to pass to the
linker.

[-L” on page 205] None.
Searches the directory path for library
files specified by the -1 option.

“-1” on page 204 None.
Searches for the specified library file.
For static and dynamic linking, the
linker searches for libkey.a. For
runtime linking with the -brtl option,
the linker searches for libkey.so, and
then libkey.a if libkey.so is not found.

[“-glib” on page 213 None.
Specifies whether standard system
libraries and XL C libraries are to be
linked.

[“-Z” on page 333 None.

Specifies a prefix for the library search
path to be used by the linker.

Portability and migration

The options in this category can help you maintain application behavior
compatibility on past, current, and future hardware, operating systems and
compilers, or help move your applications to an XL compiler with minimal change.

Table 19. Portability and migration options

Option name

Equivalent pragma name

Description

[“-galign” on page 98]

#pragma options align,
#pragma align

Specifies the alignment of data
objects in storage, which avoids
performance problems with
misaligned data.

“_qgenproto” on page|
164]

None.

Produces prototype declarations from
K&R function definitions or function
definitions with empty parentheses,
and displays them to standard
output.

“_qupconv” on page|
318

#pragma options upconv

Specifies whether the unsigned
specification is preserved when
integral promotions are performed.

“_qvecnvol” on page|
320)

None.

Specifies whether to use volatile or
nonvolatile vector registers.

90 XLC: Compiler Reference

Compiler customization

The options in this category allow you to specify alternative locations for compiler
components, configuration files, standard include directories, and internal compiler
operation. These options are useful for specialized installations, testing scenarios,
and the specification of additional command-line options.

Table 20. Compiler customization options

241

Option name Equivalent pragma name |Description

“_gasm_as” on page| |None.

10 Specifies the path and flags used to
invoke the assembler in order to
handle assembler code in an asm
assembly statement.

[“-B” on page 110| None.

Specifies substitute path names for XL
C components such as the assembler,
C preprocessor, and linker.

“_qc_stdinc” on page| |None.

125 Changes the standard search location
for the XL C and system header files.

[“-F” on page 143| None.

Names an alternative configuration
file or stanza for the compiler.

[“-gpath” on page 245| | None.

Specifies substitute path names for XL
C components such as the compiler,
assembler, linker, and preprocessor.

“_goptfile” on pagel None. Specifies a file containing a list of

additional command line options to be
used for the compilation.

[“-gspill” on page 289

#pragma options spill

Specifies the size (in bytes) of the
register spill space, the internal
program storage areas used by the
optimizer for register spills to storage.

“-t” on page 303

None.

Applies the prefix specified by the -B
option to the designated components.

[“-W” on page 326

None.

Passes the listed options to a
component that is executed during
compilation.

Deprecated options

The compiler still accepts options that are listed in the following table. Options
without an asterisk have been replaced by other options or environment variables
that provide the same functionality. Options with an asterisk are obsolete, or can
produce unexpected results and are not guaranteed to perform as previously
documented. Use with discretion.

Table 21. Deprecated options

Option name

Replacement option

Q
-qansialias

Chapter 4. Compiler options reference 91

Table 21. Deprecated options (continued)

Option name Replacement option

-qarch = ppc | ppc64 | ppegr | ppcbdgr | -qarch=pwr4

ppcoégrsq

-qassert

-genablevmx -gsimd|

-gfloat=emulate*

-qfold -gfloat=fold|

-ghsflt -gfloat=hsflt

-ghssngl -gfloat=hssng

-ghot=simd | nosimd -gsimd|

-qinfo=private -greport

-ginfo=reduction -greport

-gipa=clonearch | noclonearch

-qipa=cloneproc | nocloneproc

-gipa=inline | noinline |- qipall-qinline| | |-gipalf-qnoinline|

-gipa=pdfname |- qpdfl=pdfname, -qpdf2=pdfname|

-glanglvl=[no]gnu_externtemplate |- glanglvl=[no]externtemplate]

-qmaf

-qrrm

-gsmp= schedule=affinity |- gsmp=schedule=guided|

-gsmp= nested_par | nonested_par The |“OMP_NESTED” on page 33|
environment variable or [“omp_set_nested”|
function

-gspnans

Individual option descriptions

This section contains descriptions of the individual compiler options available in
XL C.

For each option, the following information is provided:

Category
The functional category to which the option belongs is listed here.

Pragma equivalent
Many compiler options allow you to use an equivalent pragma directive to
apply the option's functionality within the source code, limiting the scope
of the option's application to a single source file, or even selected sections
of code.

When an option supports the #pragma options option_name and/or
#pragma name form of the directive, this is indicated.

Purpose
This section provides a brief description of the effect of the option (and
equivalent pragmas), and why you might want to use it.

Syntax
This section provides the syntax for the option, and where an equivalent

92 XLC: Compiler Reference

#pragma name is supported, the specific syntax for the pragma. Syntax for
#pragma options option_name forms of the pragma is not provided, as this
is normally identical to that of the option.

Note that you can also use the C99-style _Pragma operator form of any
pragma; although this syntax is not provided in the option descriptions.

For Comi lete details on pragma syntax, see [‘Pragma directive syntax” on|

Defaults
In most cases, the default option setting is clearly indicated in the syntax
diagram. However, for many options, there are multiple default settings,
depending on other compiler options in effect. This section indicates the
different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option and
pragma equivalents, where applicable. For suboptions that are specific to
the command-line option or to the pragma directive, this is indicated in the
descriptions.

Usage This section describes any rules or usage considerations you should be
aware of when using the option. These can include restrictions on the
option's applicability, valid placement of pragma directives, precedence
rules for multiple option specifications, and so on.

Predefined macros
Many compiler options set macros that are protected (that is, cannot be
undefined or redefined by the user). Where applicable, any macros that are
predefined by the option, and the values to which they are defined, are
listed in this section. A reference list of these macros (as well as others that
are defined independently of option setting) is provided in
[“Compiler predefined macros,” on page 403|

Examples
Where appropriate, examples of the command-line syntax and pragma
directive use are provided in this section.

-# (pound sign)
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Previews the compilation steps specified on the command line, without actually
invoking any compiler components.

When this option is enabled, information is written to standard output, showing
the names of the programs within the preprocessor, compiler, and linker that
would be invoked, and the default options that would be specified for each
program. The preprocessor, compiler, and linker are not invoked.

Chapter 4. Compiler options reference 93

Syntax

Usage

You can use this command to determine the commands and files that will be
involved in a particular compilation. It avoids the overhead of compiling the
source code and overwriting any existing files, such as .Ist files.

This option displays the same information as -v, but it does not invoke the
compiler. The -# option overrides the -v option.

Predefined macros
None.
Examples

To preview the steps for the compilation of the source file myprogram.c, enter:

x1c myprogram.c -#

Related information
* |“-v, -V” on page 319

-q32, -q64
Category

[Object code controll

Pragma equivalent

None.

Purpose

Selects either 32-bit or 64-bit compiler mode.

Use the -q32 and -q64 options, along with the -qarch and -qtune compiler options,
to optimize the output of the compiler to the architecture on which that output

will be used.

Syntax

32
o .

Defaults

-q32

94 XxLC: Compiler Reference

Usage

The -q32 and -q64 options override the compiler mode set by the value of the
OBJECT_MODE environment variable, if it exists.

Predefined macros
When -q64 is in effect, _ 64BIT__ is defined to 1; otherwise, it is undefined.
Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with a 32-bit Power architecture, enter:

x1c -o testing myprogram.c -q31 -garch=ppc

Related information

* [Specifying compiler options for architecture-specific compilation|
* [“-garch” on page 102
* [“-qtune” on page 310

-qaggrcopy
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

Enables destructive copy operations for structures and unions.

Syntax

nooverlap
|_oveﬂ ap —l »<

»— -g—aggrcopy—=

Defaults
-qaggrcopy=nooverlap

Parameters

overlap | nooverlap
nooverlap assumes that the source and destination for structure and union
assignments do not overlap, allowing the compiler to generate faster code.
overlap inhibits these optimizations.

Predefined macros

None.

Chapter 4. Compiler options reference 95

-qalias
Category

[Optimization and tuning|

Pragma equivalent
None
Purpose

Indicates whether a program contains certain categories of aliasing or does not
conform to C standard aliasing rules. The compiler limits the scope of some
optimizations when there is a possibility that different names are aliases for the
same storage location.

Syntax

—notypeptr—,
—restrict
—global
—noallptrs—
—ansi

—noaddrtaken—|
»— -g—alias—=—T—-addrtaken ><
—noansi
—allptrs
—noglobal
—norestrict—
—typeptr

Defaults

* -galias=noaddrtaken:noallptrs:ansi:global:restrict:notypeptr for all invocation
commands except cc.
-qalias=noaddrtaken:noallptrs:noansi:global:restrict:notypeptr for the cc
invocation command.

Parameters

addrtaken | noaddrtaken
When addrtaken is in effect, the reference of any variable whose address is
taken may alias to any pointer type. Any class of variable for which an address
has not been recorded in the compilation unit is considered disjoint from
indirect access through pointers.

When noaddrtaken is specified, the compiler generates aliasing based on the
aliasing rules that are in effect.

allptrs | noallptrs
When allptrs is in effect, pointers are never aliased (this also implies
-qalias=typeptr). Specifying allptrs is an assertion to the compiler that no two
pointers point to the same storage location. These suboptions are only valid if
ansi is also in effect.

ansi | noansi
When ansi is in effect, [type-based aliasing|is used during optimization, which

96 XLC: Compiler Reference

restricts the lvalues that can be safely used to access a data object. This
suboption has no effect unless you also specify an optimization option. You
can specify the may_alias attribute for a type that is not subject to type-based
aliasing rules.

When noansi is in effect, the optimizer makes worst case aliasing assumptions.
It assumes that a pointer of a given type can point to an external object or any
object whose address is already taken, regardless of type.

global | noglobal

When global is in effect, type-based aliasing rules are enabled during IPA
link-time optimization across compilation units. Both -qipa and -qalias=ansi
must be enabled for -qalias=global to take effect. Specifying noglobal disables
type-based aliasing rules.

-qalias=global produces better performance at higher optimization levels and
also better link-time performance. If you use -qalias=global, it is recommended
that you compile as much as possible of the application with the same version
of the compiler to maximize the effect of the suboption on performance.

restrict | norestrict

When restrict is in effect, optimizations for pointers qualified with the
restrict keyword are enabled. Specifying norestrict disables optimizations for
restrict-qualified pointers.

-qalias=restrict is independent from other -qalias suboptions. Using the
-qalias=restrict option usually results in performance improvements for code
that uses restrict-qualified pointers. Note, however, that using
-qalias=restrict requires that restricted pointers be used correctly; if they are
not, compile-time and runtime failures may result. You can use norestrict to
preserve compatibility with code compiled with versions of the compiler
previous to V9.0.

typeptr | notypeptr

When typeptr is in effect, pointers to different types are never aliased. The
typeptr suboption is valid only when ansi is also in effect. typeptr is more
restrictive than ansi. When typeptr is in effect, pointers can only point to an
object of the same type or a compatible type, and a char* dereference cannot
alias any other types.

Usage

-qalias makes assertions to the compiler about the code that is being compiled. If
the assertions about the code are false, the code that is generated by the compiler
might result in unpredictable behavior when the application is run.

The following are not subject to type-based aliasing;:

Signed and unsigned types. For example, a pointer to a signed int can point to
an unsigned int.

Character pointer types can point to any type.

Types that are qualified as volatile or const. For example, a pointer to a const
int can point to an int.

The -qalias=[nolansi option replaces the deprecated -q[nolansialias option. Use
-qalias=[no]ansi in your new applications.

Chapter 4. Compiler options reference 97

Predefined macros
None.
Examples

To specify worst-case aliasing assumptions when you compile myprogram.c, enter:
x1c myprogram.c -0 -galias=noansi

Related information

* |“-gipa” on page 193|

+ Lqginfo=als|

* |“#pragma disjoint” on page 345

o [Type-based aliasinglin the XL C Language Reference

o [The may_alias type attribute (IBM extension)|in the XL C Language Reference
* [The restrict type qualifier|in the XL C Language Reference

* [“-qrestrict” on page 266|

-galign
Category

[Portability and migration|

Pragma equivalent
#pragma options align, #pragma align
Purpose

Specifies the alignment of data objects in storage, which avoids performance
problems with misaligned data.

Syntax

=power:
=full
»»— -g—align =bit_packed

=mac68k
=natural
=packed
=twobyte

—power
—full

»»—#—pragma—align—(——bit_packed)
—mac68k
—natural
—packed
—twobyte
reset

Defaults

-qalign=power

98 XLC: Compiler Reference

Parameters

bit_packed | packed
Bit field data is packed on a bitwise basis without respect to byte boundaries.

power
Uses the RISC System /6000 alignment rules. This is the default.

full
Uses the RISC System /6000 alignment rules.

Note: -qalign=full is equivalent to -qalign=power.

mac68k | twobyte
Uses the Macintosh alignment rules. Valid only for 32-bit compilations.

natural
Structure members are mapped to their natural boundaries. This has the same
effect as the power suboption, except that it also applies alignment rules to
double and Tong double members that are not the first member of a structure
or union.

reset (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage

If you use the -qalign option more than once on the command line, the last
alignment rule specified applies to the file.

The full suboption is the default to ensure compatibility with existing objects. If
compatibility with earlier versions is not necessary, you should consider using
natural alignment to improve potential application performance.

The pragma directives override the -qalign compiler option setting for a specified
section of program source code. The pragmas affect all aggregate definitions that
appear after a given pragma directive; if a pragma is placed inside a nested
aggregate, it applies only to the definitions that follow it, not to any containing
definitions. Any aggregate variables that are declared use the alignment rule that
applied at the point at which the aggregate was defined, regardless of pragmas that
precede the declaration of the variables. See below for examples.

Note: When using -qalign, all system headers are also compiled with -qalign. For
a complete explanation of the option and pragma parameters, as well as usage
considerations, see in the XL C Optimization and Programming
Guide.

Predefined macros

None.

Examples

The following examples show the interaction of the option and pragmas. Assuming
compilation with the command x1c file2.c, the following example shows how
the pragma affects only an aggregate definition, not subsequent declarations of

variables of that aggregate type.

Chapter 4. Compiler options reference 99

/* file2.c The default alignment rule is in effect */
typedef struct A A2;

#pragma options align=bit_packed /* bit_packed alignment rules are now in effect */
struct A {

int a;

char c;

}s #pragma options align=reset /* Default alignment rules are in effect again */

struct A Al; /* Al and A3 are aligned using bit_packed alignment rules since */
A2 A3; /* this rule applied when struct A was defined */

Assuming compilation with the command x1c file.c -galign=bit_packed, the
following example shows how a pragma embedded in a nested aggregate
definition affects only the definitions that follow it.

/* file2.c The default alignment rule in effect is bit_packed */

struct A {
int a;
#pragma options align=power /* Applies to B; A is unaffected =*/
struct B {
char c;
double d;
} BB; /+* BB uses power alignment rules =*/
} AA; /* AA uses bit_packed alignment rules /=

Related information

* [“#pragma pack” on page 366|

* |'Aligning data'[in the XL C Optimization and Programming Guide
 |'The _ align type qualifier'|in the XL C Language Reference

* ['The aligned variable attribute'|in the XL C Language Reference

* ['The packed variable attribute'|in the XL C Language Reference

-qalloca, -ma
Category

[Object code controll

Pragma equivalent
#pragma alloca
Purpose

Provides an inline definition of system function alloca when it is called from
source code that does not include the alloca.h header.

The function void* alloca(size_t size) dynamically allocates memory, similarly
to the standard library function malloc. The compiler automatically substitutes
calls to the system alloca function with an inline built-in function __alloca in any
of the following cases:

* You include the header file alloca.h
* You compile with -Dalloca=__alloca
* You directly call the built-in function using the form __alloca

The -qalloca and -ma options and #pragma alloca directive provide the same
functionality if any of the above methods are not used.

100 xLcC: Compiler Reference

Syntax

Option syntax

> -g—alloca <
—[_maé

Pragma syntax

v
A

»»—#—pragma—alloca

Defaults
Not applicable.
Usage

If you do not use any of the above-mentioned methods to ensure that calls to
alloca are replaced with __alloca, alloca is treated as a user-defined identifier
rather than as a built-in function.

Once specified, #pragma alloca applies to the rest of the file and cannot be
disabled. If a source file contains any functions that you want compiled without
#pragma alloca, place these functions in a different file.

You may want to consider using a C99 variable length array in place of alloca.
Predefined macros

None.

Examples

To compile myprogram.c so that calls to the function alloca are treated as inline,
enter:

x1c myprogram.c -galloca

Related information
+ [-D” on page 126|

s

« |“__alignx” on page 607|

-galtivec

Category

[Language element control|

Pragma equivalent

None.

Purpose

Enables the compiler support for vector data types and operators.

Chapter 4. Compiler options reference 101

Syntax

[noa1 ti vec—l
»— —(altivec >«

Defaults
-gnoaltivec
Usage

The -qaltivec option has effect only when you set or imply -garch to be an
architecture that supports vector instructions. Otherwise, the compiler ignores
-galtivec and issues a warning message.

Predefined macros

__ALTIVEC__ is defined to 1 and __VEC__ is defined to 10206 when -galtivec is
in effect; otherwise, they are undefined.

Related information
. ”—qarch”|
* |"-gsimd” on page 27§|
+ ["-qvecnvol” on page 320
» AltiVec Technology Programming Interface Manual, available at
Ihttp: / /www.freescale.com/files/32bit/doc/ref manual/ ALTIVECPIM.pdﬂ

-qarch
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Specifies the processor architecture for which the code (instructions) should be
generated.

Syntax

102 xLC: Compiler Reference

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

—pwri
»»— -g—arch—= auto ><
—pwrb
—pwrbx
—pwré
—pwrbe
—pwr7
—pwr8
—PpC
—ppc64v
—ppcb64
—ppcgr
—ppcb4gr—
—ppcb64grsq—
—ppc970

Defaults
* -qarch=pwr4
» -qarch=auto when -O4 or -O5 is in effect

Parameters

auto
Automatically detects the specific architecture of the compilation machine. It
assumes that the execution environment will be the same as the compilation
environment. This option is implied if the -O4 or -O5 option is set or implied.

pwré
Produces object code containing instructions that will run on the POWER4,
POWER5, POWER5+, POWER6®, POWER7®, POWER7+"', POWERS®, or
PowerPC® 970 hardware platforms.

pwr5
Produces object code containing instructions that will run on the POWERS5,
POWERS5+, POWER6, POWER7, POWER7+, or POWERS hardware platforms.

pwrbx
Produces object code containing instructions that will run on the POWER5+,
POWER6, POWER7, POWER7+, or POWERS hardware platforms.

pwré
Produces object code containing instructions that will run on the POWERS,
POWER?7, POWER7+, or POWERS hardware platforms running in POWERS,
POWER?7, POWER7+, or POWERS architected mode. If you would like support
for decimal floating-point instructions, be sure to specify this suboption during
compilation.

pwrbe
Produces object code containing instructions that will run on the POWER®6
hardware platforms running in POWER6 enhanced mode.

pwr7
Produces object code containing instructions that will run on the POWER?,
POWER?7+, or POWERS hardware platforms.

pwr8
Produces object code containing instructions that will run on the POWERS
hardware platforms.

Chapter 4. Compiler options reference 103

ppc
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppc64
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppcgr
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppcb4gr
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppcbigrsq
This suboption is deprecated. Even though it is still accepted, it is silently
upgraded to -qarch=pwr4.

ppc64v
Generates instructions for generic PowerPC chips with vector processors, such
as the PowerPC 970. Valid in 32-bit or 64-bit mode.

ppc970
Generates instructions specific to the PowerPC 970 architecture.

Usage

All PowerPC machines share a common set of instructions, but may also include
additional instructions unique to a given processor or processor family. Using the
-qarch option to target a specific architecture for the compilation results in code
that may not run on other architectures, but provides the best performance for the
selected architecture. If you want maximum performance on a specific architecture
and will not be using the program on other architectures, use the appropriate
architecture option. If you want to generate code that can run on more than one
architecture, specify a -qarch suboption that supports a group of architectures.
shows the features supported by the different processor architectures and
their representative -qarch suboptions:

Table 22. Feature support in processor architectures

Architecture Graphics Square root 64-bit support Vector Large page
support support processing support
support
pwr4 yes yes yes no yes
pwrb yes yes yes no yes
pwrbx yes yes yes no yes
ppc yes yes yes no yes
ppc64 yes yes yes no yes
ppcodgr yes yes yes no yes
ppcbdgrsq yes yes yes no yes
ppcodv yes yes yes VMX yes
ppc970 yes yes yes VMX yes
pwrb6 yes yes yes VMX yes
pwrobe yes yes yes VMX yes
pwr7 yes yes yes VMX, VSX yes
pwr8 yes yes yes VMX, VSX yes

104 xLcC: Compiler Reference

Note: Vector Multimedia Extension (VMX) and Vector Scalar Extension (VSX) are
processor instructions for vector processing.

For any given -qarch setting, the compiler defaults to a specific, matching -qtune
setting, which can provide additional performance improvements. Alternatively, if
you specify -qarch with a group argument, you can specify -qtune as either auto
or provide a specific architecture in the group. For detailed information on using
-qarch and -qtune together, see [’-qtune” on page 310

For a given application program, make sure that you specify the same -qarch
setting when you compile each of its source files. Although the linker and loader
may detect object files that are compiled with incompatible -qarch settings, you
should not rely on it.

Predefined macros

See [“Macros related to architecture settings” on page 407 for a list of macros that
are predefined by -qarch suboptions.

Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with VSX instruction support, enter:

x1c -0 testing myprogram.c -garch=pwr8

Related information

- [aprefetci
- Failoat

* [“-qtune” on page 310|
|1/

Specifying compiler options for architecture-specific compilation” on page 9|

[-q32, -q64” on page 94|

+ [“Macros related to architecture settings” on page 407

['Optimizing your applications'|in the XL C Optimization and Programming Guide

-gasm
Category

[Language element control|

Pragma equivalent
None.
Purpose

Controls the interpretation and subsequent generation of code for assembler
language extensions.

When -qasm is in effect, the compiler generates code for assembly statements in
the source code. Suboptions specify the syntax used to interpret the content of the
assembly statement.

Note: The system assembler program must be available for this command to take
effect.

Chapter 4. Compiler options reference 105

Syntax

-gasm syntax (for C)

asm
{ [
»— —q noasm ><

Defaults
* -gqasm=gcc

Parameters

gcc
Instructs the compiler to recognize the extended GCC syntax and semantics for
assembly statements.

Specifying -qasm without a suboption is equivalent to specifying the default.
Usage

The token asm is not a C language keyword. Therefore, at language levels stdc89
and stdc99, which enforce strict compliance to the C89 and C99 standards,
respectively, the option -qkeyword=asm must also be specified to compile source
that generates assembly code. At all other language levels, token asm is treated as a
keyword unless the option -qnokeyword=asm is in effect.

For detailed information about the syntax and semantics of inline asm statements,
see|'Inline assembly statements'|in the XL C Language Reference.

Predefined macros

* _ IBM_GCC_ASM is predefined to 1 when asm is recognized as a keyword and
assembler code is generated; that is, at all language levels except stdc89 |
stdc99, or when -qkeyword=asm is in effect, and when -qasm[=gcc] is in effect.
It is predefined to 0 when asm is recognized as a keyword but assembler code is
not generated; that is, at all language levels except stdc89 | stdc99, or when
-qgkeyword=asm is in effect, and when -qnoasm is in effect. It is undefined
when the stdc89 | stdc99 language level or -qnokeyword=asm is in effect.

Examples

The following code snippet shows an example of the GCC conventions for asm
syntax in inline statements:

int a, b, c;
int main() {
asm("add %0, %1, %2" : "=r"(a) : "r"(b), "r"(c));

}

Related information

* [“-gasm_as” on page 107]

+ |“-gkeyword” on page 203|

* [“-glanglvl” on page 206|

* ['Inline assembly statements'|in the XL C Language Reference

106 XxLC: Compiler Reference

-gasm_as
Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Specifies the path and flags used to invoke the assembler in order to handle
assembler code in an asm assembly statement.

Normally the compiler reads the location of the assembler from the configuration
file; you can use this option to specify an alternate assembler program and flags to
pass to that assembler.

Syntax
»»— -(asm_as—= I_path _| »<
"—path n
|:flags:|
Defaults

By default, the compiler invokes the assembler program defined for the as
command in the compiler configuration file.
Parameters

path
The full path name of the assembler to be used.

flags
A space-separated list of options to be passed to the assembler for assembly
statements. Quotation marks must be used if spaces are present.

Predefined macros
None.
Examples

To instruct the compiler to use the assembler program at /bin/as when it
encounters inline assembler code in myprogram.c, enter the following command:

x1c myprogram.c -gasm_as=/bin/as

To instruct the compiler to pass some additional options to the assembler at
/bin/as for processing inline assembler code in myprogram.c, enter the following
command:

x1c myprogram.c -gasm_as="/bin/as -a64 -1 a.lst"

Related information
* |“-qasm” on page 105

Chapter 4. Compiler options reference 107

-gassert
Category

[Optimization and tuning|

Pragma equivalent
None
Purpose

Provides information about the characteristics of the files that can help to fine-tune
optimizations.

Syntax

F norefalign
-—'Erefa1 1'gn——|—

»»— -g—assert |_ _l >

Defaults
-qassert=norefalign

Parameters
refalign | norefalign

Specifies that all pointers inside the compilation unit only point to data
that is naturally aligned according to the length of the pointer types. With
this assertion, the compiler might generate more efficient code. This
assertion is particularly useful when you target a SIMD architecture with
-qhot=level=0 or -qhot=level=1 with -qsimd=auto.

-qattr
Category

[Listings, messages, and compiler information|

Pragma equivalent
#pragma options [no]attr
Purpose

Produces a compiler listing that includes the attribute component of the attribute
and cross-reference section of the listing.

Syntax

v
A

noattr‘—|
> -q—[attr
|—=—fu1 1—|

108 xLC: Compiler Reference

Defaults
-qnoattr

Parameters

full
Reports all identifiers in the program. If you specify attr without this
suboption, only those identifiers that are used are reported.

Usage

If -qattr is specified after -qattr=full, it has no effect; the full listing is produced.

This option does not produce a cross-reference listing unless you also specify
-qxref.

The -qnoprint option overrides this option.

Note: Specifying -qattr does not list the #define directives. You can use
[“-gshowmacros” on page 276|instead.

Predefined macros
None.
Examples

To compile the program myprogram.c and produce a compiler listing of all
identifiers, enter:

x1c myprogram.c -gxref -qgattr=full

Related information

* [“-gshowmacros” on page 276|
* ["-gprint” on page 259|

* [-gxref” on page 330

Category

Pragma equivalent

None.

Purpose

Sets special linker processing options. This option can be repeated.

Syntax

dynamic
»— -b |_shared —l

|—staticJ

Chapter 4. Compiler options reference

Defaults
-bdynamic

Parameters

dynamic | shared
Causes the linker to process subsequent shared objects in dynamic mode. In
dynamic mode, shared objects are not statically included in the output file.
Instead, the shared objects are listed in the loader section of the output file.

static
Causes the linker to process subsequent shared objects in static mode. In static
mode, shared objects are statically linked in the output file.

Usage

The default option, -bdynamic, ensures that the C library (libc) links dynamically.
To avoid possible problems with unresolved linker errors when linking the C
library, you must add the -bdynamic option to the end of any compilation sections
that use the -bstatic option.

Predefined macros
Not applicable.

Related information
* [“-brtl” on page 113|

Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Specifies substitute path names for XL C components such as the assembler, C
preprocessor, and linker.

You can use this option if you want to keep multiple levels of some or all of the
XL C executables and have the option of specifying which one you want to use.

However, it is preferred that you use the -qpath option to accomplish this instead.

Syntax

A\
A

>

- I—prefix—|

110 xLcC: Compiler Reference

Defaults

The default paths for the compiler executables are defined in the compiler
configuration file.

Parameters

prefix
Defines part of a path name for programs you can name with the -t option.
You must add a slash (/). If you specify the -B option without the prefix, the
default prefix is /lib/o.

Usage
The -t option specifies the programs to which the -B prefix name is to be

appended; see [-t” on page 303|for a list of these. If you use the -B option without
-tprograms, the prefix you specify applies to all of the compiler executables.

The -B and -t options override the -F option.
Predefined macros

None.

Examples

In this example, an earlier level of the compiler components is installed in the
default installation directory. To test the upgraded product before making it
available to everyone, the system administrator restores the latest installation
image under the directory /home/jim and then tries it out with commands similar
to:

x1c -tcbI -B/home/jim/opt/IBM/x1c/13.1.3/bin/ test suite.c

Once the upgrade meets the acceptance criteria, the system administrator installs it
in the default installation directory.

Related information

+ |“-gpath” on page 245|

* |“-t” on page 303

+ |[“Invoking the compiler” on page 1

-gbitfields
Category

[Floating-point and integer control|

Pragma equivalent
None.
Purpose

Specifies whether bit fields are signed or unsigned.

Chapter 4. Compiler options reference 111

Syntax

|—uns1'gned—|
»»— -q—bitfields—= signed >«

Defaults
-qbitfields=unsigned

Parameters

signed
Bit fields are signed.

unsigned
Bit fields are unsigned.

Predefined macros

None.

-bmaxdata

Category

Pragma equivalent
None

Purpose

Sets the maximum size of the area shared by the static data (both initialized and
uninitialized) and the heap.

Syntax

v
A

»»— -bmaxdata—: number

Defaults
-bmaxdata:0

Parameters

number
The number of bytes used representing the soft ulimit set by the system
loader.

* For 32-bit programs, the maximum value allowed by the system is
0x80000000 for programs that are running under large program support and
0xD0000000 for programs that are running under very large program
support. For details, see [Large program support|in the documentation of
AIX operating systems.

112 XL C Compiler Reference

http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/lrg_prg_support.htm

-brtl

* For 64-bit programs, the -bmaxdata option provides a guaranteed maximum
size for the programs data heap. You can specify any value, but the data
area cannot extend past OXO6FFFFFFFFFFFFFS regardless of the value that
you specified.

Predefined macros

None.

Category

Pragma equivalent
None.

Purpose

Enables runtime linking for the output file. When you use -brtl with the -1 option,
the linker searches for a library with the suffix of .so, as well as of .a. Preference is
given to .so over .a when libraries with the same name are present in the same
directory.

Runtime linking is the ability to resolve undefined and non-deferred symbols in
shared modules after the program execution has already begun. It is a mechanism
for providing runtime definitions (these function definitions are not available at
link-time) and symbol rebinding capabilities. Compiling with -brtl adds a reference
to the runtime linker to your program, which will be called by your program's
startup code (/lib/crt0.0) when program execution begins. Shared object input files
are listed as dependents in the program loader section in the same order as they
are specified on the command line. When the program execution begins, the
system loader loads these shared objects so their definitions are available to the
runtime linker.

Syntax

»»— -brtl

A\
A

Usage

The main application must be built to enable runtime linking. The system loader
must be able to load and resolve all symbols referenced in the main program and
called modules, or the program will not execute. For how to link a library to an
application with runtime linking enabled, see ['Linking a library to an application'|
in the XL C Optimization and Programming Guide.

DCE thread libraries and heap debug libraries are not compatible with runtime
linking. Do not specify the -brtl compiler option if you are invoking the compiler
with x1C_r4, or if the -gheapdebug compiler option is specified.

Chapter 4. Compiler options reference 113

Predefined macros
None.
Related information

* |"-b” on page 109
* ["-G” on page 163

Category

Pragma equivalent
None.

Purpose

Instructs the compiler to compile or assemble the source files only but do not link.
With this option, the output is a .o file for each source file.

Syntax

»pr— -C >

Defaults

By default, the compiler invokes the linker to link object files into a final
executable.

Usage

When this option is in effect, the compiler creates an output object file, file_name.o,
for each valid source file, such as file_name.c, file_name.i, or file_name.s. You can use
the -0 option to provide an explicit name for the object file.

The -c option is overridden if the -E, -P, or -qsyntaxonly option is specified.
Predefined macros

None.

Examples

To compile myprogram.c to produce an object file myprogram.o, but no executable
file, enter the command:

x1c myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file,
enter the command:

x1c myprogram.c -C -0 new.o

114 xLC Compiler Reference

Related information
* |”-E” on page 136
* [’-0” on page 235
* |"-P” on page 244
+ [“-gsyntaxonly” on page 302|

-C, -C!
Category

Pragma equivalent
None.
Purpose

When used in conjunction with the -E or -P options, preserves or removes
comments in preprocessed output.

When -C is in effect, comments are preserved. When -C! is in effect, comments are
removed.

Syntax

oL o

v
A

Defaults

-C

Usage

The -C option has no effect without either the -E or the -P option. If -E is specified,
continuation sequences are preserved in the output. If -P is specified, continuation

sequences are stripped from the output, forming concatenated output lines.

You can use the -C! option to override the -C option specified in a default makefile
or configuration file.

Predefined macros
None.
Examples

To compile myprogram.c to produce a file myprogram.i that contains the
preprocessed program text including comments, enter:

x1c myprogram.c -P -C

Related information
* ["-E” on page 136
* [*-P” on page 244

Chapter 4. Compiler options reference 115

-qcache
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

Specifies the cache configuration for a specific execution machine.

If you know the type of execution system for a program, and that system has its
instruction or data cache configured differently from the default case, use this
option to specify the exact cache characteristics. The compiler uses this information

to calculate the benefits of cache-related optimizations.

Syntax

»— -g—cache—=—Y—Tevel—= 1 <
i:z:‘ assoc—= numbe r—
3 auto

type—= C cost—=—cycles
Ed} line—=—-bytes
i size—=—~Kbytes

Defaults
Automatically determined by the setting of the -qtune option.

Parameters

assoc
Specifies the set associativity of the cache.

number
Is one of:
0 Direct-mapped cache
1 Fully associative cache

N>1 n-way set associative cache

auto
Automatically detects the specific cache configuration of the compiling
machine. This assumes that the execution environment will be the same as the
compilation environment.

cost
Specifies the performance penalty resulting from a cache miss.

cycles

116 XxLC: Compiler Reference

Tevel
Specifies the level of cache affected. If a machine has more than one level of
cache, use a separate -qcache option.

level
Is one of:
1 Basic cache
2 Level-2 cache or, if there is no level-2 cache, the table lookaside buffer
(TLB)
3 TLB
line

Specifies the line size of the cache.

bytes

An integer representing the number of bytes of the cache line.
size

Specifies the total size of the cache.
Kbytes

An integer representing the number of kilobytes of the total cache.
type

Specifies that the settings apply to the specified cache_type.
cache_type

Is one of:

c Combined data and instruction cache

d Data cache

i Instruction cache
Usage

The -qtune setting determines the optimal default -qcache settings for most typical
compilations. You can use the -qcache to override these default settings. However,
if you specify the wrong values for the cache configuration, or run the program on
a machine with a different configuration, the program will work correctly but may
be slightly slower.

Use the following guidelines when specifying -qcache suboptions:
* Specify information for as many configuration parameters as possible.

* If the target execution system has more than one level of cache, use a separate
-qcache option to describe each cache level.

* If you are unsure of the exact size of the cache(s) on the target execution
machine, specify an estimated cache size on the small side. It is better to leave
some cache memory unused than it is to experience cache misses or page faults
from specifying a cache size larger than actually present.

* The data cache has a greater effect on program performance than the instruction
cache. If you have limited time available to experiment with different cache
configurations, determine the optimal configuration specifications for the data
cache first.

* If you specify the wrong values for the cache configuration, or run the program
on a machine with a different configuration, program performance may degrade
but program output will still be as expected.

Chapter 4. Compiler options reference 117

* The -O4 and -O5 optimization options automatically select the cache
characteristics of the compiling machine. If you specify the -qcache option
together with the -O4 or -O5 options, the option specified last takes precedence.

* Unless -qcache=auto is specified, you must specify both the type and level

suboptions when you use the -qcache option. Otherwise, a warning message is
issued.

Predefined macros
None.
Examples

To tune performance for a system with a combined instruction and data level-1
cache, where cache is 2-way associative, 8 KB in size and has 64-byte cache lines,
enter:

x1c -04 -qcache=type=c:level=1:size=8:Tine=64:assoc=2 file.c

Related information

+ |“-qcache” on page 116

* |“-O, -qoptimize” on page 236|

* [’-gtune” on page 310|

* [’-gipa” on page 193

+ |'Optimizing your applications'|in the XL C Optimization and Programming Guide

-qchars
Category

[Floating-point and integer control|

Pragma equivalent

#pragma options chars, #pragma chars

None.

Purpose

Determines whether all variables of type char is treated as signed or unsigned.

Syntax

|—uns1'gned—|
»»— -g—chars—= signed

v
A

Pragma syntax

v
A

|—uns1'gned—| :

»»—#—pragma—chars—(signed

Defaults

-qchars=unsigned

118 xLC: Compiler Reference

Parameters

unsigned
Variables of type char are treated as unsigned char.

signed
Variables of type char are treated as signed char.

Usage

Regardless of the setting of this option or pragma, the type of char is still
considered to be distinct from the types unsigned char and signed char for
purposes of type-compatibility checking.

The pragma must appear before any source statements. If the pragma is specified
more than once in the source file, the first one will take precedence. Once
specified, the pragma applies to the entire file and cannot be disabled; if a source
file contains any functions that you want to compile without #pragma chars, place
these functions in a different file.

Predefined macros

* _CHAR_SIGNED and _ CHAR_SIGNED__ are defined to 1 when signed is in
effect; otherwise, it is undefined.

e _CHAR_UNSIGNED and _ CHAR_UNSIGNED__ are defined to 1 when
unsigned is in effect; otherwise, they are undefined.

Examples

To treat all char types as signed when compiling myprogram.c, enter:

x1c myprogram.c -qchars=signed

-qcheck
Category

[Error checking and debugging]

Pragma equivalent

#pragma options [no]check

Purpose

Generates code that performs certain types of runtime checking.

If a violation is encountered, a runtime error is raised by sending a SIGTRAP
signal to the process. Note that the runtime checks might result in slower

application execution.

Syntax

Chapter 4. Compiler options reference 119

|—nocheck

»»— -q check ><

F—a]]—
=—Y 1| hounds

—nobounds
—divzero
—nodivzero
—nullptr
—nonullptr
—stackclobber—
—nostackclobber—
—unset
—nounset

Defaults

-qnocheck

Parameters

all

~ Enables all suboptions.

bounds | nobounds
Performs runtime checking of addresses for subscripting within an object of
known size. The index is checked to ensure that it will result in an address that
lies within the bounds of the object's storage. A trap will occur if the address
does not lie within the bounds of the object.

This suboption has no effect on accesses to a variable length array.

divzero | nodivzero
Performs runtime checking of integer division. A trap will occur if an attempt
is made to divide by zero.

nullptr | nonullptr
Performs runtime checking of addresses contained in pointer variables used to
reference storage. The address is checked at the point of use; a trap will occur
if the value is less than 512.

stackclobber | nostackclobber
Detects stack corruption of nonvolatile registers in the save area in user
programs. This type of corruption happens only if any of the nonvolatile
registers in the save area of the stack is modified.

If the -gstackprotect option and this suboption are both on, this suboption
detects the stack corruption first.

unset | nounset
Checks for automatic variables that are used before they are set. A trap will
occur at run time if an automatic variable is not set before it is used.

The -qinitauto option initializes automatic variables. As a result, the -qinitauto
option hides uninitialized variables from the -qcheck=unset option.

Specifying the -qcheck option with no suboptions is equivalent to specifying
-qcheck=all.

120 xLcC: Compiler Reference

Usage

You can specify the -qcheck option more than once. The suboption settings are
accumulated, but the later suboptions override the earlier ones.

You can use the all suboption along with the no... form of one or more of the other
options as a filter. For example, using;:

x1c myprogram.c -qcheck=all:nonullptr

provides checking for everything except for addresses contained in pointer
variables used to reference storage. If you use all with the no... form of the
suboptions, all should be the first suboption.

Predefined macros
None.
Examples

The following code example shows the effect of -qcheck=nullptr:bounds:
void funcl(int* p) {

p = 42; / Traps if p is a null pointer =/
}

void func2(int i) {
int array[10];
array[i] = 42; /* Traps if i is outside range 0@ - 9 */

}

The following code example shows the effect of -qcheck=divzero:
void func3(int a, int b) {

a / b; /* Traps if b=0 =/
}

The following code example shows the effect of -qcheck=stackclobber:

void func4(char *p, int off, int value) {
*(p+off)=value;

int foo() {
int i;
char boo[9];
i=24;
func4(boo, i, 66);
/* Traps here */
return 0;

}

int main() {
foo();
}

Note: The offset is subject to change at different optimization level. When -O2 or
lower optimization level is in effect, func4 will clobber the save area of foo because
*(p+off) is in the save area.

In function factorial, result is not initialized when n<=1. To detect an
uninitialized variable in factorial.c, enter the following command:

x1c -g -0 -gcheck=unset factorial.c

Chapter 4. Compiler options reference 121

factorial.c contains the following code:

int factorial(int n) {
int result;

if (n>1) {
result = n

}

return result; /* line 8 */

}

int main() {
int x = factorial(l);
return x;

}

= factorial(n - 1);

The compiler issues the following informational message during compile time and
a trap occurs at line 8 during run time:

1500-099: (I) "factorial.c", line 8: "result" might be used before it is set.

Note: If you set -qcheck=unset at noopt, the compiler does not issue informational
messages at compile time.

-qcompact
Category

[Optimization and tuning|

Pragma equivalent

#pragma options [noJcompact

Purpose

Avoids optimizations that increase code size.

Syntax

[nocompact—l
»— -(compact ><

Defaults
-qnocompact
Usage

Code size is typically reduced by inhibiting optimizations that replicate or expand
code inline, such as inlining or loop unrolling. Execution time might increase.

This option takes effect only when it is specified at the -O2 optimization level, or
higher.

122 XL C: Compiler Reference

Predefined macros

__OPTIMIZE_SIZE__ is predefined to 1 when -qcompact and an optimization level
are in effect. Otherwise, it is undefined.

Examples

To compile myprogram.c, instructing the compiler to reduce code size whenever
possible, enter the following command:

x1c myprogram.c -0 -qcompact

-gconcurrentupdate
Category

[Object code controll

Pragma equivalent

None.

Purpose

Supports updating the operating system while the kernel is running.

Syntax

[noconcurrentupdate—l
»— -(concurrentupdate >«

Defaults

-qnoconcurrentupdate

Usage

If you want to use AIX Concurrent Update (hot-patch), you must use

-qconcurrentupdate to compile your code. For details about Concurrent Update,
see the [AIX Concurrent Update documentation|

Predefined macros
None.

Examples
x1c myprogram.c -qconcurrentupdate

-qcpluscmt
Category

[Language element control|

Pragma equivalent

None.

Chapter 4. Compiler options reference 123

http://www.ibm.com/developerworks/aix/library/au-aix_cu_devguide/?S_TACT=105AGY06&S_CMP=HP

-qcrt

Purpose
Enables recognition of C++-style comments in C source files.

Syntax

cp]uscmt—|
| -q—[nocp1 uscmt ><

Defaults

* -qcpluscmt when the xlc or ¢99 and related invocations are used, or when the
stdc99 | extc99 language level is in effect.

* -qnocpluscmt for all other invocation commands and language levels.
Predefined macros

__C99_CPLUSCMT is predefined to 1 when -qcpluscmt is in effect; otherwise, it is
undefined.

Examples

To compile myprogram.c so that C++ comments are recognized as comments, enter:
x1c myprogram.c -qcpluscmt

Note that // comments are not part of C89. The result of the following valid C89
program will be incorrect:

main() {

int i = 2;
printf("%i\n", i //* 2 =/

+1);
}

The correct answer is 2 (2 divided by 1). When -qcplusemt is in effect (as it is by
default), the result is 3 (2 plus 1).

Related information

s |"-C, -C!” on page 115

* |“-glanglvl” on page 206|

* ['Comments'|in the XL C Language Reference

Category

Pragma equivalent
None.

Purpose

Specifies whether system startup files are to be linked.

124 xLC: Compiler Reference

When -qcrt is in effect, the system startup routines are automatically linked. When
-qnocrt is in effect, the system startup files are not used at link time; only the files
specified on the command line with the -1 flag are linked.

This option can be used in system programming to disable the automatic linking of
the startup routines provided by the operating system.

Syntax

A\
A

|—cr‘t
»»— -q nocrt

Defaults

-qert

Predefined macros
None.

Related information
+ ["-qlib” on page 213|

-qc_stdinc
Category

[Compiler customization|

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C and system header files.

Syntax

»— —q—c_stcﬁnc—=—|_—_|—'director‘u>ath o] <

Defaults

By default, the compiler searches the directories specified in the configuration file
for the XL C header files (this is normally /opt/IBM/xlc/13.1.3/include/) and for
the system header files (this is normally /usr/include/).

Parameters

directory path
The path for the directory where the compiler should search for the XL C and

Chapter 4. Compiler options reference 125

system header files. The directory_path can be a relative or absolute path. You
can surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To

permanently change the default search paths for the XL C and system headers, you
use a configuration file to do so; see ['Directory search sequence for included files”]
|0n Eaée 12| for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -qnostdinc option is in effect.
Predefined macros

None.

Examples

To override the default search path for the XL C headers with mypath/headersl
and mypath/headers2, enter:

xTc myprogram.c -qc_stdinc=mypath/headersl:mypath/headers2

Related information

+ |“-gstdinc” on page 292

* |"-ginclude” on page 176|

+ [“Directory search sequence for included files” on page 12|

+ |“Specifying compiler options in a configuration file” on page 7|

Category

[Language element controll

Pragma equivalent

None.

Purpose

Defines a macro as in a #define preprocessor directive.
Syntax

»»— -D—name ><

|—=—definitz'on—|

Defaults

Not applicable.

126 XxLC: Compiler Reference

Parameters

name
The macro you want to define. -Dname is equivalent to #define name. For
example, -DCOUNT is equivalent to #define COUNT.

definition
The value to be assigned to name. -Dname=definition is equivalent to #define
name definition. For example, -DCOUNT=100 is equivalent to #define COUNT
100.

Usage

Using the #define directive to define a macro name already defined by the -D
option will result in an error condition.

To aid in program portability and standards compliance, the operating system
provides several header files that refer to macro names you can set with the -D
option. You can find most of these header files either in the /usr/include directory
or in the /usr/include/sys directory. To ensure that the correct macros for your
source file are defined, use the -D option with the appropriate macro name. For
example, if your source file includes the /usr/include/sys/stat.h header file, you
must compile with the option -D_POSIX_SOURCE to pick up the correct
definitions for that file.

The -Uname option, which is used to undefine macros defined by the -D option,
has a higher precedence than the -Dname option.

Predefined macros

The compiler configuration file uses the -D option to predefine several macro
names for specific invocation commands. For details, see the configuration file for
your system.

Examples

AIX 4.2 and later provides support for files greater than 2 gigabytes in size so you
can store large quantities of data in a single file. To allow large file manipulation in
your application, compile with the -D_LARGE_FILES and -qlonglong compiler
options. For example:

x1c myprogram.c -D_LARGE_FILES -qlonglong

To specify that all instances of the name COUNT be replaced by 100 in myprogram.c,
enter:

x1c myprogram.c -DCOUNT=100

Related information

+ [-U” on page 313

* [Chapter 6, “Compiler predefined macros,” on page 403|
« "Header files" in the |AIX Files Reference|

-qdataimported, -qdatalocal, -qtocdata
Category

[Optimization and tuning|

Chapter 4. Compiler options reference 127

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm

Pragma equivalent

None.

Purpose

Marks data as local or imported.

Local variables are statically bound with the functions that use them. You can use
the -qdatalocal option to name variables that the compiler can assume to be local.
Alternatively, you can use the -qtocdata option to instruct the compiler to assume
all variables to be local.

Imported variables are dynamically bound with a shared portion of a library. You
can use the -qdataimported option to name variables that the compiler can assume
to be imported. Alternatively, you can use the -qnotocdata option to instruct the
compiler to assume all variables to be imported.

Syntax

notocdata

dataimported
»— - |_ —l >«
_=—" yariable_name
tocdata |
datalocal
_=—Y variable_name

Defaults

-qdataimported or -qnotocdata: The compiler assumes all variables are imported.

Parameters

variable_name
The name of a variable that the compiler should assume to be local or
imported (depending on the option specified).

Specifying -qdataimported without any variable_name is equivalent to
-qnotocdata: all variables are assumed to be imported. Specifying -qdatalocal
without any variable_name is equivalent to -qtocdata: all variables are assumed
to be local.

Usage

If any variables that are marked as local are actually imported, performance may
decrease.

If you specify any of these options with no variables, the last option specified is

used. If you specify the same variable name on more than one option specification,
the last one is used.

128 xLC: Compiler Reference

Predefined macros
None.

Related information
* |“-gprocimported, -qproclocal, -qgprocunknown” on page 260|

-qdbgfmt
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Specifies the format for the debugging information in object files.

DWARE is a standard that defines the format of debugging information in
programs. It is used on a wide variety of operating systems and is extensible and
compact.

Syntax

r—stabstring——
dwarf:
dwarf4

A\
A

»»— -q—dbgfmt—=

Defaults
-qdbgfmt=stabstring

Parameters

stabstring
Generates debugging information in stabstring format.

SEE Note: This suboption does not generate debugging information for
C11 features. Use the dwarf or dwarf4 suboption instead for these features.

dwarf
Generates debugging information in DWARF 3 format.

dwarf4
Generates debugging information in DWARF 4 format.

Notes:

* To use -qdbgfmt=dwarf or -qdbgfmt=dwarf4, the program must be compiled
and linked on AIX V7.1 or above.

* To debug programs built with -qdbgfmt=dwarf or -qdbgfmt=dwarf4, a
DWAREF-enabled debugger such as dbx is required.

Chapter 4. Compiler options reference 129

Usage

-qdbgfmt does not imply any of the debugging options, such as [“-g” on page 160}
To generate debugging information, you must specify a debugging option, for
example:

* To generate debugging information in stabstring format, use -g
-qdbgfmt=stabstring.

* To generate debugging information in DWARF 3 format, use -g
-qdbgfmt=dwarf.

* To generate debugging information in DWARF 4 format, use -g
-qdbgfmt=dwarf4.

-qdbgfmt also applies to [“-qlinedebug” on page 216, which generates a subset of
[“-g” on page 160| information. For example, you can use -qlinedebug
-qdbgfmt=dwarf to generate line number information in DWARF 3 format.

Related information
* [“-¢” on page 16(0|
* |“-glinedebug” on page 216|

-qdbxextra
Category

[Error checking and debugging]

Pragma equivalent
#pragma options dbxextra
Purpose

When used with the -g option, specifies that debugging information is generated
for unreferenced typedef declarations, struct, union, and enum type definitions.

To minimize the size of object and executable files, the compiler only includes
information for typedef declarations, struct, union, and enum type definitions that
are referenced by the program. When you specify the -qdbxextra option,
debugging information is included in the symbol table of the object file. This
option is equivalent to the -qsymtab=unref option.

Syntax

nodbxextra—l
»— —(dbxextra ><
Defaults

-qnodbxextra: Unreferenced typedef declarations, struct, union, and enum type
definitions are not included in the symbol table of the object file.

Usage

Using -qdbxextra may make your object and executable files larger.

130 xLcC: Compiler Reference

-qdfp

Predefined macros
None.
Examples

To compile myprogram.c so that unreferenced typedef, structure, union, and
enumeration declarations are included in the symbol table for use with a debugger,
enter:

x1c myprogram.c -g -qdbxextra

Related information

+ [“-gfullpath” on page 156|

+ |“-glinedebug” on page 216|

* [“-¢” on page 160]

+ [“#pragma options” on page 362
* [-gsymtab” on page 301|

Category

[Language element control|

Pragma equivalent

None.

Purpose

Enables compiler support for decimal floating-point types and literals.

Syntax

nodfp
g Lot g

Defaults
-qnodfp
Usage

If you enable -qdfp for a -qarch value that does not support decimal floating-point
instructions, -qfloat=dfpemulate is automatically enabled, and the decimal
floating-point operations are performed by software. This may cause a slowdown
in the application's runtime performance.

Note: To use decimal floating-point types and literals, you must also enable
specific code in header files by defining the _ STDC_WANT_DEC_FP__ macro at
compile time. See [“Examples” on page 132

Chapter 4. Compiler options reference 131

Predefined macros

When -qdfp is in effect, _ IBM_DFP__ is predefined to a value of 1; otherwise it is
undefined.

Examples

To compile myprogram.c that contains decimal floating-point type and literal, enter:
x1c myprogram.c -qarch=pwr7 -qdfp -D__STDC_WANT_DEC_FP__

Related information
+ |Compiling a decimal floating-point program|

+ |“-qarch” on page 102

* |“-gfloat” on page 146|
* [“-D” on page 126

-qdigraph
Category

[Language element control|

Pragma equivalent

#pragma options [no]digraph

Purpose

Enables recognition of digraph key combinations to represent characters that are
not found on some keyboards. Digraph key combinations include <:, <%, and so

on.

Syntax

digraph—|
| —q—[nodigraph ><

Defaults

when the extc89 | extended | extc99 | stdc99 language level is in effect.
-qnodigraph for all other language levels.

Usage

A digraph is a keyword or combination of keys that lets you produce a character
that is not available on some keyboards. For details on digraphs, see
in the XL C Language Reference.

Predefined macros

_ DIGRAPHS__ is predefined to 1 when -qdigraph is in effect; otherwise, it is not
defined.

132 XxLC: Compiler Reference

Examples

To disable digraph character sequences when compiling your program, enter the
command:

x1c myprogram.c -gnodigraph

Related information
+ [“-glanglvl” on page 206|
* |“-gtrigraph” on page 310

-qdirectstorage
Category

[Optimization and tuning]

Pragma equivalent
None.
Purpose

Informs the compiler that a given compilation unit may reference
write-through-enabled or cache-inhibited storage.

Syntax

[nodirectstorage—l
»— —q directstorage ><

Defaults
-qnodirectstorage
Usage

Use this option with discretion. It is intended for programmers who know how the
memory and cache blocks work, and how to tune their applications for optimal
performance. To ensure that your application will execute correctly on all
implementations, you should assume that separate instruction and data caches
exist and program your application accordingly.

-qdollar
Category

[Language element controll

Pragma equivalent
#pragma options [no]dollar
Purpose

Allows the dollar-sign ($) symbol to be used in the names of identifiers.

Chapter 4. Compiler options reference 133

When -qdollar is in effect, the dollar symbol § in an identifier is treated as a base
character.

Syntax

[do1 lar
»»— —(nodollar ><

Defaults
-qdollar
Usage

If -qnodollar and the ucs language level are both in effect, the dollar symbol is
treated as an extended character and translated into \u0024.

Predefined macros
None.
Examples

To compile myprogram.c so that $ is allowed in identifiers in the program, enter:
x1c myprogram.c -qdollar

Related information
* |“-glanglvl” on page 206|

-qdpcl
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Generates symbols that tools based on the IBM Dynamic Probe Class Library
(DPCL) can use to see the structure of an executable file.

DPCL is an open-source set of libraries used by application performance analysis
tools (for more information, visit fhttp://dpcl.sourceforge.net). When -qdpcl is in
effect, the compiler emits symbols to define blocks of code in a program; you can
then use tools that use the DPCL interface to examine performance information
such as memory usage for object files compiled with this option.

Syntax

nodpc]
»»— -(|_dpc1 —l > <

134 xLC: Compiler Reference

http://dpcl.sourceforge.net

Defaults

-qnodpcl

Usage

You must specify -qdpcl together with the -g option to ensure that the compiler
generates debugging information required by debugging and program analysis

tools.

-qdpcl is not supported for any optimization level except zero. If a non-zero
optimization level is specified or implied by other options, -qdpcl will be disabled.

You cannot specify the -qipa or -qsmp options together with -qdpcl.
Predefined macros

None.

Related information

* [“-¢” on page 160|

* [“-gipa” on page 193]
* |“-gsmp” on page 281|

Category

Pragma equivalent
None.

Purpose

When used together with the -qmkshrobj option or -G option, specifies an entry
point for a shared object.

Syntax

»»— -e——entry_name ><

Defaults
Not applicable.

Parameters

name
The name of the entry point for the shared executable.

Usage

Specify the -e option only with the -qmkshrobj or -G option.

Chapter 4. Compiler options reference 135

Note: When you link object files, do not use the -e option. The default entry point
of the executable output is __start. Changing this label with the -e flag can
produce errors.

Predefined macros
None.
Related information

+ |“-gmkshrobj” on page 233
* ["-G” on page 163

Category

Pragma equivalent
None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,
and writes the output to the standard output.

Syntax

»»— -F

v
A

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are treated and preprocessed as C
files.

Unless -qnoppline is specified, #11ine directives are generated to preserve the
source coordinates of the tokens. Continuation sequences are preserved.

Unless -C is specified, comments are replaced in the preprocessed output by a
single space character. New lines and #11ine directives are issued for comments that
span multiple source lines.

The -E option overrides the -P, -0, and -qsyntaxonly options.

Predefined macros

None.

136 XxLC: Compiler Reference

Examples

To compile myprogram.c and send the preprocessed source to standard output,
enter:

x1c myprogram.c -E

If myprogram.c has a code fragment such as:

#define SUM(x,y) (x +y)
int a
#define mm 1 /* This is a comment in a

preprocessor directive */
int b ; /* This is another comment across

two lines x/
int ¢ ;

/* Another comment =/

¢ = SUM(a,b) ; /* Comment in a macro function argumentx*/

the output will be:
#1ine 2 "myprogram.c"
int a ;

#1ine 5

int b ;

int ¢ ;

c=a+hb;

Related information

* |“-gppline” on page 255|

s |"-C, -C!” on page 115|

* [“-P” on page 244|

+ |“-gsyntaxonly” on page 302|

-genum
Category

[Floating-point and integer control|

Pragma equivalent
#pragma options enum, #pragma enum

Purpose

Specifies the amount of storage occupied by enumerations.
Syntax

Option syntax

intTong—
int

small—
]_—

—

v
A

»>— -g—enum—=

R
4— |
8

Chapter 4. Compiler options reference 137

Pragma syntax

—intlong—
»>—#—pragma—enum (int) ><
—small—-
] —

Defaults
-qgenum=intlong

Parameters

1 Specifies that enumerations occupy 1 byte of storage, are of type signed char if
the range of enumeration values falls within the limits of signed char, and
unsigned char otherwise.

2 Specifies that enumerations occupy 2 bytes of storage, are of type short if the
range of enumeration values falls within the limits of signed short, and
unsigned short otherwise. Values cannot exceed the range of signed int.

4 Specifies that enumerations occupy 4 bytes of storage, are of type int if the
range of enumeration values falls within the limits of signed int, and
unsigned int otherwise.

8 Specifies that enumerations occupy 8 bytes of storage. In 32-bit compilation
mode, the enumeration is of type Tong Tong if the range of enumeration values
falls within the limits of signed Tong Tong, and unsigned Tong Tong otherwise.
In 64-bit compilation mode, the enumeration is of type long if the range of
enumeration values falls within the limits of signed long, and unsigned long
otherwise.

int
Specifies that enumerations occupy 4 bytes of storage and are of type int.

intlong
Specifies that enumerations occupy 8 bytes of storage, as with the 8 suboption,
if the range of values in the enumeration cannot be represented by one of int
or unsigned int. Otherwise, the enumerations occupy 4 bytes of storage as
with the 4 suboption.

small
Specifies that enumerations occupy the smallest amount of space (1, 2, 4, or 8
bytes of storage) that can accurately represent the range of values in the
enumeration. Signedness is unsigned, unless the range of values includes
negative values. If an 8-byte enum results, the actual enumeration type used is
dependent on compilation mode.

pop | reset (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

138 xLC: Compiler Reference

Usage

The tables that follow show the priority for selecting a predefined type. The table
also shows the predefined type, the maximum range of enum constants for the
corresponding predefined type, and the amount of storage that is required for that
predefined type, that is, the value that the sizeof operator would yield when
applied to the minimum-sized enum. All types are signed unless otherwise noted.

Table 23. Enumeration sizes and types

enum=38
enums=1 enums=2 enum=4 32-bit compilation | 64-bit compilation
mode mode
Range var const var const var const var const var const
0..127 signed int short int int int long long | long long |long long
char
-128..127 signed int short int int int long long | long long | long long
char
0..255 unsigned | int short int int int long long | long long | long long
char
0..32767 ERROR' |int short int int int long long | long long | long long
-32768..32767 ERROR' |int short int int int long long | long long |long long
0..65535 ERROR' |int unsigned |int int int long long | long long |long long
short
0..2147483647 ERROR! |int ERROR' |int int int long long | long long |long long
-(2147483647+1) | ERROR! |int ERROR' |int int int long long | long long |long long
..2147483647
0..4294967295 ERROR' |unsigned |ERROR' |unsigned |unsigned |unsigned |long long |long long |long long
int? int? int? int?
0..2%-1) ERROR' |long’ ERROR' |long? ERROR' |long’ long long long? long?
long’ long?
-2%,(2%-1) ERROR' |long’ ERROR' |long? ERROR' |long’ long long long? long?
long’ long?
0.2% ERROR' |unsigned |ERROR' |unsigned |ERROR' |unsigned |unsigned |unsigned |unsigned |unsigned
long® long® long® long long long® long®
long? long?
enums=intlong enum=small
enums=int 32-bit compilation 64-bit compilation 32-bit compilation 64-bit compilation
mode mode mode mode
Range var const var const var const var const var const
0.127 int int int int int int unsigned |int unsigned | int
char char
-128..127 int int int int int int signed int signed int
char char
0..255 int int int int int int unsigned |int unsigned |int
char char
0..32767 int int int int int int unsigned |int unsigned |int
short short
-32768..32767 int int int int int int short int short int
0..65535 int int int int int int unsigned |int unsigned | int
short short
0..2147483647 int int int int int int unsigned | unsigned [unsigned |unsigned
int int int int
Chapter 4. Compiler options reference 139

-(2147483647+1) |int int int int int int int int int int
..2147483647
0..4294967295 unsigned | unsigned |unsigned |unsigned |unsigned |unsigned |unsigned |unsigned |unsigned |unsigned
int' int? int® int® int? int? int? int? int? int?
0..(2%-1) ERR? ERR? long long long? long? unsigned | unsigned |unsigned |unsigned
long? long? long long long? long?
long? long?
-2%.(2%-1) ERR® ERR? long long long? long? long long long? long?
long® long® long® long®
0.2% ERR? ERR? unsigned |unsigned |unsigned |unsigned |unsigned |unsigned |unsigned |unsigned
long long long® long® long long long® long®
long? long? long? long?
Notes:

* These enumerations are too large for the -qenum=112141int setting. A Severe
error is issued and compilation stops. To correct this condition, you should
reduce the range of the enumerations, choose a larger -qenum setting, or choose
a dynamic -qenum setting, such as small or intlong.

* Enumeration types must not exceed the range of int when compiling C
applications to ISO C 1989 and ISO C 1999 Standards. With the stdc89 | stdc99
language level in effect, the compiler will behave as follows if the value of an
enumeration exceeds the range of int and the -qenum option in effect supports
this value:

— If -qenum=int is in effect, a severe error message is issued and compilation
stops.

— For all other settings of -qenum, an informational message is issued and
compilation continues.

The #pragma enum directive must precede the declaration of enum variables that
follow; any directives that occur within a declaration are ignored and diagnosed
with a warning.

For each #pragma enum directive that you put in a source file, it is good practice
to have a corresponding #pragma enum=reset before the end of that file. This
should prevent one file from potentially changing the setting of another file that
includes it.

Examples

If the following fragment is compiled with the enum=small option:
enum e_tag {a, b, c} e_var;

the range of enumeration constants is 0 through 2. This range falls within all of the
ranges described in the table above. Based on priority, the compiler uses
predefined type unsigned char.

If the following fragment is compiled with the enum=small option:
enum e_tag {a=-129, b, c} e_var;

the range of enumeration constants is -129 through -127. This range only falls
within the ranges of short (signed short) and int (signed int). Because short
(signed short) is smaller, it will be used to represent the enum.

140 xLcC: Compiler Reference

The following code segment generates a warning and the second occurrence of the
enum pragma is ignored:

#pragma enum(small)
enum e_tag {
a,
b,
#pragma enum(int) /* error: cannot be within a declaration */
o
} e_var;
#pragma enum(reset)
#pragma enum(reset) /* second reset isn't required */

Predefined macros

None.

-gexpfile
Category

[Object code control|

Pragma equivalent
None.
Purpose

When used together with the -qmkshrobj or -G option, saves all exported symbols
in a designated file.

Syntax

»»— -g—expfile—=—rfilename ><

Parameters

filename
The name of the file to which exported symbols are written.

Usage

This option is valid only when used with the -qmkshrobj or -G option.
Predefined macros

None.

Related information

* |“-gmkshrobj” on page 233
* ["-G” on page 163

-gextchk
Category

[Error checking and debugging]

Chapter 4. Compiler options reference 141

Pragma equivalent
#pragma options [nolextchk
Purpose

Generates link-time type checking information and checks for compile-time
consistency.

Syntax

noextchk
»— —(|_cxtchk —l >«

Defaults
-qnoextchk
Usage

This option does not perform type checking on functions or objects that contain
references to incomplete types.

Predefined macros
None.
Examples

To compile myprogram.c so that link-time checking information is produced, enter:
x1c myprogram.c -gextchk

Category

Pragma equivalent

None.

Purpose

Names a file that stores a list of object files for the compiler to pass to the linker.

Syntax

v
A

»»— -f—filelistname

Usage

The filelistname file should contain only the names of object files. There should be
one object file per line.

142 xLC: Compiler Reference

This option is the same as the -f option for the 1d command.
Predefined macros

None.

Examples

To pass the list of files contained in myobjlistfile to the linker, enter:
x1c -f/usr/tmp/myobjlistfile

Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Names an alternative configuration file or stanza for the compiler.

Syntax
»— -F file_path ><
l—:—s t‘anza—|
:—stanza
Defaults

By default, the compiler uses the configuration file that is supplied at installation
time, and uses the stanza defined in that file for the invocation command currently
being used.

Parameters

file path
The full path name of the alternate compiler configuration file to use.

stanza
The name of the configuration file stanza to use for compilation. This directs
the compiler to use the entries under that stanza regardless of the invocation
command being used. For example, if you are compiling with xlc, but you
specify the ¢99 stanza, the compiler will use all the settings specified in the ¢99
stanza.

Usage
Note that any file names or stanzas that you specify with the -F option override
the defaults specified in the system configuration file. If you have specified a

custom configuration file with the XLC_USR_CONFIG environment variable, that
file is processed before the one specified by the -F option.

Chapter 4. Compiler options reference 143

The -B, -t, and -W options override the -F option.
Predefined macros

None.

Examples

To compile myprogram.c using a stanza called debug that you have added to the
default configuration file, enter:

x1c myprogram.c -F:debug

To compile myprogram.c using a configuration file called /usr/tmp/myconfig.cfg,
enter:

x1c myprogram.c -F/usr/tmp/myconfig.cfg

To compile myprogram.c using the stanza c99 you have created in a configuration
file called /usr/tmp/myconfig.cfg, enter:

x1c myprogram.c -F/usr/tmp/myconfig.cfg:c99

Related information

» [“Using custom compiler configuration files” on page 38|

* [-B” on page 110|

* [“-t” on page 303

+ [“-W” on page 326|

* |“Specifying compiler options in a configuration file” on page 7|

+ [“Compile-time and link-time environment variables” on page 24|

-qfdpr
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

Provides object files with information that the IBM Feedback Directed Program
Restructuring (FDPR) performance-tuning utility needs to optimize the resulting
executable file.

When -qfdpr is in effect, optimization data is stored in the object file.

Syntax

nofdpr
>»— - |_fdpr —l ><

Defaults

-qnofdpr

144 xLC: Compiler Reference

-gflag

Usage
For best results, use -qfdpr for all object files in a program; FDPR will perform

optimizations only on the files compiled with -qfdpr, and not library code, even if
it is statically linked.

The optimizations that the FDPR utility performs are similar to those that the
-qpdf option performs.

The FDPR performance-tuning utility has its own set of restrictions, and it is not
guaranteed to speed up all programs or produce executables that produce exactly
the same results as the original programs.

Predefined macros

None.

Examples

To compile myprogram.c so it includes data required by the FDPR utility, enter:
x1c myprogram.c -qfdpr

Related information
* |“-gpdfl, -qpdf2” on page 247

Category

[Listings, messages, and compiler information|

Pragma equivalent

#pragma options flag

Purpose

Limits the diagnostic messages to those of a specified severity level or higher.

The messages are written to standard output and, optionally, to the listing file if
one is generated.

Syntax
-gflag syntax — C

»»— -qflag—= W : W

A\
A

Notes:
1 Minimum severity level of messages reported in listing

2 Minimum severity level of messages reported on terminal

Chapter 4. Compiler options reference 145

Defaults
-gflag=i : i, which shows all compiler messages

Parameters

i Specifies that all diagnostic messages are to display: warning, error and
informational messages. Informational messages (I) are of the lowest severity.

w Specifies that warning (W) and all types of error messages are to display.

e Specifies that only error (E), severe error (S), and unrecoverable error (U)
messages are to display.

s Specifies that only severe error (S) and unrecoverable error (U) messages are to
display.

Usage

You must specify a minimum message severity level for both listing and terminal
reporting.

Note that using -qflag does not enable the classes of informational message
controlled by the -qinfo option; see for more information.

The -qhaltonmsg option has precedence over the -qflag option. If both
-ghaltonmsg and -qflag are specified, messages that are not selected by -qflag are
also printed.

Predefined macros
None.
Examples

To compile myprogram.c so that the listing shows all messages that were generated
and your workstation displays only error and higher messages (with their
associated information messages to aid in fixing the errors), enter:

x1c myprogram.c -qflag=i:e

Related information

+ [“-qinfo” on page 178|

+ |“-ghaltonmsg” on page 166

* [“-w” on page 325

+ [“Compiler messages” on page 16|

-gfloat
Category

[Floating-point and integer control|

Pragma equivalent

#pragma options float

146 XxLC: Compiler Reference

Purpose

Selects different strategies for speeding up or improving the accuracy of
floating-point calculations.

Syntax

—nosubnormals—
—nospnans
—single
—norsqrt
—norrm
—rngchk———
—rndsngl
—norelax
—nonans
—maf;
—nohssng]
—nohsflt
—nohscmpTx
—fold
—nofltint
—nofenv
—dfpemulate—-
»»— -g—float—=—"—-nodfpemulate ><
—fenv
—fltint——
—nofold
—hscmp1x
—hs fl1t——
—hssngl———
—nomaf
—nans
—relax
—norndsngl——
—norngchk
—rrm——————
—rsqrt
—nosingle
—spnans
—subnormals—

Defaults

* -qfloat=dfpemulate:nofenv:nofltint:fold:nohscmplx:nohsflt:nohssngl:maf:
nonans:norelax:rndsngl:rngchk:norrm:norsqrt:single:nospnans:nosubnormals

* -qfloat=fltint:rsqrt:norngchk:nosubnormals when -qnostrict,
-gstrict=nooperationprecision:noexceptions, or the -O3 or higher optimization
level is in effect.

Parameters

dfpemulate | nodfpemulate
Specifies whether decimal floating-point computations are implemented in
hardware instructions or emulated in software by calls to library functions.
nodfpemulate is only valid on a system that supports decimal floating-point
instructions; that is, a system with -qarch=pwr6 or above in effect.
nodfpemulate is the recommended setting for those systems, and results in

Chapter 4. Compiler options reference 147

improved performance of decimal floating-point operations and overall
program runtime performance. dfpemulate is required for all other -qarch
values.

Note that -qdfp must also be enabled for either suboption to have any effect.
Otherwise, nodfpemulate is set.

fenv | nofenv
Specifies whether the code depends on the hardware environment and whether
to suppress optimizations that could cause unexpected results due to this
dependency.

Certain floating-point operations rely on the status of Floating-Point Status and
Control Register (FPSCR), for example, to control the rounding mode or to
detect underflow. In particular, many compiler built-in functions read values
directly from the FPSCR.

When nofenv is in effect, the compiler assumes that the program does not
depend on the hardware environment, and that aggressive compiler
optimizations that change the sequence of floating-point operations are
allowed. When fenv is in effect, such optimizations are suppressed.

You should use fenv for any code containing statements that read or set the
hardware floating-point environment, to guard against optimizations that could
cause unexpected behavior.

Any directives specified in the source code (such as the standard C
FENV_ACCESS pragma) take precedence over the option setting.

fltint | nofltint
Speeds up floating-point-to-integer conversions by using an inline sequence of
code instead of a call to a library function. The library function, which is called
when nofltint is in effect, checks for floating-point values outside the
representable range of integers and returns the minimum or maximum
representable integer if passed an out-of-range floating-point value.

If -qarch is set to a processor that has an instruction to convert from floating
point to integer, that instruction will be used regardless of the [nolfltint
setting. This conversion also applies to all Power processors in 64-bit mode.

If you compile with the -O3 or higher optimization level, fltint is enabled
automatically. To disable it, also specify -qstrict, -qstrict=operationprecision, or
-gstrict=exceptions.

fold | nofold
Evaluates constant floating-point expressions at compile time, which may yield
slightly different results from evaluating them at run time. The compiler
always evaluates constant expressions in specification statements, even if you
specify nofold.

The -qfloat=[nolfold option replaces the deprecated -q[nolfold option. Use
-qfloat=[nolfold in your new applications.

hscmp1x | nohscmplx
Speeds up operations involving complex division and complex absolute value.
This suboption, which provides a subset of the optimizations of the hsflt
suboption, is preferred for complex calculations.

hsf1t | nohsflt
Speeds up calculations by preventing rounding for single-precision expressions
and by replacing floating-point division by multiplication with the reciprocal of

148 xLC: Compiler Reference

the divisor. It also uses the same technique as the fltint suboption for
floating-point-to-integer conversions. hsflt implies hscmplx.

The hsflt suboption overrides the nans and spnans suboptions.

Note: Use -qfloat=hsflt on applications that perform complex division and
floating-point conversions where floating-point calculations have known
characteristics. In particular, all floating-point results must be within the
defined range of representation of single precision. Use with discretion, as this
option may produce unexpected results without warning. For complex
computations, it is recommended that you use the hsemplx suboption
(described above), which provides equivalent speed-up without the
undesirable results of hsflt.

hssngl | nohssngl

Specifies that single-precision expressions are rounded only when the results
are stored into memory locations, but not after expression evaluation. Using
hssngl can improve runtime performance and is safer than using hsflt.

This option only affects double-precision (double) expressions cast to
single-precision (float) and used in an assignment operator for which a store
instruction is generated, when -qfloat=nosingle is in effect. Do not use this
option if you are compiling with the default -qfloat=single.

maf | nomaf
Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions where appropriate. The results may
not be exactly equivalent to those from similar calculations performed at
compile time or on other types of computers. Negative zero results may be
produced. Rounding towards negative infinity or positive infinity will be
reversed for these operations. This suboption may affect the precision of
floating-point intermediate results. If -qfloat=nomaf is specified, no
multiply-add instructions will be generated unless they are required for
correctness.

The -qfloat=[no]maf option replaces the deprecated -q[nolmaf option. Use
-qfloat=[no]maf in your new applications.

nans | nonans
Allows you to use the -qflttrap=invalid:enable option to detect and deal with
exception conditions that involve signaling NaN (not-a-number) values. Use
this suboption only if your program explicitly creates signaling NaN values,
because these values never result from other floating-point operations.

The hsflt option overrides the nans option.

The -qfloat=[no]nans option replaces the deprecated -qfloat=[nolspnans
option and the -q[nolspnans option. Use -qfloat=[no]nans in your new
applications.

relax | norelax
Relaxes strict IEEE conformance slightly for greater speed, typically by
removing some trivial floating-point arithmetic operations, such as adds and
subtracts involving a zero on the right. These changes are allowed if either
-gstrict=noieeefp or -qfloat=relax is specified.

norndsngl | rndsngl
Rounds the result of each single-precision operation to single-precision, rather
than waiting until the full expression is evaluated. It sacrifices speed for
consistency with results from similar calculations on other types of computers.

Chapter 4. Compiler options reference 149

This option only affects double-precision expressions cast to single-precision.
You can only specify norndsngl when -qfloat=nosingle is in effect.

The hsflt suboption overrides the rndsngl option.

rngchk | norngchk
At optimization level -O3 and above, and without -qstrict, controls whether
range checking is performed for input arguments for software divide and
inlined square root operations. Specifying norngchk instructs the compiler to
skip range checking, allowing for increased performance where division and
square root operations are performed repeatedly within a loop.

Note that with norngchk in effect the following restrictions apply:
* The dividend of a division operation must not be +/-INF.

* The divisor of a division operation must not be 0.0, +/- INEF, or
denormalized values.

* The quotient of dividend and divisor must not be +/-INF.

* The input for a square root operation must not be INF.

If any of these conditions are not met, incorrect results may be produced. For
example, if the divisor for a division operation is 0.0 or a denormalized
number (absolute value < 2% for double precision, and absolute value < 2%
for single precision), NaN, instead of INF, may result; when the divisor is +/-
INF, NaN instead of 0.0 may result. If the input is +INF for a sqrt operation,
NaN, rather than INF, may result.

norngchk is only allowed when -qnostrict is in effect. If -gstrict,
-gstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions is in
effect, norngchk is ignored.

rrm | norrm
Prevents floating-point optimizations that require the rounding mode to be the
default, round-to-nearest, at run time, by informing the compiler that the
floating-point rounding mode may change or is not round-to-nearest at run
time. You should use rrm if your program changes the runtime rounding mode
by any means; otherwise, the program may compute incorrect results.

The -qfloat=[no]rrm option replaces the deprecated -q[nolrrm option. Use
-qfloat=[no]rrm in your new applications.

rsqrt | norsqrt
Speeds up some calculations by replacing division by the result of a square
root with multiplication by the reciprocal of the square root.

rsqrt has no effect unless -qignerrno is also specified; errno will not be set for
any sqrt function calls.

If you compile with the -O3 or higher optimization level, rsqrt is enabled
automatically. To disable it, also specify -qstrict, -qstrict=nans,
-gstrict=infinities, -qstrict=zerosigns, or -qstrict=exceptions.

single | nosingle
Allows single-precision arithmetic instructions to be generated for
single-precision floating-point values. All Power processors support
single-precision instructions; however, if you want to preserve the behavior of
applications compiled for earlier architectures, in which all floating-point
arithmetic was performed in double-precision and then truncated to
single-precision, you can use -qfloat=nosingle:norndsngl. This suboption
provides computation precision results compatible with those provided by the

150 xLcC: Compiler Reference

deprecated options -qarch=com | pwr | pwrx | pwr2 | p2sc|16011602 | 603.
-qfloat=nosingle can be specified in 32-bit mode only.

spnans | nospnans
Generates extra instructions to detect signalling NaN on conversion from
single-precision to double-precision.

The hsflt suboption overrides the spnans suboption.

subnormals | nosubnormals
Specifies whether the code uses subnormal floating point values, also known
as denormalized floating point values. Whether or not you specify this
suboption, the behavior of your program will not change, but the compiler
uses this information to gain possible performance improvements.

Note: This suboption takes effect only on POWERS processors. To use this
suboption, you must also specify the -qarch=pwr8 and -qtune=pwr8 options.

Note: For details about the relationship between -qfloat suboptions and their
-gstrict counterparts, see [’-gstrict” on page 294

Usage

Using -qfloat suboptions other than the default settings might produce incorrect
results in floating-point computations if the system does not meet all required
conditions for a given suboption. Therefore, use this option only if the
floating-point calculations involving IEEE floating-point values are manipulated
and can properly assess the possibility of introducing errors in the program.

If the -gstrict | -qnostrict and float suboptions conflict, the last setting specified is
used.

Predefined macros

__IBM_DFP_SW_EMULATION__ is predefined to a value of 1 when
-qfloat=dfpemulate is in effect; otherwise it is undefined.

Examples

To compile myprogram.c so that the constant floating-point expressions are
evaluated at compile time and multiply-add instructions are not generated, enter:

x1c myprogram.c -qfloat=fold:nomaf

Related information

* |“-qarch” on page 102

* [“-gflttrap”]

* |“-qldbl128, -glongdouble” on page 212|

* |“-gstrict” on page 294|

+ |'Handling floating-point operations'|in the XL C Optimization and Programming
Guide

-qgfittrap
Category

[Error checking and debugging]

Chapter 4. Compiler options reference 151

Pragma equivalent

#pragma options [no]flttrap

Purpose

Determines what types of floating-point exceptions to detect at run time.

The program receives a SIGTRAP signal when the corresponding exception
occurs.

Syntax

[noﬂ ttrap
»»— - flttrap ><

—ZEero
—zerodivide—
—und
—underflow—]
L oy———— |
—overflow—
—inv
—invalid
—inex
—inexact
= enable
—en
—imprecise—
—imp
nanq

Defaults
-qnoflttrap

Specifying -qflttrap option with no suboptions is equivalent to
-qflttrap=overflow:underflow:zerodivide:invalid:inexact

Parameters

enable, en
Inserts a trap when the specified exceptions (overflow, underflow, zerodivide,
invalid, or inexact) occur. You must specify this suboption if you want to turn
on exception trapping without modifying your source code. If any of the
specified exceptions occur, a SIGTRAP or SIGFPE signal is sent to the process
with the precise location of the exception. If imprecise is in effect, traps will
not report exactly where the exception occurred.

imprecise, imp
Enables imprecise detection of the specified exceptions. The compiler generates
instructions after a block of code and just before the main program returns, to
check if any of the specified exceptions (overflow, underflow, zerodivide,
invalid, or inexact) have occurred. If an exception has occurred, an exception
status flag is set in the Floating-Point Status and Control Register, but the exact
location of the exception is not determined. Because instructions are not

152 XxLC: Compiler Reference

generated after each floating-point operation and function call to check for
exceptions, this suboption can result in a slight performance improvement.

inexact, inex
Enables the detection of floating-point inexact operations. If imprecise is not
also specified, the compiler generates instructions after each floating-point
operation and function call to check if an inexact operation exception has
occurred. If a floating-point inexact operation occurs, an inexact operation
exception status flag is set in the Floating-Point Status and Control Register
(FPSCR).

invalid, inv
Enables the detection of floating-point invalid operations. If imprecise is not
also specified, the compiler generates instructions after each floating-point
operation and function call to check if an invalid operation exception has
occurred. If a floating-point invalid operation occurs, an invalid operation
exception status flag is set in the FPSCR.

nanq
Generates code to detect Not a Number Quiet (NaNQ) and Not a Number
Signalling (NaNS) exceptions before and after each floating-point operation,
including assignment, and after each call to a function returning a
floating-point result to trap if the value is a NaN. Trapping code is generated
regardless of whether the enable suboption is specified.

overflow, ov
Enables the detection of floating-point overflow.If imprecise is not also
specified, the compiler generates instructions after each floating-point
operation and function call to check if an overflow exception has occurred. If a
floating-point overflow occurs, an overflow exception status flag is set in the
FPSCR.

underflow, ﬂd
Enables the detection of floating-point underflow. If imprecise is not also
specified, the compiler generates instructions after each floating-point
operation and function call to check if an underflow exception has occurred. If
a floating-point underflow occurs, an underflow exception status flag is set in
the FPSCR.

zerodivide, zero
Enables the detection of floating-point division by zero. If imprecise is not also
specified, the compiler generates instructions after each floating-point
operation and function call to check if a zero-divide exception has occurred. If
a floating-point zero-divide occurs, a zero-divide exception status flag is set in
the FPSCR.

Usage
Exceptions will be detected by the hardware, but trapping is not enabled.

It is recommended that you use the enable suboption whenever compiling the
main program with -qflttrap. This ensures that the compiler will generate the code
to automatically enable floating-point exception trapping, without requiring that
you include calls to the appropriate floating-point exception library functions in
your code.

If you specify -qflttrap more than once, both with and without suboptions, the
-qflttrap without suboptions is ignored.

Chapter 4. Compiler options reference 153

The -qflttrap option is recognized during linking with IPA. Specifying the option
at the link step overrides the compile-time setting.

If your program contains signalling NaNs, you should use the -qfloat=nans option
along with -gflttrap to trap any exceptions.

The compiler exhibits behavior as illustrated in the following examples when the
-qflttrap option is specified together with an optimization option:

* with -O2:
— 1/0 generates a div0 exception and has a result of infinity
— 0/0 generates an invalid operation
* with -O3 or greater:
— 1/0 generates a div0 exception and has a result of infinity
— 0/0 returns zero multiplied by the result of the previous division.

If you use -qflttrap=inv:en to compile a program containing an IEEE invalid SQRT
operation and you specify a target that does not implement the sqrt
instruction set, the expected SIGTRAP signal will not occur when you run the
program. You can fix this problem by specifying the following command before
running the program:

export SQRT_EXCEPTION=3.1
Note: Due to the transformations performed and the exception handling support
of some vector instructions, use of -qsimd=auto may change the location where an

exception is caught or even cause the compiler to miss catching an exception.

Predefined macros

None.
Example
#include <stdio.h>
int main()
{
float x, y, z;
x =5.0;
y = 0.0;
z=x1/Yy;
printf("%f", z);

When you compile this program with the following command, the program stops
when the division is performed.

x1c -qflttrap=zerodivide:enable divide by zero.c

The zerodivide suboption identifies the type of exception to guard against. The
enable suboption causes a SIGTRAP signal to be generated when the exception
occurs.

Related information
* |“-gfloat” on page 146|

* [“-qarch” on page 102|

154 xLC: Compiler Reference

-gformat
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Warns of possible problems with string input and output format specifications.

Functions diagnosed are printf, scanf, strftime, strfmon family functions and
functions marked with format attributes.

Syntax
|—nofor‘mat
»»— - format >«
F—aﬂ
=—Y 1 noall

—exarg—
—noexarg—
—nlt
—nonTt—
—sec
—nosec—
—y2k
—noy2k—
—z1n
“nozln—-

Defaults

-qnoformat

Parameters

all | noall

~ Enables or disables all format diagnostic messages.

exarg | noexarg
Warns if excess arguments appear in printf and scanf style function calls.

nlt | nonlt
Warns if a format string is not a string literal, unless the format function takes
its format arguments as a va_list.

sec | nosec
Warns of possible security problems in use of format functions.
y2k | noy2k

Warns of strftime formats that produce a 2-digit year.

zln | nozln
Warns of zero-length formats.

Chapter 4. Compiler options reference 155

Specifying -qformat with no suboptions is equivalent to -qformat=all.
-qnoformat is equivalent to -qformat=noall.

Predefined macros

None.

Examples

To enable all format string diagnostics, enter either of the following:
x1c myprogram.c -qformat=all
x1c myprogram.c -qformat

To enable all format diagnostic checking except that for y2k date diagnostics, enter:
x1c myprogram.c -qformat=all:noy2k

-gfullpath
Category

[Error checking and debugging]

Pragma equivalent
#pragma options [no]fullpath
Purpose

When used with the -g or -qlinedebug option, this option records the full, or
absolute, path names of source and include files in object files compiled with
debugging information, so that debugging tools can correctly locate the source
files.

When fullpath is in effect, the absolute (full) path names of source files are
preserved. When nofullpath is in effect, the relative path names of source files are

preserved.

Syntax

[noqupath
»»— - fullpath ><

Defaults

-qnofullpath

Usage

If your executable file was moved to another directory, the debugger would be

unable to find the file unless you provide a search path in the debugger. You can
use fullpath to ensure that the debugger locates the file successfully.

156 XxLC: Compiler Reference

Predefined macros
None.
Related information

* |“-glinedebug” on page 216|
* |"-g” on page 160

-gfuncsect
Category

[Object code control|

Pragma equivalent
#pragma options [no]funcsect
Purpose

Places instructions for each function in a separate object file control section or
CSECT. Placing each function in its own section or CSECT might reduce the size of
your program because the linker can collect garbage per function rather than per
object file.

When -qfuncsect is specified, the compiler generates references from each function
to the static data area, if one exists, in order to ensure that if any function from
that object file is included in the final executable, the static data area also is
included. This is done to ensure that any static strings or strings from a pragma
comment, possible containing copyright information, are also included in the
executable. This can, in some cases, cause code bloat or unresolved symbols at link
time.

When -qnofuncsect is in effect, each object file consists of a single control section
combining all functions defined in the corresponding source file. You can use
-qfuncsect to place each function in a separate control section.

Syntax
nofuncsect |
»— - funcsect ><
[1mp1 icitstati crefﬂ
= noimplicitstaticref
Defaults
-qnofuncsect
Parameters

implicitstaticref | noimplicitstaticref
Specifies whether references to the static data section of the object file by
functions that are contained in static variables, virtual function tables, or
exception handling tables, are maintained.

In releases before XL C for AIX V11.1, all exception handling tables were
placed in one static data section. Including one exception handling table meant

Chapter 4. Compiler options reference 157

all the other tables were also included. Therefore, references to functions in the
unused exception handling tables prevented linker garbage collection of those
functions, which would otherwise have been cleaned up. Starting from XL C
for AIX, V11.1, this problem is solved by allocating each exception handling
table its own TOC entry. As a result, the size of the final executable might be
reduced.

Note: The XL C for AIX, V11.1 enhancement enables large TOC access, which
sets no limit on the number of TOC entries.

When your code contains a #pragma comment directive or a static string for
copyright information purposes, the compiler automatically places these strings
in the static data area and generates references to these static data areas in the
object code.

When -qfuncsect=implicitstaticref is in effect, a reference to the static area is
generated even if not otherwise referenced.

When -qfuncsect=noimplicitstaticref is in effect, a reference to the static area is
only generated if referenced by the program.

Specifying -qfuncsect with no suboption implies -qfuncsect=implicitstaticref.
Usage

Using multiple control sections increases the size of the object file, but it can
reduce the size of the final executable by allowing the linker to remove functions

that are not called or that have been inlined by the optimizer at all places they are
called.

The pragma directive must be specified before the first statement in the
compilation unit.

Predefined macros
None.

Related information
* [“#pragma comment” on page 343|

-gfunctrace
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Calls the tracing routines to trace the entry and exit points of the specified
functions in a compilation unit.

158 xLC: Compiler Reference

Syntax

-gnofunctrace
»—E-qfunctracc >«

+]'—function_name

Pragma syntax

v

»»—#—pragma—nofunctrace—(function_name) ><

Defaults
-qnofunctrace

Parameters
+ Instructs the compiler to trace function_name and all its internal functions.

- Instructs the compiler not to trace function_name or any of its internal
functions.

function_name
Indicates the named functions to be traced.

Usage

-qfunctrace enables tracing for all functions in your program. -qnofunctrace
disables tracing that was enabled by -qfunctrace.

The -qfunctrace+ and -qfunctrace- suboptions enable tracing for a specific list of
functions and are not affected by -qnofunctrace. The list of functions is cumulative.

This option inserts calls to the tracing functions that you have defined. These
functions must be provided at the link step. For details about the interface of
tracing functions, as well as when they are called, see the [Tracing functions in your]
section in the XL C Optimization and Programming Guide.

Use + or - to indicate the function to be traced by the compiler. For example, if you
want to trace function x, use -qfunctrace+x. To trace a list of functions, you must
use a colon : to separate them.

If you want to trace functions in your code, you can write tracing functions in
your code by using the following C function prototypes:

* Use void _ func_trace_enter(const char *const function_name, const char
xconst file _name, int line_number, void **const user data); to define the
entry point tracing routine.

* Use void _ func_trace exit(const char *const function name, const char
xconst file _name, int line_number, void **const user data); to define the
exit point tracing routine.

Chapter 4. Compiler options reference 159

You must define your functions when you write the preceding function prototypes
in your code.

For details about the these function prototypes as well as when they are called, see
the [Tracing functions in your code|section in the XL C Optimization and
Programming Guide.

Note:

* You can only use + and - one at a time. Do not use both of them together in the
same -qfunctrace invocation.

* Definition of an inline function is traced. It is only the calls that have been
inlined are not traced.

Predefined macros

None.

Examples

To trace functions X, y, and z, use -qfunctrace+x:y:z.

To trace all functions except for x, use -qfunctrace -qfunctrace-x.

The -qfunctrace+ and -qfunctrace- suboptions only enable or disable tracing on the

given list of cumulative functions. When functions are used, the most completely

specified option is in effect. The following is a list of examples:

* -qgfunctrace+x -qfunctracety or -qfunctrace+x -gnofunctrace -qfunctracety
enables tracing for only x and y.

* -gfunctrace-x -gfunctrace or -qfunctrace -qfunctrace-x traces all functions in
the compilation unit except for x.

» -gfunctrace -qfunctrace+x traces all functions.

* -gfunctracety -gnofunctrace traces y only.

» -gfunctracetstd::vector traces all instantiations of std::vector.

Related information

« For details about #pragma nofunctrace, see [“#pragma nofunctrace” on page 361

* For detailed information about how to implement function tracing routines in
your code, as well as detailed examples and a list of rules for using them, see
[Tracing functions in your code|in the XL C Optimization and Programming Guide.

Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Generates debugging information for use by a symbolic debugger, and makes the
program state available to the debugging session at selected source locations.

160 xLC: Compiler Reference

Program state refers to the values of user variables at certain points during the
execution of a program.

You can use different -g levels to balance between debug capability and compiler
optimization. Higher -g levels provide a more complete debug support, at the cost
of runtime or possible compile-time performance, while lower -g levels provide
higher runtime performance, at the cost of some capability in the debugging
session.

When the -O2 optimization level is in effect, the debug capability is completely
supported.

Note: When an optimization level higher than -O2 is in effect, the debug capability
is limited.

Syntax
D
> -g »><
1—
L 2|
L 3]
4
5
L 6—]
L7
L 8—
9
Defaults
-go
Parameters
-8

* When no optimization is enabled (-qnoopt), -g is equivalent to -g9.
* When the -O2 optimization level is in effect, -g is equivalent to -g2.

-g0 Generates no debugging information. No program state is preserved.

-gl Generates minimal read-only debugging information about line numbers
and source file names. No program state is preserved. This option is
equivalent to -qlinedebug.

-g2 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect, no program state is preserved.
-83, -84

Generates read-only debugging information about line numbers, source file

names, and variables.

When the -O2 optimization level is in effect:
* No program state is preserved.

* Function parameter values are available to the debugger at the
beginning of each function.

Chapter 4. Compiler options reference 161

-85, -g6, -g7

Usage

Generates read-only debugging information about line numbers, source file
names, and variables.
When the -O2 optimization level is in effect:

* Program state is available to the debugger at if constructs, loop
constructs, function definitions, and function calls. For details, see

* Function parameter values are available to the debugger at the
beginning of each function.

Generates read-only debugging information about line numbers, source file
names, and variables.
When the -O2 optimization level is in effect:

* Program state is available to the debugger at the beginning of every
executable statement.

* Function parameter values are available to the debugger at the
beginning of each function.

Generates debugging information about line numbers, source file names,
and variables. You can modify the value of the variables in the debugger.
When the -O2 optimization level is in effect:

* Program state is available to the debugger at the beginning of every
executable statement.

* Function parameter values are available to the debugger at the
beginning of each function.

When no optimization is enabled, the debugging information is always available if
you specify -g2 or a higher level. When the -O2 optimization level is in effect, the
debugging information is available at selected source locations if you specify -g5 or
a higher level.

When you specify -g8 or -g9 with -02, the debugging information is available at
every source line with an executable statement.

When you specify -g5, -g6, or -g7 with -O2, the debugging information is available
for the following language constructs:

e if constructs

The debugging information is available at the beginning of every if statement,
namely at the line where the if keyword is specified. It is also available at the
beginning of the next executable statement right after the if construct.

* Loop constructs

The debugging information is available at the beginning of every do, for, or
while statement, namely at the line where the do, for, or while keyword is
specified. It is also available at the beginning of the next executable statement
right after the do, for, or while construct.

e Function definitions

The debugging information is available at the first executable statement in the
body of the function.

¢ Function calls

162 XL C: Compiler Reference

The debugging information is available at the beginning of every statement
where a user-defined function is called. It is also available at the beginning of
the next executable statement right after the statement that contains the function
call.

Examples

Use the following command to compile myprogram.c and generate an executable
program called testing for debugging:

x1c myprogram.c -o testing -g

The following command uses a specific -g level with -O2 to compile myprogram.c
and generate debugging information:

x1c myprogram.c -02 -g8

Related information
+ |“-gdbxextra” on page 130

* [“-gsymtab” on page 301|

* [“#pragma ibm snapshot” on page 355|

* |“-glinedebug” on page 216|

[“-gfullpath” on page 156

+ |”-O, -qoptimize” on page 236

+ [“-gkeepparm” on page 202|

Category

Pragma equivalent

None.

Purpose

Generates a shared object enabled for runtime linking.
Syntax

»— -G »><

Usage

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using with the -bE:, -bexport:, or
-bnoexpall option. You can also prevent weak symbols from being exported by
using the -qnoweakexp option. ETI Symbols that have the hidden or internal
visibility attribute are not exported. IR

To save the export list to a file, use the -qexpfile option.

Chapter 4. Compiler options reference 163

Predefined macros
None.

Related information

* |"-b” on page 109

* |“-brtl” on page 113|

* |“-gexpfile” on page 141

+ [“-gmkshrobj” on page 233|

* ["-gweakexp” on page 328

» |“-qvisibility” on page 323

* |“#pragma GCC visibility push, #pragma GCC visibility pop” on page 349|

* [Summary of compiler options by functional category: Linking]|

* "Shared Objects and Runtime Linking" in AIX General Programming Concepts:
Writing and Debugging Programs

* 1d in AIX Commands Reference, Volume 3: i through m

-qgenproto
Category

[Portability and migration|

Pragma equivalent
None.
Purpose

Produces prototype declarations from K&R function definitions or function
definitions with empty parentheses, and displays them to standard output.

The compiler accepts and compiles K&R function definitions or definitions with a
function declarator with empty parentheses; however, these function definitions are
considered by the C standard to be obsolete (the compiler will diagnose them if
you enable the -qinfo=obs option). When -qgenproto is in effect, the compiler
generates the corresponding prototype declarations and displays them to standard
output. You can use this option to help you identify obsolete function definitions
and automatically obtain equivalent prototypes.

Syntax

[nogenproto |
»— -(genproto ><

|—=—par‘mnamesJ

Defaults
-qnogenproto

Parameters

parmnames
Parameter names are included in the prototype. If you do not specify this
suboption, parameter names will not be included in the prototype.

164 XxLC: Compiler Reference

-ghalt

Predefined macros
None.
Examples

Compiling with - qgenproto for the following function definitions:

int foo(a, b) // K&R function
int a, b;

{

1

int faa(int i) { } // prototyped function

main() { // missing void parameter

}

produces the following output on the display:

int foo(int, int);
int main(void);

Specifying -qgenproto=parmnames produces:

int foo(int a, int b);
int main(void);

Category

[Error checking and debugging]

Pragma equivalent

#pragma options halt

Purpose

Stops compilation before producing any object, executable, or assembler source
files if the maximum severity of compile-time messages equals or exceeds the

severity you specify.

Syntax
-ghalt syntax (for C)

»»— -ghalt—= i ><

Defaults
-ghalt=s

Parameters

i Specifies that compilation is to stop for all types of errors: warning, error and
informational. Informational diagnostics (I) are of the lowest severity.

Chapter 4. Compiler options reference 165

w Specifies that compilation is to stop for warnings (W) and all types of errors.

e Specifies that compilation is to stop for errors (E), severe errors (S), and
unrecoverable errors (U).

s Specifies that compilation is to stop for severe errors (S) and unrecoverable
errors (U).
Usage

When the compiler stops as a result of the halt option, the compiler return code is
nonzero. For a list of return codes, see [‘Compiler return codes” on page 18

When -qhalt is specified more than once, the lowest severity level is used.
Diagnostic messages may be controlled by the -gflag option.

You can also instruct the compiler to stop compilation based on the number of
errors of a type of severity by using the _-gmaxerﬂ option, which overrides -ghalt.

You can also use the option to stop compilation according to error

message number.
Predefined macros
None.

Examples

To compile myprogram.c so that compilation stops if a warning or higher level
message occurs, enter:

x1c myprogram.c -ghalt=w

Related information
. ”—qhaltonmsg"|

+ [“-gflag” on page 145

* |“-gmaxerr” on page 228|

-ghaltonmsg
Category

[Error checking and debugging]|

Pragma equivalent
None.
Purpose

Stops compilation before producing any object files, executable files, or assembler
source files if a specified error message is generated.

Syntax

166 XL C: Compiler Reference

|:noha1tonmsg
»»—-—(haltonmsg—=—Y-message_identifier »<

Defaults
-qnohaltonmsg

Parameters

message_identifier
Represents a message identifier. The message identifier must be in the
following format:

15dd-number
where:

15 Is the compiler product identifier.

ad Is the two-digit code representing the compiler component that
produces the message. See [“Compiler message format” on page 17| for
descriptions of these codes.

number
Is the message number.

Usage

When the compiler stops as a result of the -qhaltonmsg option, the compiler return
code is nonzero. The severity level of a message that is specified by -qhaltonmsg is
changed to S if its original severity level is lower than S.

You cannot specify -qnohaltonmsg to resume compilation if a message whose
severity level is S has been issued.

The -qnohaltonmsg compiler option cancels previous settings of -qhaltonmsg.
-qhaltonmsg has precedence over -qsuppress and -qflag.

Predefined macros

None.

Related information

* [“-gflag” on page 145
* |“-ghalt” on page 165

+ [“Compiler messages” on page 16|
* |“-gsuppress” on page 299

-gheapdebug
Category

[Error checking and debugging]

Chapter 4. Compiler options reference 167

Pragma equivalent

None.

Purpose

Enables debug versions of memory management functions.

The compiler ships a set of "debug" versions of the standard memory management
functions defined in stdlib.h (such as _debug calloc and _debug malloc); the
header files for these functions are found in the product include directory
(/opt/IBM/x1c/13.1.3/include). By default, the compiler uses the regular memory
management functions (such as calloc and malloc) and does not preinitialize their
local storage. When -qheapdebug is in effect, the compiler searches for header files
first in the product include directory, where the debug versions of memory
management functions are stored, and then in the system include directory.

Syntax

[noheapdebug
»»— -q heapdebug

Y
A

Defaults
-qnoheapdebug
Usage

For complete information about the debug memory management functions, see
['Memory debug library functions'|in the XL C Optimization and Programming Guide.

Note: The compiler supports the memory allocation debug functions, but IBM has
no plans to change or enhance these functions, and these functions will be
removed in a future release. If you use these functions to debug memory problems
in your programs, you can migrate to the AIX debug malloc tool to achieve
equivalent functionality.

Predefined macros

_ DEBUG_ALLOC__ is defined to 1 when -qheapdebug is in effect; otherwise, it is
undefined.

Examples

To compile myprogram.c with the debug versions of memory management
functions, enter the following command:

x1c -gheapdebug myprogram.c -o testing

Related information
['Debugging memory heaps'|in the XL C Optimization and Programming Guide

168 XxLC: Compiler Reference

-ghelp

-ghot

Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Displays the man page of the compiler.

Syntax

»»— -g—help > <

Usage

If you specify the -qhelp option, regardless of whether you provide input files, the
compiler man page is displayed and the compilation stops.

Predefined macros
None.

Related information
+ [“-qversion” on page 321

Category

[Optimization and tuning|

Pragma equivalent

#pragma novector

#pragma nosimd

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.
The -ghot compiler option is a powerful alternative to hand tuning that provides
opportunities to optimize loops and array language. This compiler option will

always attempt to optimize loops, regardless of the suboptions you specify.

You can use the pragma directives to disable these transformations for selected
sections of code.

Chapter 4. Compiler options reference 169

Syntax

|—nohot

>»— - hot >

D

noarraypad

—arraypad |_ _|
=—number

—level—= ré—l
L,

—vector
—novector:
—fastmath
nofastmath
Pragma syntax
»—#—pragma—Enovector ><
noside

Defaults

* -qnohot

* -qhot=noarraypad:level=0:novector:fastmath when -O3 is in effect.

* -ghot=noarraypad:level=1:vector:fastmath when -qsmp, -O4 or -O5 is in effect.

* Specifying -qghot without suboptions is equivalent to
-ghot=noarraypad:level=1:vector:fastmath.

Parameters

arraypad (option only) | noarraypad (option only)
Permits the compiler to increase the dimensions of arrays where doing so
might improve the efficiency of array-processing loops. (Because of the
implementation of the cache architecture, array dimensions that are powers of
two can lead to decreased cache utilization.) Specifying -qhot=arraypad when
your source includes large arrays with dimensions that are powers of 2 can
reduce cache misses and page faults that slow your array processing programs.
This can be particularly effective when the first dimension is a power of 2. If
you use this suboption with no number, the compiler will pad any arrays
where it infers there may be a benefit and will pad by whatever amount it
chooses. Not all arrays will necessarily be padded, and different arrays may be
padded by different amounts. If you specify a number, the compiler will pad
every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for
reshaping or equivalences that may cause the code to break if padding takes
place.

number (option only)
A positive integer value representing the number of elements by which each
array will be padded in the source. The pad amount must be a positive integer
value. To achieve more efficient cache utilization, it is recommended that pad
values be multiples of the largest array element size, typically 4, 8, or 16.

170 xLcC: Compiler Reference

level=0 (option only)
Performs a subset of the high-order transformations and sets the default to
novector:noarraypad:fastmath.

level=1 (option only)
Performs the default set of high-order transformations.

level=2 (option only)
Performs the default set of high-order transformations and some more
aggressive loop transformations. This option performs aggressive loop analysis
and transformations to improve cache reuse and exploit loop parallelization
opportunities.

vector (option only) | novector
When specified with -qnostrict and -qignerrno, or an optimization level of -O3
or higher, vector causes the compiler to convert certain operations that are
performed in a loop on successive elements of an array (for example, square
root, reciprocal square root) into a call to a routine in the Mathematical
Acceleration Subsystem (MASS) library in libxlopt.

The vector suboption supports single-precision and double-precision
floating-point mathematics, and is useful for applications with significant
mathematical processing demands.

novector disables the conversion of loop array operations into calls to MASS
library routines.

Because vectorization can affect the precision of your program results, if you
are using -O3 or higher, you should specify -qhot=novector if the change in
precision is unacceptable to you.

fastmath (option only) | nofastmath (option only)
You can use this suboption to tune your application to either use fast scalar
versions of math functions or use the default versions.

You must use this suboption together with -qignerrno, unless -qignerrno is
already enabled by other options.

-qhot=fastmath enables the replacement of math routines with available math
routines from the XLOPT library only if -gstrict=nolibrary is enabled.

-qhot=nofastmath disables the replacement of math routines by the XLOPT
library. -qhot=fastmath is enabled by default if -qhot is specified regardless of
the hot level.

Usage

If you do not also specify an optimization level when specifying -qhot on the
command line, the compiler assumes -O2.

If you want to override the default level setting of 1 when using -qsmp, -O4 or
-O5, be sure to specify -qhot=level=0 or -qhot=level=2 after the other options.

The pragma directives apply only to while, do while, and for loops that
immediately follow the placement of the directives. They have no effect on other
loops that may be nested within the specified loop.

You can use the -qreport option in conjunction with -qhot or any optimization
option that implies -qhot to produce a pseudo-C report showing how the loops
were transformed. The loop transformations are included in the listing report if
either the -qreport or -qlistfmt option is also specified. This LOOP TRANSFORMATION

Chapter 4. Compiler options reference 171

SECTION of the listing file also contains information about data prefetch insertion
locations. In addition, when you use -qprefetch=assistthread to generate
prefetching assist threads, a message Assist thread for data prefetching was
generated also appears in the LOOP TRANSFORMATION SECTION of the listing file.
Specifying -qprefetch=assistthread guides the compiler to generate aggressive data
prefetching at optimization level -O3 -qhot or higher. For more information, see
[“-qreport” on page 263

Predefined macros
None.

Related information

* [“-garch” on page 102|

* |"-gsimd” on page 27§|

* |"-gprefetch” on page 256|

* |"-greport” on page 263

+ [“-glistfmt” on page 218§|

+ [“-O, -qoptimize” on page 236|

* |“-gstrict” on page 294|

* [-gsmp” on page 281

» |Using the Mathematical Acceleration Subsystem (MASS)|in the XL C Optimization
and Programming Guide

Category

Pragma equivalent

None.

Purpose

Adds a directory to the search path for include files.

Syntax

A\
A

»»— -I—directory_path

Defaults

See ["Directory search sequence for included files” on page 12| for a description of
the default search paths.

Parameters

directory path
The path for the directory where the compiler should search for the header
files.

172 XxLC: Compiler Reference

Usage

If -qnostdinc is in effect, the compiler searches only the paths specified by the -I
option for header files, and not the standard search paths as well. If -qidirfirst is in
effect, the directories specified by the -I option are searched before any other
directories.

If the -I directory option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first. The -I
directory option can be specified more than once on the command line. If you
specify more than one -I option, directories are searched in the order that they
appear on the command line.

The -I option has no effect on files that are included using an absolute path name.
Predefined macros

None.

Examples

To compile myprogram.c and search /usr/tmp and then /oldstuff/history for
included files, enter:

x1c myprogram.c -I/usr/tmp -I/oldstuff/history

Related information

+ |“-gstdinc” on page 292

+ [“-ginclude” on page 176|

+ [“Directory search sequence for included files” on page 12|

* [“Specifying compiler options in a configuration file” on page 7|

-qidirfirst
Category

Pragma equivalent
#pragma options [nolidirfirst
Purpose

Searches for user included files in directories that are specified by the -I option
before searching any other directories.

Syntax

A\
A

[noidi rfi rst—l
»»— - idirfirst

Defaults

-qnoidirfirst

Chapter 4. Compiler options reference 173

Usage

This option only affects files that are included by the #include "file_name"
directive or the -qinclude option. This option has no effect on the search order for
XL C or system header files. This option also has no effect on files that are
included by absolute paths.

-qidirfirst is independent of the -qnostdinc option.

The last valid pragma directive remains in effect until replaced by a subsequent
pragma.

Predefined macros
None.
Examples

To compile myprogram.c and instruct the compiler to search for included files in
/usr/tmp/myinclude first and then the directory in which the source file is located,
use the following command:

x1c myprogram.c -I/usr/tmp/myinclude -gidirfirst

Related information

* |"-1” on page 172|

+ ["-ginclude” on page 176|

s [’-gstdinc” on page 292

* |"-qc_stdinc” on page 125|

* ["Directory search sequence for included files” on page 12|

-gigherrno
Category

[Optimization and tuning|

Pragma equivalent
#pragma options [nolignerrno
Purpose

Allows the compiler to perform optimizations as if system calls would not modify
errno.

Some system library functions set errno when an exception occurs. When ignerrno
is in effect, the setting and subsequent side effects of errno are ignored. This option
allows the compiler to perform optimizations without regard to what happens to
errno.

Syntax

[noignerrno—l
>»— -q ignerrno ><

174 xLC: Compiler Reference

Defaults
* -gnoignerrno
* -qignerrno when the -O3 or higher optimization level is in effect.

Usage

If you require both -O3 or higher and the ability to set errno, you should specify
-qnoignerrno after the optimization option on the command line.

Predefined macros
None.

Related information
* [“-O, -qoptimize” on page 236|

-gignprag
Category

[Language element control|

Pragma equivalent

#pragma options ignprag

Purpose

Instructs the compiler to ignore certain pragma statements.

This option is useful for detecting aliasing pragma errors. Incorrect aliasing gives
runtime errors that are hard to diagnose. When a runtime error occurs, but the

error disappears when you use ignprag with the -O option, the information
specified in the aliasing pragmas is likely incorrect.

Syntax
»— -qignprag—=—Y >
all
—Edi sjoint
isolated_call—
—1bm
—omp
Defaults
Not applicable.
Parameters
all
Ignores all #pragma isolated_call and #pragma disjoint directives in the source
file.

Chapter 4. Compiler options reference 175

disjoint
Ignores all #pragma disjoint directives in the source file.

ibm
Ignores all #pragma ibm snapshot directives and all IBM SMP directives (such
as #pragma ibm schedule) in the source file.

isolated_call
Ignores all #pragma isolated_call directives in the source file.

omp
Ignores all OpenMP parallel processing directives in the source file, such as
#pragma omp parallel, #pragma omp critical.

Predefined macros
None.
Examples

To compile myprogram.c and ignore any #pragma isolated_call directives, enter the
following command:

x1c myprogram.c -gignprag=isolated call

Related information

* [“#pragma disjoint” on page 345|

* [“-gisolated_call” on page 199

+ [“#pragma ibm snapshot” on page 355|

+ [“Pragma directives for parallel processing” on page 380|

-ginclude
Category

Pragma equivalent
None.
Purpose

Specifies additional header files to be included in a compilation unit, as though the
files were named in an #include statement in the source file.

The headers are inserted before all code statements and any headers specified by
an #include preprocessor directive in the source file. This option is provided for

portability among supported platforms.

Syntax

A\
A

noinc]ude—|
»—-(|_1'nc1ude =—file

Defaults

-qnoinclude

176 XxLC: Compiler Reference

Parameters
file

The absolute or relative path and name of the header file to be included in the
compilation units being compiled. If file is specified with a relative path, the
search for it follows the sequence described in [“Directory search sequence for]
fincluded files” on page 12|

Usage

The usage of the -qinclude option is similar to that of the #include directive. This
section describes the differences between using -qinclude and #include.

The -qinclude option applies only to the files specified in the same compilation in
which the option is specified. It is not passed to any compilations that occur
during the link step, nor to any implicit compilations.

When the option is specified multiple times in an invocation, the header files are
included in order of appearance on the command line. If the same header file is
specified multiple times with this option, the header is treated as if included
multiple times by #include directives in the source file, in order of appearance on
the command line.

Specifying -qnoinclude ignores any previous specification of -ginclude. Only the
specifications of -qinclude after-qnoinclude are effective.

Any pragma directives that must appear before noncommentary statements in a
source file will be affected; you cannot use -qinclude to include files if you need to
preserve the placement of these pragmas.

The following rules apply when you use -qinclude with other options:

* If you generate a listing file with -qsource, the header files included by
-qinclude do not appear in the source section of the listing. Use -qshowinc=usr
or -qshowinc=all in conjunction with -qsource if you want these header files to
appear in the listing.

+ After searching the directory from which the compiler was invoked, -qinclude
searches additional search paths added to the search chain by the -I option. You
can specify the -I option before or after the -qinclude option.

* Files specified with -qinclude are included as dependencies in the -qmakedep
output. However, the paths are different in the dependency file for the -qinclude
option and the #include directive, because the files specified with the -qinclude
option are searched in the invocation path first, whereas files included by the
#include directive are not.

When a dependency file is created as a result of a first build with the -qinclude
option, a subsequent build without the -qinclude option will trigger recompile if
the header file on the -qinclude option was touched between the two builds.

* In the compiler listing file generated by the -qlistopt option, each use of the
-qinclude option has a separate entry in the OPTION SECTION.

* If both the -qsource option and the -qinclude option are used, header files
specified with -qinclude are not included in the program source listing as
#include directives. However, the files specified on #include directives in source
programs are included.

Chapter 4. Compiler options reference 177

Predefined macros
None.
Examples

To include the files testl.h and test2.h in the source file test.c, enter the
following command:

x1c -ginclude=testl.h test.c -ginclude=test2.h

Related information
* |[“Directory search sequence for included files” on page 12|

-ginfo
Category

[Error checking and debugging]

Pragma equivalent

#pragma options [no]info, #pragma info

Purpose

Produces or suppresses groups of informational messages.

The messages are written to standard output and, optionally, to the listing file if
one is generated. The compiler does not issue messages for the following files:

* Files in the standard search paths for compiler and system header files. The
standard search paths are affected by the following compiler options:

— [“-gstdinc” on page 292

— [“-gc_stdinc” on page 125|

* Files that are ultimately included by the files in the standard search paths for
compiler and system header files.

Syntax

Option syntax

»»— -q noinfo >
l—info

=—Y all

—noall
—als
—noals
—group
—Nogroup—
—mt

—nomt
—private—
—reduction—
—stp
—nostp

178 xLC: Compiler Reference

Pragma syntax

»»—#—pragma—info—(

Defaults
-gnoinfo

Parameters
all

all

—none
—als

—noals
—group
—nogroup—
—Mmt——
—nomt
—private—
—reduction—|

—restore—

Enables diagnostic messages for all groups except als, mt, and ppt.

noall (option only)

Disables all diagnostic messages for all groups.

none (pragma only)

Disables all diagnostic messages for all groups.

als

Enables reporting possible violations of the ANSI aliasing rule in effect.

noals

Disables reporting possible aliasing-rule violations.

group | nogroup

Enables or disables specific groups of messages, where group can be one or

more of:

group

Type of informational messages returned or suppressed.

cmp | nocmp

Possible redundancies in unsigned comparisons.

cnd | nocnd

Possible redundancies or problems in conditional expressions.

cns | nocns

Operations involving constants.

cnv | nocnv
Conversions.

dc1 | nodcl

Consistency of declarations.

eff | noeff

Statements and pragmas with no effect.

Chapter 4. Compiler options reference

179

enu | noenu
Consistency of enum variables.

ext | noext
Unused external definitions.

gen | nogen
General diagnostic messages.

gnr | nognr
Generation of temporary variables.

got | nogot
Use of goto statements.

ini | noini
Reports array initializers that partially initialize their arrays. If an array is
partially initialized, elements that are not initialized receive the value 0 of
the appropriate type.

lan | nolan
Language level effects.

obs | noobs
Obsolete features.

ord | noord
Unspecified order of evaluation.

par | nopar
Unused parameters.

por | nopor
Nonportable language constructs.

ppc | noppc
Possible problems with using the preprocessor.

ppt | noppt

Trace of preprocessor actions.
pro | nopro

Missing function prototypes.

rea | norea
Code that cannot be reached.

ret | noret
Consistency of return statements.

trd | notrd
Possible truncation or loss of data or precision.

tru | notru
Variable names truncated by the compiler.

trx | notrx
Hexadecimal-floating point constants rounding.

uni | nouni
Uninitialized variables. The -qinfo=uni option enforces the coding style
that a variable must be initialized in its declaration.

upg | noupg
Generates messages describing new behaviors of the current compiler
release as compared to the previous release.

180 xLcC: Compiler Reference

use | nouse
Unused auto and static variables.

zea | nozea
Zero-extent arrays.

mt | nomt

Reports potential synchronization issues in parallel code. This suboption
detects the Global Thread Flag pattern where one thread uses a shared volatile
flag variable to notify other threads that it has completed a computation and
stored its result to memory. Other threads check the flag variable in a loop that
does not change the flag variable. When the value of the flag variable changes,
the waiting threads access the computation result from memory. The PowerPC
storage model requires synchronization before the flag variable is set in the
first thread, and after the flag variable is checked in the waiting threads.
Synchronization can be done by a synchronization built-in function.

The type of synchronization directives you need to use depends on your code.
Usually, it is enough to use the __Twsync function, as it preserves the storage
access order to system memory. However, if the loops in the waiting threads
are written in such a way that might cause instruction prefetching to start
executing code that accesses the computation result before the flag variable is
updated, a call to a function like __isync is needed to preserve order. Such
patterns are typically as follows:
gotosleep: sleep(value);

if (!flag) goto gotosleep;

// A call to the _ isync function is needed here.

x = shared_computation_result;

Some patterns that do not require synchronization are similar to the patterns
described above. The messages generated by this suboption are only
suggestions about potential synchronization issues.

To use the -qinfo=mt suboption, you must enable the -qthreaded option and
specify at least one of the following options:

. -03
. -04

« -05

* -qipa
* -qhot
* -gsmp

The default option is -qinfo=nomt.

private

This suboption is deprecated. -qreport replaces it. For details, see

and the [“Deprecated options” on page 91| section in the XL C
Compiler Reference.

reduction

This suboption is deprecated. -qreport replaces it. For details, see

and the [“Deprecated options” on page 91| section in the XL C
Compiler Reference.

stp | nostp
Issues warnings for procedures that are not protected against stack corruption.
-qinfo=stp has no effects unless the -qstackprotect option is also enabled. Like
other -qinfo options, -qinfo=stp is enabled or disabled through -qinfo=all /
noall. -qinfo=nostp is the default option.

Chapter 4. Compiler options reference 181

restore (pragma only)
Discards the current pragma setting and reverts to the setting specified by the
previous pragma directive. If no previous pragma was specified, reverts to the
command-line or default option setting.

Usage
Specifying -qinfo with no suboptions is equivalent to -qinfo=all.
Specifying -qnoinfo is equivalent to -qinfo=noall.

Consider the following when enabling the reporting of aliasing-rule violations:

* -qalias=ansi must be set before reporting of aliasing-rule violations (-qinfo=als)
can occur.

* Any level of optimization or inlining implies -qinfo=noals and a warning will
be issued when -qinfo=als is explicitly specified.

* Diagnostics are heuristic and may emit false positives. Points-to analysis cannot
be evaluated deterministically in static compilation. The points-to analysis used
for diagnostics is evaluated in a context-and-flow, insensitive manner. The
sequence of traceback messages in diagnostics is such that if executed in the
order specified, the indirect expression will point to the offending object. If that
execution sequence cannot occur in the application, the diagnostic is a false
positive. (See the Examples section for the types of diagnostics that can occur.)

Predefined macros
None.
Examples

To compile myprogram.c to produce informational messages about all items except
conversions and unreached statements, enter the following command:

x1c myprogram.c -qinfo=all -ginfo=nocnv:norea

The following example shows code constructs that the compiler detects when the
code is compiled with -qinfo=cnd:eff:got:obs:par:pro:rea:ret:uni in effect:
#define COND 0

void faa() // Obsolete prototype (-qinfo=obs)

{
printf("In faa\n"); // Unprototyped function call (-ginfo=pro)

int foo(int i, int k)
int j; // Uninitialized variable (-ginfo=uni)

switch(i) {

case 0:

itt;

if (COND) // Condition is always false (-ginfo=cnd)
i--3 // Unreachable statement (-ginfo=rea)

break;

case 1:

break;

i++; // Unreachable statement (-ginfo=rea)
default:

k=(G)?2(@@) 2?23 :1:0;

goto L; // Use of goto statement (-ginfo=got)
return 3; // Unreachable statement (-ginfo=rea)

182 xLC: Compiler Reference

L:
faa(); // faa() does not have a prototype (-ginfo=pro)

// End of the function may be reached without returning a value
// because of there may be a jump to label L (-ginfo=ret)

} //Parameter k is never referenced (-ginfo=ref)

int main(void) {
({ int i =0; 1 =1+1; i; }); // Statement does not have side effects (-ginfo=eff)

return foo(1,2);

}

In the following example, the #pragma info(eff, nouni) directive preceding
MyFunctionl instructs the compiler to generate messages identifying statements or
pragmas with no effect, and to suppress messages identifying uninitialized
variables. The #pragma info(restore) directive preceding MyFunction2 instructs the
compiler to restore the message options that were in effect before the #pragma
info(eff, nouni) directive was specified.

#pragma info(eff, nouni)

int MyFunctionl()

{

}

#pragma info(restore)
int MyFunction2()

{
}
The following example shows a valid diagnostic for an aliasing violation:
tl.c:
int main() {
short s = 42;
int *pi = (int*) &s;
*pi = 63;
return 0;

x1C -ginfo=als tl.c

"tl.c", line 4.3: 1540-0590 (I) Dereference may not conform to the current
aliasing rules.

"tl.c", line 4.3: 1540-0591 (I) The dereferenced expression has type "int".
"pi" may point to "s" which has incompatible
type "short".

"tl.c", line 4.3: 1540-0592 (I) Check assignment at Tine 3 column 11 of tl.c.

In the following example, the analysis is context insensitive in that the two calls to
floatTolnt are not distinguished. There is no aliasing violation in this example, but
a diagnostic is still issued.

t2.c:
int* floatToInt(float *pf) { return (int*)pf; }

int main() {

int i;

float f;

int* pi = floatToInt((floatx)*&i));
floatTolnt (&f;)

return *pi;

}

Chapter 4. Compiler options reference 183

x1C -ginfo=als t2.c

"t2.c", line 8.10: 1540-0590 (I) Dereference may not conform to the current
aliasing rules.

"t2.c", line 8.10: 1540-0591 (I) The dereferenced expression has type "int".
"pi" may point to "f"
which has incompatible type "float".

"t2.c", line 8.10: 1540-0592 (I) Check assignment at line 7 column 14 of t2.c.
"t2.c", line 8.10: 1540-0592 (I) Check assignment at line 1 column 37 of t2.c.
"t2.c", line 8.10: 1540-0592 (I) Check assignment at line 6 column 11 of t2.c.

t3.c:
int main() {
float f;
int i = 42;
int *p = (int*) &f;
p = &i;
return *p;

}

x1C -ginfo=als t3.c

"t3.c", line 6.10: 1540-0590 (I) Dereference may not conform to
the current aliasing rules.

"t3.c", line 6.10: 1540-0591 (I) The dereferenced expression has
type "int". "p" may point to "f", which has incompatible
type "float".

"t3.c", line 6.10: 1540-0592 (I) Check assignment at Tine 4 column
10 of t3.c.

To compile sync.c to produce informational messages about potential
synchronization issues in parallel code, enter the following command:

xlc_r -03 -ginfo=mt sync.c

Suppose that sync.c contains the following code:

#include <unistd.h>
#include <stdio.h>
#include <pthread.h>

volatile int done; /* shared flag */
volatile int result; /* shared result */

void *setter(void *id)
{

sleep(5);

result = 7;

/* Need __lwsync(); =/

done = 1; /* Tine 13 */
}

void *waiter(void *id)

while (!done) /* line 18 %/
{
sleep(1);
1
/* need __lwsync(); =/
printf("%d\n", result);
}

int main()

{
pthread_t threads[2];
pthread_attr_t attr;
int result;

result = pthread_create(&threads[0], NULL, waiter, NULL);
if (result != 0) exit(2);
result = pthread_create(&threads[1], NULL, setter, NULL);
if (result != 0) exit(3);

184 xLcC: Compiler Reference

pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

return 0;

}

The compiler issues the following informational messages:

1586-669 (I) "sync.c", Tine 18: If this loop is used as a synchronization
point, additional synchronization via a directive or built-in function might
be needed.

1586-670 (I) "sync.c", Tine 13: If this statement is used as a synchronization
point, additional synchronization via a directive or built-in function might
be needed.

The following function ini.c partially initialized array a[3]. To compile ini.c to
produce an informational message about this issue, enter the following command:

x1c -ginfo=ini ini.c -c

Suppose that ini.c contains the following code:
int a[3] = {1};

The compiler issues the following informational message:

"ini.c", line 1.10: 1506-446 (I) Array element(s) [1] ...
[2] will be initialized with a default value of 0.

The following function factorial.c does not initialize result when n<l. With
-qinfo=unset at -qnoopt, this issue is not detected. To compile factorial.c to
produce informational messages about the uninitialized variable result, enter the
following command:

x1c -ginfo=unset -0 factorial.c

factorial.c contains the following code:

int factorial(int n) {
int result;

if (n>1) {
result = n * factorial(n - 1);
}

return result; /* line 8 =/

}

int main() {
int x = factorial(1);
return x;

}

The compiler issues the following informational message:
1500-099: (I) "factorial.c", Tine 8: "result" might be used before it is set.

Related information

+ [“-gflag” on page 145|

+ [“-greport” on page 263

+ |“-gstackprotect” on page 291

* |“Synchronization functions” on page 462|

« For a list of deprecated options, see the |“Deprecated options” on page 91| section
in the XL C Compiler Reference.

Chapter 4. Compiler options reference 185

» For more information about synchronization and the PowerPC storage model,
see the article at |http:/ /www.ibm.com/developerworks/systems /articles /|

|Bower]2c.htm I

-ginitauto
Category

[Error checking and debugging]

Pragma equivalent
#pragma options [no]initauto
Purpose

Initializes uninitialized automatic variables to a specific value, for debugging
purposes.

Syntax

[noi ni tauto—l
>»— - initauto—=—hex_value >

Defaults
-gnoinitauto

Parameters

hex_value
A one- to eight-digit hexadecimal number.

* To initialize each byte of storage to a specific value, specify one or two digits for
the hex_value.

* To initialize each word of storage to a specific value, specify three to eight digits
for the hex_value.

* In the case where less than the maximum number of digits are specified for the
size of the initializer requested, leading zeros are assumed.

¢ In the case of word initialization, if an automatic variable is smaller than a
multiple of 4 bytes in length, the hex_value is truncated on the left to fit. For
example, if an automatic variable is only 1 byte and you specify five digits for
the hex_value, the compiler truncates the three digits on the left and assigns the
other two digits on the right to the variable. See ‘Examﬁle 1l

* If an automatic variable is larger than the hex_value in length, the compiler
repeats the hex_value and assigns it to the variable. See
* If the automatic variable is an array, the hex_value is copied into the memory

location of the array in a repeating pattern, beginning at the first memory
location of the array. See |Exam§le 2

* You can specify alphabetic digits as either uppercase or lowercase.
* The hex_value can be optionally prefixed with 0x, in which x is case-insensitive.

Usage
The -ginitauto option provides the following benefits:

186 XxLC: Compiler Reference

http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www.ibm.com/developerworks/systems/articles/powerpc.html

* Setting hex_value to zero ensures that all automatic variables that are not
explicitly initialized when declared are cleared before they are used.

* You can use this option to initialize variables of real or complex type to a
signaling or quiet NaN, which helps locate uninitialized variables in your
program.

This option generates extra code to initialize the value of automatic variables. It
reduces the runtime performance of the program and is to be used for debugging
purposes only.

Restrictions:

* Objects that are equivalenced, structure components, and array elements are not
initialized individually. Instead, the entire storage sequence is initialized
collectively.

* The -qinitauto=hex_value option does not initialize variable length arrays or
memory allocated through the _alloca function.

Predefined macros

* _ INITAUTO__ is defined to the least significant byte of the hex_value that is
specified on the -qinitauto option or pragma; otherwise, it is undefined.

* __INITAUTO_W__ is defined to the byte hex_value, repeated four times, or to the
word hex_value, which is specified on the -qinitauto option or pragma;
otherwise, it is undefined.

For example:

* For option -ginitauto=0xABCD, the value of __ INITAUTO__ is 0xCDu, and the
value of _ INITAUTO_W__ is 0x0000ABCDu.

* For option -ginitauto=0xCD, the value of _ INITAUTO__ is 0xCDu, and the
value of _ INITAUTO_W__ is 0xCDCDCDCDu.

Examples

Example 1: Use the -qinitauto option to initialize automatic variables of scalar

types.

#include <stdio.h>

int main()
{
char a;
short b;
int c;
long Tong int d;

printf("char a = 0x%X\n", (char)a);

printf("short b = 0x%X\n", (short)b);

printf("int ¢ = 0x%X\n",c);

printf("long Tong int d = 0x%11X\n",d);
1

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:

char a = 0xDD

short b = OxFFFFCCDD

int ¢ = OxAABBCCDD
long long int d = OxAABBCCDDAABBCCDD

Example 2: Use the -qinitauto option to initialize automatic array variables.

Chapter 4. Compiler options reference 187

#include <stdio.h>
#define ARRAY_SIZE 5

int main()
{
char a[5];
short b[5];
int c[5];
Tong long int d[5];

printf("array of char: ");

for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ", (unsigned)ali]);

printf("\n");

printf("array of short: ");

for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ", (unsigned)b[i]);

printf("\n");

printf("array of int: ");

for (int i = 0; i<ARRAY SIZE; i++)
printf("0x%1X ", (unsigned)c[i]);

printf("\n");

printf("array of long long int: ");
for (int i = 0; i<ARRAY SIZE; i++)
printf("0x%1X ", (unsigned)d[i]);
printf("\n");
1

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:

array of char: OxAA OxBB 0xCC OxDD OxAA

array of short: OxAABB OxCCDD OxAABB 0xCCDD OxAABB

array of int: OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD

array of Tong long int: OxAABBCCDDAABBCCDD OxAABBCCDDAABBCCDD OxAABBCCDDAABBCCDD
OxAABBCCDDAABBCCDD OxAABBCCDDAABBCCDD

-giniglue
Category

[Object code controll

Pragma equivalent
#pragma options [no]inlglue
Purpose

When used with -O2 or higher optimization, inlines glue code that optimizes
external function calls in your application.

Glue code or , generated by the linker, is used for passing control between two
external functions. When -qinlglue is in effect, the optimizer inlines glue code for
better performance. When -gnoinlglue is in effect, inlining of glue code is
prevented.

188 xLC: Compiler Reference

Syntax

noinlglue
»»— -q |_1'n1g1uc —l >«

Defaults
* -qnoinlglue when -q32 is in effect
* -qinlglue when -q64 is in effect

* -qinlglue when -qtune=pwr4 and above, -qtune=ppc970, -qtune=auto, or
-qtune=balanced is in effect.

Usage

If you use the -qtune option with any of the suboptions that imply -qinlglue and
you want to disable inlining of glue code, make sure to specify -qnoinlglue as
well.

Inlining glue code can cause the code size to grow. Specifying -qcompact overrides
the -qinlglue setting to prevent code growth. If you want -qinlglue to be enabled,
do not specify -qcompact.

Specifying -qnoinlglue or -qcompact can degrade performance; use these options
with discretion.

The -qinlglue option only affects function calls through pointers or calls to an
external compilation unit. For calls to an external function, you should specify that
the function is imported by using, for example, the -qprocimported option.

Predefined macros
None.

Related information

+ [“-qcompact” on page 122|

+ |“-gprocimported, -gproclocal, -qprocunknown” on page 260)|
s [’-gtune” on page 310|

-ginline
Category

[Optimization and tuning]

Pragma equivalent
None.
Purpose

Attempts to inline functions instead of generating calls to those functions, for
improved performance.

Chapter 4. Compiler options reference 189

Syntax
-gnoinline
»—[-qinline >«

Y _—auto
noauto——
level—=—number—

autothreshold

T +:|—'function_name

Defaults

If -qinline is not specified, the default option is -qnoinline at the -O0 or -qnoopt
optimization level, or -qinline=noauto:level=>5 at the -O2 or higher optimization
level.

If -qinline is specified without any suboptions, the default option is
-qinline=auto:level=5.

Parameters

auto | noauto
Enables or disables automatic inlining. When option -qinline=auto is in effect,
all functions are considered for inlining by the compiler. When option
-qinline=noauto is in effect, only the following types of functions are
considered for inlining:

* Functions that are defined with the inline specifier

* Small functions that are identified by the compiler

The compiler determines whether a function is appropriate for inlining, and
enabling automatic inlining does not guarantee that a function is inlined.

level=number
Indicates the relative degree of inlining. The values for number must be integers
in the range 0 - 10 inclusive. The default value for number is 5. The greater the
value of number, the more aggressive inlining the compiler conducts.

autothreshold
Represents the largest number of executable statements that a function can
include when the function is to be inlined. The value for autothreshold must be
a positive integer. The default value for autothreshold is 20. If you specify a
value of 0, only functions that are specified with JEETMl the always_inline or
__always_inline__ attributejiEYJl or specified after -qinline+ are inlined. In
the following example, three executable statements are included in the
increment function.
int increment(){
int a, b, i;
for (i=0; i<10; i++){ // statement 1
a=i; // statement 2
b=1; // statement 3
}
}

190 xLcC: Compiler Reference

function_name
If function_name is specified after the -qinline+ option, the named function
must be inlined. If function_name is specified after the -qinline- option, the
named function must not be inlined.

Usage

You can specify -qinline with any optimization level of -02, -0O3, -O4, or -O5 to
enable inlining of functions, including those functions that are declared with the
inline specifier.

When -qinline is in effect, the compiler determines whether inlining a specific
function can improve performance. That is, whether a function is appropriate for
inlining is subject to two factors: limits on the number of inlined calls and the
amount of code size increase as a result. Therefore, enabling inlining a function
does not guarantee that function will be inlined.

Because inlining does not always improve runtime performance, you need to test
the effects of this option on your code. Do not attempt to inline recursive or
mutually recursive functions.

You can use the -qinline+<function_name> or -qinline-<function_name> option to
specify the functions that must be inlined or must not be inlined.

BETM The -qinline-<function_name> option takes higher precedence than the
always_inline or __always_inline__ attribute. When you specify both the
always_inline or __always_inline__ attribute and the -qinline-<function_name>
option to a function, that function is not inlined. JETIE

Specifying -qnoinline disables all inlining, including that achieved by the

high-level optimizer with the -qipa option, and functions declared explicitly as

inline. However, the -qnoinline option does not affect the inlining of the following

functions:

* BT Functions that are specified with the always_inline or
__always_inline__ attribute|jiETg

* Functions that are specified with the -qinline+<function_name> option

If you specify the -g option to generate debugging information, the inlining effect
of -qginline might be suppressed.

If you specify the -qcompact option to avoid optimizations that increase code size,
the inlining effect of -qinline might be suppressed.

Note:

* -qinline replaces -Q and its suboptions.

* -Q, -Q!, -Q=threshold, -Q+name, and -Q-name are all deprecated options and
suboptions.

* -qipa=inline and all of its associated suboptions are deprecated. -qinline
replaces them all.

Predefined macros

None.

Chapter 4. Compiler options reference 191

Examples
Example 1

To compile myprogram.c so that no functions are inlined, use the following
command:

x1c myprogram.c -02 -gnoinline

However, if some functions in myprogram.c are specified with SETIM the
always_inline or __always_inline__ attribute|iiCIll , the -qnoinline option has
no effect on these functions and they are still inlined.

If you want to enable automatic inlining, you use the auto suboption:
-02 -qginline=auto

You can specify an inlining level 6 - 10 to achieve more aggressive automatic
inlining. For example:

-02 -ginline=auto:level=7

If automatic inlining is already enabled by default and you want to specify an
inlining level of 7, you enter:

-02 -qinline=level=7
Example 2

Assuming myprogram.c contains the salary, taxes, expenses, and benefits
functions, you can use the following command to compile myprogram.c to inline
these functions:

x1c myprogram.c -02 -ginlinet+salary:taxes:expenses:benefits

If you do not want the functions salary, taxes, expenses, and benefits to be
inlined, use the following command to compile myprogram. c:

x1c myprogram.c -02 -ginline-salary:taxes:expenses:benefits

You can also disable automatic inlining and specify certain functions to be inlined
with the -qinline+ option. Consider the following example:

-02 -ginline=noauto -ginlinetsalary:taxes:benefits

In this case, the functions salary, taxes, and benefits are inlined. Functions that
are specified with JETIM the always_inline or _ always_inline__ attribute
IR or declared with the inTine specifier are also inlined. No other functions
are inlined.

You cannot mix the + and - suboptions with each other or with other -qginline
suboptions. For example, the following options are invalid suboption combinations:

-ginlinetincrease-decrease // Invalid
-ginline=level=5+increase // Invalid

However, you can use multiple -qinline options separately. See the following
example:

-ginlinetincrease -qinline-decrease -ginline=noauto:level=5

Related information
* [“-¢” on page 16(0|
* ["-gipa” on page 193

192 xLC: Compiler Reference

-qipa

+ |"-O, -qoptimize” on page 236}

* ['The inline function specifier'|in the XL C Language Reference

+ ['always_inline (IBM extension)'|in the XL C Language Reference

* For a list of deprecated compiler options, see [Deprecated options|

Category

[Optimization and tuning]|

Pragma equivalent
None.
Purpose

Enables or customizes a class of optimizations known as interprocedural analysis
(IPA).

IPA is a two-step process: the first step, which takes place during compilation,
consists of performing an initial analysis and storing interprocedural analysis
information in the object file. The second step, which takes place during linking,
and causes a complete recompilation of the entire application, applies the
optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you
compile and link in a single compiler invocation, only the link-time suboptions are
relevant. If you compile and link in separate compiler invocations, only the
compile-time suboptions are relevant during the compile step, and only the
link-time suboptions are relevant during the link step.

You can generate relinkable objects while preserving IPA information by specifying
-r -qipa=relink. This creates a nonexecutable package that contains all object files.
By using this suboption, you can postpone linking until the very last stage.

If you want to use your own archive files, you can use the ar tool and set the
XL_AR environment variable to point to its location. If you do not specify a
location, the compiler sets the environment variable according to the information
contained in the configuration file.

Note:

* This suboption does not link the objects; instead, it only aggregates them. As a
result, the compiler does not report any error or warning messages; furthermore,
the compiler ignores linker or binder options when you use this suboption.

* You must use the -r suboption with -qipa=relink. Without -r, -qipa=relink is
ignored.

Syntax

-gipa compile-time syntax

noipa
»— -q ripa | >

object
—=—|:noobject

Chapter 4. Compiler options reference 193

-gipa link-time syntax

»— -

|—no1'pa

ipa

T

exits—=—"—function_name

—infrequentlabel—=

v

label_name

—level—= ré—l
L,]

—1ist
L.

—lowfreq—=

fi le_name——|
E] ong
short

v

mallocl6
J:nomaHocl_|

-function_name

unknown—

6
—missing—= Esafc

isolated—

pure

edium—
small

—partition—=

large—

—relink
threads

auto
—=4En umber
noauto

nothreads

pure
safe
unknown—

isolated——-=

Y _function_name

—file_name

Defaults

* -qnoipa

Parameters

You can specify the following parameters during a separate compile step only:

object | noobject

Specifies whether to include standard object code in the output object files.

Specifying noobject can substantially reduce overall compile time by not
generating object code during the first IPA phase. Note that if you specify -S

with noobject, noobject will be ignored.

194 xLC: Compiler Reference

If compiling and linking are performed in the same step and you do not
specify the -S or any listing option, -qipa=noobject is implied.

Specifying -qipa with no suboptions on the compile step is equivalent to
-qipa=object.

You can specify the following parameters during a combined compilation and link
stepin the same compiler invocation, or during a separate link step only:

clonearch | noclonearch
This suboption is no longer supported. Consider using -qtune=balanced.

cloneproc | nocloneproc
This suboption is no longer supported. Consider using -qtune=balanced.

exits
Specifies names of functions which represent program exits. Program exits are
calls which can never return and can never call any function which has been
compiled with IPA pass 1. The compiler can optimize calls to these functions
(for example, by eliminating save/restore sequences), because the calls never
return to the program. These functions must not call any other parts of the
program that are compiled with -qipa.

infrequentlabel
Specifies user-defined labels that are likely to be called infrequently during a
program run.

label_name
The name of a label, or a comma-separated list of labels.

isolated
Specifies a comma-separated list of functions that are not compiled with -qipa.
Functions that you specify as isolated or functions within their call chains
cannot refer directly to any global variable.

Tevel
Specifies the optimization level for interprocedural analysis. Valid suboptions
are as follows:

0 Performs only minimal interprocedural analysis and optimization.

1 Enables inlining, limited alias analysis, and limited call-site tailoring.
2

Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. During the IPA link phase, the
data reorganization messages for program variable data are produced in the
data reorganization section of the listing file. Reorganizations include array
splitting, array transposing, memory allocation merging, array interleaving,
and array coalescing.

list
Specifies that a listing file be generated during the link phase. The listing file
contains information about transformations and analyses performed by IPA, as
well as an optional object listing for each partition.

If you do not specify a list_file_name, the listing file name defaults to a.lst. If
you specify -qipa=list together with any other option that generates a listing
file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have

Chapter 4. Compiler options reference 195

a source file named a.c, the IPA listing will overwrite the regular compiler
listing a.lst. You can use the -qipa=list=list_file_name suboption to specify an
alternative listing file name.

Additional suboptions are one of the following suboptions:

short Requests less information in the listing file. Generates the Object File
Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the
sections generated by the short suboption, plus the Object Resolution
Warnings, Object Reference Map, Inliner Report and Partition Map
sections.

lowfreq
Specifies functions that are likely to be called infrequently. These are typically
error handling, trace, or initialization functions. The compiler may be able to
make other parts of the program run faster by doing less optimization for calls
to these functions.

mallocl6 | nomalloclé
Informs the compiler that the dynamic memory allocation routines will return
16-byte aligned memory addresses. The compiler can then optimize the code
based on that assertion.

In 64-bit mode, AIX always returns 16-byte aligned addresses and therefore by
default -qipa=malloc16 is in effect. You can use -qipa=nomalloc16 to override
the default setting.

Note: You must make sure that the executables generated with -qipa=malloc16
run in an environment in which dynamic memory allocations return 16-byte
aligned addresses, otherwise, wrong results can be generated. For example, in
32-bit mode, addresses are not 16-byte aligned. In this case, you must set the
MALLOCALIGN=16 runtime environment variable.

missing
Specifies the interprocedural behavior of functions that are not compiled with
-qipa and are not explicitly named in an unknown, safe, isolated, or pure
suboption.

Valid suboptions are one of the following suboptions:

safe Specifies that the missing functions do not indirectly call a visible (not
missing) function either through direct call or through a function
pointer.

isolated
Specifies that the missing functions do not directly reference global
variables accessible to visible function. Functions bound from shared
libraries are assumed to be isolated.

pure Specifies that the missing functions are safe and isolated and do not
indirectly alter storage accessible to visible functions. pure functions
also have no observable internal state.

unknown
Specifies that the missing functions are not known to be safe, isolated, or
pure. This suboption greatly restricts the amount of interprocedural
optimization for calls to missing functions.

The default is to assume unknown.

196 xLC: Compiler Reference

partition
Specifies the size of each program partition created by IPA during pass 2. Valid
suboptions are one of the following suboptions:

e small
* medium
* large

Larger partitions contain more functions, which result in better interprocedural
analysis but require more storage to optimize. Reduce the partition size if
compilation takes too long because of paging.

pure
Specifies pure functions that are not compiled with -qipa. Any function
specified as pure must be isolated and safe, and must not alter the internal state
nor have side-effects, defined as potentially altering any data visible to the
caller.

relink
Creates relinkable objects by packaging them into a nonexecutable file. When
using this suboption, you must also use the -r option along with it. Otherwise,
the compiler ignores -qipa=relink.

Note:

* If you use-qipa=noobject (either directly or indirectly) and use the relink
suboption, you must link the resulting object files with -qipa. Otherwise,
unresolved references to your object files can occur.

* You might indirectly use -qipa=noobiject if you link and compile your object
files in one step. In addition, you cannot use the shared objects with
-qipa=relink, they must be used at the last link step together with the
prelink output.

safe
Specifies safe functions that are not compiled with -qipa and do not call any
other part of the program. Safe functions can modify global variables, but may
not call functions compiled with -qipa.

threads | nothreads
Runs portions of the IPA optimization process during pass 2 in parallel
threads, which can speed up the compilation process on multi-processor
systems. Valid suboptions for the threads suboption are one of the following
suboptions:

auto | noauto
When auto is in effect, the compiler selects a number of threads
heuristically based on machine load. When noauto is in effect, the compiler
creates one thread per machine processor.

number
Instructs the compiler to use a specific number of threads. number can be
any integer value in the range of 1 to 32 767. However, number is
effectively limited to the number of processors available on your system.

Specifying threads with no suboptions implies -qipa=threads=auto.

unknown
Specifies unknown functions that are not compiled with -qipa. Any function
specified as unknown can make calls to other parts of the program compiled
with -qipa, and modify global variables.

Chapter 4. Compiler options reference 197

file name
Gives the name of a file which contains suboption information in a special
format.

The file format is shown as follows:

... comment

attribute{, attribute} = name{, name}
missing = attribute{, attribute}
exits = name{, name}

lowfreq = name{, name}

list [= file-name | short | Tlong]
level =0 | 1] 2

partition = small | medium | Targe

where attribute is one of:
* exits

* lowfreq

e unknown

* safe

* isolated

* pure

Note:

* -qipa=inline and all of its associated suboptions are deprecated. -qinline
replaces them all. For details, see [’-ginline” on page 189|and [“Deprecated|
foptions” on page 91/

* As of the V9.0 release of the compiler, the pdfname suboption is deprecated;
you should use -qpdfl=pdfname or -qpdf2=pdfname in your new
applications. See ["-qpdf1, -qpdf2” on page 247| for details.

Usage

Specifying -qipa automatically sets the optimization level to -O2. For additional

performance benefits, you can also specify the -qinline option. The -qipa option
extends the area that is examined during optimization and inlining from a single
function to multiple functions (possibly in different source files) and the linkage

between them.

If any object file used in linking with -qipa was created with the -qipa=noobject
option, any file containing an entry point (the main program for an executable
program, or an exported function for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must
ensure that you use a linker that is at least at the same release level as the newer
of the compilers used to create the objects being linked.

You can use -r -qipa=relink to create a relinkable package that contains all object
files without generating an executable program. If you want to use your archive
files, set the path to your ar tool using the XL_AR environment variable.

Some symbols which are clearly referenced or set in the source code may be
optimized away by IPA, and may be lost to debug, dump, or nm outputs. Using
IPA together with the -g compiler will usually result in non-steppable output.

Note that if you specify -qipa with -#, the compiler does not display linker
information subsequent to the IPA link step.

198 xLC: Compiler Reference

For recommended procedures for using -qipa, see ['Optimizing your applications'|
in the XL C Optimization and Programming Guide.

Predefined macros
None.
Examples

The following example shows how you might compile a set of files with
interprocedural analysis:

xlc -c *.c -qipa
x1c -0 product *.0 -gipa

Here is how you might compile the same set of files, improving the optimization
of the second compilation, and the speed of the first compile step. Assume that
there exist a set of routines, user_tracel, user_trace2, and user_trace3, which are
rarely executed, and the routine user_abort that exits the program:

xlc -c *.c -gipa=noobject
x1c -c *.0 -gipa=lowfreq=user_trace[123]:exit=user_abort

The following example demonstrates how you can create a relinkable package that
includes your object files:

xlc -05 -0 -r -qgipa=relink result objl.o obj2.0 obj3.0
1s -1 result
-rw-r--r-- result

x1c -05 -0 res result obj4.o0 obj5.0

Here is how you can generate a relinkable package using your own archive files:
ar -X64 -r archl.a objectll.o objectl2.o

ar -X64 -r arch2.a object2l.0 object22.0

xlc -05 -0 -r -gipa=relink -q64 result objl.o obj2.0 obj3.0 archl.a arch2.a
xlc -05 -0 res result obj4.0 obj5.0

Related information
+ |-ginline” on page 189
* |“-gisolated_call”]
+ [“-glibmpi” on page 215

+ [“#pragma execution_frequency” on page 346|
pdfl, -qpdf2]

(@)

* [“-S” on page 271

+ [Deprecated options]

+ ['Optimizing your applications'|in the XL C Optimization and Programming Guide
+ [Runtime environment variables|

-gisolated_call
Category

[Optimization and tuning]|

Chapter 4. Compiler options reference 199

Pragma equivalent

#pragma options isolated_call, #pragma isolated_call

Purpose

Specifies functions in the source file that have no side effects other than those
implied by their parameters.

Essentially, any change in the state of the runtime environment is considered a side
effect, including:

Accessing a volatile object

Modifying an external object

Modifying a static object

Modifying a file

Accessing a file that is modified by another process or thread

Allocating a dynamic object, unless it is released before returning

Releasing a dynamic object, unless it was allocated during the same invocation
Changing system state, such as rounding mode or exception handling

Calling a function that does any of the above

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function and that pessimistic references
to storage can be deleted from the calling function where appropriate. Instructions
can be reordered with more freedom, resulting in fewer pipeline delays and faster
execution in the processor. Multiple calls to the same function with identical
parameters can be combined, calls can be deleted if their results are not needed,
and the order of calls can be changed.

Syntax

Option syntax

»»— -g—isolated_call—=

v

Y
A

-function

Pragma syntax

»»—#—pragma—isolated_call—(—jfunction—)

v
A

Defaults

Not applicable.

Parameters

function

The name of a function that does not have side effects or does not rely on
functions or processes that have side effects. function is a primary expression
that can be an identifier. An identifier must be of type function or a typedef of
function.

200 xLcC: Compiler Reference

Usage

The only side effect that is allowed for a function named in the option or pragma
is modifying the storage pointed to by any pointer arguments passed to the
function, that is, calls by reference. The function is also permitted to examine
nonvolatile external objects and return a result that depends on the nonvolatile
state of the runtime environment. Do not specify a function that causes any other
side effects; that calls itself; or that relies on local static storage. If a function is
incorrectly identified as having no side effects, the program behavior might be
unexpected or produce incorrect results.

The #pragma options isolated_call directive must be placed at the top of a source
file, before any statements. The #pragma isolated_call directive can be placed at
any point in the source file, before or after calls to the function named in the
pragma.

The compiler option causes aliasing pragmas to be ignored; you can use
-qignprag to debug applications containing the #pragma isolated_call directive.

Predefined macros
None.
Examples

To compile myprogram.c, specifying that the functions myfunction(int) and
classfunction(double) do not have side effects, enter:

xTc myprogram.c -gisolated_call=myfunction:classfunction

The following example shows you when to use the #pragma isolated_call directive
(on the addmult function). It also shows you when not to use it (on the same and
check functions):

#include <stdio.h>
#include <math.h>

int addmult(int opl, int op2);
#pragma isolated_call(addmult)

/* This function is a good candidate to be flagged as isolated as its */
/* result is constant with constant input and it has no side effects. */
int addmult(int opl, int op2) {

int rsit;

rslt = opl*op2 + op2;
return rslt;

}

/* The function 'same' should not be flagged as isolated as its state =/
/* (the static variable delta) can change when it is called. */
int same(double opl, double op2) {

static double delta = 1.0;

double temp;

temp = (opl-op2)/opl;

if (fabs(temp) < delta)
return 1;

else {
delta = delta / 2;
return 0;

}

Chapter 4. Compiler options reference 201

}

/* The function 'check' should not be flagged as isolated as it has a */
/* side effect of possibly emitting output. */
int check(int opl, int op2) {
if (opl < op2)
return -1;
if (opl > op2)
return 1;
printf("Operands are the same.\n");
return 0;

}

Related information
* [“-gignprag” on page 175

-gkeepparm
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

When used with -O2 or higher optimization, specifies whether procedure
parameters are stored on the stack.

A function usually stores its incoming parameters on the stack at the entry point.
However, when you compile code with optimization options enabled, the compiler
may remove these parameters from the stack if it sees an optimizing advantage in
doing so. When -qkeepparm is in effect, parameters are stored on the stack even
when optimization is enabled. When -qnokeepparm is in effect, parameters are
removed from the stack if this provides an optimization advantage.

Syntax

nokeeppar
»— -q—[keepparm m—l

v
A

Defaults

-qnokeepparm

Usage

Specifying -qkeepparm that the values of incoming parameters are available to
tools, such as debuggers, by preserving those values on the stack. However, this
may negatively affect application performance.

Predefined macros

None.

202 XLC: Compiler Reference

Related information
+ [“-O, -qoptimize” on page 236|

-gkeyword
Category

[Language element controll

Pragma equivalent
None
Purpose

Controls whether the specified name is treated as a keyword or as an identifier
whenever it appears in your program source.

Syntax

keyword
> -q—Enokeyword_—|—=—ke yword_name »><
Defaults

By default, all the built-in keywords defined in the C language standard are
reserved as keywords.

Usage

You cannot add keywords to the language with this option. However, you can use
-qnokeyword=keyword_name to disable built-in keywords, and use
-qkeyword=keyword_name to reinstate those keywords.

This option can be used with the following C keywords:
* asm

* inline

* restrict

* typeof

Note: asm is not reserved as a keyword at the stdc89 or stdc99 language level.

Predefined macros

e _ C99_INLINE is defined to 1 when -gkeyword=inline is in effect.

* __ (C99_RESTRICT is defined to 1 when -qgkeyword=restrict is in effect.
+ _ IBM_GCC_ASM is defined to 1 when -qkeyword=asm is in effect.

» __IBM__TYPEOF__ is defined to 1 when -qkeyword=typeof is in effect.

Examples

You can reinstate typeof with the following invocation:
x1c -gkeyword=typeof

Chapter 4. Compiler options reference 203

Category

Pragma equivalent

None.

Purpose

Searches for the specified library file. For static and dynamic linking, the linker
searches for libkey.a. For runtime linking with the -brtl option, the linker searches
for libkey.so, and then libkey.a if libkey.so is not found.

Syntax

»»— -1—key ><

Defaults

The compiler default is to search only some of the compiler runtime libraries. The
default configuration file specifies the default library names to search for with the
-1 compiler option, and the default search path for libraries with the -L compiler
option.

The C runtime libraries are automatically added.

Parameters

key
The name of the library minus the Tib and .a or .so characters.

Usage

You must also provide additional search path information for libraries not located
in the default search path. The search path can be modified with the -L or -Z
option. See ["-B” on page 110|[*-brtl” on page 113)and [*-b” on page 109| for
information about specifying the types of libraries that are searched (for static or
dynamic linking).

The -1 option is cumulative. Subsequent appearances of the -1 option on the
command line do not replace, but add to, the list of libraries specified by earlier
occurrences of -1. Libraries are searched in the order in which they appear on the
command line, so the order in which you specify libraries can affect symbol
resolution in your application.

For more information, refer to the 1d documentation for your operating system.

Predefined macros

None.

204 xLC: Compiler Reference

Examples

To compile myprogram.c and link it with library 1ibmylibrary.a that is found in
the /usr/mylibdir directory, enter the following command:

x1c myprogram.c -Imylibrary -L/usr/mylibdir

Assume that the Tibmyrtlibrary.so library has been compiled for runtime linking
via the -G option and is located in the /usr/mylibdir directory. To compile
myrtprogram.c and link it with library Tibmyrtlibrary.so, enter the following
command:

x1c -brtl myrtprogram.c -Imyrtlibrary -L/usr/mylibdir

Related information

. -7

* [“-b” on page 109

* |“-brtl” on page 113|

* [“-Z” on page 333

+ [“Specifying compiler options in a configuration file” on page 7|

Category

Pragma equivalent

None.

Purpose

Searches the directory path for library files specified by the -1 option.

Syntax

v
A

»»— -L—directory_path

Defaults

The default is to search only the standard directories. See the compiler
configuration file for the directories that are set by default.

Parameters

directory path
The path for the directory which should be searched for library files.

Usage

When you link shared libraries into an executable, specifying the paths to the
libraries with the -L option during the link also embeds the path information in the
executable, so the shared libraries can be correctly located at run time. If you do
not specify any paths with -L during this link and you additionally prevent the
compiler from automatically passing -L arguments to the linker by using the
-bnolibpath linker option, only paths that are specified by the LIBPATH
environment variable are embedded in the executable file.

Chapter 4. Compiler options reference 205

If the -Ldirectory option is specified both in the configuration file and on the
command line, search paths specified in the configuration file are the first to be
searched.

The -L compiler option is cumulative. Subsequent occurrences of -L on the
command line do not replace, but add to, any directory paths specified by earlier
occurrences of -L.

For more information, refer to the 1d documentation for your operating system.
Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/ol1d is searched for the
library Tibspfiles.a, enter:

x1c myprogram.c -1spfiles -L/usr/tmp/old

Related information
* [“-1” on page 204|

-glanglvl
This topic includes the following information:
.
* |“Pragma equivalent”|
.
.

* ["“Defaults” on page 207|
+ | Parameters ” on page 207

* [“Usage” on page 209|

+ [“Predefined macros” on page 209|

Category

[Language element control|

Pragma equivalent
#pragma options langlvl, #pragma langlvl
Purpose

Determines whether source code and compiler options should be checked for
conformance to a specific language standard, or subset or superset of a standard.

Syntax

Option syntax

206 XxLC: Compiler Reference

»»—-g—langlvl—=

Pra

r:—extc99

Y | classic >
—extclx
—extc89
—extended
—saa
—saal2

—stdc89

—stdc99
—feature_suboption—

gma syntax

—extc99—

»»—#—pragma—Ilanglvl—(classic) ><

—extclx—
—extc89—
—extended—
—saa
—saal2
—stdc89—
Lstdc99—

Defaults
* The default is set according to the command used to invoke the compiler:

-qlanglvl=extc99:ucs for the xlc and related invocation commands
-qlanglvl=extended:noucs for the cc and related invocation commands
-qlanglvl=stdc89:noucs for the c89 and related invocation commands
-qlanglvl=stdc99:ucs for the ¢99 and related invocation commands

Parameters

The following are the -qlanglvl/#pragma langlvl parameters for C language
programs:

classic

Allows the compilation of nonstandard programs, and conforms closely to the
K&R level preprocessor. This language level is not supported by the AIX V5.1
and higher system header files, such as math.h. If you use the AIX V5.1 or
higher system header files, consider compiling your program to the stdc89 or
extended language levels.

For details, see [“Differences between the classic language level and all other|
lstandard-based language levels” on page 209

SGE extclx

Compilation is based on the C11 standard, invoking all the currently supported
C11 features and other implementation-specific language extensions.

For more information about these C11 features, see [Extensions for C11|

in the XL C Language Reference.

Note: IBM supports selected features of C11, known as C1X before its
ratification. IBM will continue to develop and implement the features of this

Chapter 4. Compiler options reference 207

standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C11
features is complete, including the support of a new C11 standard library, the
implementation may change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler
interfaces, with earlier releases of IBM's implementation of the C11 features.

extc89
Compilation conforms to the ANSI C89 standard, and accepts
implementation-specific language extensions.

extc99
Compilation conforms to the ISO C99 standard, and accepts
implementation-specific language extensions.

extended
Provides compatibility with the RT compiler and classic. This language level is
based on C89.

saa
Compilation conforms to the current SAA C CPI language definition. This is
currently SAA C Level 2.

saal2
Compilation conforms to the SAA C Level 2 CPI language definition, with
some exceptions.

stdc89
Compilation conforms strictly to the ANSI C89 standard, also known as ISO
C90.

stdc99
Compilation conforms strictly to the ISO C99 standard.

Note: Not all operating system releases support the header files and runtime
library required by C99.

The -qlanglvl suboption parameters for individual C features are listed as follows:

feature suboption
feature_suboption in the syntax diagram represents a colon-separated list of the
C options. They can be any of the following options:

Note: When multiple -qlanglvl group options and suboptions are specified for one
individual C feature, the last one takes effect.

BT textafterendif | notextafterendif
Specifies whether to suppress the warning message that is emitted when you
are porting code from a compiler that allows extra text after #endif or #else to
the IBM XL C compiler. The default option is -qlanglvl=notextafterendif,
indicating that a message is emitted if #else or #endif is followed by any
extraneous text. However, when the language level is classic, the default
option is -qlanglvl=textafterendif, because this language level already allows
extra text after #else or #endif without generating a message. JETIE

ucs | noucs (option only)
Controls whether Unicode characters are allowed in identifiers, string literals
and character literals in program source code. This suboption is enabled by
default when stdc99 or extc99 is in effect. For details on the Unicode character
set, see|'The Unicode standard'|in the XL C Language Reference.

208 xLC: Compiler Reference

The following -qlanglvl suboptions are accepted but ignored by the C compiler.
Use extended | extc99 | extc89 to enable the functions that these suboptions
imply. For other language levels, the functions implied by these suboptions are
disabled.

[nolgnu_assert
GNU C portability option.

[no]lgnu_explicitregvar
GNU C portability option.

[no]lgnu_include_next
GNU C portability option.

[no]lgnu_locallabel
GNU C portability option.

[no]lgnu_warning
GNU C portability option.

Usage

Since the pragma directive makes your code non-portable, it is recommended that
you use the option rather than the pragma. If you do use the pragma, it must
appear before any noncommentary lines in the source code. Also, because the
directive can dynamically alter preprocessor behavior, compiling with the
preprocessing-only options may produce results different from those produced
during regular compilation.

Predefined macros

See [“Macros related to language levels” on page 408|for a list of macros that are
predefined by -qlanglvl suboptions.

Related information
+ |“-qsuppress” on page 299

Differences between the classic language level and all other
standard-based language levels

This topic outlines the differences between the classic language level and all other
standard-based language levels.

Tokenization

Tokens introduced by macro expansion may be combined with adjacent tokens in
some cases. Historically, this was an artifact of the text-based implementations of
older preprocessors, and because, in older implementations, the preprocessor was a
separate program whose output was passed on to the compiler.

For similar reasons, tokens separated only by a comment may also be combined to
form a single token. Here is a summary of how tokenization of a program
compiled in classic mode is performed:

1. At a given point in the source file, the next token is the longest sequence of
characters that can possibly form a token. For example, i+++++j is tokenized as
i ++ ++ + j even though i ++ + ++ j may have resulted in a correct program.

2. If the token formed is an identifier and a macro name, the macro is replaced by
the text of the tokens specified on its #define directive. Each parameter is

Chapter 4. Compiler options reference 209

replaced by the text of the corresponding argument. Comments are removed
from both the arguments and the macro text.

3. Scanning is resumed at the first step from the point at which the macro was
replaced, as if it were part of the original program.

4. When the entire program has been preprocessed, the result is scanned again by
the compiler as in the first step. The second and third steps do not apply here
since there will be no macros to replace. Constructs generated by the first three
steps that resemble preprocessing directives are not processed as such.

It is in the third and fourth steps that the text of adjacent but previously separate
tokens may be combined to form new tokens.

The \ character for line continuation is accepted only in string and character
literals and on preprocessing directives.

Constructs such as:

#if 0
"unterminated
#endif
#define US "Unterminating string
char *s = US terminated now"

will not generate diagnostic messages, since the first is an unterminated literal in a
FALSE block, and the second is completed after macro expansion. However:

char *s = US;

will generate a diagnostic message since the string literal in US is not completed
before the end of the line.

Empty character literals are allowed. The value of the literal is zero.
Preprocessing directives
The # token must appear in the first column of the line. The token immediately

following # is available for macro expansion. The line can be continued with \ only
if the name of the directive and, in the following example, the (has been seen:

#define f(a,b) a+b

f\

(1,2) /* accepted */
#define f(a,b) atb

f(\

1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For example,

#\

define M1 /* not allowed */

#def\

ine M 1 /* not allowed */

#define\

M1 /* allowed */

#dfine\

M1 /* equivalent to #dfine M 1, even

though #dfine is not valid =/

Following are the preprocessor directive differences.

210 xLcC: Compiler Reference

#ifdef/#ifndef
When the first token is not an identifier, no diagnostic message is
generated, and the condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.

#endif
When there are extra tokens, no diagnostic message is generated.

#include
The < and > are separate tokens. The header is formed by combining the
spelling of the < and > with the tokens between them. Therefore /* and //
are recognized as comments (and are always stripped), and the " and ' do
begin literals within the < and >. (Remember that in C programs, C++-style
comments // are recognized when -qcpluscmt is specified.)

#line The spelling of all tokens which are not part of the line number form the
new file name. These tokens need not be string literals.

#error
Not recognized.

#define
A valid macro parameter list consists of zero or more identifiers each
separated by commas. The commas are ignored and the parameter list is
constructed as if they were not specified. The parameter names need not
be unique. If there is a conflict, the last name specified is recognized.

For an invalid parameter list, a warning is issued. If a macro name is
redefined with a new definition, a warning will be issued and the new
definition used.

#undef
When there are extra tokens, no diagnostic message is generated.

Macro expansion

* When the number of arguments on a macro invocation does not match the
number of parameters, a warning is issued.

 If the (token is present after the macro name of a function-like macro, it is
treated as too few arguments (as above) and a warning is issued.

* Parameters are replaced in string literals and character literals.

* Examples:

#define M() 1
#define N(a) (a)
#define 0(a,b) ((a) + (b))

M(); /* no error x/
N(); /* empty argument =/
0(); /* empty first argument
and too few arguments */

Text output

No text is generated to replace comments.

-glargepage
Category

[Optimization and tuning]|

Chapter 4. Compiler options reference 211

Pragma equivalent
None.
Purpose

Takes advantage of large pages provided on POWER4 and higher systems, for
applications designed to execute in a large page memory environment.

When -qlargepage is in effect to compile a program designed for a large page
environment, an increase in performance can occur.

Syntax

[no1argepage
»— —q largepage ><

Defaults
-qnolargepage
Usage

Note that this option is only useful in the following conditions:
* Large pages must be available and configured on the system.

* You must compile with an option that enables loop optimization, such as -O3 or
-ghot.

* You must link with the -blpdata option.

See your AIX operating system documentation for more information on using large
page support.

Predefined macros
None.
Examples

To compile myprogram.c to use large page heaps, enter:
x1c myprogram.c -qlargepage -blpdata

-qldbl128, -qlongdouble
Category

[Floating-point and integer control|

Pragma equivalent
#pragma options [no]ldbl128
Purpose

Increases the size of Tong double types from 64 bits to 128 bits.

212 XLC: Compiler Reference

-glib

Syntax

noldb1128

Fno]ongdoub]e—

|_1db1 128 ><
longdouble—

»— -

Defaults
-qnoldbl128
Usage

Separate libraries are provided that support 128-bit Tong double types. These
libraries will be automatically linked if you use any of the invocation commands
with the 128 suffix (x1c128, c¢c128, x1c128_t, or cc128_r). You can also manually link
to the 128-bit versions of the libraries using the -lkey option, as shown in the
following table:

Default (64-bit) long double 128-bit long double
. Form of the -lkey . Form of the -lkey
Library option Library option
libC.a -1IC libC128.a -1C128
libC_r.a -1C_x libC128_r.a -1C128_r

Linking without the 128-bit versions of the libraries when your program uses
128-bit long doubles (for example, if you specify -qldb1128 alone) may produce
unpredictable results.

The #pragma options directive must appear before the first C statement in the
source file, and the option applies to the entire file.

Predefined macros

* _ LONGDOUBLE128 is defined to 1 when -qldbl128 is in effect; otherwise, it is
undefined.

* _ LONGDOUBLES®64 is defined to 1 when -qnoldbl128 is in effect; it is
undefined when -qldbl128 is in effect.

Examples

To compile myprogram.c so that long double types are 128 bits, enter:
x1c myprogram.c -qldb1128 -1C128

Related information
* [“1” on page 204|

Category

Chapter 4. Compiler options reference 213

Pragma equivalent

None.

Purpose

Specifies whether standard system libraries and XL C libraries are to be linked.
When -qlib is in effect, the standard system libraries and compiler libraries are
automatically linked. When -qnolib is in effect, the standard system libraries and
compiler libraries are not used at link time; only the libraries specified on the

command line with the -1 flag will be linked.

This option can be used in system programming to disable the automatic linking of
unneeded libraries.

Syntax

1ib
»»— -(|_no1I|

v
A

Defaults
-qlib
Usage

Using -qnolib specifies that no libraries, including the system libraries as well as
the XL C libraries (these are found in the lib/aix61 subdirectories of the compiler
installation directory), are to be linked. The system startup files are still linked,
unless -qnocrt is also specified.

Note: If your program references any symbols that are defined in the standard
libraries or compiler-specific libraries, link errors will occur. To avoid these
unresolved references when compiling with -qnolib, be sure to explicitly link the
required libraries by using the command flag -1 and the library name.

Predefined macros
None.
Examples

To compile myprogram.c without linking to any libraries except the compiler library
libxlopt.a, enter:

x1c myprogram.c -gnolib -TxTopt

Related information
* [“-gcrt” on page 124

-glibansi
Category

[Optimization and tuning]

214 XxLC: Compiler Reference

Pragma equivalent
#pragma options [no]libansi
Purpose

Assumes that all functions with the name of an ANSI C library function are in fact
the system functions.

When libansi is in effect, the optimizer can generate better code because it will
know about the behavior of a given function, such as whether or not it has any

side effects.

Syntax

nolibansi
»— —q |_11'bans1' —l ><

Defaults
-qnolibansi
Predefined macros

None.

-glibmpi
Category

[“Optimization and tuning” on page 85|

Pragma equivalent
None
Purpose

Asserts that all functions with Message Passing Interface (MPI) names are in fact
MPI functions and not a user function with different semantics.

Syntax

nolibmpi
»— —q |_11'bmp1' —l

v
A

Defaults
-qnolibmpi
Usage

MPI is a library interface specification for message passing. It addresses the
message-passing parallel programming model in which data is moved from the

Chapter 4. Compiler options reference 215

address space of one process to another through cooperative operations. For details
about MPI, see the [Message Passing Interface Forum|

-qlibmpi allows the compiler to generate better code because it knows about the
behavior of a given function, such as whether or not it has any side effects.

When you use -qlibmpi, the compiler assumes that all functions with the name of
an MPI library function are in fact MPI functions. -qnolibmpi makes no such
assumptions.

Note: You cannot use this option if your application contains your own version of
the library function that is incompatible with the standard one.

Predefined macros
None.
Examples

To compile myprogram.c, enter the following command:
x1c -05 myprogram.c -qlibmpi

Related information
* [Message Passing Interface Foruml
* [“-gipa” on page 193

-glinedebug
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Generates only line number and source file name information for a debugger.
When -qlinedebug is in effect, the compiler produces minimal debugging
information, so the resulting object size is smaller than that produced by the -g
debugging option. You can use the debugger to step through the source code, but
you will not be able to see or query variable information. The traceback table, if
generated, will include line numbers.

-qlinedebug is equivalent to -g1.

Syntax

[no1 i nedebug
»»— —(linedebug

Y
A

216 XLC: Compiler Reference

http://www.mpi-forum.org
http://www.mpi-forum.org

-qlist

Defaults

-qnolinedebug

Usage

When -qlinedebug is in effect, function inlining is disabled.

Avoid using -qlinedebug with -O (optimization) option. The information produced
may be incomplete or misleading.

The -g option overrides the -qlinedebug option. If you specify -g with
-qnolinedebug on the command line, -qnolinedebug is ignored and a warning is
issued.

Predefined macros
None.
Examples

To compile myprogram.c to produce an executable program testing so you can step
through it with a debugger, enter:

x1c myprogram.c -0 testing -qlinedebug

Related information
* |"-g” on page 160
+ [“-O, -qoptimize” on page 236|

Category

[Listings, messages, and compiler information|

Pragma equivalent

#pragma options [no]list

Purpose

Produces a compiler listing file that includes object and constant area sections.

Syntax

nolist
»— —q |_11'st | ><

nooffset
= |_offset —l

Defaults

-qnolist

Chapter 4. Compiler options reference 217

Parameters

offset | nooffset
Changes the offset of the PDEF header from 00000 to the offset of the start of
the text area. Specifying the option allows any program reading the .Ist file to
add the value of the PDEF and the line in question, and come up with the
same value whether offset or nooffset is specified. The offset suboption is
only relevant if there are multiple procedures in a compilation unit.

Specifying list without the suboption is equivalent to list=nooffset.
Usage
When list is in effect, a listing file is generated with a .Ist suffix for each source file

named on the command line. For details of the contents of the listing file, see
[‘Compiler listings” on page 19.|

You can use the object or assembly listing to help understand the performance
characteristics of the generated code and to diagnose execution problems.

The -qnoprint compiler option overrides this option.
Predefined macros

None.

Examples

To compile myprogram.c and to produce a listing (.Ist) file that includes object ,
enter:

x1c myprogram.c -qlist

Related information
+ |“-qglistopt” on page 221|
* ["-gprint” on page 259
* |“-gsource” on page 286|

-glistfmt
Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Creates a report in XML or HTML format to help you find optimization
opportunities.

Syntax

218 XxLC: Compiler Reference

xm1
»»— -g—Ilistfmt= |_html_| >«

-_ Y

= contentSelectionlist
filename=—;filename
version=—version number—

stylesheet=—rfilename

Defaults

This option is off by default. If none of the contentSelectionList suboptions is
specified, all available report information is produced. For example, specifying
-qlistfmt=xml is equivalent to -qlistfmt=xml=all.

Parameters

The following list describes -qlistfmt parameters:

xml | html

~ Instructs the compiler to generate the report in XML or HTML format. If an
XML report has been generated before, you can convert the report to the
HTML format using the genhtml command. For more information about this
command, see [“genhtml command” on page 221

contentSelectionlist
The following suboptions provide a filter to limit the type and quantity of
information in the report:

data | nodata
Produces data reorganization information.

inlines | noinlines
Produces inlining information.

pdf | nopdf
Produces profile-directed feedback information.

transforms | notransforms
Produces loop transformation information.

all
Produces all available report information.

none
Does not produce a report.

filename
Specifies the name of the report file. One file is produced during the compile
phase, and one file is produced during the IPA link phase. If no filename is
specified, a file with the suffix .xm1 or .html is generated in a way that is
consistent with the rules of name generation for the given platform. For
example, if the foo.c file is compiled, the generated XML files are foo.xmI
from the compile step and a.xml from the link step.

Note: If you compile and link in one step and use this suboption to specify a

file name for the report, the information from the IPA link step will overwrite
the information generated during the compile step.

Chapter 4. Compiler options reference 219

The same will be true if you compile multiple files using the filename
suboption. The compiler creates an report for each file so the report of the last
file compiled will overwrite the previous reports. For example,

x1c -qlistfmt=xml=all:filename=abc.xml -03 myfilel.c myfile2.c myfile3.c

will result in only one report, abc.xml based on the compilation of the last file
myfile3.c.

stylesheet
Specifies the name of an existing XML stylesheet for which an xml-stylesheet
directive is embedded in the resulting report. The default behavior is to not
include a stylesheet. The stylesheet supplied with XL C is x1style.xs1. This
stylesheet renders the XML report to an easily read format when the report is
viewed through a browser that supports XSLT.

To view the XML report created with the stylesheet suboption, you must place
the actual stylesheet (x1style.xs1) and the XML message catalog
(XMLMessages-locale.xml where locale refers to the locale set on the compilation
machine) in the path specified by the stylesheet suboption. The stylesheet and
message catalog are installed in the /opt/IBM/x1c/13.1.3/1istings/ directory.

For example, if a.xml is generated with stylesheet=xIstyle.xsl, both
x1style.xs1 and XMLMessages-locale.xml must be in the same directory as
a.xml, before you can properly view a.xml with a browser.

version
Specifies the major version of the content that will be generated. If you have
written a tool that requires a certain version of this report, you must specify
the version.

For example, IBM XL C for AIX, V13.1.3 creates reports at XML v1.1. If you
have written a tool to consume these reports, specify version=vl.

Usage

The information produced in the report by the -qlistfmt option depends on which

optimization options are used to compiler the program.

* When you specify both -qlistfmt and an option that enables inlining such as
-qinline, the report shows which functions were inlined and why others were
not inlined.

* When you specify both -qlistfmt and an option that enables loop unrolling, the
report contains a summary of how program loops are optimized. The report also
includes diagnostic information about why specific loops cannot be vectorized.
To make -qlistfmt generate information about loop transformations, you must
also specify at least one of the following options:

— -qhot
— -qsmp
— -03 or higher

* When you specify both -qlistfmt and an option that enables parallel
transformations, the report contains information about parallel transformations.
For -qlistfmt to generate information about parallel transformations or parallel
performance messages, you must also specify at least one of the following
options:

— -qsmp
- -05
— -qgipa=level=2

220 XxLC: Compiler Reference

* When you specify both -qlistfmt and -qpdf, which enables profiling, the report
contains information about call and block counts and cache misses.

* When you specify both -qlistfmt and an option that produces data
reorganizations such as -qipa=level=2, the report contains information about
those reorganizations.

Predefined macros
None.
Examples

If you want to compile myprogram.c to produce an XML report that shows how
loops are optimized, enter:

x1c -ghot -03 -qlistfmt=xml=transforms myprogram.c

If you want to compile myprogram.c to produce an XML report that shows which
functions are inlined, enter:

x1c -qinline -qlistfmt=xml=inlines myprogram.c
genhtml command

To view the HTML version of an XML report that has already been generated, you
can use the genhtml tool.

Use the following command to view the existing XML report in HTML format.
This command generates the HTML content to standard output.

genhtml xml_file

Use the following command to generate the HTML content into a defined HTML
file. You can use a web browser to view the generated HTML file.

genhtml xml_file > target_html_file

Note: The suffix of the HTML file name must be compliant with the static HTML
page standard, for example, .html or .htm. Otherwise, the web browser might not
be able to open the file.

Related information

+ [“-greport” on page 263

* |'Using compiler reports to diagnose optimization opportunities'|in the XL C
Optimization and Programming Guide

-glistopt
Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Produces a compiler listing file that includes all options in effect at the time of
compiler invocation.

Chapter 4. Compiler options reference 221

When listopt is in effect, a listing file is generated with a .Ist suffix for each source
file named on the command line. The listing shows options in effect as set by the

compiler defaults, the configuration file, and command line settings. For details of
the contents of the listing file, see [“Compiler listings” on page 19,

Syntax

[noh'stopt—l
»»— -(listopt

v
A

Defaults
-qnolistopt
Usage

Option settings caused by pragma statements in the program source are not shown
in the compiler listing.

The -qnoprint compiler option overrides this option.
Predefined macros

None.

Examples

To compile myprogram.c to produce a listing (.Ist) file that shows all options in
effect, enter:

x1c myprogram.c -qlistopt

Related information
* |“-qlist” on page 217|

* |“-gprint” on page 259|

+ |“-gsource” on page 286|

-glonglit
Category

[Floating-point and integer control|

Pragma equivalent

None.

Purpose

In 64-bit mode, when determining the implicit types for integer literals, the

compiler behaves as if an 1 or L suffix were added to integral literals with no suffix
or with a suffix consisting only of u or U.

222 XLC: Compiler Reference

Syntax

|—no1 ongl it—l
»»— -(longlit »<

Defaults

-gqnolonglit

Usage

After you specify the -qlonglit option, if the int or unsigned int type is contained
in the implicit type list of a integer literal, the int or unsigned int type is replaced

with the Tong int or unsigned long int type, respectively. For more information
about the integer literals, see ['Integer literals'}

Predefined macros

None.

Examples

After you specify the -qlonglit option, the integer literal 0x80000000 has the Tong

int type in 64-bit mode. Otherwise, if this option is not specified, the integer literal
has the unsigned int type in both 32-bit and 64-bit modes.

-glonglong
Category

[Language element controll

Pragma equivalent

#pragma options [no]longlong

Purpose

Allows IBM 1long Tong integer types in your program.

Syntax

»>— —q—El onglong >
no]ong]ong—|

Defaults

* -qlonglong for the xlc, cc and ¢99 invocation commands; -qnolonglong for the
¢89 invocation command.

Usage
This option takes effect when the -qlanglvl=extended | stdc89 | extc89 option is

in effect. It is not valid when the -qlanglvl=stdc99 | extc99 option is in effect,
because the long long support provided by this option is incompatible with the

Chapter 4. Compiler options reference 223

semantics of the Tong long types mandated by the C99 standard.
Predefined macros

_LONG_LONG is defined to 1 when Tong Tong data types are available; otherwise,
it is undefined.

Examples

To compile myprogram.c with support for IBM Tong long integers, enter the
following command:

cc myprogram.c -qlonglong

AIX v4.2 and later provides support for files greater than 2 gigabytes in size so
you can store large quantities of data in a single file. To allow large file
manipulation in your application, compile with the -D_LARGE_FILES and
-qlonglong compiler options. See the following example:

x1c myprogram.c -D_LARGE_FILES -qlonglong

Related information

. in the IBM XL C for AIX, V13.1.3 Language Reference

See |“-qgalloca, -ma” on page 100.|

-gmacpstr
Category

[Language element controll

Pragma equivalent
#pragma options [no]Jmacpstr
Purpose

Converts Pascal string literals (prefixed by the \p escape sequence) into
null-terminated strings in which the first byte contains the length of the string.

For example, when the -qmacpstr option is in effect, the compiler converts:
"\pABCH

to:
I\03I , IAI , IBI , ICI , I\OI

Syntax

nomacpstr‘—l

v
A

> —q acpstr

Defaults

-qnomacpstr

224 XL C: Compiler Reference

Usage

A Pascal string literal always contains the characters "\p. The characters \p in the
middle of a string do not form a Pascal string literal, and must be immediately
preceded by the " (double quote) character.

Entering the characters:
I\pl , IAI , IBI , ICI . I\OI

into a character array does not form a Pascal string literal.

The compiler ignores the -qmacpstr option when the -qmbcs or -qdbcs option is
active because Pascal-string-literal processing is only valid for one-byte characters.

The #pragma options keyword macpstr is only valid at the top of a source file
before any C source statements. If you attempt to use it in the middle of a source
file, it is ignored and the compiler issues an error message.

The following describes how Pascal string literals are processed.

* Because there is no Pascal-string-literal processing of wide strings, using the
escape sequence \p in a wide string literal with the -qmacpstr option, generates
a warning message and the escape sequence is ignored.

* Concatenating a Pascal string literal to a normal string gives a non-Pascal string.
For example, concatenating the strings:

"ABC" "\pDEF"
gives:
"ABCpDEF"

* Concatenating two Pascal string literals, for example, strcat, does not result in a
Pascal string literal. However, as described above, two adjacent Pascal string
literals can be concatenated to form one Pascal string literal in which the first
byte is the length of the new string literal. For example, concatenating the
strings:

"\p ABC" "\p DEF"
or
"\p ABC" "DEF"

results in:
"\O6ABCDEF"
* A Pascal string literal cannot be concatenated with a wide string literal.

* The compiler truncates a Pascal string literal that is longer than 255 bytes
(excluding the length byte and the terminating NULL) to 255 characters.

* The Pascal string literal is not a basic type different from other C string literals.
After the processing of the Pascal string literal is complete, the resulting string is
treated the same as all other strings. If the program passes a C string to a
function that expects a Pascal string, or vice versa, the behavior is undefined.

* Modifying any byte of the Pascal string literal after the processing has been
completed does not alter the original length value in the first byte. For example,
in the string "\06ABCDEF", substituting a null character for one of the existing
characters in the middle of the string does not change the value of the first byte
of the string, which contains the length of the string.

* No errors or warnings are issued when the bytes of the processed Pascal string
literal are modified.

Chapter 4. Compiler options reference 225

Predefined macros
None.
Examples

To compile mypascal.c and convert string literals into Pascal-style strings, enter:
x1c mypascal.c -gmacpstr

Related information
* |“-gmbcs, -qdbcs” on page 230|

-qgmakedep, -M
Category

Pragma equivalent

None.

Purpose

Produces the dependency files that are used by the make tool for each source file.

The dependency output file is named with a .u suffix.

Syntax
> -M ><
—[-q—ma kedepﬁ
=—(gccC
Defaults

Not applicable.

Parameters

gcc (-qmakedep option only)
The format of the generated make rule to match the GCC format: the
dependency output file includes a single target that lists all of the main source
file's dependencies.

If you specify -qmakedep with no suboption, or -M, the dependency output file
specifies a separate rule for each of the main source file's dependencies.

Usage

For each source file with a .c or .i suffix that is named on the command line, a
dependency output file is generated with the same name as the object file but with
a .u suffix. Dependency output files are not created for any other types of input
files. If you use the -o option to rename the object file, the name of the dependency
output file is based on the name specified in the -o option. For more information,
see the Examples section.

226 XLC: Compiler Reference

The dependency output files generated by these options are not make description
files; they must be linked before they can be used with the make command. For
more information about this command, see your operating system documentation.

The output file contains a line for the input file and an entry for each include file.
It has the general form:

file_name.o:include_file_name
file_name.o:file_name.suffix

You can also use -qmakedep and -M with the following option:

-MF file path
Sets the name of the dependency output file, where file_path is the full or
partial path or file name for the dependency output file. For more information,
see [“-MFE” on page 231 |

Include files are listed according to the search order rules for the #include
preprocessor directive, described in [“Directory search sequence for included files”|
If the include file is not found, it is not added to the .u file.

Files with no include statements produce dependency output files that contain one
line listing only the input file name.

Predefined macros
None.
Examples

Example 1: To compile mysource.c and create a dependency output file named
mysource.u, enter:

x1c -c -gmakedep mysource.c

Example 2: To compile foo_src.c and create a dependency output file named
mysource.u, enter:

x1c -c -gmakedep foo_src.c -MF mysource.u

Example 3: To compile foo_src.c and create a dependency output file named
mysource.u in the deps/ directory, enter:

x1c -c -gmakedep foo_src.c -MF deps/mysource.u

Example 4: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named foo_obj.u, enter:

x1c -c -gmakedep foo_src.c -o foo_obj.o

Example 5: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named mysource.u, enter:

xIc -c -gmakedep foo_src.c -o foo_obj.o -MF mysource.u

Example 6: To compile foo_srcl.c and foo_src2.c to create two dependency
output files, named foo_srcl.u and foo_src2.u respectively, in the /tmp/ directory,
enter:

x1c -c -gmakedep foo_srcl.c foo_src2.c -MF /tmp/

Chapter 4. Compiler options reference 227

Related information

* ["-MFE” on page 231|

* [“-0” on page 235

» ["Directory search sequence for included files” on page 12|

-gmaxerr
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Stops compilation when the number of error messages of a specified severity level
or higher reaches a specified number.

Syntax

-gmaxerr syntax — C

nomaxerr |

»»— -q axerr—s=—number
——i—

A\
A

Defaults
—qnomaxerr

Parameters

number
It specifies the maximum number of messages the compiler generates before it
stops. number must be an integer with a value of 1 or greater.

i Specifies that the severity level is Informational (I) or higher.

w Specifies that the severity level is Warning (W) or higher.

e Specifies that the severity level is Error (E) or higher.

s Specifies that the severity level is Severe (S).

Usage

If the -gmaxerr option does not specify the severity level, it uses the severity that
is in effect by the -ghalt option; otherwise, the severity level is specified by either

-qmaxerr or -qhalt that appears last.

Diagnostic messages can be controlled by the -qflag option.

228 XL C: Compiler Reference

Predefined macros
None.
Examples

To stop compilation of myprogram.c when 10 warnings are encountered, enter the
command:

x1c myprogram.c -gmaxerr=10:w

To stop compilation of myprogram.c when 5 severe errors are encountered,
assuming that the current -qhalt option value is s (severe), enter the command:

x1c myprogram.c -gmaxerr=5

To stop compilation of myprogram.c when 3 informational messages are
encountered, enter the command:

x1c myprogram.c -gmaxerr=3:i

or:

x1c myprogram.c -gmaxerr=3 -ghalt=i

Related information
* |“-gflag” on page 145
* |“-ghalt” on page 165
+ ["Message severity levels and compiler response” on page 17|

-gmaxmem
Category

[Optimization and tuning|

Pragma equivalent
#pragma options maxmem
Purpose

Limits the amount of memory that the compiler allocates while performing
specific, memory-intensive optimizations to the specified number of kilobytes.

Syntax

»>— -g—maxmem—=—size_limit ><

Defaults
* -qmaxmem=8192 when -O2 is in effect.

* -gmaxmem=-1 when the -O3 or higher optimization level is in effect.

Parameters

size limit
The number of kilobytes worth of memory to be used by optimizations. The
limit is the amount of memory for specific optimizations, and not for the

Chapter 4. Compiler options reference 229

compiler as a whole. Tables required during the entire compilation process are
not affected by or included in this limit.

A value of -1 permits each optimization to take as much memory as it needs
without checking for limits.

Usage

A smaller limit does not necessarily mean that the resulting program will be
slower, only that the compiler may finish before finding all opportunities to
increase performance. Increasing the limit does not necessarily mean that the
resulting program will be faster, only that the compiler is better able to find
opportunities to increase performance if they exist.

Setting a large limit has no negative effect on the compilation of source files when
the compiler needs less memory. However, depending on the source file being
compiled, the size of subprograms in the source, the machine configuration, and
the workload on the system, setting the limit too high, or to -1, might exceed
available system resources.

Predefined macros
None.
Examples

To compile myprogram.c so that the memory specified for local table is 16384
kilobytes, enter:

x1c myprogram.c -gmaxmem=16384

-gmbcs, -qdbcs
Category

[Language element controll

Pragma equivalent
#pragma options [no]Jmbcs, #pragma options [no]dbcs
Purpose

Enables support for multibyte character sets (MBCS) and Unicode characters in
your source code.

When mbcs or dbcs is in effect, multibyte character literals and comments are
recognized by the compiler. When nombcs or nodbcs is in effect, the compiler

treats all literals as single-byte literals.

Syntax
nodbcs
nombcs:|

> -q—Embcs >«
dbch

230 xLcC: Compiler Reference

Defaults
-qnombcs, -qnodbcs
Usage

For rules on using multibyte characters in your source code, see ['Multibyte|
in the XL C Language Reference.

In addition, you can use multibyte characters in the following contexts:

* In file names passed as arguments to compiler invocations on the command line;
for example:

x1c /u/myhome/c_programs/kanji_files/multibyte_char.c -omultibyte char

* In file names, as suboptions to compiler options that take file names as
arguments

* In the definition of a macro name using the -D option; for example:

-DMYMACRO="kpsmultibyte_chardcs"
-DMYMACRO="multibyte_char'

Listing files display the date and time for the appropriate international language,
and multibyte characters in the source file name also appear in the name of the
corresponding list file. For example, a C source file called:

multibyte_char.c

gives a list file called
multibyte_char.lst

Predefined macros
None.
Examples

To compile myprogram.c if it contains multibyte characters, enter:
x1c myprogram.c -gmbcs

Related information
* [-D” on page 126

Category

Pragma equivalent
None.
Purpose

Specifies the name or location for the dependency output files that are generated
by the -qmakedep or -M option.

Chapter 4. Compiler options reference 231

For more information about the -qmakedep and -M options, see [“-qmakedep, -M”|

Syntax

»»— -MF—file_path >

Defaults

If -MF is not specified, the dependency output file is generated with the same
name as the object file but with a .u suffix in the current working directory.

Parameters

file_path
The target output path. file_path can be a full directory path or file name. If
file_path is the name of a directory, the dependency file generated by the
compiler is placed into the specified directory. If you do not specify a directory,
the dependency file is stored in the current working directory.

Usage
If the file specified by -MF option already exists, it will be overwritten.

If you specify a single file name for the -MF option when you compile multiple
source files, only a single dependency file will be generated. The dependency file
contains the make rule for the last file specified on the command line.

Predefined macros
None.

Related information

* |“-gmakedep, -M” on page 226|

s [’-0” on page 235|

* |["Directory search sequence for included files” on page 12|

-gminimaltoc
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Controls the generation of the table of contents (TOC), which the compiler creates
for an executable file.

Programs compiled in 64-bit mode have a limit of 8192 TOC entries. As a result,

you may encounter "relocation truncation" error messages when linking large
programs in 64-bit mode; these error messages are caused by TOC overflow

232 XLC: Compiler Reference

conditions. When -qminimaltoc is in effect, the compiler avoids these overflow
conditions by placing TOC entries into a separate data section for each object file.

Specifying -qminimaltoc ensures that the compiler creates only one TOC entry for
each compilation unit. Specifying this option can minimize the use of available
TOC entries, but its use impacts performance. Use the -qminimaltoc option with
discretion, particularly with files that contain frequently executed code.

Syntax

nominimal toc—l
»— -q inimaltoc

v
A

Defaults

-qgnominimaltoc

Usage

Compiling with -qminimaltoc may create slightly slower and larger code for your
program. However, these effects may be minimized by specifying optimizing
options when compiling your program.

Predefined macros

None.

-gmkshrobj
Category

Pragma equivalent

None.

Purpose

Creates a shared object from generated object files.

Use this option, together with the related options described later in this topic,
instead of calling the linker directly to create a shared object. The advantage of
using this option is that it is compatible with -qipa link-time optimizations (such

as those performed at -O5).

Syntax

A\
A

»»— -g—mkshrobj

Defaults

By default, the output object is linked with the runtime libraries and startup
routines to create an executable file.

Chapter 4. Compiler options reference 233

Usage

When the -qmkshrobj option is specified, the driver program starts the
CreateExportList utility to create an export list from the input list of object files.

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using -bE:, -bexport:, or
-bnoexpall. You can also prevent weak symbols from being exported by using the
-qnoweakexp option. ST Symbols that have the hidden or internal visibility
attribute are not exported. TR

Specifying -qmkshrobj implies -qpic.

You can also use the following related options with -qmkshrobj:

-0 shared file
The name of the file that holds the shared file information. The default is shr.o.

-qexpfile=filename
Saves all exported symbols in filename.

-e name
Sets the entry name for the shared executable to name.

-q[no]weakexp
Specifies whether symbols marked as weak (with the #pragma weak directive)
are to be included in the export list. If you do not explicitly set this option, the
default is -qweakexp (global weak symbols are exported).

For detailed information about using -qmkshrobj to create shared libraries, see
['Constructing a library'|in the XL C Optimization and Programming Guide.

Predefined macros
None.
Examples

To construct the shared library big_1ib.so from three smaller object files, enter the
following command:

x1c -gmkshrobj -o big_Tib.so 1ib_a.o 1ib_b.o 1ib_c.o

Related information
* |“”-b” on page 109
* |”-e” on page 135
+ [-G” on page 163

* |"-gexpfile” on page 141

* ["-gipa” on page 193

* |"-0” on page 235

* [“-gpic” on page 254|

* ["-gweakexp” on page 328
» |“-qvisibility” on page 323
* “#pragma GCC visibility push, #pragma GCC visibility pop” on page 349|

234 XxLC: Compiler Reference

Category

Pragma equivalent

None.

Purpose

Specifies a name for the output object, assembler, executable, or preprocessed file.

Syntax

»»>— -0—path ><

Defaults

See [“Types of output files” on page 4| for the default file names and suffixes
produced by different phases of compilation.

Parameters

path
When you are using the option to compile from source files, path can be the
name of a file or directory. path can be a relative or absolute path name. When
you are using the option to link from object files, path must be a file name.

If path is the name of an existing directory, files created by the compiler are
placed into that directory. If path is not an existing directory, it specifies the
name of the file produced by the compiler. See below for examples.

You cannot specify a file name with a C source file suffix (.c, or .cpp), such as
myprog.c; this results in an error and neither the compiler nor the linker is
invoked.

Usage

If you use the -c option with -0 and path is not an existing directory, you can
compile only one source file at a time. In this case, if more than one source file
name is specified, the compiler issues a warning message and ignores -o.

The -E, -P, and -qsyntaxonly options override the -o option.

Predefined macros

None.

Examples

To compile myprogram.c so that the resulting executable is called myaccount,
assuming that no directory with name myaccount exists, enter:

x1c myprogram.c -0 myaccount

To compile test.c to an object file only and name the object file new.o, enter:

Chapter 4. Compiler options reference 235

xlc test.c -c -0 new.o

Related information
* [“-c” on page 114]
* ["-E” on page 136
* ["-P” on page 244
* |“-gsyntaxonly” on page 302

-0, -qoptimize
Category

[Optimization and tuning|

Pragma equivalent

#pragma options [noJoptimize

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

Syntax

noopt
’:nooptimi ze

v
A

»— - optimize
o " T 1

oS w N o

— -00
— -0
— -02
— -03
— -04
L -05

Defaults
-qnooptimize or -O0 or -qoptimize=0

Parameters

-00 | nooptimize | noopt | optimize|opt=0
Performs only quick local optimizations such as constant folding and
elimination of local common subexpressions.

This setting implies -gstrict_induction unless -qnostrict_induction is explicitly
specified.

-0 | -02 | optimize | opt | optimize|opt=2
Performs optimizations that the compiler developers considered the best
combination for compilation speed and runtime performance. The
optimizations may change from product release to release. If you need a
specific level of optimization, specify the appropriate numeric value.

236 XLC: Compiler Reference

This setting implies -gstrict and -qnostrict_induction, unless explicitly negated
by -qstrict_induction or -qnostrict.

-03 | optimize|opt=3
Performs additional optimizations that are memory intensive, compile-time
intensive, or both. They are recommended when the desire for runtime
improvement outweighs the concern for minimizing compilation resources.

-O3 applies the -O2 level of optimization, but with unbounded time and
memory limits. -O3 also performs higher and more aggressive optimizations
that have the potential to slightly alter the semantics of your program. The
compiler guards against these optimizations at -O2. The aggressive
optimizations performed when you specify -O3 are:

1.

Aggressive code motion, and scheduling on computations that have the
potential to raise an exception, are allowed.

Loads and floating-point computations fall into this category. This
optimization is aggressive because it may place such instructions onto
execution paths where they will be executed when they may not have been
according to the actual semantics of the program.

For example, a loop-invariant floating-point computation that is found on
some, but not all, paths through a loop will not be moved at -O2 because
the computation may cause an exception. At -O3, the compiler will move it
because it is not certain to cause an exception. The same is true for motion
of loads. Although a load through a pointer is never moved, loads off the
static or stack base register are considered movable at -O3. Loads in general
are not considered to be absolutely safe at -O2 because a program can
contain a declaration of a static array a of 10 elements and load
a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling.

Example:

In the following example, at -O2, the computation of b+c is not moved out
of the loop for two reasons:

* It is considered dangerous because it is a floating-point operation

* It does not occur on every path through the loop

At -03, the code is moved.

int i ;
float a[100], b, c ;
for (i =0 ; 1 <100 ; i++)

{
if (a[i] < al[i+1])
a[i] = b + c ;

}

Both -O2 and -O3 conform to the following IEEE rules.

With -O2 certain optimizations are not performed because they may
produce an incorrect sign in cases with a zero result, and because they
remove an arithmetic operation that may cause some type of floating-point
exception.

For example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 + 0.0
= 0.0, which is -X. In some other cases, some optimizations may perform
optimizations that yield a zero result with the wrong sign. For example, X -
Y * Z may result in a -0.0 where the original computation would produce
0.0.

Chapter 4. Compiler options reference 237

In most cases the difference in the results is not important to an application
and -O3 allows these optimizations.

3. Floating-point expressions may be rewritten.
Computations such as a*b*c may be rewritten as a*c*b if, for example, an
opportunity exists to get a common subexpression by such rearrangement.
Replacing a divide with a multiply by the reciprocal is another example of
reassociating floating-point computations.

4. Specifying -O3 implies -qhot=level=0, unless you explicitly specify -qhot or
-qhot=level=1 option.

-qfloat=fltint:rsqrt is set by default with -O3.

-qmaxmem=-1 is set by default with -O3, allowing the compiler to use as
much memory as necessary when performing optimizations.

Built-in functions do not change errno at -O3.

Aggressive optimizations do not include the following floating-point
suboptions: -qfloat=hsflt | hssngl, or anything else that affects the precision
mode of a program.

Integer divide instructions are considered too dangerous to optimize even at
-03.

Refer to [“-gflttrap” on page 151|to see the behavior of the compiler when you
specify optimize options with the -qflttrap option.

You can use the -gstrict and -gstrict_induction compiler options to turn off
effects of -O3 that might change the semantics of a program. Specifying -qgstrict
together with -O3 invokes all the optimizations performed at -O2 as well as
further loop optimizations. Reference to the -qstrict compiler option can appear
before or after the -O3 option.

The -O3 compiler option followed by the -O option leaves -qignerrno on.

When -O3 and -qhot=level=1 are in effect, the compiler replaces any calls in
the source code to standard math library functions with calls to the equivalent
MASS library functions, and if possible, the vector versions.

-04 | optimize|opt=4
This option is the same as -O3, except that it also:

* Sets the -qarch and -qtune options to the architecture of the compiling
machine

* Sets the -qcache option most appropriate to the characteristics of the
compiling machine

* Sets the -qhot option

* Sets the -qipa option

Note: Later settings of -O, -qcache, -qhot, -qipa, -qarch, and -qtune options
will override the settings implied by the -O4 option.

This option follows the "last option wins" conflict resolution rule, so any of the
options that are modified by -O4 can be subsequently changed. For example,
specifying -O4 -qarch=ppc allows aggressive intraprocedural optimization
while maintaining code portability.

-05 | optimize|opt=5
This option is the same as -O4, except that it:

* Sets the -qipa=level=2 option to perform full interprocedural data flow and
alias analysis.

238 XxLC: Compiler Reference

Note: Later settings of -O, -qcache, -qipa, -qarch, and -qtune options will
override the settings implied by the -O5 option.

Usage

Increasing the level of optimization may or may not result in additional
performance improvements, depending on whether additional analysis detects
further opportunities for optimization.

Compilations with optimizations may require more time and machine resources
than other compilations.

Optimization can cause statements to be moved or deleted, and generally should
not be specified along with the -g flag for debugging programs. The debugging
information produced may not be accurate.

When using -O or higher optimization, -qtbtable=small is implied. The traceback
table generated has no function name or parameter information.

If optimization level -O3 or higher is specified on the command line, the -qghot and
-qipa options that are set by the optimization level cannot be overridden by
#pragma option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)").

Predefined macros
e _ OPTIMIZE__ is predefined to 2 when -O | O2 is in effect; it is predefined to 3
when -O3 | O4 | O5 is in effect. Otherwise, it is undefined.

* _ OPTIMIZE_SIZE__ is predefined to 1 when -O | -O2 | -O3 | -O4 | -O5 and
-qcompact are in effect. Otherwise, it is undefined.

Examples

To compile and optimize myprogram.c, enter:
x1c myprogram.c -03

Related information
* [“-ghot” on page 169
* [“-gipa” on page 193
* |“-qpdfl, -gpdf2” on page 247|

* [“-gstrict” on page 294|

+ [“-gtbtable” on page 305

+ ['Optimizing your applications'|in the XL C Optimization and Programming Guide.
+ [“#pragma option_override” on page 364|

-qoptdebug
Category

[Error checking and debugging]

Pragma equivalent

None.

Chapter 4. Compiler options reference 239

Purpose

When used with high levels of optimization, produces files containing optimized
pseudocode that can be read by a debugger.

An output file with a .optdbg extension is created for each source file compiled
with -qoptdebug. You can use the information contained in this file to help you

understand how your code actually behaves under optimization.

Syntax

[nooptdebug—l
»—-(optdebug ><

Defaults
-qnooptdebug
Usage

-qoptdebug only has an effect when used with an option that enables the
high-level optimizer, namely -O3 or higher optimization level, or -qhot, -qsmp,
-qpdf, or -qipa. You can use the option on both compilation and link steps. If you
specify it on the compile step, one output file is generated for each source file. If
you specify it on the -qipa link step, a single output file is generated.

The naming rules of a .optdbg file are as follows:
* If a .optdbg file is generated at the compile step, its name is based on the output
file name of the compile step.

* If a .optdbg file is generated at the link step, its name is based on the output file
name of the link step.

If you compile and link in the same step using the -qoptdebug option with -qipa,
the .optdbg file is generated only at the link step.

You must still use the -g or -qlinedebug option to include debugging information
that can be used by a debugger.

For more information and examples of using this option, see ['Using -goptdebug to|
[help debug optimized programs'|in the XL C Optimization and Programming
GuideXL C Optimization and Programming Guide.

Related information
* |“-O, -qoptimize” on page 236|

+ [“-ghot” on page 169

. |/1_qipar/ on page 193|
* ["-qpdf1, -qpdf2” on page 247|
. |tl_qsmpn on page 281'

* |“-g” on page 160|

+ ["-qlinedebug” on page 216]

240 xLcC: Compiler Reference

-qoptfile
Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Specifies a file containing a list of additional command line options to be used for
the compilation.

Syntax

»»— -g—optfile—=—rfilename ><

Defaults
None.

Parameters

filename
Specifies the name of the file that contains a list of additional command line
options. filename can contain a relative path or absolute path, or it can contain
no path. It is a plain text file with one or more command line options per line.

Usage

The format of the option file follows these rules:

* Specify the options you want to include in the file with the same syntax as on
the command line. The option file is a whitespace-separated list of options. The
following special characters indicate whitespace: \n, \v, \t. (All of these
characters have the same effect.)

* A character string between a pair of single or double quotation marks are passed
to the compiler as one option.

* You can include comments in the options file. Comment lines start with the #
character and continue to the end of the line. The compiler ignores comments
and empty lines.

When processed, the compiler removes the -qoptfile option from the command
line, and sequentially inserts the options included in the file before the other
subsequent options that you specify.

The -qoptfile option is also valid within an option file. The files that contain
another option file are processed in a depth-first manner. The compiler avoids
infinite loops by detecting and ignoring cycles in option file inclusion.

If -qoptfile and -qsaveopt are specified on the same command line, the original
command line is used for -qsaveopt. A new line for each option file is included
representing the contents of each option file. The options contained in the file are
saved to the compiled object file.

Chapter 4. Compiler options reference 241

Predefined macros
None.
Example 1

This is an example of specifying an option file.

$ cat options.file

To perform optimization at -03 level, and high-order
loop analysis and transformations during optimization
-03 -qghot

To generate position-independent code

-gpic

$ x1C -qlist -qoptfile=options.file -qipa test.c

The preceding example is equivalent to the following invocation:
$ x1C -qlist -03 -ghot -gpic -gipa test.c

Example 2

This is an example of specifying an option file that contains -qoptfile with a cycle.

$ cat options.file2

To perform optimization at -03 Tevel, and high-order

loop analysis and transformations during optimization
-03 -ghot

To include the -qoptfile option in the same option file
-qoptfile=options.file2

To generate position-independent code

-gpic

To produce a compiler Tisting file

-qlist

$ x1C -qlist -qoptfile=options.file2 -gipa test.c

The preceding example is equivalent to the following invocation:
$ x1C -qlist -03 -ghot -gpic -qlist -qipa test.c

Example 3

This is an example of specifying an option file that contains -qoptfile without a
cycle.

$ cat options.filel

-03 -ghot
-qoptfile=options.file2
-galias=ansi

$ cat options.file2
-qchars=signed

$ x1C -goptfile=options.filel test.c

The preceding example is equivalent to the following invocation:
$ x1C -03 -ghot -gchars=signed test.c

Example 4

This is an example of specifying -qsaveopt and -qoptfile on the same command
line.

242 XL C: Compiler Reference

$ cat options.file3
-03
-ghot

$ x1C -gsaveopt -qipa -qoptfile=options.file3 test.c -c

$ what test.o

test.o:

opt f x1C -gsaveopt -qipa -qoptfile=options.file3 test.c -c
optfile options.file3 -03 -ghot

Related information
* |“-gsaveopt” on page 272|

-P; -Pg; -qprofile
Category

[Optimization and tuning]|

Pragma equivalent

None.

Purpose

Prepares the object files produced by the compiler for profiling.

When you compile with a profiling option, the compiler produces monitoring code
that counts the number of times each routine is called. The compiler replaces the
startup routine of each subprogram with one that calls the monitor subroutine at
the start. When you execute a program compiled with -p, and it ends normally;, it
writes the recorded information to a mon.out file; a program compiled with -pg
writes a gmon.out file. You can then use the prof or gprof command to generate a
runtime profile.

Syntax

-p
-Pg

-qg—profil e—=—|:p
PY

A\
A

Defaults
Not applicable.
Usage

When you are compiling and linking in separate steps, you must specify the
profiling option in both steps.

If the -qtbtable option is not set, the profiling options will generate full traceback
tables.

Chapter 4. Compiler options reference 243

Predefined macros
None.
Examples

To compile myprogram.c to include profiling data, enter:

x1c myprogram.c -p

Remember to compile and link with one of the profiling options. For example:

x1c myprogram.c -p -C
x1c myprogram.o -p -0 program

Related information

+ [“-gtbtable” on page 305

* See your operating system documentation for more information on the prof and
gprof command.

Category

Pragma equivalent
None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,
and creates an output preprocessed file for each input file.

The preprocessed output file has the same name as the input file but with a .i
suffix.

Syntax

»»— -P »<

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are preprocessed as C files except
those with a .i suffix.

Unless -qppline is specified, #1ine directives are not generated.

Line continuation sequences are removed and the source lines are concatenated.

244 XL C: Compiler Reference

The -P option retains all white space including line-feed characters, with the
following exceptions:

* All comments are reduced to a single space (unless -C is specified).
* Line feeds at the end of preprocessing directives are not retained.
* White space surrounding arguments to function-style macros is not retained.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,
and -qsyntaxonly option.

Predefined macros
None.

Related information

* |’-C, -C!” on page 115|

* [“-E” on page 136|

* |“-gppline” on page 255|

+ [“-gsyntaxonly” on page 302|

Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Specifies substitute path names for XL C components such as the compiler,
assembler, linker, and preprocessor.

You can use this option if you want to keep multiple levels of some or all of the
XL C components and have the option of specifying which one you want to use.

This option is preferred over the -B and -t options.

Syntax

»»— -g—path—= a :—directory_path ><
L b—|
C
L d—
L |
-
L
L1
L p—

Chapter 4. Compiler options reference 245

Defaults

By default, the compiler uses the paths for compiler components defined in the
configuration file.

Parameters

directory path
The path to the directory where the alternate programs are located.

The following table shows the correspondence between -qpath parameters and the
component names:

Parameter Description Component name
a The assembler as
b The low-level optimizer xICcode
c The compiler front end xlcentry
d The disassembler dis
E The CreateExportList utility | CreateExportList
I (uppercase i) The high-level optimizer, ipa
compile step
L The high-level optimizer, link |ipa
step
1 (lowercase L) The linker 1d
P The preprocessor xlCentry
Usage

The -qpath option overrides the -F, -t, and -B options.

Note that using the p suboption causes the source code to be preprocessed
separately before compilation, which can change the way a program is compiled.

Predefined macros
None.
Examples

To compile myprogram.c using a substitute xlc compiler in /1ib/tmp/mine/, enter
the command:

x1c myprogram.c -gpath=c:/1ib/tmp/mine/

To compile myprogram.c using a substitute linker in /1ib/tmp/mine/, enter the
command:

x1c myprogram.c -qpath=1:/1ib/tmp/mine/

Related information
* |”-B” on page 110
* |”-F” on page 143
* [“-t” on page 303

246 XLC: Compiler Reference

-qpdf1, -qpdf2
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from
sample program execution are used to improve optimization near conditional

branches and in frequently executed code sections.

Optimizes an application for a typical usage scenario based on an analysis of how
often branches are taken and blocks of code are run.

Syntax
—nopdf2
—nopdfl
> -q——pdfl » <
=—pdfname—=—rfile_path—
=—unique
=—nounique
=—exename
=—defname
=—Ilevel—= 0
-
2
L pdf2
=—pdfname—=—rfile_path—
=—exename
=—defname
Defaults
-qnopdfl, -qnopdf2
Parameters
defname
Reverts a PDF file to its default file name if the -qpdfl=exename option is also
specified.
exename

Specifies the name of the generated PDF file according to the output file name
specified by the -0 option. For example, you can use -qpdfl=exename -o func
func.c to generate a PDF file called .func_pdf.

Tevel=0 | 1 | 2
Specifies different levels of profiling information to be generated by the
resulting application. The following table shows the type of profiling
information supported on each level. The plus sign (+) indicates that the
profiling type is supported.

Chapter 4. Compiler options reference 247

Table 24. Profiling type supported on each -qpdf1 level

Level
Profiling type 0 1 2
Block-counter profiling + + +
Call-counter profiling + + +
Value profiling + +
Cache-miss profiling +

-qpdfl=level=1 is the default level. It is equivalent to -qpdfl. Higher PDF
levels profile more optimization opportunities but have a larger overhead.

Notes:

* Only one application compiled with the -qpdfl=level=2 option can be run at
a time on a particular processor.

* Cache-miss profiling is enabled on pSeries system, and is only available on
POWERS processors or higher.

* Cache-miss profiling information has several levels. If you want to gather
different levels of cache-miss profiling information, set the PDF_PM_EVENT
environment variable to LIMISS, L2MISS, or L3MISS (if applicable)
accordingly. Only one level of cache-miss profiling information can be
instrumented at a time. L2 cache-miss profiling is the default level.

* If you want to bind your application to a specified processor for cache-miss
profiling, set the PDF_BIND_PROCESSOR environment variable equal to the
processor number.

pdfname= file path
Specifies the directories and names for the PDF files and any existing PDF map
files. By default, if the PDFDIR environment variable is set, the compiler places
the PDF and PDF map files in the directory specified by PDFDIR. Otherwise, if
the PDFDIR environment variable is not set, the compiler places these files in
the current working directory. If the PDFDIR environment variable is set but
the specified directory does not exist, the compiler issues a warning message.
The name of the PDF map file follows the name of the PDF file if the
-qpdfl=unique option is not specified. For example, if you specify the
-qpdfl=pdfname=/home/joe/func option, the generated PDF file is called func,
and the PDF map file is called func_map. Both of the files are placed in the
/home/joe directory. You can use the pdfname suboption to do simultaneous
runs of multiple executable applications using the same directory. This is
especially useful when you are tuning dynamic libraries with PDF.

unique | nounique
You can use the -qpdfl=unique option to avoid locking a single PDF file when
multiple processes are writing to the same PDF file in the PDF training step.
This option specifies whether a unique PDF file is created for each process
during run time. The PDF file name is <pdf_file_name>.<pid>.
<pdf_file_name>is ._pdf by default or specified by other -qpdf1 suboptions,
which include pdfname, exename, and defname. <pid> is the ID of the
running process in the PDF training step. For example, if you specify the
-qpdfl=unique:pdfname=abc option, and there are two processes for PDF
training with the IDs 12345678 and 87654321, two PDF files abc.12345678 and
abc.87654321 are generated.

248 XL C: Compiler Reference

Note: When -qpdfl=unique is specified, multiple PDF files with process IDs
as suffixes are generated. You must use the mergepdf program to merge all
these PDF files into one after the PDF training step.

Usage

The PDF process consists of the following three steps:

1.

Compile your program with the -qpdf1 option and a minimum optimization
level of -O2. By default, a PDF map file named ._pdf_map and a resulting
application are generated.

Run the resulting application with a typical data set. Profiling information is
written to a PDF file named ._pdf by default. This step is called the PDF
training step.

Recompile and link or just relink the program with the -qpdf2 option and the
optimization level used with the -qpdfl option. The -qpdf2 process fine-tunes
the optimizations according to the profiling information collected when the
resulting application is run.

Notes:

The showpdf utility uses the PDF map file to display part of the profiling
information in text or XML format. For details, see |'Viewing profiling]
finformation with showpdf'|in the XI. C Optimization and Programming Guide. If
you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdf1 phase so that the PDF map file is not generated. For
details of -qnoshowpdf, see in the XL C Compiler Reference.

When option -0O4, -O5, or any level of option -qipa is in effect, and you specify
the -qpdf1 or -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

When the -qpdfl=pdfname option is used during the -qpdf1 phase, you must
use the -qpdf2=pdfname option during the -qpdf2 phase for the compiler to
recognize the correct PDF file. This rule also applies to the -qpdf[112]=exename
option.

The compiler issues an information message with a number in the range of 0 - 100
during the -qpdf2 phase. If you have not changed your program between the
-qpdfl and -qpdf2 phases, the number is 100, which means that all the profiling
information can be used to optimize the program. If the number is 0, it means that
the profiling information is completely outdated, and the compiler cannot take
advantage of any information. When the number is less than 100, you can choose
to recompile your program with the -qpdf1 option and regenerate the profiling
information.

If you recompile your program by using the -qpdf1 option with any suboption, the
compiler removes the existing PDF file or files whose names and locations are the
same as the file or files that will be created in the training step before generating a
new application.

Other related options

You can use the following option with the -qpdf1 option:

-gprefetch

When you run the -qprefetch=assistthread option to generate data prefetching
assist threads, the compiler uses the delinquent load information to perform

Chapter 4. Compiler options reference 249

analysis and generate them. The delinquent load information can be gathered
from dynamic profiling using the -qpdfl=level=2 option. For more
information, see

-qshowpdf
Uses the showpdf utility to view the PDF data that were collected. See

[-gshowpdf” on page 277| for more information.

For recommended procedures of using PDF, see ['Using profile-directed feedback'|
in the XL C Optimization and Programming Guide.

The following utility programs, found in /opt/IBM/x1c/13.1.3/bin/, are available
for managing the files to which profiling information is written:

cleanpdf

»»—cleanpdf <
|—pd Ifdi r—l l—— u—| l—— f—pd fname—|

Removes all PDF files or the specified PDF files, including PDF files with
process ID suffixes. Removing profiling information reduces runtime
overhead if you change the program and then go through the PDF process
again.

pdfdir ~ Specifies the directory that contains the PDF files to be removed. If
pdfdir is not specified, the directory is set by the PDFDIR
environment variable; if PDFDIR is not set, the directory is the
current directory.

-f pdfname
Specifies the name of the PDF file to be removed. If -f pdfname is
not specified, ._pdf is removed.

-u If -f pdfname is specified, in addition to the file removed by -f,
files with the naming convention pdfname.<pid>, if applicable, are
also removed.

If -f pdfname is not specified, removes ._pdf. Files with the
naming convention ._pdf.<pid>, if applicable, are also removed.

<pid> is the ID of the running process in the PDF training step.

Run cleanpdf only when you finish the PDF process for a particular
application. Otherwise, if you want to resume by using PDF process with
that application, you must compile all of the files again with -qpdf1.

mergepdf

250 xLcC: Compiler Reference

inputL

»»—mergepd f— ><

L —r‘—scaling—| Tooutput L _n_l L —v—l

Merges two or more PDF files into a single PDF file.

-1 scaling
Specifies the scaling ratio for the PDF file. This value must be
greater than zero and can be either an integer or a floating-point
value. If not specified, a ratio of 1.0 is assumed.

input Specifies the name of a PDF input file, or a directory that contains
PDF files.

-0 output
Specifies the name of the PDF output file, or a directory to which
the merged output is written.

-n Specifies that PDF files do not get normalized. By default,
mergepdf normalizes the files in such a way that every profile has
the same overall weighting, and individual counters are scaled
accordingly. This is done before applying the user-specified ratio
(with -r). When -n is specified, no normalization occurs. If neither
-n nor -r is specified, the PDF files are not scaled at all.

-V Specifies verbose mode, and causes internal and user-specified
scaling ratios to be displayed to standard output.

showpdf

Displays part of the profiling information written to PDF and PDF map
files. To use this command, you must first compile your program with the
-qpdf1 option. See|'Viewing profiling information with showpdf'|in the XL
C Optimization and Programming Guide for more information.

Predefined macros

None.

Examples

The following example uses the -qpdfl=level=0 option to reduce possible runtime
instrumentation overhead:

#Compile all the files with -gpdfl=Tevel=0
x1c -gpdfl=level=0 -03 filel.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
x1c -gpdf2 -03 filel.c file2.c file3.c

#I1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdfl=level=1 option:

#Compile all the files with -qpdfl
x1c -qpdfl -03 filel.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
x1c -gpdf2 -03 filel.c file2.c file3.c

#1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdfl=level=2 option to gather cache-miss
profiling information:

#Compile all the files with -gpdfl=level=2
x1c -gpdfl=level=2 -03 filel.c file2.c file3.c

Chapter 4. Compiler options reference 251

#Set PM_EVENT=L2MISS to gather L2 cache-miss profiling
#information
export PDF_PM_EVENT=L2MISS

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -gpdf2 -03 filel.c file2.c file3.c

#1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the PDF_BIND_PROCESSOR
environment variable:

#Compile all the files with -gpdfl=level=1
xlc -gpdfl=level=1 -03 filel.c file2.c file3.c

#Set PDF_BIND_PROCESSOR environment variable so that
#all processes for this executable are run on Processor 1
export PDF_BIND_ PROCESSOR=1

#Run executable with sample input data
./a.out < sample.data

#Recompile all the files with -qpdf2
x1c -qpdf2 -03 filel.c file2.c file3.c

#I1f the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the -qpdf[112]=exename option:

#Compile all the files with -gpdfl=exename
x1c -gpdfl=exename -03 -o final filel.c file2.c file3.c

#Run executable with sample input data
./final < typical.data

#List the content of the directory
>1s -Irta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 filel.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 17:00 final
-rwxr-Sr-- 1 user staff 762 Dec 05 17:03 .final_pdf

#Recompile all the files with -gpdf2=exename
x1c -gpdf2=exename -03 -o final filel.c file2.c file3.c

#The program is now optimized using PDF information

The following example demonstrates the use of the -qpdf[1|2]=pdfname option:

#Compile all the files with -qpdfl=pdfname. The static profiling
#information is recorded in a file named final_map
x1c -gpdfl=pdfname=final -03 filel.c file2.c file3.c

#Run executable with sample input data. The profiling
#information is recorded in a file named final
./a.out < typical.data

#List the content of the directory
>1s -Irta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 filel.c

252 XLC: Compiler Reference

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 18:30 a.out
-rwxr-Sr-- 1 user staff 762 Dec 05 18:32 final

#Recompile all the files with -gpdf2=pdfname
x1c -gpdf2=pdfname=final -03 filel.c file2.c file3.c

#The program is now optimized using PDF information

Related information

* |“-gshowpdf” on page 277|

* |“-gipa” on page 193|

* [gprefetch|

* [“-greport” on page 263

+ |'Optimizing your applications'|in the XL C Optimization and Programming Guide
+ [“Runtime environment variables” on page 24|

* |'Profile-directed feedback'|in the XL C Optimization and Programming Guide

-gphsinfo
Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

|—nophs1'nfo—|
>»— - phsinfo >4

Defaults

-qnophsinfo

Usage

The output takes the form numberl/number2 for each phase where numberl
represents the CPU time used by the compiler and number2 represents real time
(wall clock time).

The time reported by -gphsinfo is in seconds.

Predefined macros

None.

Chapter 4. Compiler options reference 253

Examples

To compile myprogram.c and report the time taken for each phase of the
compilation, enter the following command:

x1c myprogram.c -gphsinfo

The output will look similar to:

C Init - Phase Ends; 0.010/ 0.040
IL Gen - Phase Ends; 0.040/ 0.070
W-TRANS - Phase Ends; 0.000/ 0.010
OPTIMIZ - Phase Ends; 0.000/ 0.000
REGALLO - Phase Ends; 0.000/ 0.000
AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:

C Init - Phase Ends; 0.010/ 0.040
IL Gen - Phase Ends; 0.060/ 0.070
IPA - Phase Ends; 0.060/ 0.070
IPA - Phase Ends; 0.070/ 0.110
W-TRANS - Phase Ends; 0.060/ 0.180
OPTIMIZ - Phase Ends; 0.010/ 0.010
REGALLO - Phase Ends; 0.010/ 0.020
AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:

Front End - Phase Ends; 0.004/ 0.006
IPA - Phase Ends; 0.040/ 0.040
IPA - Phase Ends; 0.220/ 0.280
W-TRANS - Phase Ends; 0.030/ 0.110
OPTIMIZ - Phase Ends; 0.030/ 0.030
REGALLO - Phase Ends; 0.010/ 0.050
AS - Phase Ends; 0.000/ 0.000
-gpic
Category

[Object code controll

Pragma equivalent

None.

Purpose

Generates position-independent code suitable for use in shared libraries.
Syntax

»— -g—pic

small
—=—|:1 arge]—

Defaults

* -qpic=small

Specifying -qpic without any suboptions is equivalent to -qpic=small.

254 XL C: Compiler Reference

Parameters

small
Instructs the compiler to assume that the size of the Table of Contents (TOC) is
no larger than 64 Kb. When -qpic=small is in effect, the compiler generates
one instruction for each TOC access.

large
Instructs the compiler to assume that the size of the TOC is larger than 64 Kb.
When -qpic=large is in effect, the compiler generates two instructions for each
TOC access to enlarge the accessing range. This helps avoid TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

Usage
You must specify -qpic or -qpic=large when you build shared libraries.
Specifying -qpic=large has the same effect as passing -bbigtoc to 1d.

You can use different TOC access options for different compilation units in an
application.

Note: For applications whose TOC size is larger than 64K, using -qpic=large can
improve performance. However, for applications whose TOC is smaller than 64K,
using -qpic=large slows down the program. To decide whether to use -qpic=large,
compile the program with -qpic=small first. If an overflow error message is
generated, use -qpic=large instead.

Note: If your operating system is lower than AIX 6.1 TL 6, ensure that you have
installed the latest fix pack from |https:/ /www.ibm.com/support/|
[docview.wss?uid=isg1fixinfo118013} otherwise, an error message might be
generated during the link step.

Predefined macros
None.
Examples

To compile a shared library Tibmylib.so, use the following commands:

x1c mylib.c -gpic=small -c -o mylib.o
x1c -gmkshrobj mylib -o libmylib.so.1

Related information

* |“-q32, -q64” on page 94|

+ [-G” on page 163

* |“-qmkshrobj” on page 233|

-gppline
Category

[Object code controll

Pragma equivalent

None.

Chapter 4. Compiler options reference 255

https://www.ibm.com/support/docview.wss?uid=isg1fixinfo118013
https://www.ibm.com/support/docview.wss?uid=isg1fixinfo118013

Purpose

When used in conjunction with the -E or -P options, enables or disables the
generation of #1ine directives.

Syntax

»»— - ppline >
|—nopp] 1'neJ

Defaults
* -qnoppline when -P is in effect
* -qppline when -E is in effect

Usage

The -C option has no effect without either the -E or the -P option. With the -E
option, line directives are written to standard output. With the -P option, line
directives are written to an output file.

Predefined macros
None.
Examples

To preprocess myprogram.c to write the output to myprogram.i, and generate #1ine
directives:

xTc myprogram.c -P -gppline

Related information
* [”-E” on page 136
* ["-P” on page 244

-qprefetch
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Inserts prefetch instructions automatically where there are opportunities to
improve code performance.

When -qprefetch is in effect, the compiler may insert prefetch instructions in

compiled code. When -qnoprefetch is in effect, prefetch instructions are not
inserted in compiled code.

256 XLC: Compiler Reference

Syntax

—prefetch
_[noassistthread—l
—= assistthread—= SMT
|—CMP—|
_Enoaggressive—l
—= aggressive
=—dscr—=—uvalue
»»— -g—-—noprefetch ><

Defaults
-qprefetch=noassistthread:noaggressive:dscr=0

Parameters

assistthread | noassistthread
When you work with applications that generate a high cache-miss rate, you
can use -qprefetch=assistthread to exploit assist threads for data prefetching.
This suboption guides the compiler to exploit assist threads at optimization
level -O3 -ghot or higher. If you do not specify -qprefetch=assistthread,
-qprefetch=noassistthread is implied.

CMP
For systems based on the chip multi-processor architecture (CMP), you can
use -qprefetch=assistthread=cmp.

SMT
For systems based on the simultaneous multi-threading architecture (SMT),
you can use -qprefetch=assistthread=smt.

Note: If you do not specify either CMP or SMT, the compiler uses the
default setting based on your system architecture.

aggressive | noaggressive
This suboption guides the compiler to generate aggressive data prefetching at
optimization level -O3 or higher. If you do not specify aggressive,
-qprefetch=noaggressive is implied.

dscr
You can specify a value for the dscr suboption to improve the runtime
performance of your applications. The compiler sets the Data Stream Control
Register (DSCR) to the specified value to control the hardware prefetch engine.
For POWERS processors, the value is valid only when the optimization level is
-02 or greater; for POWER5, POWER6, and POWER? processors, the value is
valid only when the optimization level is -03 or greater and the high-order
transformation (HOT) is in effect. The default value of dscr is 0.

value

The value that you specify for dscr must be 0 or greater, and representable
as a 64-bit unsigned integer. Otherwise, the compiler issues a warning
message and sets dscr to 0. The compiler accepts both decimal and
hexadecimal numbers, and a hexadecimal number requires the prefix of 0x.
The value range depends on your system architecture. See the product

Chapter 4. Compiler options reference 257

information about the POWER® Architecture for details. If you specify
multiple values, the last one takes effect.

Usage

The -qnoprefetch option does not prevent built-in functions such as
__prefetch_by_stream from generating prefetch instructions.

When you run -qprefetch=assistthread, the compiler uses the delinquent load
information to perform analysis and generates prefetching assist threads. The
delinquent load information can either be provided through the built-in
__mem_delay function (const void *delinquent_load_address, const unsigned int
delay_cycles), or gathered from dynamic profiling using -qpdfl=level=2.

When you use -qpdf to call -qprefetch=assistthread, you must use the traditional
two-step PDF invocation:
1. Run -qpdfl=level=2

2. Run -qpdf2 -qprefetch=assistthread
Examples
Here is how you generate code using assist threads with _ MEM_DELAY:

Initial code:
int y[64], x[1089], w[1024];

void foo(void){
int i, j;
for (i = 0; i &1; 64; i++) {
for (j = 0; j < 1024; j++) {

/* what to prefetch? y[i]; inserted by the user */
__mem_delay(&y[i], 10);
y[il = y[i] + x[i + 31 * w[il;
x[i +3 +1] = y[i] = 2;
1
}
1

Assist thread generated code:
void foo@clone(unsigned thread id, unsigned version)

{ if (1) goto lab_1;

/* version control to synchronize assist and main thread */
if (version == @2version0) goto lab_5;

goto Tab 1;
lab_5:
@CIV1 = 0;

do { /* id=1 guarded */ /* ~2 */
if (!1) goto Tab_3;
@CIVO = 03

do { /* id=2 guarded */ /* ~4 =/

258 XL C: Compiler Reference

/* region = 0 */

/* __dcbt call generated to prefetch y[i] access */
__dcbt(((char *)&y + (4)*(@CIV1)))

@CIVO = GCIVO + 1;

} while ((unsigned) @CIVO < 1024u); /* ™4 */

lab_3:
@CIV1 = GCIV1 + 1;
} while ((unsigned) @CIV1 < 64u); /x ~2 =/

Tab_1:

return;

}

Related information

- [qarch]

* [“-ghot” on page 169
* [“-qpdfl, -qpdf2” on page 247|
* |“-qreport” on page 263

+ |[_mem_delay” on page 611

-qprint
Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Enables or suppresses listings.

When -qprint is in effect, listings are enabled if they are requested by other
compiler options that produce listings. When -qnoprint is in effect, all listings are

suppressed, regardless of whether listing-producing options are specified.

Syntax

print
»»— -(|_nopr‘i;'

A\
A

Defaults
-gprint
Usage

You can use -qnoprint to override all listing-producing options and equivalent
pragmas, regardless of where they are specified. These options are:

* -qgattr
* —qlist

Chapter 4. Compiler options reference 259

* -glistopt
* -gsource
* -qxref

Predefined macros
None.
Examples

To compile myprogram.c and suppress all listings, even if some files have #pragma
options source and similar directives, enter:

x1c myprogram.c -gnoprint

-gprocimported, -gproclocal, -qprocunknown
Category

[Optimization and tuning]|

Pragma equivalent

#pragma options proclocal, #pragma options procimported, #pragma options
procunknown

Purpose
Marks functions as local, imported, or unknown.

Local functions are statically bound with the functions that call them; smaller,
faster code is generated for calls to such functions. You can use the -qproclocal
option or pragma to name functions that the compiler can assume to be local.

Imported functions are dynamically bound with a shared portion of a library. Code
generated for calls to functions marked as imported may be larger, but is faster
than the default code sequence generated for functions marked as unknown. You
can use the -qprocimported option or pragma to name functions that the compiler
can assume to be imported.

Unknown functions are resolved to either statically or dynamically bound objects
during linking. You can use the -qprocunkown option or pragma to name
functions that the compiler can assume to be unknown.
Syntax

procunknown
| —q{proc]oca] _| ><

procimpor’cedJ

Y _function_name

Defaults

-qprocunkown: The compiler assumes that all functions' definitions are unknown.

260 xLcC: Compiler Reference

Parameters

function_name
The name of a function that the compiler should assume to be local, imported,
or unknown (depending on the option specified). If you do not specify any
function_name, the compiler assumes that all functions are local, imported, or
unknown.

Usage

If any functions that are marked as local resolve to shared library functions, the
linker will detect the error and issue warnings. If any of the functions that are
marked as imported resolve to statically bound objects, the generated code may be
larger and run more slowly than the default code sequence generated for unknown
functions.

If a function satisfies all of the following conditions, the compiler issues a warning
message to indicate that the final executable file might have a performance loss:

* Has a local definition.
* Is marked as imported or unknown.
* BT Has the protected, hidden, or internal visibility attribute. JNEINE

If you specify more than one of these options with no function names, the last
option specified is used. If you specify the same function name on more than one
option specification, the last one is used.

Predefined macros
None.
Examples

To compile myprogram.c along with the archive library oldprogs.a so that:
* Functions fun and sun are specified as local
* Functions moon and stars are specified as imported

* Function venus is specified as unknown

use the following command:

x1c myprogram.c oldprogs.a -gprolocal=fun(int):sun()
-gprocimported=moon () :stars(float) -gprocunknown=venus ()

If the following example, in which a function marked as local instead resolves to a
shared library function, is compiled with -qproclocal:
int main(void)
{
printf("Just in function fool()\n");
printf("Just in function fool()\n");
1

a linker error will result. To correct this problem, you should explicitly mark the
called routine as being imported from a shared object. In this case, you would
recompile the source file and explicitly mark printf as imported by compiling
with -gproclocal -gprocimported=printf.

Chapter 4. Compiler options reference 261

Related information

+ |“-qdataimported, -qdatalocal, -qtocdata” on page 127|

+ [“-qvisibility” on page 323

+ [“#pragma GCC visibility push, #pragma GCC visibility pop” on page 349

-gproto
Category

[Object code controll

Pragma equivalent
#pragma options [no]proto
Purpose

Specifies the linkage conventions for passing floating-point arguments to functions
that have not been prototyped.

When proto is in effect, the compiler assumes that the arguments in function calls
are the same types as the corresponding parameters of the function definition, even
if the function has not been prototyped. By asserting that an unprototyped function
actually expects a floating-point argument if it is called with one, you allow the
compiler to pass floating-point arguments in floating-point registers exclusively.
When noproto is in effect, the compiler does not make this assumption, and must
pass floating-point parameters in floating-point and general purpose registers.

Syntax

noproto
»>— - |_pr“oto —l ><

Defaults

-gqnoproto

Usage

This option is only valid when the compiler allows unprototyped functions; that is,
with the cc or xlc invocation command, or with the -qlanglvl option set to classic

| extended | extc89 | extc99.

Predefined macros

None.

Examples

To compile my_c_program.c to allow the compiler to use the standard linkage

conventions for floating-point parameters, even when functions are not prototyped,
enter:

xTc my_c_program.c -gproto

262 XLC: Compiler Reference

Category

[Object code control|

Pragma equivalent
None.
Purpose

Produces a nonexecutable output file to use as an input file in another 1d
command call. This file may also contain unresolved symbols.

Syntax

»r— -1 >«

Defaults
Not applicable.
Usage

A file produced with this flag is expected to be used as an input file in another
compiler invocation or 1d command call.

Predefined macros
None.
Examples

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:
x1c myprogram.c myprog2.c -r -o mytest.o

Related information

-qreport

Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Produces listing files that show how sections of code have been optimized.

Chapter 4. Compiler options reference 263

A listing file is generated with a .Ist suffix for each source file that is listed on the
command line. When you specify -qreport with an option that enables automatic
parallelization or vectorization, the listing file shows a pseudo-C code listing and a
summary of how program loops are parallelized or optimized. The report also
includes diagnostic information about why specific loops cannot be parallelized or
vectorized. For example, when -qreport is specified with -qsimd, messages are
provided to identify non-stride-one references that prevent loop vectorization.

The compiler also reports the number of streams created for a given loop, which
include both load and store streams. This information is included in the Loop
Transformation section of the listing file. You can use this information to
understand your application code and to tune your code for better performance.
For example, you can distribute a loop which has more streams than the number
supported by the underlying architecture. POWER4 and POWERS processors
support load stream prefetch and POWER®6 or higher processors support both load
and store stream prefetch.

Syntax

noreport
»»— -q |_‘.“epor‘t —l

Y
A

Defaults
-qnoreport
Usage

To generate a loop transformation listing, you must specify -qreport with one of
the following options:

* -ghot
* -qsmp
* -03 or higher

To generate PDF information in the listing, you must specify both -qreport and
-qpdf2.

To generate a parallel transformation listing or parallel performance messages, you
must specify -qreport with one of the following options:

* -qsmp
* -05
* -qipa=level=2

To generate data reorganization information, specify -qreport with the optimization
level -qipa=level=2 or -O5. Reorganizations include array splitting, array
transposing, memory allocation merging, array interleaving, and array coalescing.

To generate information about data prefetch insertion locations, specify -qreport
with the optimization level of -qghot or any other option that implies -ghot. This
information appears in the LOOP TRANSFORMATION SECTION of the listing file. In
addition, when you use -qprefetch=assistthread to generate prefetching assist
threads, the message: Assist thread for data prefetching was generated also
appears in the LOOP TRANSFORMATION SECTION of the listing file.

264 XLC: Compiler Reference

To generate a list of aggressive loop transformations and parallelization performed
on loop nests in the LOOP TRANSFORMATION SECTION of the listing file, use the
optimization level of -qghot=level=2 and -qsmp together with -qreport.

The pseudo-C code listing is not intended to be compilable. Do not include any of
the pseudo-C code in your program, and do not explicitly call any of the internal
routines whose names may appear in the pseudo-C code listing.

Predefined macros
None.
Examples

To compile myprogram.c so the compiler listing includes a report showing how
loops are optimized, enter:

x1c -ghot -03 -qreport myprogram.c

To compile myprogram.c so the compiler listing also includes a report showing how
parallelized loops are transformed, enter:

xTc_r -ghot -gsmp -qreport myprogram.c

Related information

+ [“-ghot” on page 169|

* |“-gsimd” on page 27§|

* [“-gipa” on page 193

+ [“-gsmp” on page 281

+ |“-qoptdebug” on page 239

* [“-gprefetch” on page 256

« |'Using -qoptdebug to help debug optimized programs'|in the XL C Optimization
and Programming Guide

-greserved_reg
Category

[Object code control|

Pragma equivalent
None.
Purpose

Indicates that the given list of registers cannot be used during the compilation
except as a stack pointer, frame pointer or in some other fixed role.

You should use this option in modules that are required to work with other
modules that use global register variables or hand-written assembler code.

Syntax

v

»»— -g—reserved_reg—= register_name ><

Chapter 4. Compiler options reference 265

Defaults
Not applicable.

Parameters

register_name
A valid register name on the target platform. Valid registers are:

10 to r31
General purpose registers

f0 to £31
Floating-point registers

v0 to v31
Vector registers (on selected processors only)

Usage

-qreserved_reg is cumulative, for example, specifying -qreserved_reg=rl4 and
-qreserved_reg=r15 is equivalent to specifying -qreserved_reg=r14:r15.

Duplicate register names are ignored.
Predefined macros

None.

Examples

To specify that myprogram.c reserves the general purpose registers r3 and r4, enter:

x1c myprogram.c -qreserved reg=r3:r4

-grestrict
Category

[Optimization and tuning]

Pragma equivalent

None.

Purpose

Specifying this option is equivalent to adding the restrict keyword to the pointer
parameters within the specified functions, except that you do not need to modify

the source file.

Syntax

[norestri ct—l
»»—-(restrict

Y
A

Y_function_name

266 XLC: Compiler Reference

-qro

Defaults

-qnorestrict. It means no function pointer parameters are restricted, unless you
specify the restrict attribute in the source file.

Usage

If you do not specify the function_name, pointer parameters in all functions are
treated as restrict. Otherwise, only those pointer parameters in the listed
functions are treated as restrict.

function_name is a colon-separated list.

Using this option can improve the performance of your application, but incorrectly
asserting this pointer restriction might cause the compiler to generate incorrect
code based on the false assumption. If the application works correctly when
recompiled without -qrestrict, the assertion might be false. In this case, this option
should not be used.

Notes:
* Using [-qnokeyword=restrict| has no impact on the -qrestrict option.

* If you specify both the -qalias=norestrict and -qrestrict options,
-qalias=norestrict takes effect.

Predefined macros
None.
Examples

To compile myprogram.c, instructing the compiler to restrict the pointer access,
enter:

x1c -grestrict myprogram.c

Related information

* [The restrict type qualifier]in the XL C Language Reference.
« [Keywords|in the XL C Language Reference.

* |“-gkeyword” on page 203|

* |“-qalias” on page 96|

Category

[Object code controll

Pragma equivalent
#pragma options ro, #pragma strings
Purpose

Specifies the storage type for string literals.

Chapter 4. Compiler options reference 267

When ro or strings=readonly is in effect, strings are placed in read-only storage.
When noro or strings=writeable is in effect, strings are placed in read /write
storage.

Syntax

Option syntax

ro
»— —q |_no:| ><

Pragma syntax

readonly
»>—#—pragma—stri ngs—(—[wr‘i teab]c_|) ><

Defaults

Strings are read-only for all invocation commands except cc. If the cc invocation
command is used, strings are writeable.

Parameters

readonly (pragma only)
String literals are to be placed in read-only memory.

writeable (pragma only)
String literals are to be placed in read-write memory.

Usage

Placing string literals in read-only memory can improve runtime performance and
save storage. However, code that attempts to modify a read-only string literal may
generate a memory error.

The pragmas must appear before any source statements in a file.

Predefined macros

None.

Examples

To compile myprogram.c so that the storage type is writable, enter:
x1c myprogram.c -gnoro

Related information
* ["-qro” on page 267

e [“-groconst”

-groconst
Category

[Object code controll

268 XLC: Compiler Reference

Pragma equivalent

#pragma options [noJroconst

Purpose

Specifies the storage location for constant values.

When roconst is in effect, constants are placed in read-only storage. When
noroconst is in effect, constants are placed in read/write storage.

Syntax

roconst—|
»>— —q—[noroconst >

Defaults

* -qroconst for all compiler invocations except cc and its derivatives. -qnoroconst
for the cc invocation and its derivatives.

Usage

Placing constant values in read-only memory can improve runtime performance,
save storage, and provide shared access. However, code that attempts to modify a
read-only constant value generates a memory error.

"Constant” in the context of the -qroconst option refers to variables that are
qualified by const, including const-qualified characters, integers, floats,
enumerations, structures, unions, and arrays. The following constructs are not
affected by this option:

* Variables qualified with volatile and aggregates (such as a structure or a union)
that contain volatile variables

* Pointers and complex aggregates containing pointer members
* Automatic and static types with block scope

* Uninitialized types

* Regular structures with all members qualified by const

* Initializers that are addresses, or initializers that are cast to non-address values

The -qroconst option does not imply the -qro option. Both options must be
specified if you want to specify storage characteristics of both string literals (-qro)
and constant values (-qroconst).

Predefined macros
None.
Related information

+ [“-qro” on page 267
+ |“-groptr” on page 270|

Chapter 4. Compiler options reference 269

-qroptr
Category

[Object code controll

Pragma equivalent

None.

Purpose

Specifies the storage location for constant pointers.

When -qroptr is in effect, constant pointers are placed in read-only storage. When
-qnoroptr is in effect, pointers are placed are placed in read /write storage.

Syntax

noroptr
»»— -q |_r“optr —l

v
A

Defaults
-qnoroptr
Usage

A constant pointer is equivalent to an address constant. For example:

int* const p = &n;

When -qnoroptr is in effect, you can change the values of constant pointers
without generating errors.

The -qroptr can improve runtime performance, save storage, and provide shared
access, but code that attempts to modify a read-only constant value generates a
memory error. For example, assume the following code, which attempts to change
the address that c1_ptr points to:

char cl = 10;

char c2 = 20;
charx const cl_ptr = &cl;

int main() {
*(charxx)&cl ptr = &c2;
1

Compiling this code with the -qroptr option specified will result in a segmentation
fault at run time.

You should not use -qroptr for compiled code that will become part of a shared
library.

Predefined macros

None.

270 XxLC: Compiler Reference

Related information
* [“-qro” on page 267|
* [“-groconst” on page 268

Category

[Object code controll

Pragma equivalent
None.
Purpose

Strips the symbol table, line number information, and relocation information from
the output file.

This command is equivalent to the operating system strip command.
Syntax

»»— -3 >

Defaults

The symbol table, line number information, and relocation information are
included in the output file.

Usage

Specifying -s saves space, but limits the usefulness of traditional debug programs
when you are generating debugging information using options such as -g.

Predefined macros
None.

Related information
* ["-g” on page 160

Category

Output control
Pragma equivalent
None.

Purpose

Generates an assembler language file for each source file.

Chapter 4. Compiler options reference 271

The resulting file has a .s suffix and can be assembled to produce object .o files or
an executable file (a.out).

Syntax

»— - ><

Defaults
Not applicable.
Usage

You can invoke the assembler with any compiler invocation command. For
example,

x1c myprogram.s

will invoke the assembler, and if successful, the linker to create an executable file,
a.out.

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence
holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more
than one source file is supplied. For example, the following is not valid:

x1c myprograml.c myprogram2.c -0 -S
Predefined macros

None.

Examples

To compile myprogram.c to produce an assembler language file myprogram.s, enter:
x1c myprogram.c -S

To assemble this program to produce an object file myprogram.o, enter:
x1c myprogram.s -c

To compile myprogram.c to produce an assembler language file asmprogram.s, enter:
x1c myprogram.c -S -0 asmprogram.s

Related information
* [”-E” on page 136
* ["-P” on page 244

-gsaveopt
Category

[Object code controll

Pragma equivalent

None.

272 XLC: Compiler Reference

Purpose

Saves the command-line options used for compiling a source file, the user's
configuration file name and the options specified in the configuration files, the
version and level of each compiler component invoked during compilation, and

other information to the corresponding object file.

Syntax

nosaveopt
»»— -q |_saveopt —l

A\
A

Defaults

-qnosaveopt

Usage

This option has effect only when compiling to an object (.o) file (that is, using the
-c option). Though each object might contain multiple compilation units, only one
copy of the command-line options is saved. Compiler options specified with

pragma directives are ignored.

Command-line compiler options information is copied as a string into the object
file, using the following format:

»»—0(#)—opt f invocation—options <
1
C

»»—0(#)—cfg——config file options_list >
»»>—Q(#)—env——env_var_definition ><
where:

f Signifies a Fortran language compilation.

c Signifies a C language compilation.

C Signifies a C++ language compilation.

invocation

Shows the command used for the compilation, for example, xlc.
options The list of command line options specified on the command line, with
individual options separated by space.
config_file_options_list
The list of options specified by the options attribute in all configuration
files that take effect in the compilation, separated by space.
env_var_definition
The environment variables that are used by the compiler. Currently only
XLC_USR_CONFIG is listed.

Note: You can always use this option, but the corresponding information
is only generated when the environment variable XLC_USR_CONFIG is set.

Chapter 4. Compiler options reference 273

For more information about the environment variable XLC_USR_CONFIG, see
[Compile-time and link-time environment variables}

Note: The string of the command-line options is truncated after 64,000 bytes.

Compiler version and release information, as well as the version and level of each
component invoked during compilation, are also saved to the object file in the

format:

»»—@(#)—I-version Version— :—VV.RR.MMMM. LLLL |
I:componentJvame—Vev“sion—:—VI/.R’R—(—pmductJmme—)—Leve]—:—YYMMDD—:—componentileveliwJ

where:

Vv Represents the version.

R Represents the release.

M Represents the modification.

L Represents the level.

component_name
Specifies the components that were invoked for this compilation, such as
the low-level optimizer.
product_name
Indicates the product to which the component belongs (for example, C/C++
or Fortran).
YYMMDD
Represents the year, month, and date of the installed update (PTF). If the
update installed is at the base level, the level is displayed as BASE.
component_level _ID
Represents the ID associated with the level of the installed component.

If you want to simply output this information to standard output without writing
it to the object file, use the -qversion option.

Predefined macros
None.
Examples

Compile t.c with the following command:

xlc t.c -c -gsaveopt -ghot

Issuing the what command on the resulting t.o object file produces information
similar to the following:

opt ¢ /opt/IBM/x1c/13.1.3/bin/x1c t.c -c -gsaveopt -ghot

cfg -qlanglvi=extc99 -qcpluscmt -gkeyword=inline -qalias=ansi -D_AIX -D_AIX32
-D_AIX41 -D_AIX43 -D_AIX50 -D_AIX51 -D AIX52 -D AIX53 -D_IBMR2 -D_POWER

version IBM XL C for AIX, V13.1.3

version Version: 13.01.0003.0000

version Driver Version: 13.1.3(C) Level: YYMMDD

version Front End Version: 13.1.3(C) Level: YYMMDD

version C Front End Version : 13.1.3(C) Level: YYMMDD

version High-Level Optimizer Version: 13.1.3(C) and 15.1.3(Fortran) Level: YYMMDD
version Low-Level Optimizer Version: 13.1.3(C) and 15.1.3(Fortran) Level: YYMMDD

In the first line, ¢ identifies the source used as C, /opt/IBM/x1c/13.1.3/bin/x1c

shows the invocation command used, and -ghot -qsaveopt shows the compilation
options.

274 XLC: Compiler Reference

The remaining lines list each compiler component invoked during compilation, and
its version and level. Components that are shared by multiple products may show
more than one version number. Level numbers shown may change depending on
the updates (PTFs) you have installed on your system.

Related information
* [“-qversion” on page 321/

-gshowinc
Category

[Listings, messages, and compiler information|

Pragma equivalent
#pragma options [noJshowinc
Purpose

When used with -qsource option to generate a listing file, selectively shows user or
system header files in the source section of the listing file.

Syntax
(—noshowinc
»»— - showinc >«
[_. all
N 2
nosys
usr
nousr
Defaults

-qnoshowinc: Header files included in source files are not shown in the source
listing.

Parameters

all
~ Shows both user and system include files in the program source listing.

sys
Shows system include files (that is, files included with the #include
<filename> preprocessor directive) in the program source listing.

usr
Shows user include files (that is, files included with the #include "filename"
preprocessor directive or with -qinclude) in the program source listing.

Specifying showinc with no suboptions is equivalent to -qshowinc=sys : usr and
-qshowinc=all. Specifying noshowinc is equivalent to -qshowinc=nosys : nousr.

Chapter 4. Compiler options reference 275

Usage

This option has effect only when the -qlist or -qsource compiler options is in
effect.

Predefined macros
None.
Examples

To compile myprogram.c so that all included files appear in the source listing, enter:
x1c myprogram.c -gsource -gshowinc

Related information
* ["-gsource” on page 286|

-gshowmacros
Category

[“Output control” on page 75|

Pragma equivalent

None

Purpose

Emits macro definitions to preprocessed output.

Emitting macros to preprocessed output can help determine functionality available
in the compiler. The macro listing may prove useful for debugging complex macro

expansions, as well.

Syntax

noshowmacros
| -q—[showmacros ><

=—Y _all
i:nopre—
pre—

Defaults
-qnoshowmacros

Parameters

all
Emits all macro definitions to preprocessed output. This is the same as
specifying -qshowmacros.

276 XLC: Compiler Reference

pre | nopre
pre emits only predefined macro definitions to preprocessed output. nopre
suppresses appending these definitions.

Usage

Note the following when using this option:

* This option has no effect unless preprocessed output is generated; for example,
by using the -E or -P options.

* If a macro is defined and subsequently undefined before compilation ends, this
macro will not be included in the preprocessed output.

* Only macros defined internally by the preprocessor are considered predefined;
all other macros are considered as user-defined.

Related information
* |“-E” on page 136
* [“-P” on page 244|

-gshowpdf
Category

[Optimization and tuning|

Pragma equivalent

None.

Purpose

When used with -qpdf1 and a minimum optimization level of -O2 at compile and

link steps, creates a PDF map file that contains additional profiling information for
all procedures in your application.

Syntax
showpdf
> —q—[noshowp;| >«
Defaults
-qshowpdf
Usage

After you run your application with typical data, the profiling information is
recorded into a profile-directed feedback (PDF) file (by default, the file is named
._pdf).

In addition to the PDF file, the compiler also generates a PDF map file that

contains static information during the -qpdfl phase. With these two files, you can
use the showpdf utility to view part of the profiling information of your

Chapter 4. Compiler options reference 277

application in text or XML format. For details of the showpdf utility, see
[profiling information with showpdf'|in the XL C Optimization and Programming
Guide.

If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdf1 phase so that the PDF map file is not generated. This can
reduce your compile time.

Predefined macros
None.
Related information

* [“-qpdf1, -qpdf2” on page 247]
* ['Optimizing your applications'|in the XL C Optimization and Programming Guide

-gsimd
Category

[Optimization and tuning]

Pragma equivalent
#pragma nosimd
Purpose

Controls whether the compiler can automatically take advantage of vector
instructions for processors that support them.

These instructions can offer higher performance when used with
algorithmic-intensive tasks such as multimedia applications.

Syntax

\4
A

|—auto
»»—-q—simd—= noauto

Defaults

Whether -qsimd is specified or not, -qsimd=auto is implied when both of the
following conditions are satisfied; otherwise, -qsimd=noauto is implied.

* The optimization level is -O3 or higher.

* -qarch is set to pwr7 or higher.
Usage

The -qsimd=auto option enables automatic generation of vector instructions for
processors that support them. When -qsimd=auto is in effect, the compiler
converts certain operations that are performed in a loop on successive elements of
an array into vector instructions. These instructions calculate several results at one
time, which is faster than calculating each result sequentially. These options are
useful for applications with significant image processing demands.

278 XLC: Compiler Reference

The -qsimd=noauto option disables the conversion of loop array operations into
vector instructions. To achieve finer control, use -qstrict=ieeefp,

-gstrict=operationprecision, and -qstrict=vectorprecision. For details, see [*-gstrict”]
on page 294,

The -qsimd=auto option controls the autosimdization, which was performed by
the deprecated -qhot=simd option. If you specify -qhot=simd, the compiler ignores
it and does not issue any warning message.

Specifying the deprecated -qenablevmx option has the same effect as specifying
-qsimd=auto. The compiler does not issue any warning for this.

Notes:
* Specifying -qsimd without any suboption is equivalent to -qsimd=auto.
* Specifying -qsimd=auto does not guarantee that autosimdization will occur.

* Using vector instructions to calculate several results at one time might delay or
even miss detection of floating-point exceptions on some architectures. If
detecting exceptions is important, do not use -qsimd=auto.

Rules

If you enable IPA and specify -qsimd=auto at the IPA compile step, but specify
-gqsimd=noauto at the IPA link step, the compiler automatically sets -qsimd=auto
at the IPA link step. It also sets an appropriate value for -qarch to match the
architecture that is specified at the compile time. Similarly, if you enable IPA and
specify -qsimd=noauto at the IPA compile step, but specify -qsimd=auto at the IPA
link step, the compiler automatically sets -qsimd=auto at the compile step.

Predefined macros
None.
Examples

Any of the following command combinations can enable autosimdization:
* xlc -O3 -qsimd
* xlc -O2 -ghot=level=0 -qsimd=auto

The following command combination does not enable autosimdization because
neither -O3 nor -qhot is specified:

* xlc -O2 -qsimd=auto

In the following example, #pragma nosimd is used to disable -qsimd=auto for a
specific for loop:

#pragma nosimd
for (i=1; i<1000; i++) {
/* program code */

Related information

+ [“#pragma nosimd” on page 362
+ [“-garch” on page 102|

* |“-greport” on page 263)|

* |“-gstrict” on page 294|

Chapter 4. Compiler options reference 279

* |Using interprocedural analysis|in the XL C Optimization and Programming Guide.

-gskipsrc
Category

[Listings, messages, and compiler information” on page 84|

Pragma equivalent

None.

Purpose

When a listing file is generated using the -qsource option, -gskipsrc can be used to
determine whether the source statements skipped by the compiler are shown in the

source section of the listing file. Alternatively, the -gskipsrc=hide option is used to
hide the source statements skipped by the compiler.

Syntax

show
»»— -g—skipsrc—= |_hidc—l ><
Defaults

* -gskipsrc=show

Parameters

show | hide
When show is in effect, the compiler will display all source statements in the
listing. This will result in both true and false paths of the preprocessing
directives to be shown.

On the contrary, when hide is enabled, all source statements that the compiler
skipped will be omitted.

Usage

In general, the -gskipsrc option does not control whether the source section is
included in the listing file, it only does so when the -qsource option is in effect.

To display all source statements in the listing (default option):
x1c myprogram.c -gsource -gskipsrc=show

To omit source statements skipped by the compiler:
x1c myprogram.c -gsource -qskipsrc=hide

Predefined macros
None.

Related information

* |“-gsource” on page 286|

* |“-gshowinc” on page 275|
* |“-gsrcmsg” on page 290)|

280 xLcC: Compiler Reference

-gsmallstack
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Minimizes stack usage where possible. Disables optimizations that increase the size
of the stack frame.

Syntax

v
A

[nosma1 1 stack—l
»— -q smallstack

Defaults
-qnosmallstack
Usage

AIX limits the stack size to 256 MB. Programs that allocate large amounts of data
to the stack, such as threaded programs, might result in stack overflows. The
-gsmallstack option helps avoid stack overflows by disabling optimizations that
increase the size of the stack frame.

This option takes effect only when used together with IPA (the -qipa, -O4, or -O5
compiler options).

Specifying this option might adversely affect program performance.
Predefined macros

None.

Examples

To compile myprogram.c to use a small stack frame, enter the command:
x1c myprogram.c -qipa -gsmallstack

Related information

* |“-g” on page 160

* [“-gipa” on page 193]

+ [“-O, -qoptimize” on page 236|

-qsmp
Category

[Optimization and tuning]|

Chapter 4. Compiler options reference 281

Pragma equivalent

None.

Purpose

Enables parallelization of program code.

Syntax

|—nosmp

Y
A

»»— -

smp

—nostackcheck

—ostls

—opt

—norec_locks

—noomp

—nonested_par

—explicit

—auto

Defaults

omp

—noostls

—nested_par

—noauto

—noexplicit

—noopt
—rec_locks

—auto

—schedule

runtime

—stackcheck

L)

guided

—affinity
Edynamic
static

—threshold

L,

-qnosmp. Code is produced for a uniprocessor machine.

Parameters

auto | noauto

Enables or disables automatic parallelization and optimization of program

code. When noauto is in effect, only program code explicitly parallelized with

SMP or OpenMP directives is optimized. noauto is implied if you specify
-gsmp=omp or -qsmp=noopt.

explicit | noexplicit

Enables or disables directives controlling explicit parallelization of loops.

nested_par | nonested par

By default, the compiler serializes a nested parallel construct. When nested_par
is in effect, the compiler parallelizes prescriptive nested parallel constructs.

This includes not only the loop constructs that are nested within a scoping unit

but also parallel constructs in subprograms that are referenced (directly or
indirectly) from within other parallel constructs. Note that this suboption has

282 XLC: Compiler Reference

no effect on loops that are automatically parallelized. In this case, at most one
loop in a loop nest (in a scoping unit) will be parallelized.

The setting of the omp_set_nested function or of the OMP_NESTED
environment variable overrides the setting of the -qsmp = nested_par |
nonested_par option.

This suboption should be used with caution. Depending on the number of
threads available and the amount of work in an outer loop, inner loops could
be executed sequentially even if this option is in effect. Parallelization overhead
may not necessarily be offset by program performance gains.

Note: The -qsmp=nested_par | nonested_par option has been deprecated and
might be removed in a future release. Use the OMP_NESTED environment
variable or the omp_set nested function instead.

omp | noomp
Enforces or relaxes strict compliance with the OpenMP standard. When noomp
is in effect, auto is implied. When omp is in effect, noauto is implied and only
OpenMP parallelization directives are recognized. The compiler issues warning
messages if your code contains any language constructs that do not conform to
the OpenMP APL

Note: The -gsmp=omp option must be used to enable OpenMP parallelization.

opt | noopt
Enables or disables optimization of parallelized program code. When noopt is
in effect, the compiler will do the smallest amount of optimization that is
required to parallelize the code. This is useful for debugging because -qsmp
enables the -O2 and -qhot options by default, which may result in the
movement of some variables into registers that are inaccessible to the
debugger. However, if the -qsmp=noopt and -g options are specified, these
variables will remain visible to the debugger.

ostls| noostls
Enables thread-local storage (TLS) provided by the operating system to be used
for threadprivate data. You can use the noostls suboption to enable non-TLS
for threadprivate. The noostls suboption is provided for compatibility with
earlier versions of the compiler.

Note: If you use this suboption, your operating system must support TLS to
implement OpenMP threadprivate data. Use noostls to disable OS level TLS if
your operating system does not support it.

rec_locks | norec_locks
Determines whether recursive locks are used. When rec_locks is in effect,
nested critical sections will not cause a deadlock. Note that the rec_locks
suboption specifies behavior for critical constructs that is inconsistent with the
OpenMP APL

schedule
Specifies the type of scheduling algorithms and, except in the case of auto,
chunk size (1) that are used for loops to which no other scheduling algorithm
has been explicitly assigned in the source code. Suboptions of the schedule
suboption are as follows:

affinity[=n]
The iterations of a loop are initially divided into n partitions, containing
ceiling(number_of _iterations /number_of_threads) iterations. Each partition is
initially assigned to a thread and is then further subdivided into chunks

Chapter 4. Compiler options reference 283

that each contain 7 iterations. If n is not specified, then the chunks consist
of ceiling(number_of_iterations_left_in_partition / 2) loop iterations.

When a thread becomes free, it takes the next chunk from its initially
assigned partition. If there are no more chunks in that partition, then the
thread takes the next available chunk from a partition initially assigned to
another thread.

The work in a partition initially assigned to a sleeping thread will be
completed by threads that are active.

The affinity scheduling type is not part of the OpenMP API specification.

Note: This suboption has been deprecated. You can use the
OMP_SCHEDULE environment variable with the dynamic clause for a
similar functionality.

auto

~ Scheduling of the loop iterations is delegated to the compiler and runtime
systems. The compiler and runtime system can choose any possible
mapping of iterations to threads (including all possible valid schedule
types) and these might be different in different loops. Do not specify chunk
size (n).

dynamic[=n]
The iterations of a loop are divided into chunks that contain n iterations
each. If n is not specified, each chunk contains one iteration.

Active threads are assigned these chunks on a "first-come, first-do" basis.
Chunks of the remaining work are assigned to available threads until all
work has been assigned.

guided[=n]
The iterations of a loop are divided into progressively smaller chunks until
a minimum chunk size of n loop iterations is reached. If n is not specified,
the default value for n is 1 iteration.

Active threads are assigned chunks on a "first-come, first-do" basis. The
first chunk contains ceiling(number_of_iterations /number_of _threads)
iterations. Subsequent chunks consist of ceiling(number_of_iterations_left /
number_of_threads) iterations.

runtime
Specifies that the chunking algorithm will be determined at run time.

static[=n]
The iterations of a loop are divided into chunks containing # iterations
each. Each thread is assigned chunks in a "round-robin" fashion. This is
known as block cyclic scheduling. If the value of n is 1, then the scheduling
type is specifically referred to as cyclic scheduling.

If n is not specified, the chunks will contain floor(number_of_iterations/
number_of_threads) iterations. The first remainder (number_of_iterations/
number_of_threads) chunks have one more iteration. Each thread is assigned
a separate chunk. This is known as block scheduling.

If a thread is asleep and it has been assigned work, it will be awakened so
that it may complete its work.

n Must be an integer of value 1 or greater.

Specifying schedule with no suboption is equivalent to schedule=auto.

284 xLC: Compiler Reference

stackcheck | nostackcheck

Causes the compiler to check for stack overflow by slave threads at run time,
and issue a warning if the remaining stack size is less than the number of
bytes specified by the stackcheck option of the XLSMPOPTS environment
variable. This suboption is intended for debugging purposes, and only takes
effect when XLSMPOPTS=stackcheck is also set; see ["XLSMPOPTS” on page]

threshold[=n]

When -qsmp=auto is in effect, controls the amount of automatic loop
parallelization that occurs. The value of n represents the minimum amount of
work required in a loop in order for it to be parallelized. Currently, the
calculation of "work" is weighted heavily by the number of iterations in the
loop. In general, the higher the value specified for 7, the fewer loops are
parallelized. Specifying a value of 0 instructs the compiler to parallelize all
auto-parallelizable loops, whether or not it is profitable to do so. Specifying a
value of 100 instructs the compiler to parallelize only those auto-parallelizable
loops that it deems profitable. Specifying a value of greater than 100 will result
in more loops being serialized.

n Must be a positive integer of 0 or greater.

If you specify threshold with no suboption, the program uses a default value
of 100.

Specifying -qsmp without suboptions is equivalent to:

-qsmp=auto:explicit:opt:noomp:norec_locks:nonested_par:schedule=auto:
nostackcheck:threshold=100:0st1s

Usage

Specifying the omp suboption always implies noauto. Specify -qgsmp=omp:auto
to apply automatic parallelization on OpenMP-compliant applications, as well.
You should only use -qsmp with the _r-suffixed invocation commands, to
automatically link in all of the threadsafe components. You can use the -qsmp
option with the non-_r-suffixed invocation commands, but you are responsible
for linking in the appropriate components. If you use the -qsmp option to
compile any source file in a program, then you must specify the -qsmp option at
link time as well, unless you link by using the 1d command.

Object files generated with the -qgsmp=opt option can be linked with object files
generated with -qgsmp=noopt. The visibility within the debugger of the variables
in each object file will not be affected by linking.

The -qnosmp default option setting specifies that no code should be generated
for parallelization directives, though syntax checking will still be performed. Use
-qignprag=omp:ibm to completely ignore parallelization directives.

Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,
but does not override -O3, -O4, or -O5. When debugging parallelized program
code, you can disable optimization in parallelized program code by specifying
-qsmp=noopt.

The -gsmp=noopt suboption overrides performance optimization options
anywhere on the command line unless -qsmp appears after -qgsmp=noopt. For
example, -gsmp=noopt -O3 is equivalent to -gsmp=noopt, while -qgsmp=noopt
-O3 -qsmp is equivalent to -qsmp -O3.

Chapter 4. Compiler options reference 285

Predefined macros

When -qsmp is in effect, _IBMSMP is predefined to a value of 1, which indicates
that IBM SMP directives are recognized; otherwise, it is not defined.

Related information

+ |”-O, -qoptimize” on page 236

+ [“-gthreaded” on page 306

* |[“Environment variables for parallel processing” on page 25|
* [“Pragma directives for parallel processing” on page 380

* |“Built-in functions for parallel processing” on page 612|

-gsource
Category

[Listings, messages, and compiler information|

Pragma equivalent
#pragma options [noJsource
Purpose

Produces a compiler listing file that includes the source section of the listing and
provides additional source information when printing error messages.

Syntax

nosource
»— g |_sourcc |

Defaults

-qnosource

Usage

When -qsource or #pragma options source is in effect, a listing file with the .Ist

suffix is generated for each source file specified on the command line. For details
about the contents of the listing file, see [“Compiler listings” on page 19,

You can selectively print parts of the source by using pairs of #pragma options
source and #pragma options nosource preprocessor directives throughout your
source program. The source following #pragma options source and preceding
#pragma options nosource is printed.

The -qnoprint option overrides this option.

Predefined macros

None.

286 XLC: Compiler Reference

A\
A

Examples

The myprogram.c file contains the following code:

#include <stdio.h>
int main()

{
printf("Hello World");

}

To compile the myprogram.c file to produce a compiler listing that includes the
source code, enter:

x1c myprogram.C -gsource

The myprogram.1st file contains a source section with the code in the myprogram.c
file:

>>>>> SOURCE SECTION <<<<<

include <stdio.h>

int main ()

{
printf("Hello World");

DO WN =

Related information
* [“-qlist” on page 217|

+ |“-glistopt” on page 221|
* |“-gprint” on page 259

-gsourcetype
Category

[nput contro

Pragma equivalent
None.
Purpose

Instructs the compiler to treat all recognized source files as a specified source type,
regardless of the actual file name suffix.

Ordinarily, the compiler uses the file name suffix of source files specified on the
command line to determine the type of the source file. For example, a .c suffix
normally implies C source code. The -qsourcetype option instructs the compiler to
not rely on the file name suffix, and to instead assume a source type as specified
by the option.

Syntax
default

»>— -g—sourcetype—= assembler >
assembler-with-cpp—
C

Chapter 4. Compiler options reference 287

Defaults
-gsourcetype=default

Parameters

assembler
All source files following the option are compiled as if they are assembler
language source files.

assembler-with-cpp
All source files following the option are compiled as if they are assembler
language source files that need preprocessing.

¢ All source files following the option are compiled as if they are C language
source files.

default
The programming language of a source file is implied by its file name suffix.

Usage

If you do not use this option, files must have a suffix of .c to be compiled as C
files.

This option applies whether the file system is case-sensitive or not. That is, even in
a case-insensitive file system, where file.c and file.C refer to the same physical
file, the compiler still recognizes the case difference of the file name argument on
the command line and determines the source type accordingly.

Note that the option only affects files that are specified on the command line

following the option, but not those that precede the option. Therefore, in the
following example:

x1c goodbye.C -gsourcetype=c hello.C

hel10.C is compiled as a C source file, but goodbye.C is compiled as a C++ file,
assuming a C++ compiler is available.

Predefined macros
None.
Examples

To treat the source file hel10.C as being a C language source file, enter:
x1c -gsourcetype=c hello.C

-gspeculateabsolutes
Category

[Optimization and tuning]

Pragma equivalent

None.

288 XxLC: Compiler Reference

Purpose

Works with the -qtocmerge -bl:file for non-IPA links and with the -bl:file for IPA
links to disable speculation at absolute addresses.

The bl:file is necessary for the compiler to know which addresses are absolutes.

Syntax

[specu1ateabso1 utes—|
»— —q nospeculateabsolutes

A\
A

Defaults
-gspeculateabsolutes
Predefined macros
None.

Related information
* [“-qtocmerge” on page 309

-gspill
Category

[Compiler customization|

Pragma equivalent
#pragma options [no]spill
Purpose

Specifies the size (in bytes) of the register spill space, the internal program storage
areas used by the optimizer for register spills to storage.

Syntax

»»— -g—spill—=—size <

Defaults
-gspill=512

Parameters

size
An integer representing the number of bytes for the register allocation spill
area.

Chapter 4. Compiler options reference 289

Usage

If your program is very complex, or if there are too many computations to hold in
registers at one time and your program needs temporary storage, you might need
to increase this area. Do not enlarge the spill area unless the compiler issues a
message requesting a larger spill area. In case of a conflict, the largest spill area
specified is used.

Predefined macros
None.
Examples

If you received a warning message when compiling myprogram.c and want to
compile it specifying a spill area of 900 entries, enter:

x1c myprogram.c -qspill1=900

-gsrcmsg
Category

[Listings, messages, and compiler information|

Pragma equivalent
#pragma options [noJsrcmsg
Purpose

Adds the corresponding source code lines to diagnostic messages generated by the
compiler.

When nosrcmsg is in effect, the error message simply shows the file, line and
column where the error occurred. When srcmsg is in effect, the compiler
reconstructs the source line or partial source line to which the diagnostic message
refers and displays it before the diagnostic message. A pointer to the column
position of the error may also be displayed.

Syntax

nosrcmsg
»— g |_srcmsg |

Y
A

Defaults

-qnosrcmsg

Usage

When sremsg is in effect, the reconstructed source line represents the line as it
appears after macro expansion. At times, the line may be only partially

reconstructed. The characters "...." at the start or end of the displayed line
indicate that some of the source line has not been displayed.

290 xLcC: Compiler Reference

Use -qnosrcmsg to display concise messages that can be parsed.
Predefined macros

None.

-gstackprotect
Category

[“Object code control” on page 79|

Pragma equivalent
None.
Purpose

Provides protection against malicious input data or programming errors that
overwrite or corrupt the stack.

Syntax

[nostackprotect |
»— —q stackprotect = all ><

|—s i ze—=—N—|

Defaults
-qnostackprotect

Parameters

all
Protects all functions whether or not functions have vulnerable objects. This
option is not set by default.

size=N
Protects all functions containing automatic objects with size greater than or
equal to N bytes. The default size is 8 byteswhen -qstackprotect is enabled.

Usage

-qstackprotect generates extra code to protect functions with vulnerable objects
against stack corruption. The option is disabled by default because it can degrade
runtime performance.

To generate code to protect all functions with vulnerable objects, enter the
following command:

x1c myprogram.c -gstackprotect=all

To generate code to protect functions with objects of certain size, enter the
following command with the size= parameter set to the object size indicated in
bytes:

x1c myprogram.c -qstackprotect=size=8

Chapter 4. Compiler options reference 291

Notes:

* Because of the dependency on libc.a in AIX, this option requires AIX 6.1/TL4 or
higher.

* If the link step fails with a message that indicates __ssp_canary_word is
undefined, you have probably used an unsupported level of AILX.

Predefined macros
None.

Related information
* |“-ginfo” on page 178|

-gstatsym
Category

[Object code controll

Pragma equivalent
None.
Purpose

Adds user-defined, nonexternal names that have a persistent storage class, such as
initialized and uninitialized static variables, to the symbol table of the object file.

Syntax

\4
A

nostatsyl
»— -q—[statsym m—l

Defaults
-qnostatsym
Usage

When -qnostatsym is specified, static variables are not added to the symbol table.
However, static functions are added to the symbol table.

Predefined macros

None.

-gstdinc
Category

nput contro

Pragma equivalent

#pragma options [no]stdinc

292 XLC: Compiler Reference

Purpose

Specifies whether the standard include directories are included in the search paths
for system and user header files.

When -gstdinc is in effect, the compiler searches the following directories for
header files:

* The directory specified in the configuration file for the XL C header files (this is
normally /opt/IBM/xlc/13.1.3/include/) or by the -qc_stdinc option

* The directory specified in the configuration file for the system header files (this
is normally /usr/include/), or by the -qc_stdinc option

When -qnostdinc is in effect, these directories are excluded from the search paths.
The following directories are searched:

* Directories in which source files containing #include "filename" directives are
located

* Directories specified by the -I option
* Directories specified by the -qinclude option

Syntax

A\
A

stdinc
»>— -q—[nostdiII

Defaults
-gstdinc

Usage

The search order of header files is described in [“Directory search sequence for]
fincluded files” on page 12

This option only affects search paths for header files included with a relative name;
if a full (absolute) path name is specified, this option has no effect on that path
name.

The last valid pragma directive remains in effect until replaced by a subsequent
pragma.

Predefined macros
None.
Examples

To compile myprogram.c so that only the directory /tmp/myfiles (in addition to the
directory containing myprogram.c) is searched for the file included with the
#include "myinc.h" directive, enter:

x1c myprogram.c -qnostdinc -I/tmp/myfiles

Related information
* [“-qc_stdinc” on page 125|
* ["-1” on page 172

Chapter 4. Compiler options reference 293

+ [“Directory search sequence for included files” on page 12|

-gstrict
Category

[Optimization and tuning]

Pragma equivalent

#pragma options [no]strict

#pragma option_override (function_name, "opt (suboption_list)")

Purpose

Ensures that optimizations that are done by default at the -O3 and higher
optimization levels, and, optionally at -O2, do not alter the semantics of a

program.

This option is intended for situations where the changes in program execution in
optimized programs produce different results from unoptimized programs.

294 XxLC: Compiler Reference

Syntax

A\
A

»— -q—Enostrict
strict

D

all

—none
—precision
—noprecision
—exceptions
—noexceptions
—ieeefp
—noieeefp
—nans
—nonans

—infinities
—noinfinities
—subnormals
—nosubnormals
—zerosigns
—nozerosigns
—operationprecision—-
—nooperationprecision—
—vectorprecision
—novectorprecision
—order:
—noorder
—association
—noassociation
—reductionorder
—noreductionorder:
—guards

—noguards
—1ibrary
—nolibrary

Defaults

* -qstrict or -qstrict=all is always in effect when the -qnoopt or -O0 optimization
level is in effect

* -qstrict or -qstrict=all is the default when the -O2 or -O optimization level is in
effect

* -qnostrict or -qstrict=none is the default when the -O3 or higher optimization
level is in effect

Parameters

The -gstrict suboptions include the following:

all | none
all disables all semantics-changing transformations, including those controlled
by the ieeefp, order, library, precision, and exceptions suboptions. none
enables these transformations.

precision | noprecision
precision disables all transformations that are likely to affect floating-point
precision, including those controlled by the subnormals, operationprecision,

Chapter 4. Compiler options reference 295

vectorprecision, association, reductionorder, and library suboptions.
noprecision enables these transformations.

exceptions | noexceptions
exceptions disables all transformations likely to affect exceptions or be affected
by them, including those controlled by the nans, infinities, subnormals,
guards, and library suboptions. noexceptions enables these transformations.

ieeefp | noieeefp
ieeefp disables transformations that affect IEEE floating-point compliance,
including those controlled by the nans, infinities, subnormals, zerosigns,
vectorprecision, and operationprecision suboptions. noieeefp enables these
transformations.

nans | nonans
nans disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point NaN
(not-a-number) values. nonans enables these transformations.

infinities | noinfinities
infinities disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce floating-point infinities.
noinfinities enables these transformations.

subnormals | nosubnormals
subnormals disables transformations that may produce incorrect results in the
presence of, or that may incorrectly produce IEEE floating-point subnormals
(formerly known as denorms). nosubnormals enables these transformations.

zerosigns | nozerosigns
zerosigns disables transformations that may affect or be affected by whether
the sign of a floating-point zero is correct. nozerosigns enables these
transformations.

operationprecision | nooperationprecision
operationprecision disables transformations that produce approximate results
for individual floating-point operations. nooperationprecision enables these
transformations.

vectorprecision | novectorprecision
vectorprecision disables vectorization in loops where it might produce
different results in vectorized iterations than in nonvectorized residue
iterations. vectorprecision ensures that every loop iteration of identical
floating-point operations on identical data produces identical results.

novectorprecision enables vectorization even when different iterations might
produce different results from the same inputs.

order | noorder
order disables all code reordering between multiple operations that may affect
results or exceptions, including those controlled by the association,
reductionorder, and guards suboptions. noorder enables code reordering.

association | noassociation
association disables reordering operations within an expression. noassociation
enables reordering operations.

reductionorder | noreductionorder
reductionorder disables parallelizing floating-point reductions.
noreductionorder enables parallelizing these reductions.

296 XLC: Compiler Reference

guards | noguards
Specifying -qstrict=guards has the following effects:

* The compiler does not move operations past guards, which control whether
the operations are executed. That is, the compiler does not move operations
past guards of the if statements, out of loops, or past guards of function
calls that might end the program or throw an exception.

* When the compiler encounters if expressions that contain pointer
wraparound checks that can be resolved at compile time, the compiler does
not remove the checks or the enclosed operations. The pointer wraparound
check compares two pointers that have the same base but have constant
offsets applied to them.

Specifying -qstrict=noguards has the following effects:
* The compiler moves operations past guards.

* The compiler evaluates if expressions according to language standards, in
which pointer wraparounds are undefined. The compiler removes the
enclosed operations of the if statements when the evaluation results of the
if expressions are false.

lTibrary | nolibrary
library disables transformations that affect floating-point library functions; for
example, transformations that replace floating-point library functions with
other library functions or with constants. nolibrary enables these
transformations.

Usage

The all, precision, exceptions, ieeefp, and order suboptions and their negative
forms are group suboptions that affect multiple, individual suboptions. For many
situations, the group suboptions will give sufficient granular control over
transformations. Group suboptions act as if either the positive or the no form of
every suboption of the group is specified. Where necessary, individual suboptions
within a group (like subnormals or operationprecision within the precision
group) provide control of specific transformations within that group.

With -qnostrict or -gstrict=none in effect, the following optimizations are turned

on:

* Code that may cause an exception may be rearranged. The corresponding
exception might happen at a different point in execution or might not occur at
all. (The compiler still tries to minimize such situations.)

* Floating-point operations may not preserve the sign of a zero value. (To make
certain that this sign is preserved, you also need to specify -qfloat=rrm,
-qfloat=nomaf, or -qfloat=strictnmaf.)

* Floating-point expressions may be reassociated. For example, (2.0%3.1)*4.2 might
become 2.0%(3.1*4.2) if that is faster, even though the result might not be
identical.

* The optimization functions enabled by -qfloat=fltint:rsqrt. You can turn off the
optimization functions by using the -qstrict option or -qfloat=nofltint:norsqrt.
With lower-level or no optimization specified, these optimization functions are
turned off by default.

Specifying various suboptions of -qstrict{=suboptions] or -qnostrict combinations
sets the following suboptions:

* -qstrict or -qstrict=all sets -qfloat=nofltint:norsqrt:rngchk. -qnostrict or
-gstrict=none sets -qfloat=fltint:rsqrt:norngchk.

Chapter 4. Compiler options reference 297

* -gstrict=operationprecision or -qstrict=exceptions sets -qfloat=nofltint.
Specifying both -gstrict=nooperationprecision and -qstrict=noexceptions sets
-qfloat=fltint.

» -gstrict=infinities, -qstrict=operationprecision, or -qstrict=exceptions sets
-qfloat=norsqrt.

* -gstrict=noinfinities:nooperationprecision:noexceptions sets -qfloat=rsqrt.

» -gstrict=nans, -qstrict=infinities, -qstrict=zerosigns, or -qstrict=exceptions sets
-qfloat=rngchk. Specifying all of -gstrict=nonans:nozerosigns:noexceptions or
-gstrict=noinfinities:nozerosigns:noexceptions, or any group suboptions that
imply all of them, sets -qfloat=norngchk.

Note: For details about the relationship between -qstrict suboptions and their
-gfloat counterparts, see |“-gfloat” on page 146

To override any of these settings, specify the appropriate -qfloat suboptions after
the -qstrict option on the command line.

Predefined macros
None.
Examples

To compile myprogram.c so that the aggressive optimization of -O3 are turned off,
range checking is turned off (-qfloat=fltint), and division by the result of a square
root is replaced by multiplying by the reciprocal (-qfloat=rsqrt), enter:

x1c myprogram.c -03 -gstrict -qfloat=fltint:rsqrt

To enable all transformations except those affecting precision, specify:
x1c myprogram.c -gstrict=none:precision

To disable all transformations except those involving NaNs and infinities, specify:
x1c myprogram.c -gstrict=all:nonans:noinfinities

In the following code example, the if expression contains a pointer wraparound
check. If you compile the code with the -qstrict=guards option in effect, the
compiler keeps the enclosed foo() function; otherwise, the compiler removes the
enclosed foo() function.

void foo()

{

}

// You can add some operations here.

int main()
{
char *p = "a";
int k = 100;
if(p + k < p) // This if expression contains a pointer wraparound check.

foo(); // foo() is the enclosed operation of the if statement.

return 0;

}

Related information
* |"-gsimd” on page 278§|
s ["-gfloat” on page 146|

298 XxLC: Compiler Reference

+ [“-ghot” on page 169|
+ [“-O, -qoptimize” on page 236|

-gstrict_induction
Category

[Optimization and tuning]|

Pragma equivalent

None.

Purpose

Prevents the compiler from performing induction (loop counter) variable

optimizations. These optimizations may be unsafe (may alter the semantics of your
program) when there are integer overflow operations involving the induction

variables.
Syntax
strict_inducti on—|
> —q—Enostrict_induction ><
Defaults

* -qstrict_induction
* -qnostrict_induction when -O2 or higher optimization level is in effect

Usage

When using -O2 or higher optimization, you can specify -qgstrict_induction to
prevent optimizations that change the result of a program if truncation or sign
extension of a loop induction variable should occur as a result of variable overflow
or wrap-around. However, use of -qstrict_induction is generally not recommended
because it can cause considerable performance degradation.

Predefined macros
None.

Related information
* [“-O, -qoptimize” on page 236|

-gsuppress
Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Chapter 4. Compiler options reference 299

Purpose

Prevents specific informational or warning messages from being displayed or
added to the listing file, if one is generated.

Syntax

|:nosuppress
»— -q suppress—=—"—message_identifier ><
Defaults

-qnosuppress: All informational and warning messages are reported, unless set
otherwise with the -qflag option.

Parameters

message_identifier
Represents a message identifier. The message identifier must be in the
following format:

15dd-number

where:
15 Is the compiler product identifier.
dd Is the two-digit code representing the compiler component that

produces the message. See [“Compiler message format” on page 17| for
descriptions of these codes.

number
Is the message number.

Usage

You can only suppress information (I) and warning (W) messages. You cannot
suppress other types of messages, such as (S) and (U) level messages. Note that
informational and warning messages that supply additional information to a severe
error cannot be disabled by this option.

To suppress all informational and warning messages, you can use the -w option.
To suppress IPA messages, enter -qsuppress before -qipa on the command line.
The -qhaltonmsg compiler option has precedence over -qsuppress. If both
-qhaltonmsg and -qsuppress are specified, messages that are suppressed by
-qsuppress are also printed.

The -qnosuppress compiler option cancels previous settings of -qsuppress.

Predefined macros

None.

300 xLcC Compiler Reference

Examples

If your program normally results in the following output:
"myprogram.c", line 1.1:1506-224 (I) Incorrect #pragma ignored

you can suppress the message by compiling with:
x1c myprogram.c -qsuppress=1506-224

Related information
+ [“-gflag” on page 145|
+ |“-ghaltonmsg” on page 166

-gsymtab
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Determines the information that appears in the symbol table.

Syntax

»»>— -g—symtab—= unref ><
l—static—|

Defaults

Static variables and unreferenced typedef, structure, union, and enumeration
declarations are not included in the symbol table of the object file.

Parameters

unref
When used with the -g option, specifies that debugging information is
included for unreferenced typedef declarations, struct, union, and enum type
definitions in the symbol table of the object file. This suboption is equivalent to
-qdbxextra.

Using -qsymtab=unref may make your object and executable files larger.

static
Adds user-defined, nonexternal names that have a persistent storage class,
such as initialized and uninitialized static variables, to the symbol table of the
object file. This suboption is equivalent to -gstatsym.

Predefined macros

None.

Chapter 4. Compiler options reference 301

Examples

To compile myprogram.c so that static symbols are added to the symbol table, enter:

x1c myprogram.c -gqsymtab=static

To compile myprogram.c so that unreferenced typedef, structure, union, and
enumeration declarations are included in the symbol table for use with a debugger,
enter:

x1c myprogram.c -g -gsymtab=unref

Related information

* |“-g” on page 160

+ [“-qdbxextra” on page 130
* |“-gstatsym” on page 292|

-gsyntaxonly
Category

[Error checking and debugging]

Pragma equivalent

None.

Purpose

Performs syntax checking without generating an object file.

Syntax

»»— -g—syntaxonly >«

Defaults
By default, source files are compiled and linked to generate an executable file.
Usage

The -P, -E, and -C options override the -qsyntaxonly option, which in turn
overrides the -c and -o options.

The -qsyntaxonly option suppresses only the generation of an object file. All other
files, such as listing files, are still produced if their corresponding options are set.

Predefined macros
None.
Examples

To check the syntax of myprogram.c without generating an object file, enter:

x1c myprogram.c -gsyntaxonly

302 xLC Compiler Reference

Related information
e |’-C, -C!” on page 115|
* ["-c” on page 114
* [”-E” on page 136]
* [’-0” on page 235
* ["-P” on page 244

Category

[Compiler customization|

Pragma equivalent
None.

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

—

»— -t———a

L h—|
L c—
L d—
| |
I, -
-
I, -
L p

Defaults

The default paths for all of the compiler components are defined in the compiler

configuration file.

Parameters

The following table shows the correspondence between -t parameters and the

component names:

Parameter Description Component name
a The assembler as
b The low-level optimizer xICcode
c The compiler front end xlcentry
d The disassembler dis
E The CreateExportList utility | CreateExportList
I (uppercase i) The high-level optimizer, ipa
compile step

Chapter 4. Compiler options reference

303

Parameter Description Component name
L The high-level optimizer, link | ipa
step
1 (lowercase L) The linker Id
P The preprocessor xICentry
Usage

Use this option with the -Bprefix option. If -B is specified without the prefix, the
default prefix is /lib/o. If -B is not specified at all, the prefix of the standard
program names is /lib/n.

Note: If you use the p suboption, it can cause the source code to be preprocessed
separately before compilation, which can change the way a program is compiled.

Predefined macros
None.
Examples

To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the
compiler and assembler program names, enter:

x1c myprogram.c -B/u/newones/compilers/ -tca

Related information
* |“-B” on page 110|

-qtabsize
Category

[Language element controll

Pragma equivalent
#pragma options tabsize
Purpose

Sets the default tab length, for the purposes of reporting the column number in
error messages.

Syntax

»»— -q—tabsize—= number ><

Defaults

-qtabsize=8

304 xLcC Compiler Reference

Parameters

number
The number of character spaces representing a tab in your source program.

Usage

This option only affects error messages that specify the column number at which
an error occurred.

Predefined macros
None.
Examples

To compile myprogram.c so the compiler considers tabs as having a width of one
character, enter:

x1c myprogram.c -qtabsize=1

In this case, you can consider one character position (where each character and
each tab equals one position, regardless of tab length) as being equivalent to one
character column.

-gtbtable
Category

[Object code controll

Pragma equivalent
#pragma options tbtable
Purpose

Controls the amount of debugging traceback information that is included in the
object files.

Many performance measurement tools require a full traceback table to properly
analyze optimized code. If a traceback table is generated, it is placed in the text
segment at the end of the object code, and contains information about each
function, including the type of function, as well as stack frame and register

information.

Syntax
|—fu11

»»— -g—tbtable—= |_nonu_| »<
small

Defaults

* -qtbtable=full
* -qtbtable=small when -O or higher optimization is in effect

Chapter 4. Compiler options reference 305

Parameters

full
A full traceback table is generated, complete with name and parameter
information.

none
No traceback table is generated. The stack frame cannot be unwound so
exception handling is disabled.

small
The traceback table generated has no name or parameter information, but
otherwise has full traceback capability. This suboption reduces the size of the
program code.

Usage

The #pragma options directive must be specified before the first statement in the
compilation unit.

Predefined macros
None.

Related information
* |“-g” on page 160|

-gqthreaded
Category

[Object code controll

Pragma equivalent

None.

Purpose

Indicates to the compiler whether it must generate threadsafe code.

Always use this option when compiling or linking multithreaded applications. This
option does not make code threadsafe, but it will ensure that code already
threadsafe will remain so after compilation and linking. It also ensures that all

optimizations are threadsafe.

Syntax

[nothreaded—l
»— -q threaded

A\
A

Defaults
* -qnothreaded for all invocation commands except those with the _r suffix
* -qthreaded for all _r-suffixed invocation commands

306 XxLC: Compiler Reference

Usage

This option applies to both compile and linker operations.

To maintain thread safety, a file compiled with the -qthreaded option, whether
explicitly by option selection or implicitly by choice of _r compiler invocation
mode, must also be linked with the -qthreaded option.

Predefined macros

None.

Related information
* [“-gsmp” on page 281

-gqtimestamps

-qtls

Category

[“Output control” on page 75|

Pragma equivalent
None.
Purpose

Controls whether or not implicit time stamps are inserted into an object file.

Syntax
timestamps
> —q—[notimestamps_| >«
Defaults
-qtimestamps
Usage

By default, the compiler inserts an implicit time stamp in an object file when it is
created. In some cases, comparison tools may not process the information in such
binaries properly. Controlling time stamp generation provides a way of avoiding
such problems. To omit the time stamp, use the option -qnotimestamps.

This option does not affect time stamps inserted by pragmas and other explicit
mechanisms.

Category

[Object code controll

Chapter 4. Compiler options reference 307

Pragma equivalent
None.
Purpose

Enables recognition of the _thread storage class specifier, which designates
variables that are to be allocated thread-local storage; and specifies the threadlocal
storage model to be used.

When this option is in effect, any variables marked with the __ thread storage class
specifier are treated as local to each thread in a multithreaded application. At run
time, a copy of the variable is created for each thread that accesses it, and
destroyed when the thread terminates. Like other high-level constructs that you
can use to parallelize your applications, thread-local storage prevents race
conditions to global data, without the need for low-level synchronization of
threads.

Suboptions allow you to specify thread-local storage models, which provide better
performance but are more restrictive in their applicability.

Syntax

»— —q tls >«
unsupported

= default
global-dynamic—
initial-exec—
local-exec
local-dynamic—
Lnotls
Defaults

-qtls=unsupported
Specifying -qtls with no suboption is equivalent to specifying -qtls=default.

Parameters

unsupported
The _ thread keyword is not recognized and thread-local storage is not
enabled. This suboption is equivalent to -qnotls.

default
Uses the appropriate model depending on the setting of the -qpic option,
which determines whether position-independent code is generated or not.
When -qpic is in effect, this suboption results in -qtls=global-dynamic. When
-qnopic is in effect, this suboption results in -qtls=initial-exec (-qpic is in effect
by default).

global-dynamic
This model is the most general, and can be used for all thread-local variables.
initial-exec
This model provides better performance than the global-dynamic or
local-dynamic models, and can be used for thread-local variables defined in

308 xLC: Compiler Reference

dynamically-loaded modules, provided that those modules are loaded at the
same time as the executable. That is, it can only be used when all thread-local
variables are defined in modules that are not loaded through dlopen.

local-dynamic
This model provides better performance than the global-dynamic model, and
can be used for thread-local variables defined in dynamically-loaded modules.
However, it can only be used when all references to thread-local variables are
contained in the same module in which the variables are defined.

Tocal-exec
This model provides the best performance of all of the models, but can only be
used when all thread-local variables are defined and referenced by the main
executable.

Predefined macros
None.
Related information

* [“-gpic” on page 254|
* ['The _ thread storage class specifier'|in the XL C Language Reference

-qtocmerge
Category

[Optimization and tuning]|

Pragma equivalent
None.
Purpose

Enables TOC merging to reduce TOC pointer loads and improves the scheduling of
external loads.

Syntax

[notocmerge—l
»»— -q tocmerge »><

Defaults
-gqnotocmerge
Usage

To use -qtocmerge, you must also use the -bImportfile linker option to specify the
name of the file from which the compiler reads.

Predefined macros

None.

Chapter 4. Compiler options reference 309

-gtrigraph
Category

[Language element controll

Pragma equivalent
None.
Purpose

Enables the recognition of trigraph key combinations to represent characters not
found on some keyboards.

Syntax

v
A

trigraph—|
»»— -q—Enotrigraph

Defaults

-qtrigraph

Usage

A trigraph is a three-key character combination that let you produce a character

that is not available on all keyboards. For details, see ['Trigraph sequences'|in the
XL C Language Reference.

Predefined macros
None.

Related information

* ['Trigraph sequences'|in the XL C Language Reference
+ |“-qdigraph” on page 132|

* [“-glanglvl” on page 206|

-qtune
Category

[Optimization and tuning]

Pragma equivalent

None.

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent
performance enhancements to run best on a specific hardware architecture. Allows

specification of a target SMT mode to direct optimizations for best performance in
that mode.

310 xLC Compiler Reference

Syntax

—balanced—
»»— -g—tune—= auto »><
—ppc970— L st J
—pwré : balanced—
—pwrb smt2
—pwr6 smt4
—pwr7 smt8
—pwr8

Defaults

-qtune=balanced:balanced when no valid -qarch setting is in effect. Otherwise, the
default depends on the effective -qarch setting. For details, see [Table 25 on page]

Parameters for CPU suboptions

The following CPU suboptions allow you to specify a particular architecture for
the compiler to target for best performance:

auto
Optimizations are tuned for the platform on which the application is compiled.

balanced
Optimizations are tuned across a selected range of recent hardware.

ppc970
Optimizations are tuned for the PowerPC 970 processor.

pwré
Optimizations are tuned for the POWER4 hardware platforms.

pwr5
Optimizations are tuned for the POWERS hardware platforms.

pwré
Optimizations are tuned for the POWER6 hardware platforms.

pwr7
Optimizations are tuned for the POWER? or POWER7+ hardware platforms.

pwr8
Optimizations are tuned for the POWERS8 hardware platforms.
Parameters for SMT suboptions

The following simultaneous multithreading (SMT) suboptions allow you to
optionally specify an execution mode for the compiler to target for best
performance.

balanced
Optimizations are tuned for performance across various SMT modes for a
selected range of recent hardware.

st Optimizations are tuned for single-threaded execution.

smt2
Optimizations are tuned for SMT2 execution mode (two threads).

Chapter 4. Compiler options reference 311

smt4
Optimizations are tuned for SMT4 execution mode (four threads).

smt8
Optimizations are tuned for SMT8 execution mode (eight threads).

Usage

If you want your program to run on more than one architecture, but to be tuned to
a particular architecture, you can use a combination of the -qarch and -qtune
options. These options are primarily of benefit for floating-point intensive
programs.

By arranging (scheduling) the generated machine instructions to take maximum
advantage of hardware features such as cache size and pipelining, -qtune can
improve performance. It only has an effect when used in combination with options
that enable optimization.

A particular SMT suboption is valid if the effective -qarch option supports the
specified SMT mode. The acceptable combinations of the -qarch and SMT tune
options are listed in The compiler ignores any invalid -qarch/-qtune
SMT combination.

Although changing the -qtune setting may affect the performance of the resulting
executable, it has no effect on whether the executable can be executed correctly on
a particular hardware platform.

Acceptable combinations of -qarch and -qtune are shown in the following table.

Table 25. Acceptable -qarch/-qtune combinations

-qarch Available -qtune CPU Available -qtune
option Default -qtune setting | settings SMT settings
ppc balanced:balanced auto | pwr4 | pwr5 | pwr6 | |balanced | st
pwr7 | pwr8 | ppc970 |
balanced
ppegr balanced:balanced auto | pwr4 | pwr5 | pwr6 | |balanced | st
pwr7 | pwr8 | ppc970 |
balanced
ppc64 balanced:balanced auto | pwr4 | pwr5 | pwr6 | |balanced | st
pwr7 | pwr8 | ppc970 |
balanced
ppcbdgr | balanced:balanced auto | pwr4 | pwr5 | pwr6 | |balanced | st
pwr7 | pwr8 | ppc970 |
balanced
ppcbidgrsq | balanced:balanced auto | pwr4 | pwr5 | pwr6 | |balanced | st
pwr7 | pwr8 | ppc970 |
balanced
ppcodv balanced:balanced auto | ppc970 | pwr6 | pwr7 |balanced | st
| pwr8 | balanced
ppc970 ppc970:st auto | ppc970 | balanced balanced | st
pwr4 pwré:st auto | pwr4 | pwrb | pwr6 | |balanced | st
pwr7 | pwr8 | ppc970 |
balanced

312 XxLC Compiler Reference

Table 25. Acceptable -qarch/-qtune combinations (continued)

-qarch Available -qtune CPU Available -qtune

option Default -qtune setting | settings SMT settings

pwrb pwrb:st auto | pwr5 | pwr6 | pwr7 | |balanced | st
pwr8 | balanced

pwrbx pwrb:st auto | pwrb | pwr6 | pwr7 | |balanced | st | smt2
pwr8 | balanced

pwr6 pwr6:st auto | pwr6 | pwr7 | pwr8 | |balanced | st | smt2
balanced

pwrbe pwr6:st auto | pwr6 | balanced balanced | st

pwr7 pwr7:st auto | pwr7 | pwr8 | balanced | st | smt2
balanced | smt4

pwr8 pwr8:st auto | pwr8 | balanced balanced | st | smt2

| smt4 | smt8

Predefined macros
None.
Examples

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWER? hardware platform, enter:

x1c -0 testing myprogram.c -qtune=pwr7

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWERS hardware platform configured for the SMT4 mode, enter:

x1c -0 testing myprogram.c -qtune=pwr8:smtd

Related information
+ |“-qarch” on page 102

* [“-q32, -q64” on page 94|

* [“Specifying compiler options for architecture-specific compilation” on page 9|

* |'Optimizing your applications'|in the XL C Optimization and Programming Guide

Category

[Language element controll

Pragma equivalent
None.
Purpose

Undefines a macro defined by the compiler or by the -D compiler option.

Chapter 4. Compiler options reference 313

Syntax

»»— -U—name

v
A

Defaults

Many macros are predefined by the compiler; see [Chapter 6, “Compiler predefined|
[macros,” on page 403 for those that can be undefined (that is, are not protected).
The compiler configuration file also uses the -D option to predefine several macro
names for specific invocation commands; for details, see the configuration file for
your system.

Parameters

name
The macro you want to undefine.

Usage

The -U option is not equivalent to the #undef preprocessor directive. It cannot
undefine names defined in the source by the #define preprocessor directive. It can
only undefine names defined by the compiler or by the -D option.

The -Uname option has a higher precedence than the -Dname option.
Predefined macros

None.

Examples

Assume that your operating system defines the name __unix, but you do not want
your compilation to enter code segments conditional on that name being defined,
compile myprogram.c so that the definition of the name __unix is nullified by
entering:

x1c myprogram.c -U__unix

Related information
* |“-D” on page 126|

-qunroll
Category

[Optimization and tuning|

Pragma equivalent

#pragma options [noJunroll[= yesIno | auto In]
#pragma unroll

Purpose

Controls loop unrolling, for improved performance.

314 XxLC: Compiler Reference

When unroll is in effect, the optimizer determines and applies the best unrolling
factor for each loop; in some cases, the loop control might be modified to avoid
unnecessary branching. The compiler remains the final arbiter of whether the loop
is unrolled.

Syntax

Option syntax

|—auto—
unroll—= yes
tno_
n
»— —q nounroll >«

Pragma syntax

»—#—pr‘agma—Enounrm 1 >
unroll

(—n—)

Defaults
-qunroll=auto
Parameters

The following suboptions are for -qunroll only:

auto (option only)
Instructs the compiler to perform basic loop unrolling.

yes (option only)
Instructs the compiler to search for more opportunities for loop unrolling than
that performed with auto. In general, this suboption has more chances to
increase compile time or program size than auto processing, but it might also
improve your application's performance.

no (option only)
Instructs the compiler to not unroll loops.

n Instructs the compiler to unroll loops by a factor of n. In other words, the body
of a loop is replicated to create n copies and the number of iterations is
reduced by a factor of 1/n. The -qunroll=n option specifies a global unroll
factor that affects all loops that do not already have an unroll pragma. The
value of n must be a positive integer.

Specifying #pragma unroll(1) or -qunroll=1 disables loop unrolling, and is
equivalent to specifying #pragma nounroll or -qnounroll. If 1 is not specified
and if -qhot, -qsmp, -O4, or -O5 is specified, the optimizer determines an
appropriate unrolling factor for each nested loop.

The compiler might limit unrolling to a number smaller than the value you
specify for n. This is because the option form affects all loops in source files to
which it applies and large unrolling factors might significantly increase
compile time without necessarily improving runtime performance. To specify
an unrolling factor for particular loops, use the #pragma form in those loops.

Chapter 4. Compiler options reference 315

Specifying -qunroll without any suboptions is equivalent to -qunroll=yes.
-qnounroll is equivalent to -qunroll=no.
Usage

The pragma overrides the option setting for a designated loop. However, even if
#pragma unroll is specified for a given loop, the compiler remains the final arbiter
of whether the loop is unrolled.

Only one pragma can be specified on a loop. The pragma must appear
immediately before the loop or the #pragma block_loop directive to take effect.

The pragma affects only the loop that follows it. An inner nested loop requires a
#pragma unroll directive to precede it if the wanted loop unrolling strategy is
different from that of the prevailing option.

The #pragma unroll and #pragma nounroll directives can only be used on for
loops or #pragma block_loop directives. They cannot be applied to do while and
while loops.

The loop structure must meet the following conditions:

* There must be only one loop counter variable, one increment point for that
variable, and one termination variable. These cannot be altered at any point in
the loop nest.

* Loops cannot have multiple entry and exit points. The loop termination must be
the only means to exit the loop.

* Dependencies in the loop must not be "backwards-looking". For example, a
statement such as A[i][j] = A[i -1][j + 1] + 4 must not appear within the
loop.

Predefined macros
None.
Examples

In the following example, the #pragma unroll(3) directive on the first for loop
requires the compiler to replicate the body of the loop three times. The #pragma
unroll on the second for loop allows the compiler to decide whether to perform
unrolling.

#pragma unroll1(3)
for(i=0;i < n; i++)

a[i] = b[i] = c[i];
}

#pragma unroll
for(j=0;j < n; j++)

alil = b3l = c[ils

}

In this example, the first #pragma unroll(3) directive results in:

316 XxLC: Compiler Reference

i=0;

if (i>n-2) goto remainder;

for (; i<n-2; i+=3) {
a[i]=b[i] * c[il;
ali+1]=b[i+1] * c[i+1];
ali+2]=b[i+2] = c[i+2];

1
if (i<n) {
remainder:
for (; i<n; i++) {
a[i]=b[i] = c[il;
}
1

Related information

+ [“#pragma block_loop” on page 340|

+ [“#pragma loopid” on page 357

* ["#pragma stream_unroll” on page 37
* [“#pragma unrollandfuse” on page 375

-qunwind
Category

[Optimization and tuning|

Pragma equivalent
None.
Purpose

Specifies whether the call stack can be unwound by code looking through the
saved registers on the stack.

Specifying -qnounwind asserts to the compiler that the stack will not be unwound,
and can improve optimization of nonvolatile register saves and restores.

Syntax
unwind
»»— -(|_nounwigl ><
Defaults
-qunwind
Usage

The setjmp and longjmp families of library functions are safe to use with
-qnounwind.

Predefined macros

None.

Chapter 4. Compiler options reference 317

-qupconv
Category

[Portability and migration|

Pragma equivalent
#pragma options [noJupconv
Purpose

Specifies whether the unsigned specification is preserved when integral promotions
are performed.

When noupconv is in effect, any unsigned type smaller than an int is converted to
int during integral promotions. When upconv is in effect, these types are
converted to unsigned int during integral promotions. The promotion rule does
not apply to types that are larger than int.

Syntax

noupconv
»— —(|_upconv —l ><
Defaults

* -gqnoupconv for all language levels except classic or extended
* -qupconv when the classic or extended language levels are in effect

Usage

Sign preservation is provided for compatibility with older dialects of C. The ANSI
C standard requires value preservation as opposed to sign preservation.

Predefined macros
None.
Examples

To compile myprogram.c so that all unsigned types smaller than int are converted
to unsigned int, enter:

x1c myprogram.c -qupconv

The following short listing demonstrates the effect of -qupconv:

#include <stdio.h>
int main(void) {
unsigned char zero = 0;
if (-1 <zero)
printf("Value-preserving rules in effect\n");
else
printf("Unsignedness-preserving rules in effect\n");
return 0;

}

318 xLC Compiler Reference

-qutf

-v, -V

Related information
* ['Usual arithmetic conversions'|in the XL C Language Reference
* |“-glanglvl” on page 206|

Category

[Language element controll

Pragma equivalent

None.

Purpose

Enables recognition of UTF literal syntax.

Syntax

A\
A

»»— -q noutf
|—utf

Defaults

-qnoutf

Usage

The compiler uses iconv library routine to convert the source file to Unicode. If the

source file cannot be converted, the compiler will ignore the -qutf option and issue

a warning.

Predefined macros

None.

Related information

 |'UTFE literals"|in the XL C Language Reference

Category

[Listings, messages, and compiler information|

Pragma equivalent
None.
Purpose

Reports the progress of compilation, by naming the programs being invoked and
the options being specified to each program.

Chapter 4. Compiler options reference 319

When the -v option is in effect, information is displayed in a comma-separated list.
When the -V option is in effect, information is displayed in a space-separated list.

Syntax

W

Defaults

The compiler does not display the progress of the compilation.

Usage

The -v and -V options are overridden by the -# option.

Predefined macros

None.

Examples

To compile myprogram.c so you can watch the progress of the compilation and see

messages that describe the progress of the compilation, the programs being
invoked, and the options being specified, enter:

x1c myprogram.c -v

Related information
* |“# (pound sign)” on page 93|

-qvecnvol
Category

[Portability and migration|

Pragma equivalent

None.

Purpose

Specifies whether to use volatile or nonvolatile vector registers.

Syntax

[novecnvo1—|
»— -(vecnvol

v
A

Defaults

-qnovecnvol

320 XxLC: Compiler Reference

Usage

Volatile vector registers are those whose value is not preserved across function calls
or across save context, jump or switch context system library functions. When
-qvecnvol is in effect, the compiler uses both volatile and nonvolatile vector
registers. When -qnovecnvol is in effect, the compiler uses only volatile vector
registers.

This option is required for programs where there is risk of interaction between
modules built with AIX libraries before AIX 5.3TL3 and vector register use.
Restricting the compiler to use only volatile registers will make your vector
programs safe but it potentially forces the compiler to store vector data to memory
more often and therefore results in reducing performance.

Notes:
* This option requires platforms that support vector instructions.

* The -qnovecnvol option performs independently from -qsimd=auto | noauto,
-qaltivec | -qnoaltivec and pragma=nosimd.

* Before AIX 5.3TL3, by default only 20 volatile registers (vr0-vr19) are used, and
12 nonvolatile vector registers (vr20 - vr31) are not used. You can use these
registers only when -qvecnvol is in effect.

* -qvecnvol should be enabled only when no legacy code that saves and restores
nonvolatile registers is involved. Using -qvecnvol and linking with legacy code,
may result runtime failure.

Predefined macros
None.
Related information

+ [“-qaltivec” on page 101
* |“-gsimd” on page 278§|

-qversion
Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Displays the version and release of the compiler being invoked.

Syntax

noversi on—|
> —q—Eversion ><
I—=—ver*bose—|

Chapter 4. Compiler options reference 321

Defaults
-qnoversion

Parameters

verbose
Displays information about the version, release, and level of each compiler
component installed.

Usage

When you specify -qversion, the compiler displays the version information and
exits; compilation is stopped. If you want to save this information to the output
object file, you can do so with the -gsaveopt -c options.

-qversion specified without the verbose suboption shows compiler information in
the format:

product_nameVersion: VV.RR.MMMM.LLLL

where:

v Represents the version.

R Represents the release.

M Represents the modification.
L Represents the level.

For more details, see

-qversion=verbose shows component information in the following format:

component_name Version: VV.RR(product_name) Level: component_build date ID:
component_level ID

where:
component_name

Specifies an installed component, such as the low-level optimizer.
component_build_date

Represents the build date of the installed component.
component_level _ID

Represents the ID associated with the level of the installed component.

For more details, see
Predefined macros

None.

Example 1

The output of specifying the -qversion option:
IBM XL C/C++ for AIX, V13.1.3 (5765-J06; 5725-C71)

Version: 13.01.0002.0000
Example 2

The output of specifying the -qversion=verbose option:

322 XLC: Compiler Reference

IBM XL C/C++ for AIX, V13.1.3 V13.1.3 (5765-J06; 5725-C71)
Version: 13.01.0003.0000

Driver Version: 13.1.3(C/C++) Level: 150508

ID: _dRic8vWfEeSjz7qEhQiYJQ

C Front End Version: 13.1.3(C/C++) Level: 150506

ID: _GyiUoOiLEeSbzZ-i2Itj4A

High-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran)
Level: 150512 ID: nAVYcvkLEeSjz7qEhQiYJQ

Low-Level Optimizer Version: 13.1.3(C/C++) and 15.1.3(Fortran)
Level: 150511 ID: _X1GWsPhCEeSjz7qEhQiYJQ

Related information
+ [“-gsaveopt” on page 272|

-qvisibility
Category

[Optimization and tuning]|

Pragma equivalent

#pragma GCC visibility push (default | protected | hidden | internal)
#pragma GCC visibility pop

Purpose

Specifies the visibility attribute for external linkage entities in object files. The
external linkage entities have the visibility attribute that is specified by the

-qvisibility option if they do not get visibility attributes from pragma directives,
explicitly specified attributes, or propagation rules.

Syntax
unspecified—
»»— -g—visibility—= default ><
hidden
protected—
internal
Defaults

-qvisibility=unspecified

Parameters

unspecified
Indicates that the affected external linkage entities do not have visibility
attributes. Whether these entities are exported in shared libraries depends on
the specified export list or the one that is generated by the compiler.

default
Indicates that the affected external linkage entities have the default visibility
attribute. These entities are exported in shared libraries, and they can be
preempted.

Chapter 4. Compiler options reference 323

protected
Indicates that the affected external linkage entities have the protected visibility
attribute. These entities are exported in shared libraries, but they cannot be
preempted.

hidden
Indicates that the affected external linkage entities have the hidden visibility
attribute. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal
Indicates that the affected external linkage entities have the internal visibility
attribute. These entities are not exported in shared libraries, and their
addresses are not available to other modules in shared libraries.

Restriction: In this release, the hidden and internal visibility attributes are the
same. The addresses of the entities that are specified with either of these visibility
attributes can be referenced indirectly through pointers.

Usage

The -qvisibility option globally sets visibility attributes for external linkage entities
to describe whether and how an entity defined in one module can be referenced or
used in other modules. Entity visibility attributes affect entities with external
linkage only, and cannot increase the visibility of other entities. Entity preemption
occurs when an entity definition is resolved at link time, but is replaced with
another entity definition at run time.

Note: On the AIX platform, entity preemption occurs only when runtime linking is
used. For details, see ['Linking a library to an application'|in the XL C Optimization
and Programming Guide. Visibility attributes are supported on AIX 6.1 TL8, AIX 7.1
TL2, AIX 7.2, and higher.

Predefined macros
None.
Examples

To set external linkage entities with the protected visibility attribute in compilation
unit myprogram.c, compile myprogram.c with the -qvisibility=protected option.

x1c myprogram.c -qvisibility=protected -c

All the external linkage entities in the myprogram.c file have the protected visibility
attribute if they do not get visibility attributes from pragma directives, explicitly
specified attributes, or propagation rules.

Related information

* [“-qmkshrobj” on page 233|

* [“-G” on page 163

* |“#pragma GCC visibility push, #pragma GCC visibility pop” on page 349|

+ |'Using visibility attributes (IBM extension)"|in the XL C Optimization and
Programming Guide

* |'External linkage"} |'The visibility variable attribute (IBM extension)'} |'The
visibility function attribute (IBM extension)'] in the XL C Language Reference

324 XLC: Compiler Reference

Category

[Listings, messages, and compiler information|

Pragma equivalent

None.

Purpose

Suppresses warning messages.

This option is equivalent to specifying -qflag=e : e.
Syntax

>«
> -W- <

Defaults
All informational and warning messages are reported.
Usage

Informational and warning messages that supply additional information to a
severe error are not disabled by this option.

Predefined macros
None.
Examples

Consider the file myprogram.c.

#include <stdio.h>
int main()
{ char* greeting = "hello world";
printf("%d \n", greeting);
return 0;
}
* If you compile myprogram.c without the -w option, the compiler issues a warning
message.

x1C myprogram.c

Output:
"5:18: warning: format specifies type 'int' but the argument has type 'char *' [-Wformat]
printf("%d \n", greeting);

o AN

o
%S

1 warning generated."

* If you compile myprogram.c with the -w option, the warning message is
suppressed.

x1C myprogram.c -w

Chapter 4. Compiler options reference 325

Related information
* [“-gflag” on page 145|
* |“-gsuppress” on page 299

Category

[Compiler customization|

Pragma equivalent
None.
Purpose

Passes the listed options to a component that is executed during compilation.

Syntax

»— -—T—a Y, —option >
L _h—|
C
L d—
L F—|
1]
L —
. -
p

Parameters

option

Any option that is valid for the component to which it is being passed.

The following table shows the correspondence between -W parameters and the
component names:

Parameter Description Component name
a The assembler as
b The low-level optimizer xICcode
c The compiler front end xlcentry
d The disassembler dis
E The CreateExportList utility | CreateExportList
I (uppercase i) The high-level optimizer, ipa
compile step
L The high-level optimizer, link | ipa
step
1 (lowercase L) The linker 1d
P The preprocessor xICentry

326 XLC: Compiler Reference

Usage

In the string following the -W option, use a comma as the separator for each
option, and do not include any spaces. If you need to include a character that is
special to the shell in the option string, precede the character with a backslash. For
example, if you use the -W option in the configuration file, you can use the escape
sequence backslash comma (\,) to represent a comma in the parameter string.

You do not need the -W option to pass most options to the linker 1d; unrecognized
command-line options, except -q options, are passed to it automatically. Only
linker options with the same letters as compiler options, such as -v or -S, strictly
require -W.

Predefined macros
None.
Examples

To compile the file file.c and pass the linker option -berok to the linker, enter the
following command:

xlc -W1,-berok file.c

To compile the file uses_many_symbols.c and the assembly file
produces_warnings.s so that produces _warnings.s is assembled with the assembler
option -x (issue warnings and produce cross-reference), and the object files are
linked with the option -s (write list of object files and strip final executable file),
issue the following command:

xlc -Wa,-x -W1,-s produces_warnings.s uses_many_symbols.c

Related information
* [“Invoking the compiler” on page 1|

-qwarn64
Category

[Error checking and debugging]

Pragma equivalent
None.
Purpose

Enables checking for possible data conversion problems between 32-bit and 64-bit
compiler modes.

When -qwarné4 is in effect, informational messages are displayed where data
conversion may cause problems in 64-bit compilation mode, such as:

* Truncation due to explicit or implicit conversion of long types into int types

* Unexpected results due to explicit or implicit conversion of int types into Tong
types

¢ Invalid memory references due to explicit conversion by cast operations of
pointer types into int types

Chapter 4. Compiler options reference 327

* Invalid memory references due to explicit conversion by cast operations of int
types into pointer types

* Problems due to explicit or implicit conversion of constants into long types

* Problems due to explicit or implicit conversion by cast operations of constants
into pointer types

Syntax

nowarn64
»>— -q—[warn64 —l

\4
A

Defaults
-qnowarné64
Usage

This option functions in either 32-bit or 64-bit compiler modes. In 32-bit mode, it
functions as a preview aid to discover possible 32-bit to 64-bit migration problems.

Predefined macros
None.
Related information

* ["-g32, -q64” on page 94|
+ [“Compiler messages” on page 16|

-qweakexp
Category

[Object code controll

Pragma equivalent
None.
Purpose

When used with the -qmkshrobj or -G option, includes or excludes global symbols
marked as weak from the export list generated when you create a shared object.

Syntax

[weakexp
»— —(noweakexp

A\
A

Defaults

-qweakexp: weak symbols are exported.

328 XxLC: Compiler Reference

Usage

See |“-qweaksymbol”| for a description of weak symbols.

Use the -qweakexp option with the -qmkshrobj or -G option. See the description
of [“-qmkshrobj” on page 233| or [’-G” on page 163| for more information.

Predefined macros
None.
Examples

To compile myprogram.c into a shared object and prevent weak symbols from being
exported, enter the following command:

x1c myprogram.c -gmkshrobj -gnoweakexp

Related information

* |“-qweaksymbol”]|

* [“#pragma weak” on page 377
* |“-gmkshrobj” on page 233|

* ["-G” on page 163

-qweaksymbol
Category

[Object code controll

Pragma equivalent

None.

Purpose

Enables the generation of weak symbols.

When the -qweaksymbol option is in effect, the compiler generates weak symbols
for the following cases:

* Inline functions with external linkage
* Identifiers specified as weak with #pragma weak or __attribute__ ((weak))

Syntax
weaksymbol
| —q—[nowea ks ymb:| ><
Defaults
-qweaksymbol

Predefined macros

None.

Chapter 4. Compiler options reference 329

Related information

o |“#pragma weak” on page 377|

+ [“-qgweakexp” on page 328|

* |'The weak variable attribute'|and ['The weak function attribute'|in the XL C
Language Reference

-gxcall
Category

[Object code controll

Pragma equivalent
None.
Purpose

Generates code to treat static functions within a compilation unit as if they were
external functions.

Syntax

noxcall
»— - |_xcaH —l ><

Defaults

-qnoxcall

Usage

-qxcall generates slower code than -qnoxcall.
Predefined macros

None.

Examples

To compile myprogram.c so that all static functions are compiled as external
functions, enter:

x1c myprogram.c -gxcall

-gxref
Category

[Listings, messages, and compiler information|

Pragma equivalent

#pragma options [no]xref

330 xLC Compiler Reference

Purpose

Produces a compiler listing that includes the cross-reference component of the
attribute and cross-reference section of the listing.

When xref is in effect, a listing file is generated with a .Ist suffix for each source
file named on the command line. For details of the contents of the listing file, see
[‘Compiler listings” on page 19.|

Syntax

|—noxref—|
»— —q xref ><
|—=—fu1 1—|

Defaults
-qnoxref

Parameters
full

Reports all identifiers in the program. If you specify xref without this
suboption, only those identifiers that are used are reported.

Usage

A typical cross-reference listing has the form:

Identifier name De=szcription of the item
| — T 1
=y auto int in function adder

0-59Y 0-36.12Z 0-48 12Z

Function invocation
Column number
Line number
File
Function definition

The listing uses the following character codes:

Table 26. Cross-reference listing codes

Character Meaning

X Function is declared.

Y Function is defined.

Z Function is called.

$ Type is defined, variable is declared/defined.

Variable is assigned to.

& Variable is defined and initialized.

[blank] Identifier is referenced.

{ and } Coordinates of the { and } symbols in a structure definition.

The -qnoprint option overrides this option.

Chapter 4. Compiler options reference 331

Any function defined with the #pragma mc_func directive is listed as being
defined on the line of the pragma directive.

Predefined macros
None.
Examples

To compile myprogram.c and produce a cross-reference listing of all identifiers,
whether they are used or not, enter:

x1c myprogram.c -gxref=full

Related information
* [“-gattr” on page 108|
+ [“#pragma mc_func” on page 359

Category

[Floating-point and integer control|

Pragma equivalent
None.
Purpose

Specifies the rounding mode for the compiler to use when evaluating constant
floating-point expressions at compile time.

Syntax
dn
n

»>— -y—r ><
RN
L,
L di—|
dm
—dna—
—dnz—
L dz—

Defaults

L] -yn

* -ydn

Parameters

The following suboptions are valid for binary floating-point types only:
m Round toward minus infinity.

n Round to the nearest representable number, ties to even.

332 XxLC Compiler Reference

p Round toward plus infinity.

z Round toward zero.

The following suboptions are valid for decimal floating-point types only:
di Round toward infinities (away from zero).

dm Round toward minus infinity.

dn Round to the nearest representable number, ties to even.

dna
Round to the nearest representable number, ties away from zero.

dnz
Round to the nearest representable number, ties toward zero.

dp Round toward plus infinity.

dz Round toward zero.
Usage

If your program contains operations involving long doubles, the rounding mode
must be set to -yn (round-to-nearest representable number, ties to even).

Predefined macros
None.
Examples

To compile myprogram.c so that constant floating-point expressions are rounded
toward zero at compile time, enter:

x1c myprogram.c -yz -ydz

Category

Pragma equivalent

None.

Purpose

Specifies a prefix for the library search path to be used by the linker.

Syntax

»»— -7—string

\4
A

Defaults

By default, the linker searches the /usr/lib/ directory for library files.

Chapter 4. Compiler options reference 333

Parameters

string
Represents the prefix to be added to the directory search path for library files.

Predefined macros

None.

334 XxLC: Compiler Reference

Chapter 5. Compiler pragmas reference

The following sections describe the available pragmas:

* [“Pragma directive syntax”]

* |“Scope of pragma directives” on page 336|

* [“Summary of compiler pragmas by functional category” on page 336|

* |“Individual pragma descriptions” on page 339|

Pragma directive syntax

XL C supports the following forms of pragma directives:

#pragma options option_name
These pragmas use exactly the same syntax as their command-line option
equivalent. The exact syntax and list of supported pragmas of this type are
provided in [#pragma options” on page 362,

#pragma name
This form uses the following syntax:

v

»>—#—pragma name— (—suboptions—) ><

The name is the pragma directive name, and the suboptions are any required
or optional suboptions that can be specified for the pragma, where
applicable.

_Pragma ("name")
This form uses the following syntax:

»»— Pragma— (—"—"name— (—suboptions—) ") ><

For example, the statement:
_Pragma ("pack(1)")

is equivalent to:
#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and
suboptions in a single #pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated.

The compiler ignores unrecognized pragmas, issuing an informational message
indicating this.

© Copyright IBM Corp. 1996, 2015 335

Scope of pragma directives

Many pragma directives can be specified at any point within the source code in a
compilation unit; others must be specified before any other directives or source
code statements. In the individual descriptions for each pragma, the "Usage"
section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source
program, it applies to the entire compilation unit, including any header files that
are included. For a directive that can appear anywhere in your source code, it
applies from the point at which it is specified, until the end of the compilation
unit.

You can further restrict the scope of a pragma's application by using
complementary pairs of pragma directives around a selected section of code.

For example, using #pragma options source and #pragma options nosource
directives as follows requests that only the selected parts of your source code be
included in your compiler listing:

#pragma options source

/* Source code between the source and nosource pragma
options is included in the compiler listing */

#pragma options nosource

Many pragmas provide "pop" or "reset” suboptions that allow you to enable and
disable pragma settings in a stack-based fashion; examples of these are provided in
the relevant pragma descriptions.

Summary of compiler pragmas by functional category

The XL C pragmas available are grouped into the following categories:
+ [“Language element control”|

* [“Floating-point and integer control” on page 337

s |“Error checking and debugging” on page 337

+ [“Optimization and tuning” on page 337|

+ [“Object code control” on page 338|

* |“"Portability and migration” on page 339|

* [“Deprecated directives” on page 339

For descriptions of these categories, see [‘Summary of compiler options byl
[functional category” on page 75

Language element control

Table 27. Language element control pragmas

Pragma Description

#pragma langlvl (C only)|

Determines whether source code and compiler options
should be checked for conformance to a specific language
standard, or subset or superset of a standard.

“#pragma mc_func” on page|
359 Allows you to embed a short sequence of machine
instructions "inline" within your program source code.

336 XxLC: Compiler Reference

Table 27. Language element control pragmas (continued)

Pragma

Description

“#pragma options” on pagel|

567]

Specifies compiler options in your source program.

Floating-point and integer control

Table 28. Floating-point and integer control pragmas

Pragma

Description

#pragma chars|

Determines whether all variables of type char is treated as
signed or unsigned.

Fpragma enu
L

Specifies the amount of storage occupied by enumerations.

Error checking and debugging

Table 29. Error checking and debugging pragmas

Pragma

Description

“#pragma ibm snapshot” on|

age 355

Specifies a location at which a breakpoint can be set and
defines a list of variables that can be examined when
program execution reaches that location.

L

#pragma info

Produces or suppresses groups of informational messages.

Optimization and tuning

Table 30. Optimization and tuning pragmas

Pragma

Description

[“#pragma block_loop” on|

|Bage 340|

Marks a block with a scope-unique identifier.

|”#pragma STDCl

|[CX_TLIMITED_RANGE” on|

|Bage 373|

Informs the compiler that complex division and absolute
value are only invoked with values such that intermediate
calculation will not overflow or lose significance.

“#pragma disjoint” on pagel

g5

Lists identifiers that are not aliased to each other within the
scope of their use.

|”#pragm5|

lexecution_frequency” on|

|Eage 346|

Marks program source code that you expect will be either
very frequently or very infrequently executed.

[“#pragma expected_value”|

|0r1 page 348|

Specifies the value that a parameter passed in a function call
is most likely to take at run time. The compiler can use this
information to perform certain optimizations, such as
function cloning and inlining.

[“#pragma GCC visibility|

|5ush, #pragma GCC|
isibility pop” on page 349|

Specifies the visibility attribute for external linkage entities in
object files.

[“#pragma ibm iterations” on|

|Eage 352|

Specifies the approximate average number of loop iterations
for the chosen loop.

|"#pragma ibal

[max_iterations” on page 353]

Specifies the approximate maximum number of loop
iterations for the chosen loop.

337

Chapter 5. Compiler pragmas reference

Table 30. Optimization and tuning pragmas (continued)

Pragma

Description

[“#pragma ibm|
[min_iterations” on page 354

Specifies the approximate minimum number of loop
iterations for the chosen loop.

I|#pragma isolated_call|

Specifies functions in the source file that have no side effects
other than those implied by their parameters.

“#pragma leaves” on page]
356)

Informs the compiler that a named function never returns to
the instruction following a call to that function.

“#pragma loopid” on page]
35

Marks a block with a scope-unique identifier.

Hpragma nosimd

When used with -qsimd=auto, disables the generation of
SIMD instructions for the next loop.

|#pragma novectod

When used with -qhot=vector, disables auto-vectorization of
the next loop.

“#pragma option_override”|
[on page 364

Allows you to specify optimization options at the
subprogram level that override optimization options given
on the command line.

[“#pragma reachable” on|
age 369

:

Informs the compiler that the point in the program after a
named function can be the target of a branch from some
unknown location.

“#pragma reg_killed_by” on|
age 37

:

Specifies registers that may be altered by functions specified
by #pragma mc_func.

“#pragma simd_level” on|
age 37

:

Controls the compiler code generation of vector instructions
for individual loops.

1,

“#pragma stream_unroll” on|
age 374

When optimization is enabled, breaks a stream contained in
a for loop into multiple streams.

fpragma unrol

Controls loop unrolling, for improved performance.

[“#pragma unrollandfuse” on|
age 375

:

Instructs the compiler to attempt an unroll and fuse
operation on nested for loops.

Object code control

Table 31. Object code control pragmas

Pragma

Description

t#pragma alloca (C only)|

Provides an inline definition of system function alloca when
it is called from source code that does not include the
alloca.h header.

[“#pragma comment” on|
age 343

:

Places a comment into the object module.

[“#pragma fini” on page 349|

Specifies the order in which the runtime library calls a list of
functions after main() completes or exit() is called.

338 xLC: Compiler Reference

Table 31. Object code control pragmas (continued)

Pragma Description

[“#pragma init” on page 355|

Specifies the order in which the runtime library calls a list of
functions before main() is called.

“#pragma map” on page|
35 Converts all references to an identifier to another, externally

defined identifier.

“#pragma pack” on page|
36 Sets the alignment of all aggregate members to a specified

byte boundary.

[“#pragma reg_killed_by” on|
[page 370] Specifies registers that may be altered by functions specified

by #pragma mc_func.

|
f#pragma strings

“#pragma weak” on page|
37 Prevents the linker from issuing error messages if it

encounters a symbol multiply-defined during linking, or if it
does not find a definition for a symbol.

Specifies the storage type for string literals.

Portability and migration

Table 32. Portability and migration pragmas

Pragma Description

Specifies the alignment of data objects in storage, which
avoids performance problems with misaligned data.

Deprecated directives

The SMP directive listed in the following table has been deprecated and might be
removed in a future release. Use the corresponding OpenMP directive to obtain the
same behavior.

Table 33. Deprecated SMP directives

SMP directive name OpenMP directive/clause name
#pragma ibm schedule The [“#pragma omp parallel for” on page 393)|
pragma with theschedule clause.

You can replace the deprecated SMP directive with the corresponding OpenMP
one. For example:

#pragma omp parallel for schedule(static, 5)
for (i=0; i<N; i++)
{
/] ...
1

Individual pragma descriptions

This section contains descriptions of individual pragmas available in XL C.

For each pragma, the following information is given:

Chapter 5. Compiler pragmas reference 339

Category
The functional category to which the pragma belongs is listed here.

Purpose
This section provides a brief description of the effect of the pragma, and
why you might want to use it.

Syntax
This section provides the syntax for the pragma. For convenience, the
#pragma name form of the directive is used in each case. However, it is
perfectly valid to use the alternate C99-style _Pragma operator syntax; see
[“Pragma directive syntax” on page 335| for details.

Parameters
This section describes the suboptions that are available for the pragma,
where applicable.

Usage This section describes any rules or usage considerations you should be
aware of when using the pragma. These can include restrictions on the
pragma's applicability, valid placement of the pragma, and so on.

Examples
Where appropriate, examples of pragma directive use are provided in this
section.

#pragma align
See [“-galign” on page 98

#pragma alloca

See [“-galloca, -ma” on page 100

#pragma block_loop
Category

[Optimization and tuning]

Purpose

Marks a block with a scope-unique identifier.

Syntax

»»—#—pragma—block_loop—(—expression—,——name) ><
Parameters

expression

An integer expression representing the size of the iteration group.

name
An identifier that is unique within the scoping unit. If you do not specify a
name, blocking occurs on the first for loop or loop following the #pragma
block_loop directive.

340 XxLC: Compiler Reference

Usage

For loop blocking to occur, a #pragma block_loop directive must precede a for
loop.

If you specify #pragma unroll, #pragma unrollandfuse or #pragma stream_unroll
for a blocking loop, the blocking loop is unrolled, unrolled and fused or stream
unrolled respectively, if the blocking loop is actually created. Otherwise, this
directive has no effect.

If you specify #pragma unrollandfuse, #pragma unroll or #pragma stream_unroll
directive for a blocked loop, the directive is applied to the blocked loop after the
blocking loop is created. If the blocking loop is not created, this directive is applied
to the loop intended for blocking, as if the corresponding #pragma block_loop
directive was not specified.

You must not specify #pragma block_loop more than once, or combine the
directive with #pragma nounroll, #pragma unroll, #pragma nounrollandfuse,
#pragma unrollandfuse, or #pragma stream_unroll directives for the same for
loop. Also, you should not apply more than one #pragma unroll directive to a
single block loop directive.

Processing of all #pragma block_loop directives is always completed before
performing any unrolling indicated by any of the unroll directives

Examples

The following two examples show the use of #pragma block_loop and #pragma
loop_id for loop tiling:

#pragma block_Toop (50, mymainloop)
#pragma block loop (20, myfirstloop, mysecondloop)
#pragma loopid(mymainloop)

for (i=0; i < n; i++)

{
#pragma loopid(myfirstloop)
for (j=0; j < m; j++)

#pragma loopid(mysecondloop)
for (k=0; k < m; k++)
{

}
}
}

#pragma block_Toop (50, mymainloop)
#pragma block loop (20, myfirstloop, mysecondloop)
#pragma loopid(mymainloop)

for (i=0; i < n; n++)

#pragma loopid(myfirstloop)
for (j=0; j < m; j++)
#pragma loopid(mysecondloop)
for (k=0; k < m; k++)
{

}

Chapter 5. Compiler pragmas reference 341

The following example shows the use #pragma block_loop and #pragma loop_id
for loop interchange.
for (i=0; i < n; i++)
{
for (3=0; J < n3 j++)

#pragma block_Toop(1,myloopl)
for (k=0; k < m; k++)

{
#pragma loopid(myloopl)
for (1=0; 1 < m; 1++)
{

}

}

The following example shows the use of #pragma block_loop and #pragma

loop_id for loop tiling for multi-level memory hierarchy:

#pragma block loop(13factor, first level blocking)
for (i=0; i < n; i++)
{

#pragma loopid(first_level blocking)

#pragma block_loop(12factor, inner_space)

for (j=0; j < n; j++)

#pragma loopid(inner_space)
for (k=0; k < m; k++)
{
for (1=0; 1 < m; 1++)

The following example uses #pragma unrollandfuse and #pragma block_loop to
unroll and fuse a blocking loop.
#pragma unrollandfuse
#pragma block _1oop(10)
for (i =05 i < N; ++i) {

}

In this case, if the block loop directive is ignored, the unroll directives have no
effect.

The following example shows the use of #pragma unroll and #pragma block_loop
to unroll a blocked loop.
#pragma block_Toop(10)
#pragma unrol1(2)
for (i = 05 i < N; ++i) {
}

In this case, if the block loop directive is ignored, the unblocked loop is still
subjected to unrolling. If blocking does happen, the unroll directive is applied to
the blocked loop.

The following examples show invalid uses of the directive. The first example
shows #pragma block_loop used on an undefined loop identifier:

342 XLC: Compiler Reference

#pragma block loop(50, myloop)
for (i=0; i < n; i++)
{
}

Referencing myTloop is not allowed, since it is not in the nest and may not be

defined.

In the following example, referencing myloop is not allowed, since it is not in the

same loop nest:
for (i=0; i < n; i++)
{
#pragma loopid(myLoop)
for (j=0; j < i; j++)

}
1
#pragma block Toop(myLoop)
for (i=0; i < n; i++)

{
.

The following examples are invalid since the unroll directives conflict with each

other:

#pragma unrollandfuse(5)
#pragma unroll(2)
#pragma block 1oop(10)
for (i = 0; i < N; ++i) {
}

#pragma block_Toop(10)
#pragma unrol1(5)
#pragma unrol1(10)

for (1 = 0; i < N; ++i) {

}

Related information

+ [“#pragma loopid” on page 357]

* |“-qunroll” on page 314

* [“#pragma unrollandfuse” on page 375
* [“#pragma stream_unroll” on page 37

#pragma chars
See [“-gchars” on page 118

#pragma comment
Category

[Object code control|

Purpose

Places a comment into the object module.

Chapter 5. Compiler pragmas reference

343

Syntax

»»>—#—pragma—comment— (compiler)—><
date
timestamp

copyright
user4 I—,—"—i.‘oken_sequence—"—|

Parameters

compiler
Appends the name and version of the compiler at the end of the generated
object module.

date
The date and time of the compilation are appended at the end of the generated
object module.

timestamp
Appends the date and time of the last modification of the source at the end of
the generated object module.

copyright
Places the text specified by the token_sequence, if any, into the generated object
module. The token_sequence is included in the generated executable and loaded
into memory when the program is run.

user
Places the text specified by the token_sequence, if any, into the generated object
module. The token_sequence is included in the generated executable but is not
loaded into memory when the program is run.

token_sequence
The characters in this field, if specified, must be enclosed in double quotation
marks ("). If the string literal specified in the token_sequence exceeds 32 767
bytes, an information message is emitted and the pragma is ignored.

Usage

More than one comment directive can appear in a translation unit, and each type
of comment directive can appear more than once, with the exception of copyright,
which can appear only once.

You can display the object-file comments by using the operating system strings
command.

Examples

Assume that the code of tt.c is as follows:

#pragma comment (date)

#pragma comment (compiler)

#pragma comment (timestamp)

#pragma comment (copyright,"My copyright")
int main() { return 0; }

To display the comment information embedded in tt.o, along with any other
strings that can be found in the code, issue the command:

xlc -c tt.c
strings -a tt.o

344 XxLC: Compiler Reference

The preceding code might produce the following results:

0.text
.data
@.bss
.comme

nt

Thu Dec 24 16:44:25 EDT 2015IBM XL C for AIX ---- Version 13.1.3.0
Thu Dec 24 16:44:09 EDT 2015

main

My copyright

.file
tt.c
.text
.data
.bss
.main
_§$STAT
_$STAT
main
main

IC
IC

Thu Dec 24 16:44:25 2015

IBM XL

C for AIX, Version 13.1.3.0 ---

#pragma disjoint
Category

[Optimization and tuning|

Purpose

Lists identifiers that are not aliased to each other within the scope of their use.

By informing the compiler that none of the identifiers listed in the pragma shares
the same physical storage, the pragma provides more opportunity for
optimizations.

Syntax

»»—i#pragma disjoint

v

—variable_name s

—

v

*. *.

variable_name)

Parameters

variable_name
The name of a variable. It must not refer to any of the following:

A member of a structure or union

A structure, union, or enumeration tag
An enumeration constant

A typedef name

A label

345

Chapter 5. Compiler pragmas reference

Usage

The #pragma disjoint directive asserts that none of the identifiers listed in the
pragma share physical storage; if any the identifiers do actually share physical
storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is
allowed. An identifier in the directive must be visible at the point in the program
where the pragma appears.

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function
argument before it appears in the directive.

This pragma can be disabled with the -qignprag compiler option.
Examples

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

one_function()

{
#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */

b =6;
ptr_a = 7; / Assignment will not change the value of b =*/

another_function(b); /% Argument "b" has the value 6 =/

}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.

#pragma enum
See [“-genum” on page 137.|

#pragma execution_frequency
Category

[Optimization and tuning]

Purpose

Marks program source code that you expect will be either very frequently or very
infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

346 XLC: Compiler Reference

Syntax

v
A

»»—#—pragma—execution_frequen cy—(—[very_1 ow—_l—)
very_high

Parameters

very_low
Marks source code that you expect will be executed very infrequently.

very_high
Marks source code that you expect will be executed very frequently.

Usage

Use this pragma in conjunction with an optimization option; if optimization is not
enabled, the pragma has no effect.

The pragma must be placed within block scope, and acts on the closest preceding
point of branching.

Examples

In the following example, the pragma is used in an if statement block to mark
code that is executed infrequently.

int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A =/
#pragma execution_frequency(very low)
error();

}

In the next example, the code block Block B is marked as infrequently executed
and Block C is likely to be chosen during branching.

if (Foo > 0) {
#pragma execution_frequency(very_Tlow)
/* Block B */
doSomething();
} else {
/* Block C */
doAnotherThing();
1

In this example, the pragma is used in a switch statement block to mark code that
is executed frequently.

while (counter > 0) {
#pragma execution_frequency(very high)
doSomething();

} /* This Toop is very likely to be executed. */

switch (a) {

case 1:
doOneThing();
break;

case 2:
#pragma execution_frequency(very_high)
doTwoThings();
break;

Chapter 5. Compiler pragmas reference 347

default:
doNothing();
} /* The second case is frequently chosen. =/

#pragma expected_value
Category

[Optimization and tuning]

Purpose
Specifies the value that a parameter passed in a function call is most likely to take
at run time. The compiler can use this information to perform certain

optimizations, such as function cloning and inlining.

Syntax

»»>—i#pragma expected_value—(—argument—,—value—) >«

Parameters

argument
The name of the parameter for which you want to provide the expected value.
The parameter must be of a simple built-in integral, Boolean, character, or
floating-point type.

value
A constant literal representing the value that you expect will most likely be
taken by the parameter at run time. value can be an expression as long as it is a
compile time constant expression.

Usage

The directive must appear inside the body of a function definition, before the first
statement (including declaration statements). It is not supported within nested
functions.

If you specify an expected value of a type different from that of the declared type
of the parameter variable, the value will be implicitly converted only if allowed.
Otherwise, a warning is issued.

For each parameter that will be provided the expected value there is a limit of one
directive. Parameters that will not be provided the expected value do not require a
directive.

Examples

The following example tells the compiler that the most likely values for parameters
a and b are 1 and 0, respectively:

int func(int a,int b)

{

#pragma expected_value(a,l)
#pragma expected value(b,0)

348 XxLC: Compiler Reference

Related information
* |“#pragma execution_frequency” on page 346|

#pragma fini
Category

[“Object code control” on page 33§|

Purpose

Specifies the order in which the runtime library calls a list of functions after main()
completes or exit() is called.

For shared libraries, the fini functions are called when the shared library is loaded
from memory. For example, when using dynamic loading, this happens at the

point when dlclose() is called.

Syntax

v

A\
A

»»—#—pragma—Tfini—(-function_name——)

Usage

Any function that is specified in the pragma should have return type void (for
example, void fA();) and take no parameters. Functions that have a non-void
return type are accepted but the return value is discarded.

Functions that take parameters are ignored with a warning since the parameters
would contain garbage values.

Within the same compilation unit, the list of functions in pragma fini are called in
the order specified. Similarly, within the same compilation unit, functions specified
in more than one pragma fini are called in the order in which the pragmas are
encountered in the source.

In general, the order of static termination across files and across libraries is
nonstandard and therefore, a non-portable behavior. It is not advisable to build any
dependency on this behavior. The order of functions across files is undefined, even
when using the -Wm option.

When mixing C and C++ files, the relative order of init or fini functions in C files
with respect to the static constructors/destructors in C++ files is undefined. The
-qunique option can interact with pragma fini.

Related information
* [“#pragma init” on page 355|

#pragma GCC visibility push, #pragma GCC visibility pop
Category

[Optimization and tuning]

Chapter 5. Compiler pragmas reference 349

Purpose

Specifies the visibility attribute for external linkage entities in object files.

Syntax
»»—#—pragma—GCC—visibility—push—(default) >
protected—
hidden
internal—
»»—#—pragma—GCC—visibility—pop ><
Parameters
default

Indicates that the affected external linkage entities have the default visibility
attribute. These entities are exported in shared libraries, and they can be
preempted.

protected
Indicates that the affected external linkage entities have the protected visibility
attribute. These entities are exported in shared libraries, but they cannot be
preempted.

hidden
Indicates that the affected external linkage entities have the hidden visibility
attribute. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal
Indicates that the affected external linkage entities have the internal visibility
attribute. These entities are not exported in shared libraries, and their
addresses are not available to other modules.

Restriction: In this release, the hidden and internal visibility attributes are the
same. The addresses of the entities that are specified with either of these visibility
attributes can be referenced indirectly through pointers.

Usage

You can selectively set visibility attributes for entities by using pairs of the #pragma
GCC visibility push and #pragma GCC visibility pop compiler directives
throughout your source program. If you specify the #pragma GCC visibility pop
directive without the corresponding #pragma GCC visibility push directive, the
compiler issues a warning message. Entity visibility attributes describe whether
and how an entity defined in one module can be referenced or used in other
modules. Visibility attributes affect entities with external linkage only, and cannot
increase the visibility of other entities. Entity preemption occurs when an entity
definition is resolved at link time, but is replaced with another entity definition at
run time.

Note: On the AIX platform, entity preemption occurs only when runtime linking is
used. For details, see ['Linking a library to an application'|in the XL C Optimization
and Programming Guide. Visibility attributes are supported on AIX 6.1 TL8, AIX 7.1
TL2, AIX 7.2, and higher.

350 xLcC: Compiler Reference

Related information
* |“-qvisibility” on page 323|

* [“-gmkshrobj” on page 233

* ["-G” on page 163

* |'Using visibility attributes (IBM extension)'|in the XL C Optimization and
Programming Guide

+ |'External linkage'} ['The visibility variable attribute (IBM extension)'"} and ['The]
visibility function attribute (IBM extension)'|in the XL C Language Reference

#pragma ibm independent_loop
Purpose

The independent_loop pragma explicitly states that the iterations of the chosen
loop are independent, and that the iterations can be executed in parallel.

Syntax

»»—#—pragma—ibm independent_Toop |_ _| >«
if exp

where exp represents a scalar expression.
Usage

If the iterations of a loop are independent, you can put the pragma before the loop
block. Then the compiler executes these iterations in parallel. When the exp
argument is specified, the loop iterations are considered independent only if exp
evaluates to TRUE at run time.

Notes:

* If the iterations of the chosen loop are dependent, the compiler executes the loop
iterations sequentially no matter whether you specify the independent_loop
pragma.

* To have an effect on a loop, you must put the independent_loop pragma
immediately before this loop. Otherwise, the pragma is ignored.

* If several independent_loop pragmas are specified before a loop, only the last
one takes effect.

* This pragma only takes effect if you specify the -gsmp or -ghot compiler option.

This pragma can be combined with the omp parallel for pragma to select a
specific parallel process scheduling algorithm. For more information, see
fomp parallel for” on page 393

Examples

In the following example, the loop iterations are executed in parallel if the value of
the argument k is larger than 2.
int a[1000], b[1000], c[1000];
int main(int k){
if(k>0){
#pragma ibm independent loop if (k>2)
for(int i=0; i<900; i++){

Chapter 5. Compiler pragmas reference 351

alil=b[i]*c[i];

}
}

#pragma ibm iterations
Category

[Optimization and tuning|

Purpose

The iterations pragma specifies the approximate average number of loop iterations
for the chosen loop.

Syntax

v
A

»»—#—pragma—ibm iterations—(iteration count)

Parameters

iteration_count
Specifies the approximate number of loop iterations using a positive integral
constant expression.

Usage

The compiler uses the information in iteration_count for loop optimization. You can
specify multiple #pragma ibm iterations(iteration_count).

iteration_count specified in #pragma ibm iterations cannot be smaller than
iteration_count specified in #pragma ibm min_iterations. In addition, it cannot be
bigger than iteration_count specified in #pragma ibm max_iterations. Otherwise, the
inconsistent value is ignored with a message.

Example

#pragma ibm iterations(100) // Accepted

#pragma ibm min_iterations(150) // Ignored (150 > 100)

#pragma ibm min_iterations(30) // Accepted(30 < 100)

#pragma ibm max_iterations(60) // Ignored (60 < 100)

#pragma ibm iterations(20) // Ignored (20 < 30)

#pragma ibm max_iterations(500) // Accepted (5600 > 100 > 30)
#pragma ibm max_iterations(620) // Ignored (Multiple occurrences)
#pragma ibm iterations(200) // Accepted(30 < 200 < 500)
#pragma ibm min_iterations(15) // Ignored (Multiple occurrences)

for (int i=0; i < n; ++i)

{
#pragma ibm max_iterations(130) // Accepted
#pragma ibm min_iterations(90) // Accepted(90 < 130)
#pragma ibm iterations(60) // Ignored (60 < 90)
#pragma ibm iterations(100) // Accepted(90 < 100 < 130)

for (int j=0; j < m; ++j) b[j] += a[il;
}

Related reference:

[“#pragma ibm max_iterations” on page 353|

[“#pragma ibm min_iterations” on page 354

352 XxLC: Compiler Reference

#pragma ibm max_iterations
Category

[Optimization and tuning|

Purpose

The max_iterations pragma specifies the approximate maximum number of loop
iterations for the chosen loop.

Syntax

»>—#—pragma—ibm max_iterations—(iteration_count) >

Parameters

iteration_count
Specifies the approximate number of maximum loop iterations using a positive
integral constant expression.

Usage

The compiler uses the information in iteration_count for loop optimization. You can
specify #pragma ibm max_iterations(iteration_count) only once. If you specify
#pragma ibm max_iterations(iteration_count) more than once, the first specified
pragma is accepted, and the subsequent pragmas are ignored with a message.

iteration_count specified in #pragma ibm max_iterations cannot be smaller than
iteration_count specified in #pragma ibm iterations or #pragma ibm min_iterations.
Otherwise, the inconsistent value is ignored with a message.

Example

#pragma ibm iterations(100) // Accepted

#pragma ibm min_iterations(150) // Ignored (150 > 100)

#pragma ibm min_iterations(30) // Accepted(30 < 100)

#pragma ibm max_iterations(60) // Ignored (60 < 100)

#pragma ibm iterations(20) // Ignored (20 < 30)

#pragma ibm max_iterations(500) // Accepted(500 > 100 > 30)
#pragma ibm max_iterations(620) // Ignored (Multiple occurrences)
#pragma ibm iterations(200) // Accepted(30 < 200 < 500)
#pragma ibm min_iterations(15) // Ignored (Multiple occurrences)

for (int i=0; i < n; ++i)

{
#pragma ibm max_iterations(130) // Accepted
#pragma ibm min_iterations(90) // Accepted(90 < 130)
#pragma ibm iterations(60) // Ignored (60 < 90)
#pragma ibm iterations(100) // Accepted(90 < 100 < 130)

for (int j=0; j < m; ++j) b[j] += a[i];
}

Related reference:

[“#pragma ibm iterations” on page 352

[“#pragma ibm min_iterations” on page 354|

Chapter 5. Compiler pragmas reference 353

#pragma ibm min_iterations
Category

[Optimization and tuning|

Purpose

The min_iterations pragma specifies the approximate minimum number of loop
iterations for the chosen loop.

Syntax

Y
A

»>—#—pragma—ibm min_iterations—(iteration_count)

Parameters

iteration_count
Specifies the approximate minimum number of loop iterations using a positive
integral constant expression.

Usage

The compiler uses the information in iteration_count for loop optimization. You can
specify #pragma ibm min_iterations(iteration_count) only once. If you specify
#pragma ibm min_iterations(iteration_count) more than once, the first specified
pragma is accepted, and the subsequent pragmas are ignored with a message.

iteration_count specified in #pragma ibm min_iterations cannot be bigger than
iteration_count specified in #pragma ibm iterations or #pragma ibm max_iterations.
Otherwise, the inconsistent value is ignored with a message.

Example

#pragma ibm iterations(100) // Accepted

#pragma ibm min_iterations(150) // Ignored (150 > 100)

#pragma ibm min_iterations(30) // Accepted(30 < 100)

#pragma ibm max_iterations(60) // Ignored (60 < 100)

#pragma ibm jterations(20) // Ignored (20 < 30)

#pragma ibm max_iterations(500) // Accepted(500 > 100 > 30)
#pragma ibm max_iterations(620) // Ignored (Multiple occurrences)
#pragma ibm iterations(200) // Accepted(30 < 200 < 500)
#pragma ibm min_iterations(15) // Ignored (Multiple occurrences)

for (int i=0; i < nj ++i)

{
#pragma ibm max_iterations(130) // Accepted
#pragma ibm min_iterations(90) // Accepted(90 < 130)
#pragma ibm iterations(60) // Ignored (60 < 90)
#pragma ibm iterations(100) // Accepted(90 < 100 < 130)

for (int j=0; j < m; ++j) b[j] += a[il;
}

Related reference:

[“#pragma ibm iterations” on page 352

[“#pragma ibm max_iterations” on page 353|

354 XxLC: Compiler Reference

#pragma ibm snapshot
Category

[Error checking and debugging]

Purpose

Specifies a location at which a breakpoint can be set and defines a list of variables
that can be examined when program execution reaches that location.

You can use this pragma to facilitate debugging optimized code produced by the
compiler.

Syntax

1

v

A\
A

»»—#—pragma—ibm snapshot—(

variable_name)

Parameters

variable_name
A variable name. It must not refer to structure or union members.

Usage

During a debugging session, you can place a breakpoint on the line at which the
directive appears, to view the values of the named variables. When you compile
with optimization and the -g option, the named variables are guaranteed to be
visible to the debugger.

This pragma does not consistently preserve the contents of variables with a static
storage class at high optimization levels. Variables specified in the directive should
be considered read-only while being observed in the debugger, and should not be
modified. Modifying these variables in the debugger may result in unpredictable
behavior.

Examples
#pragma ibm snapshot(a, b, c)

Related information
* [“-¢” on page 160|
* [“-O, -qoptimize” on page 236|

#pragma info
See |“-ginfo” on page 178

#pragma init
Category

[“Object code control” on page 33§|

Chapter 5. Compiler pragmas reference 355

Purpose

Specifies the order in which the runtime library calls a list of functions before
main() is called.

For shared libraries, the init functions are called when the shared library is loaded
to memory. For example, when using dynamic loading, this happens at the point

when dlopen() is called.

Syntax

v

»»—#—pragma—init—(

-function_name) ><

Usage

Any function that is specified in the pragma should have return type void (for
example, void fA();) and take no parameters. Functions that have a non-void
return type are accepted but the return value is discarded.

Functions that take parameters are ignored with a warning since the parameters
would contain garbage values.

Within the same compilation unit, the list of functions in pragma init are called in
the order specified. Similarly, within the same compilation unit, functions specified
in more than one pragma init are called in the order in which the pragmas are
encountered in the source.

In general, the order of static initialization across files and across libraries is
nonstandard and therefore, a non-portable behavior. It is not advisable to build any
dependency on this behavior. The order of functions across files is undefined, even
when using the -Wm option).

Related information
* |“#pragma fini” on page 349

#pragma isolated_call
See [“-gisolated_call” on page 199.|

#pragma langivl
See [“-glanglvl” on page 206

#pragma leaves
Category

[Optimization and tuning]

Purpose

Informs the compiler that a named function never returns to the instruction
following a call to that function.

356 XxLC: Compiler Reference

By informing the compiler that it can ignore any code after the function, the
directive allows for additional opportunities for optimization.

This pragma is commonly used for custom error-handling functions, in which
programs can be terminated if a certain error is encountered.

Note: The compiler automatically inserts #pragma leaves directives for calls to the
Tongjmp family of functions (1ongjmp, _longjmp, siglongjmp, and _siglongjmp)

when you include the setjmp.h header.

Syntax

v

»»—#—pragma—I1eaves—(function_name) ><

Parameters

function_name
The name of the function that does not return to the instruction following the
call to it.

Defaults
Not applicable.

Examples

#pragma leaves(handle_error_and_quit)
void test_value(int value)
{
if (value == ERROR_VALUE)
{
handle_error_and quit(value);
TryAgain(); // optimizer ignores this because
// never returns to execute it
}
1

Related information
* |“#pragma reachable” on page 369 .|

#pragma loopid
Category

[Optimization and tuning]

Purpose
Marks a block with a scope-unique identifier.

Syntax

»»—#—pragma—71oopid—(—name—)

v
A

Chapter 5. Compiler pragmas reference 357

Parameters

name
An identifier that is unique within the scoping unit.

Usage

The #pragma loopid directive must immediately precede a #pragma block_loop
directive or for loop. The specified name can be used by #pragma block_loop to
control transformations on that loop. It can also be used to provide information on
loop transformations through the use of the -qreport compiler option.

You must not specify #pragma loopid more than once for a given loop.

Examples

For examples of #pragma loopid usage, see [“#pragma block_loop” on page 340,

Related information

* [“-qunroll” on page 314

+ [“#pragma block_loop” on page 340|

+ [“#pragma unrollandfuse” on page 375|

#pragma map
Category

[Object code controll

Purpose
Converts all references to an identifier to another, externally defined identifier.

Syntax

#pragma map syntax (C only)

»>—#—pragma—map— (—namel—,—"—name2—"—) e

Parameters

namel
The name used in the source code. namel can represent a data object or
function with external linkage.

namel should be declared in the same compilation unit in which it is
referenced, but should not be defined in any other compilation unit. namel
must not be used in another #pragma map directive or any assembly label
declaration anywhere in the program.

name2
The name that will appear in the object code. name2 can represent a data object
or function with external linkage.

If the name exceeds 65535 bytes, an informational message is emitted and the
pragma is ignored.

name2 may or may not be declared in the same compilation unit in which
namel is referenced, but must not be defined in the same compilation unit.

358 xLC Compiler Reference

Also, name2 should not be referenced anywhere in the compilation unit where
namel is referenced. name2 must not be the same as that used in another
#pragma map directive or any assembly label declaration in the same
compilation unit.

Usage

The #pragma map directive can appear anywhere in the program. Note that in
order for a function to be actually mapped, the map target function (name2) must
have a definition available at link time (from another compilation unit), and the
map source function (namel) must be called in your program.

You cannot use #pragma map with compiler built-in functions.
Examples

The following is an example of #pragma map used to map a function name:
/* Compilation unit 1: %/

#include <stdio.h>

void foo();
extern void bar(); /* optional x/

#pragma map (foo, "bar")

int main()

{
foo();

}
/* Compilation unit 2: */
#include <stdio.h>

void bar()

{
printf("Hello from foo bar!\n");

}

The call to foo in compilation unit 1 resolves to a call to bar:
Hello from foo bar!

Related information
* ['Assembly labels'|in the XL C Language Reference

#pragma mc_func
Category

[Language element controll

Purpose

Allows you to embed a short sequence of machine instructions "inline" within your
program source code.

The pragma instructs the compiler to generate specified instructions in place rather
than the usual linkage code. Using this pragma avoids performance penalties

Chapter 5. Compiler pragmas reference 359

associated with making a call to an assembler-coded external function. This
pragma is similar in function to inline asm statements supported in this and other
compilers; see ['Inline assembly statements'|in the XL C Language Reference for more
information.

Syntax

v
A

»»—#—pragma—mc_func—function_name—{——instruction_sequence }

Parameters

function_name
The name of a previously-defined function containing machine instructions. If
the function is not previously-defined, the compiler will treat the pragma as a
function definition.

instruction_sequence
A string containing a sequence of zero or more hexadecimal digits. The
number of digits must comprise an integral multiple of 32 bits. If the string
exceeds 16384 bytes, a warning message is emitted and the pragma is ignored.

Usage

This pragma defines a function and should appear in your program source only
where functions are ordinarily defined.

The compiler passes parameters to the function in the same way as to any other
function. For example, in functions taking integer-type arguments, the first
parameter is passed to GPR3, the second to GPR4, and so on. Values returned by
the function will be in GPR3 for integer values, and FPR1 for float or double
values.

Code generated from instruction_sequence may use any and all volatile registers
available on your system unless you use #pragma reg_killed_by to list a specific
register set for use by the function. See [“#pragma reg_killed_by” on page 370 for a
list of volatile registers available on your system.

Inlining options do not affect functions defined by #pragma mc_func. However,
you might improve runtime performance of such functions with #pragma
isolated_call.

Examples

In the following example, #pragma mc_func is used to define a function called
add_logical. The function consists of machine instructions to add 2 integers with
so-called end-around carry; that is, if a carry out results from the add then add the
carry to the sum. This formula is frequently used in checksum computations.
int add_logical(int, int);
#pragma mc_func add_logical {"7c632014" "7c630194"}

/* addc r3 <-r3, r4 */

/* addze r3 <- r3, carry bit */

main() {

360 xLC Compiler Reference

int i,j,k;
= 4;
= -4
= add_logical(i,k);

;
k
J
printf("\n\nresult = %d\n\n",j);

}

The result of running the program is as follows:
result =1

Related information

+ |[“-gisolated_call” on page 199

* |“#pragma reg killed_by” on page 370|

* |'Inline assembly statements'|in the XL C Language Reference

#pragma nofunctrace
Category

[Error checking and debugging]

Purpose
Disables tracing for a given function or a list of specified functions.

Syntax

v

A\
A

»»—#—pragma—nofunctrace—(-function_name——)

Parameters

function_name
The name of the function for which you want to disable tracing.

Usage

When you use #pragma nofunctrace to specify a list of functions for which you
want to disable tracing, use parenthesis () and encapsulate the functions in it. For a
list of functions, use a comma , to separate them. For example, to disable tracing
for function a, use #pragma nofunctrace(a). To disable tracing for functions a, b,
and c, use #pragma nofunctrace(a,b,c).

Two colons in a row :: are considered scope qualifiers. For example, when you
call -qfunctrace+A::B:C, the compiler traces functions that begin with the
qualifiers A: :B or C.

Note: If you want to use the compiler option -qfunctrace to disable tracing for a
given function or a list of functions, you must use its suboption - followed by the
names of the functions. For details about how to use -qfunctrace and its related
suboptions, see [“-gfunctrace” on page 158

Examples
#pragma nofunctrace(a,b,c)

Chapter 5. Compiler pragmas reference 361

Related information
* ["-gfunctrace” on page 158|

#pragma nosimd
See [“-gsimd” on page 278 |

Example

In the following example, #pragma nosimd is used to disable -qsimd=auto for a
specific for loop.

#pragma nosimd
for (i=1; i<1000; i++)
{

}

/* program code */

#pragma novector
See [“-ghot” on page 169 |

#pragma options
Category

[Language element control|

Purpose

Specifies compiler options in your source program.

Syntax

Y
A

»—#—pragma—[opti on—_l—" ption_keyword
options

ption_keyword—=

Parameters

The settings in the table below are valid options for #pragma options. For more
information, see the pages of the equivalent compiler option.

Vali‘d settings for #pragma options Compiler option equivalent
option_keyword

align=option [“-galign” on page 98]
[no]attr [“-qattr” on page 108]
attr=full

chars=option [“-gchars” on page 118
[no]check [“-qcheck” on page 119
[noJcompact [“-gcompact” on page 122|

362 XLC: Compiler Reference

Valid settings for #pragma options
option_keyword

Compiler option equivalent

[no]dbcs [“-gmbcs, -qdbes” on page 230|
[no]dbxextra [“-gdbxextra” on page 130|
[no]digraph [“-gdigraph” on page 132|
[no]dollar [“-gdollar” on page 133

enum=option

[“-genum” on page 137

[no]extchk

[“-gextchk” on page 141

flag=option

[“-gflag” on page 145|

float=[noJoption

[“-gfloat” on page 146|

[no]flttrap [“-gflttrap” on page 151|
[no]fullpath [“-gfullpath” on page 156|
halt [“-ghalt” on page 165|
[no]idirfirst [“-qgidirfirst” on page 173|
[noJignerrno [“-gignerrno” on page 174|

ignprag=option

[“-gignprag” on page 175|

[no]info=option

[“-ginfo” on page 17§]

initauto=value

[“-ginitauto” on page 186|

[no]inlglue

[“-ginlglue” on page 188|

isolated_call=names

[“-gisolated_call” on page 199

langlvl [“-glanglvl” on page 206|

[no]ldbl128 [“-g1dbl128, -glongdouble” on page 212
[no]libansi [“-glibansi” on page 214]

[no]list [“-glist” on page 217|

[no]longlong [“-glonglong” on page 223|

[no]macpstr [“-gmacpstr” on page 224|
[no]Jmaxmem=number [“-gmaxmem” on page 229|

[no]mbcs [“-gmbcs, -qdbes” on page 230|
[noJoptimize=number [“-O, -qoptimize” on page 236|

proclocal, procimported, procunknown

“_gprocimported, -gproclocal,|
-gprocunknown” on page 260

[no]proto [“-gproto” on page 262|
[noJro [“-gro” on page 267
[no]roconst [“-groconst” on page 268|
[no]showinc [“-gshowinc” on page 275
[no]source [“-gsource” on page 286|

spill=number

[“-gspill” on page 289

[no]srcmsg [“-gsremsg” on page 290|
[no]stdinc [“-gstdinc” on page 292|
[no]strict [“-gstrict” on page 294|

tbtable=option

[“-gtbtable” on page 305|

tune=option

[“-gtune” on page 310|

Chapter 5. Compiler pragmas reference 363

Vali'd settings for #pragma options Compiler option equivalent
option_keyword

[noJunroll=[yes/no/auto/n] [“-qunroll” on page 314|
[noJupconv [“-qupconv” on page 318|
[no]xref [“-gxref” on page 330|
Usage

Most #pragma options directives must come before any statements in your source
program; only comments, blank lines, and other pragma specifications can precede
them. For example, the first few lines of your program can be a comment followed
by the #pragma options directive:

/* The following is an example of a #pragma options directive: */
#pragma options Tanglvl=stdc89 halt=s spil1=1024 source

/* The rest of the source follows ... */

To specify more than one compiler option with the #pragma options directive,
separate the options using a blank space. For example:

#pragma options langlvl=stdc89 halt=s spil1=1024 source

#pragma option_override
Category

[Optimization and tuning|

Purpose

Allows you to specify optimization options at the subprogram level that override
optimization options given on the command line.

This enables finer control of program optimization, and can help debug errors that
occur only under optimization.

Syntax

»>—#—pragma—option_override

l

»—(—identifier——,——"—opt—(——size I:)—") -

s Yes—

, no—
0.

—level—, 0
-
3]

—registerspillsize—,——size—
l’a

yes———
no——
suboption_list—

Lstrict

364 XxLC Compiler Reference

Parameters

identifier

The name of a function for which optimization options are to be overridden.

The following table shows the equivalent command line option for each pragma

suboption.

#pragma option_override value

Equivalent compiler option

level, 0 !
level, 2 o).l
level, 3 -0#

registerspillsize, size

-gspill=size

strict, yes

size -qcompact

size, yes

size, no -gnocompact

strict -gstrict, -gstrict=all

strict, no

-gqnostrict

strict, suboption_list

-qstrict=suboption_list

Notes:

1. If optimization level -O3 or higher is specified on the command line, #pragma
option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)") does not turn off the
implication of the -qhot and -qipa options.

2. Specifying -O3 implies -qhot=level=0. However, specifying #pragma
option_override(identifier, "opt(level, 3)") in source code does not imply

-ghot=level=0.

Defaults

See the descriptions for the options listed in the table above for default settings.

Usage

The pragma takes effect only if optimization is already enabled by a command-line
option. You can only specify an optimization level in the pragma lower than the
level applied to the rest of the program being compiled.

The #pragma option_override directive only affects functions that are defined in
the same compilation unit. The pragma directive can appear anywhere in the
translation unit. That is, it can appear before or after the function definition, before
or after the function declaration, before or after the function has been referenced,
and inside or outside the function definition.

Examples

Suppose you compile the following code fragment containing the functions foo
and faa using -O2. Since it contains the #pragma option_override(faa,
"opt(level, 0)"), function faa will not be optimized.

Chapter 5. Compiler pragmas reference 365

foo(){

}
#pragma option_override(faa, "opt(level, 0)")

faa(){

}
Related information
+ |”-O, -qoptimize” on page 236
* [“-gcompact” on page 122
* |“-gspill” on page 289
s |“-gstrict” on page 294|

#pragma pack
Category

[Object code controll

Purpose
Sets the alignment of all aggregate members to a specified byte boundary.

If the byte boundary number is smaller than the natural alignment of a member,
padding bytes are removed, thereby reducing the overall structure or union size.

Syntax

»»—#—pragma—pack—() ><
nopack—
numbe r—
pop

Defaults

Members of aggregates (structures, unions, and classes) are aligned on their natural
boundaries and a structure ends on its natural boundary. The alignment of an
aggregate is that of its strictest member (the member with the largest alignment
requirement).

Parameters

nopack
Disables packing. A warning message is issued and the pragma is ignored.

number
is one of the following:

1 Aligns structure members on 1-byte boundaries, or on their natural
alignment boundary, whichever is less.

2 Aligns structure members on 2-byte boundaries, or on their natural
alignment boundary, whichever is less.

366 XLC: Compiler Reference

4 Aligns structure members on 4-byte boundaries, or on their natural
alignment boundary, whichever is less.

8 Aligns structure members on 8-byte boundaries, or on their natural
alignment boundary, whichever is less.

16 Aligns structure members on 16-byte boundaries, or on their natural
alignment boundary, whichever is less.

pop
Removes the previous value added with #pragma pack. Specifying #pragma
pack() with no parameters is equivalent to #pragma pack(pop).

Usage

The #pragma pack directive applies to the definition of an aggregate type, rather
than to the declaration of an instance of that type; it therefore automatically applies
to all variables declared of the specified type.

The #pragma pack directive modifies the current alignment rule for only the
members of structures whose declarations follow the directive. It does not affect
the alignment of the structure directly, but by affecting the alignment of the
members of the structure, it may affect the alignment of the overall structure.

The #pragma pack directive cannot increase the alignment of a member, but rather
can decrease the alignment. For example, for a member with data type of short, a
#pragma pack(1) directive would cause that member to be packed in the structure
on a 1-byte boundary, while a #pragma pack(4) directive would have no effect.

The #pragma pack directive aligns all bit fields in a structure/union on 1-bit
boundaries. Example:
#pragma pack(2)
struct A{
int a:31;
int b:2;
bxs

int main(){
printf("size of struct A = %lu\n", sizeof(x));

}

When the program is compiled and run, the output is:
size of struct A =6

But if you remove the #pragma pack directive, you get this output:
size of struct A = 8

The #pragma pack directive applies only to complete declarations of structures or
unions; this excludes forward declarations, in which member lists are not specified.
For example, in the following code fragment, the alignment for struct S is 4, since
this is the rule in effect when the member list is declared:

#pragma pack(1)

struct S;

#pragma pack(4)

struct S { int i, j, k; };

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained, as shown in the following
example:

Chapter 5. Compiler pragmas reference 367

#pragma pack (4) // 4-byte alignment
struct nested {
int x;
char y;
int z;
}s
#pragma pack(1) // 1l-byte alignment
struct packedcxx(
char a;
short b;

struct nested sl; // 4-byte alignment

}s

If more than one #pragma pack directive appears in a structure defined in an
inlined function, the #pragma pack directive in effect at the beginning of the
structure takes precedence.

Examples

The following example shows how the #pragma pack directive can be used to set
the alignment of a structure definition:

// header file file.h
#pragma pack(1)

struct jeff{ //
short bill; //
int *chris;
1s
#pragma pack (pop) //
// source file anyfile.c

this structure is packed
along 1l-byte boundaries

reset to previous alignment rule

#include "file.h"

struct jeff j; // uses the alignment specified
// by the pragma pack directive
// in the header file and is
// packed along 1-byte boundaries

This example shows how a #pragma pack directive can affect the size and
mapping of a structure:

struct s_t {
char a;
int b;
short c;
int d;
1S;

Default mapping:
size of s_t =16
offsetof a =0
offset of b = 4
offset of c = 8
offset of d = 12
alignment of a = 1
alignment of b = 4

alignment of ¢ = 2

368 XxLC: Compiler Reference

With #pragma pack(1):
sizeof s_t =11
offsetof a =0

offset of b =1

offsetof c =5

offset of d =7
alignment of a = 1
alignment of b =1

alignment of c = 1

Default mapping: With #pragma pack(1):

alignment of d = 4 alignment of d = 1

The following example defines a union uu containing a structure as one of its
members, and declares an array of 2 unions of type uu:
union uu {
short a;
struct {
char x;
char y;
char z;
} b;
b

union uu nonpacked[2];

Since the largest alignment requirement among the union members is that of short
a, namely, 2 bytes, one byte of padding is added at the end of each union in the
array to enforce this requirement:

nonpacked[0] —— — nonpacked[1]

The next example uses #pragma pack(1) to set the alignment of unions of type uu
to 1 byte:

#pragma pack(1)

union uu {
short a;
struct {
char x;
char y;
char z;
} b
1

union uu pack_array[2];

Now, each union in the array packed has a length of only 3 bytes, as opposed to
the 4 bytes of the previous case:

packed[0] ——— packed[1]

Related information
* |“-qalign” on page 98|

* ['Using alignment modifiers'|in the XL C Optimization and Programming Guide

#pragma reachable
Category

[Optimization and tuning]|

Chapter 5. Compiler pragmas reference 369

Purpose

Informs the compiler that the point in the program after a named function can be
the target of a branch from some unknown location.

By informing the compiler that the instruction after the specified function can be
reached from a point in your program other than the return statement in the
named function, the pragma allows for additional opportunities for optimization.

Note: The compiler automatically inserts #pragma reachable directives for the
setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp) when you
include the setjmp.h header file.

Syntax

H

v

v
A

»»—#—pragma—reachable—(-function_name)

Parameters

function_name
The name of a function preceding the instruction which is reachable from a
point in the program other than the function's return statement.

Defaults
Not applicable.

Related information
* [“#pragma leaves” on page 356

#pragma reg_killed_by
Category

[Optimization and tuning]

Purpose

Specifies registers that may be altered by functions specified by #pragma mc_func.
Ordinarily, code generated for functions specified by #pragma mc_func may alter
any or all volatile registers available on your system. You can use #pragma
reg_killed_by to explicitly list a specific set of volatile registers to be altered by

such functions. Registers not in this list will not be altered.

Syntax

»>—#—pragma—reg_killed_by—function v | >«

l—r‘e]
gister
L

-—register—l

370 XxLC: Compiler Reference

Parameters

function
The name of a function previously defined using the #pragma mc_func
directive.

register
The symbolic name(s) of either a single register or a range of registers to be
altered by the named function. The symbolic name must be a valid register
name on the target platform. Valid registers are:

cr0, crl, and cr5 to cr7
Condition registers

ctr Count register

gr0 and gr3 to gr12
General purpose registers

fpO to fp13
Floating-point registers

fsr Floating-point and status control register
Ir Link register
vr0 to vr31

Vector registers (on selected processors only)
xer Fixed-point exception register

You can identify a range of registers by providing the symbolic names of both
starting and ending registers, separated by a dash.

If no register is specified, no volatile registers will be killed by the named
function.

Examples

The following example shows how to use #pragma reg_killed_by to list a specific
set of volatile registers to be used by the function defined by #pragma mc_func.
int add_logical(int, int);
#pragma mc_func add_logical {"7c632014" "7c630194"}

/* addc r3 <- r3, r4 */

/* addze r3 <- r3, carry bit */

#pragma reg_killed_by add_logical gr3, xer
/* only gpr3 and the xer are altered by this function */

main() {
int i,j,k;
i=4;
k = -4;
j = add_logical(i,k);
printf("\n\nresult = %d\n\n",j);

}

Related information
* [“#pragma mc_func” on page 359

Chapter 5. Compiler pragmas reference 371

#pragma simd_level
Category

[Optimization and tuning|

Purpose
Controls the compiler code generation of vector instructions for individual loops.

Vector instructions can offer high performance when used with
algorithmic-intensive tasks such as multimedia applications. You have the
flexibility to control the aggressiveness of autosimdization on a loop-by-loop basis,
and might be able to achieve further performance gain with this fine grain control.

The supported levels are from 0 to 10. level(0) indicates performing no
autosimdization on the loop that follows the pragma directive. level(10) indicates
performing the most aggressive form of autosimdization on the loop. With this
pragma directive, you can control the autosimdization behavior on a loop-by-loop
basis.

Syntax

»»—#—pragma—simd_level—(—n—) ><

Parameters

n A scalar integer initialization expression, from 0 to 10, specifying the
aggressiveness of autosimdization on the loop that follows the pragma
directive.

Usage

A loop with no simd_level pragma is set to simd level 5 by default, if -qgsimd=auto
is in effect.

#pragma simd_level(0) is equivalent to #pragma nosimd, where autosimdization is
not performed on the loop that follows the pragma directive.

#pragma simd_level(10) instructs the compiler to perform autosimdization on the
loop that follows the pragma directive most aggressively, including bypassing cost
analysis.

Rules

The rules of #pragma simd_level directive are listed as follows:

* The #pragma simd_level directive has effect only for architectures that support
vector instructions and when used with -qsimd=auto.

* The #pragma simd_level directive applies to while, do while, and for loops.

* The #pragma simd_level directive applies only to the loop immediately
following it. The directive has no effect on other loops that are nested within the

specified loop. It is possible to set different simd levels for the inner and outer
loops by specifying separate #pragma simd_level directives.

* The #pragma simd_level directive can be mixed with loop optimization (-qhot)
and OpenMP directives without requiring any specific optimization level. For

372 XLC: Compiler Reference

more information about -qhot and OpenMP directives, see [*-qhot” on page 169
in this document and "Using OpenMP directives" in the IBM XL C Optimization
and Programming Guide.

Examples

#pragma simd_level(10)
for (i=1; i<1000; i++) {
/* program code */

b

#pragma STDC CX_LIMITED_RANGE
Category

[Optimization and tuning|

Purpose

Informs the compiler that complex division and absolute value are only invoked
with values such that intermediate calculation will not overflow or lose

significance.

Syntax
off

»>—#—pragma—STDC cx_limi ted_range{on ><
default—

Usage

Using values outside the limited range may generate wrong results, where the
limited range is defined such that the "obvious symbolic definition" will not
overflow or run out of precision.

The pragma is effective from its first occurrence until another cx_limited_range
pragma is encountered, or until the end of the translation unit. When the pragma
occurs inside a compound statement (including within a nested compound
statement), it is effective from its first occurrence until another cx_limited_range
pragma is encountered, or until the end of the compound statement.

Examples

The following example shows the use of the pragma for complex division:
#include <complex.h>

_Complex double a, b, c, d;
void p() {

d = b/c;
{

#pragma STDC CX_LIMITED_RANGE ON

Chapter 5. Compiler pragmas reference 373

a=b/c;

}
}

The following example shows the use of the pragma for complex absolute value:
#include <complex.h>

_Complex double cd = 10.10 + 10.10+*I;
int p() {

#pragma STDC CX_LIMITED_RANGE ON

double d = cabs(cd);
}

Related information
* ['Standard pragmas'|in the XL C Language Reference

#pragma stream_unroll
Category

[Optimization and tuning]

Purpose

When optimization is enabled, breaks a stream contained in a for loop into
multiple streams.

Syntax

»>—#—pragma—stream_unrol]l ><

|—(—number‘—)J

Parameters

number
A loop unrolling factor. The value of number is a positive integral constant
expression.

An unroll factor of 1 disables unrolling.

If number is not specified, the optimizer determines an appropriate unrolling factor
for each nested loop.

Usage

To enable stream unrolling, you must specify -ghot and -gstrict, or -qsmp, or use
optimization level -O4 or higher. If -gstrict is in effect, no stream unrolling takes
place.

For stream unrolling to occur, the #pragma stream_unroll directive must be the
last pragma specified preceding a for loop. Specifying #pragma stream_unroll
more than once for the same for loop or combining it with other loop unrolling
pragmas (#pragma unroll, #pragma nounroll, #pragma unrollandfuse, #pragma
nounrollandfuse) results in a warning.

374 XLC: Compiler Reference

Examples

The following example shows how #pragma stream_unroll can increase
performance.

int i, m, n;

int a[1000];

int b[1000];

int c[1000];

#pragma stream unroll(4)
for (i=0; i<n; i++) {

a[i] = b[i] * c[i];
}

The unroll factor of 4 reduces the number of iterations from n to n/4, as follows:
m = n/4;

for (i=0; i<n/4; i++){
a[i] = b[i] + c[i];
ali+m] = b[i+m] + c[i+m];
al[i+2*m] = b[i+2*m] + c[i+2*m];
a[i+3*m] = b[i+3*m] + c[i+3*m];

}

The increased number of read and store operations are distributed among a
number of streams determined by the compiler, which reduces computation time
and increase performance.

Related information
* [“-qunroll” on page 314
* |“#pragma unrollandfuse”|

#pragma strings
See[“-gro” on page 267

#pragma unroll, #pragma nounroll
See [“-qunroll” on page 314|

#pragma unrollandfuse
Category

[Optimization and tuning]|

Purpose
Instructs the compiler to attempt an unroll and fuse operation on nested for loops.

Syntax

»—#—pragma—[nounro11andfusc >«
unrollandfuse |

|—(—number—)J

Chapter 5. Compiler pragmas reference 375

Parameters

number
A loop unrolling factor. The value of number is a positive integral constant
expression.

If number is not specified, the optimizer determines an appropriate unrolling factor
for each nested loop.

Usage

The #pragma unrollandfuse directive applies only to the outer loops of nested for
loops that meet the following conditions:

* There must be only one loop counter variable, one increment point for that
variable, and one termination variable. These cannot be altered at any point in
the loop nest.

* Loops cannot have multiple entry and exit points. The loop termination must be
the only means to exit the loop.

* Dependencies in the loop must not be "backwards-looking". For example, a
statement such as A[i][j] = A[i -1][j + 1] + 4) must not appear within the
loop.

For loop unrolling to occur, the #pragma unrollandfuse directive must precede a
for loop. You must not specify #pragma unrollandfuse for the innermost for loop.

You must not specify #pragma unrollandfuse more than once, or combine the
directive with #pragma nounrollandfuse, #pragma nounroll, #pragma unroll, or
#pragma stream_unroll directives for the same for loop.

Predefined macros
None.
Examples

In the following example, a #pragma unrollandfuse directive replicates and fuses
the body of the loop. This reduces the number of cache misses for array b.

int i, J;

int a[1000][1000];

int b[1000][1000];

int c[1000][1600];

#pragma unrollandfuse(2)
for (i=1; i<1000; i++) {
for (j=1; j<1000; j++) {
} a[31[i] = b[i1031 * c[31[il;

}

The for loop below shows a possible result of applying the #pragma
unrollandfuse(2) directive to the loop shown above:

376 XLC: Compiler Reference

for (i=1; i<1000; i=i+2) {
for (j=1; j<1000; j++) {
alj1[i] = b[iI[3] » c[31[il;
a[jl[i+1] = b[i+1]1[3] * c[31[i+1];

}

You can also specify multiple #pragma unrollandfuse directives in a nested loop

structure.

int i, j, k;

int a[1000][1000];
int b[1000][1000];
int c[1000][10600];
int d[1000][1000];
int e[1000][1000];

#pragma unrollandfuse(4)
for (i=1; i<1000; i++) {
#pragma unrollandfuse(2)
for (j=1; j<1000; j++) {
for (k=1; k<1000; k++) {
a[J10i] = b[i1[3] = c[31[i] + d[31[k] * e[il[kl;

}

Related information
* [“-qunroll” on page 314
+ [“#pragma stream_unroll” on page 374|

#pragma weak
Category

[Object code control|

Purpose

Prevents the linker from issuing error messages if it encounters a symbol
multiply-defined during linking, or if it does not find a definition for a symbol.

The pragma can be used to allow a program to call a user-defined function that
has the same name as a library function. By marking the library function definition
as "weak", the programmer can reference a "strong" version of the function and
cause the linker to accept multiple definitions of a global symbol in the object
code. While this pragma is intended for use primarily with functions, it will also
work for most data objects.

Syntax

»»—#—pragma—weak—namel |_ >«
=—name2—|

Parameters

namel
A name of a data object or function with external linkage.

Chapter 5. Compiler pragmas reference 377

name2
A name of a data object or function with external linkage.

name2 must not be a member function. If name2 is a template function, you
must explicitly instantiate the template function.

Usage

There are two forms of the weak pragma:

#pragma weak namel
This form of the pragma marks the definition of the namel as "weak" in a
given compilation unit. If namel is referenced from anywhere in the
program, the linker will use the "strong" version of the definition (that is,
the definition not marked with #pragma weak), if there is one. If there is
no strong definition, the linker will use the weak definition; if there are
multiple weak definitions, it is unspecified which weak definition the
linker will select (typically, it uses the definition found in the first object
file specified on the command line during the link step). namel must be
defined in the same compilation unit as #pragma weak.

#pragma weak namel=name?2
This form of the pragma creates a weak definition of the namel for a given
compilation unit, and an alias for name2. If namel is referenced from
anywhere in the program, the linker will use the "strong" version of the
definition (that is, the definition not marked with #pragma weak), if there
is one. If there is no strong definition, the linker will use the weak
definition, which resolves to the definition of name2. If there are multiple
weak definitions, it is unspecified which weak definition the linker will
select (typically, it uses the definition found in the first object file specified
on the command line during the link step).

name2 must be defined in the same compilation unit as #pragma weak.
namel may or may not be declared in the same compilation unit as the
#pragma weak, but must never be defined in the compilation unit. If
namel is declared in the compilation unit, namel's declaration must be
compatible to that of name2. For example, if name? is a function, namel
must have the same return and argument types as name2.

This pragma should not be used with uninitialized global data, or with shared
library data objects that are exported to executables.

Examples

The following is an example of the #pragma weak namel form:
// Compilation unit 1:

#include <stdio.h>

void foo();

int main()

foo();
1

// Compilation unit 2:

#include <stdio.h>

378 XLC: Compiler Reference

#pragma weak foo
void foo()
{
printf("Foo called from compilation unit 2\n");
// Compilation unit 3:

#include <stdio.h>

void foo()
{

}

printf("Foo called from compilation unit 3\n");

If all three compilation units are compiled and linked together, the linker will use
the strong definition of foo in compilation unit 3 for the call to foo in compilation
unit 1, and the output will be:

Foo called from compilation unit 3

If only compilation unit 1 and 2 are compiled and linked together, the linker will
use the weak definition of foo in compilation unit 2, and the output will be:

Foo called from compilation unit 2

The following is an example of the #pragma weak namel=name2 form:
// Compilation unit 1:

#include <stdio.h>
void foo();

int main()

1{°oo();

}

// Compilation unit 2:

#include <stdio.h>

void foo(); // optional

#pragma weak foo = foo2

void foo2()

;{)rintf("HeHo from foo2!\n");
}

// Compilation unit 3:
#include <stdio.h>

void foo()

{
printf("Hello from foo!\n");
1

Chapter 5. Compiler pragmas reference 379

If all three compilation units are compiled and linked together, the linker will use
the strong definition of foo in compilation unit 3 for the call to foo from
compilation unit 1, and the output will be:

Hello from foo!

If only compilation unit 1 and 2 are compiled and linked together, the linker will
use the weak definition of foo in compilation unit 2, which is an alias for foo2, and
the output will be:

Hello from foo2!

Related information
* ['The weak variable attribute'|in the XL C Language Reference

* ['The weak function attribute'|in the XL C Language Reference

+ [“#pragma map” on page 358|

. |”-qweaksymbol” on page 329|

* ["-qweakexp” on page 328|

Pragma directives for parallel processing

Parallel processing operations are controlled by pragma directives in your program
source. The pragmas have effect only when parallelization is enabled with the
-gqsmp compiler option.

You can use IBM SMP or OpenMP directives in C programs. Each has its own
usage characteristics.

#pragma ibm independent_calls
Description

The independent_calls pragma asserts that specified function calls within the
chosen loop have no loop-carried dependencies. This information helps the

compiler perform dependency analysis.

Syntax

»—#—pragma—ibm independent calls— |_ _| >«
(identifier)

Where identifier is a comma-separated list that represents the name of the functions.

Usage

identifier cannot be the name of a pointer to a function.

If no function identifiers are specified, the compiler assumes that all functions
inside the loop are free of carried dependencies.

380 XxLC: Compiler Reference

#pragma ibm permutation
Purpose

The permutation pragma asserts that on the following loop, different elements of
the named arrays are guaranteed to have different values (that is, a[i] == a[j]
iff i == j).

Syntax

H

A\
A

»»—#—pragma—ibm permutation——(identifier)

where identifier represents the name of an array. The identifier cannot be a function
parameter or the name of a pointer.

Usage

Pragma must appear immediately before the loop or loop block directive to be
affected.

This assertion may enable loop transformations if elements are used to index other
arrays. This pragma is useful for programs that deal with sparse data structures.

#pragma ibm schedule
Purpose

Note: #pragma ibm schedule has been deprecated and might be removed in a
future release. Use [“#pragma omp parallel for” on page 393| with the schedule
clause. For more information about SMP directives, see ["Deprecated directives” on|
-ae 339,

The schedule pragma specifies the scheduling algorithms used for parallel
processing.

Syntax

»»—#—pragma—ibm schedule—(sched-type)

A\
A

Parameters

sched-type represents one of the following options:

affinity
Iterations of a loop are initially divided into local partitions of size
ceiling(number_of _iterations /number_of _threads) contiguous iterations. Each local
partition is then further subdivided into chunks of size
ceiling(number_of _iterations_remaining_in_partition/2).

When a thread becomes available, it takes the next chunk from its local
partition. If there are no more chunks in the local partition, the thread takes an
available chunk from the partition of another thread.

Chapter 5. Compiler pragmas reference 381

affinity,n
As above, except that each local partition is subdivided into chunks of size n
contiguous iterations. n must be an integral assignment expression of value 1
or greater.

dynamic
Iterations of a loop are divided into chunks, each of which contains one
iteration

Chunks are assigned to threads on a first-come, first-do basis as threads
become available. This continues until all work is completed.

dynamic,n
Iterations of a loop are divided into chunks that contain n contiguous iterations
each. The final chunk might contain fewer than # iterations.

Each thread is initially assigned one chunk. After threads complete their
assigned chunks, they are assigned remaining chunks on a "first-come, first-do"
basis.n must be an integral assignment expression of value 1 or greater.

guided
Chunks are made progressively smaller until a chunk size of one is reached.
The first chunk is of size ceiling(number_of_iterations/number_of_threads)
contiguous iterations. Remaining chunks are of size
ceiling(number_of_iterations_remaining /number_of_threads).

Chunks are assigned to threads on a first-come, first-serve basis as threads
become available. This continues until all work is completed.

guided,n
As above, except the minimum chunk size for all the chunks but the last chunk
is set to n contiguous iterations. n must be an integral assignment expression of
value 1 or greater.

runtime
Scheduling policy is determined at run time.

static
Iterations of a loop are divided into chunks of size of at least
floor(number_of _iterations /number_of_threads) contiguous iterations. The first
remainder(number_of_iterations /number_of_threads) chunks have one more
iteration. Each thread is assigned a separate chunk.

This scheduling policy is also known as block scheduling.

static,n
Iterations of a loop are divided into chunks of size n contiguous iterations
except for the last iteration. Each chunk is assigned to a thread in round-robin
fashion.

n must be an integral assignment expression of value 1 or greater.

Note: If n=1, iterations of a loop are divided into chunks of size 1 and each
chunk is assigned to a thread in round-robin fashion. This scheduling policy is
also known as block cyclic scheduling

Usage

Pragma must appear immediately before the loop or loop block directive to be
affected.

382 XxLC: Compiler Reference

Scheduling algorithms for parallel processing can be specified using any of the
methods shown below. If used, methods higher in the list override entries lower in
the list.

* pragma statements
* compiler command line options
* runtime command line options

* runtime default options

Scheduling algorithms can also be specified using the schedule argument of the
independent_loop pragma statement. If different scheduling types are specified for
a given loop, the last one specified is applied.

#pragma ibm sequential_loop
Purpose

The sequential_loop pragma explicitly instructs the compiler to execute the chosen
loop sequentially.

Syntax

»>—#—pragma—ibm sequential_Toop ><

Usage

Pragma must appear immediately before the loop or loop block directive to be
affected.

This pragma disables automatic parallelization of the chosen loop, and is always
respected by the compiler.

#pragma omp atomic
Purpose

The omp atomic directive allows access of a specific memory location atomically. It
ensures that race conditions are avoided through direct control of concurrent
threads that might read or write to or from the particular memory location. With
the omp atomic directive, you can write more efficient concurrent algorithms with
fewer locks.

Syntax
Syntax form 1

|—update—
»»—#—pragma—omp atomic E >«

read
write—
capture—

A\
A

»>—expression_statement

Syntax form 2

Chapter 5. Compiler pragmas reference 383

v
A

»>—#—pragma—omp atomic—capture

»»—structured_block

A\
A

where expression_statement is an expression statement of scalar type, and
structured_block is a structured block of two expression statements.

Clauses

update
Updates the value of a variable atomically. Guarantees that only one thread at
a time updates the shared variable, avoiding errors from simultaneous writes
to the same variable. An omp atomic directive without a clause is equivalent to
an omp atomic update.

Note: Atomic updates cannot write arbitrary data to the memory location, but
depend on the previous data at the memory location.

read
Reads the value of a variable atomically. The value of a shared variable can be
read safely, avoiding the danger of reading an intermediate value of the
variable when it is accessed simultaneously by a concurrent thread.

write
Writes the value of a variable atomically. The value of a shared variable can be
written exclusively to avoid errors from simultaneous writes.

capture
Updates the value of a variable while capturing the original or final value of
the variable atomically.

The expression_statement or structured_block takes one of the following forms,
depending on the atomic directive clause:

Directive clause expression_statement structured_block
update X++;
(equivalent to no clause)

X==3

++X3

- X ;

x binop = expr;

x
"

X binop expr;

X = expr binop x;

read vV = X3

write X = expr;

384 XxLC: Compiler Reference

Directive clause expression_statement structured_block

capture V = Xt+t; {v = x; x binop = expr;}
V = X--3 {v = x; xOP;}
V = X {v = x; OPx;}
V = -=X; {x binop = expr; v = x;}
v = X binop = expr; {x0P; v = x;}
v = X = x binop expr; {OPx; v = x3}
vV = X = expr binop x; {v =x; x = x binop expr;}

X binop expr; v = x;}

—_
x
1}

{v = x; x = expr binop x;}

expr binop x; v = x;}

—_—
x
"

X; x = expr;}!

—_
<
U}

Note:

1. This expression is to support atomic swap operations.

where:
X, v are both Ivalue expressions with scalar type.
expr is an expression of scalar type that does not reference x.

binop is one of the following binary operators:

+*-/&"|<<>>

OP is one of ++ or --.
Note: binop, binop=, and OP are not overloaded operators.
Usage

Objects that can be updated in parallel and that might be subject to race conditions
should be protected with the omp atomic directive.

All atomic accesses to the storage locations designated by x throughout the
program should have a compatible type.

Within an atomic region, multiple syntactic occurrences of x must designate the
same storage location.

All accesses to a certain storage location throughout a concurrent program must be
atomic. A non-atomic access to a memory location might break the expected atomic
behavior of all atomic accesses to that storage location.

Neither v nor expr can access the storage location that is designated by x.

Neither x nor expr can access the storage location that is designated by v.

All accesses to the storage location designated by x are atomic. Evaluations of the
expression expr, v, x are not atomic.

Chapter 5. Compiler pragmas reference 385

For atomic capture access, the operation of writing the captured value to the
storage location represented by v is not atomic.

Examples

Example 1: Atomic update
extern float x[], *p = x, y;

//Protect against race conditions among multiple updates.
#pragma omp atomic
x[index[i]] += y;

//Protect against race conditions with updates through x.
#pragma omp atomic
p[i] -= 1.0f;

Example 2: Atomic read, write, and update

extern int x[10];
extern int f(int);
int temp[10], i;

for(i = 0; i < 10; i++)
{

#pragma omp atomic read
temp[i] = x[f(i)];

#pragma omp atomic write
x[i] = temp[i]=*2;

#pragma omp atomic update
x[i] *= 25
}

Example 3: Atomic capture

extern int x[10];
extern int f(int);
int temp[10], i;

for(i = 0; i < 10; i++)

{
#pragma omp atomic capture
temp[i] = x[f(i)]++;
#pragma omp atomic capture

temp[i] = x[f(i)]; //The two occurences of x[f(i)] must evaluate to the
x[f(i)] -= 3; //same memory location, otherwise behavior is undefined.

}

#pragma omp parallel
Purpose

The omp parallel directive explicitly instructs the compiler to parallelize the
chosen block of code.

Syntax

H)

»»—#—pragma—omp parallel—clause ><

386 XxLC: Compiler Reference

Parameters

clause is any of the following clauses:

if (exp)
When the if argument is specified, the program code executes in parallel only
if the scalar expression represented by exp evaluates to a nonzero value at run
time. Only one if clause can be specified.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original variable as
if there was an implied declaration within the statement block. Data variables
in list are separated by commas.

num_threads (int_exp)
The value of int_exp is an integer expression that specifies the number of
threads to use for the parallel region. If dynamic adjustment of the number of
threads is also enabled, then int_exp specifies the maximum number of threads
to be used.

shared (list)
Declares the scope of the comma-separated data variables in [ist to be shared
across all threads.

default (shared | none)
Defines the default data scope of variables in each thread. Only one default
clause can be specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the

parallelized statement block must be explcitly listed in a data scope clause,

with the exception of those variables that are:

* const-qualified,

* specified in an enclosed data scope attribute clause, or,

* used as a loop control variable referenced only by a corresponding omp for
or omp parallel for directive.

copyin (list)
For each data variable specified in list, the value of the data variable in the
master thread is copied to the thread-private copies at the beginning of the
parallel region. Data variables in [list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate
variable.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in [ist is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For

Chapter 5. Compiler pragmas reference 387

example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:

original_reduction_variable = original_reduction_variable < private copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following

conditions:

* Must be of a type appropriate to the operator. If the max or min operator is
specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:

— _Bool
- char

- int

- float
— double

* Must be shared in the enclosing context.

* Must not be const-qualified.

* Must not have pointer type.

Usage

When a parallel region is encountered, a logical team of threads is formed. Each
thread in the team executes all statements within a parallel region except for
work-sharing constructs. Work within work-sharing constructs is distributed
among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An
implied barrier exists at the end of a parallelized statement block.

By default, nested parallel regions are serialized.
Related information:

[“OMP_NESTED” on page 33|
[*OMP_PROC_BIND” on page 35|

#pragma omp for
Purpose

The omp for directive instructs the compiler to distribute loop iterations within the
team of threads that encounters this work-sharing construct.

Syntax

]

v
A

»»—#—pragma—omp for— B 7 -for-loop
clause

Parameters

clause is any of the following clauses:

collapse (n)
Allows you to parallelize multiple loops in a nest without introducing nested
parallelism.

388 xLC: Compiler Reference

»»—COLLAPSE—(—n—)

A\
A

* Only one collapse clause is allowed on a worksharing for or parallel for
pragma.

* The specified number of loops must be present lexically. That is, none of the
loops can be in a called subroutine.

* The loops must form a rectangular iteration space and the bounds and stride
of each loop must be invariant over all the loops.

* If the loop indices are of different size, the index with the largest size will be
used for the collapsed loop.

* The loops must be perfectly nested; that is, there is no intervening code nor
any OpenMP pragma between the loops which are collapsed.

* The associated do-loops must be structured blocks. Their execution must not
be terminated by an break statement.

* If multiple loops are associated to the loop construct, only an iteration of the
innermost associated loop may be curtailed by a continue statement. If
multiple loops are associated to the loop construct, there must be no
branches to any of the loop termination statements except for the innermost
associated loop.

Ordered construct
During execution of an iteration of a loop or a loop nest within a loop
region, the executing thread must not execute more than one ordered
region which binds to the same loop region. As a consequence, if
multiple loops are associated to the loop construct by a collapse clause,
the ordered construct has to be located inside all associated loops.

Lastprivate clause
When a lastprivate clause appears on the pragma that identifies a
work-sharing construct, the value of each new list item from the
sequentially last iteration of the associated loops, is assigned to the
original list item even if a collapse clause is associated with the loop

Other SMP and performance pragmas
stream_unroll,unroll,unrollandfuse, nounrollandfuse pragmas cannot
be used for any of the loops associated with the collapse clause loop
nest. The independent_loop pragma can be used for any of the loops
associated with the collapse clause. independent_loop is not OpenMP
specific.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

lastprivate (list)
Declares the scope of the data variables in list to be private to each thread. The
final value of each variable in list, if assigned, will be the value assigned to
that variable in the last iteration. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by commas.

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

Chapter 5. Compiler pragmas reference 389

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:

original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following

conditions:

* Must be of a type appropriate to the operator. If the max or min operator is
specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:

— _Bool
— char

- int

- float
- double

* Must be shared in the enclosing context.

* Must not be const-qualified.

* Must not have pointer type.

ordered
Specify this clause if an ordered construct is present within the dynamic extent
of the omp for directive.

schedule (type)
Specifies how iterations of the for loop are divided among available threads.
Acceptable values for type are:

auto With auto, scheduling is delegated to the compiler and runtime
system. The compiler and runtime system can choose any possible
mapping of iterations to threads (including all possible valid
schedules) and these may be different in different loops.

dynamic
Iterations of a loop are divided into chunks of size
ceiling(number_of _iterations /number_of _threads).

Chunks are dynamically assigned to active threads on a "first-come,
first-do" basis until all work has been assigned.

dynamic,n
As above, except chunks are set to size n. n must be an integral
assignment expression of value 1 or greater.

guided
Chunks are made progressively smaller until the default minimum
chunk size is reached. The first chunk is of size
ceiling(number_of _iterations /number_of_threads). Remaining chunks are
of size ceiling(number_of_iterations_left / number_of_threads).

The minimum chunk size is 1.

Chunks are assigned to active threads on a "first-come, first-do" basis
until all work has been assigned.

390 xLC Compiler Reference

guided,n

As above, except the minimum chunk size is set to #; n must be an
integral assignment expression of value 1 or greater.

runtime

static

static,n

nowait

Scheduling policy is determined at run time. Use the
OMP_SCHEDULE environment variable to set the scheduling type and
chunk size.

Iterations of a loop are divided into chunks of size
ceiling(number_of _iterations /number_of_threads). Each thread is assigned
a separate chunk.

This scheduling policy is also known as block scheduling.

Iterations of a loop are divided into chunks of size n. Each chunk is
assigned to a thread in round-robin fashion.

n must be an integral assignment expression of value 1 or greater.
This scheduling policy is also known as block cyclic scheduling.
Note: if n=1, iterations of a loop are divided into chunks of size 1 and

each chunk is assigned to a thread in round-robin fashion. This
scheduling policy is also known as block cyclic scheduling.

Use this clause to avoid the implied barrier at the end of the for directive. This
is useful if you have multiple independent work-sharing sections or iterative
loops within a given parallel region. Only one nowait clause can appear on a
given for directive.

and where for_loop is a for loop construct with the following canonical shape:

for (init_expr; exit_cond; incr_expr)

statement
where:
init_expr

exit_cond

incr_expr

and where:

takes the form: iv=ph

integer-type iv = b
takes the form: iv <= ub

iv < ub

iv >= ub

iv > ub
takes the form: ,,;,

iv++

iv -= incr
= iv + incr
iv = incr + iv
= iv - incr

Chapter 5. Compiler pragmas reference 391

iv Iteration variable. The iteration variable must be a signed integer not
modified anywhere within the for loop. It is implicitly made private for
the duration of the for operation. If not specified as lastprivate, the
iteration variable will have an indeterminate value after the operation
completes.

b, ub, incr Loop invariant signed integer expressions. No synchronization is
performed when evaluating these expressions and evaluated side effects
may result in indeterminate values.

Usage

This pragma must appear immediately before the loop or loop block directive to be
affected.

Program sections using the omp for pragma must be able to produce a correct
result regardless of which thread executes a particular iteration. Similarly, program
correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration
of loop execution. This variable must not be modified within the body of the for
loop. The value of the increment variable is indeterminate unless the variable is
specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is
specified.

Restriction:

* The for loop must be a structured block, and must not be terminated by a break
statement.

* Values of the loop control expressions must be the same for all iterations of the
loop.

* An omp for directive can accept only one schedule clause.
* The value of n (chunk size) must be the same for all threads of a parallel region.

#pragma omp ordered
Purpose

The omp ordered directive identifies a structured block of code that must be
executed in sequential order.

Syntax

»»—#—pragma—omp ordered ><

Usage

The omp ordered directive must be used as follows:

* It must appear within the extent of a omp for or omp parallel for construct
containing an ordered clause.

* It applies to the statement block immediately following it. Statements in that
block are executed in the same order in which iterations are executed in a
sequential loop.

392 XxLC Compiler Reference

* An iteration of a loop must not execute the same omp ordered directive more
than once.

* An iteration of a loop must not execute more than one distinct omp ordered
directive.

#pragma omp parallel for
Purpose

The omp parallel for directive effectively combines the omp parallel and omp for
directives. This directive lets you define a parallel region containing a single for

directive in one step.

Syntax

]

v
A

»»—#—pragma—omp parallel for— B 7 for-loop
clause

Usage

With the exception of the nowait clause, clauses and restrictions described in the
omp parallel and omp for directives also apply to the omp parallel for directive.

#pragma omp section, #pragma omp sections
Purpose

The omp sections directive distributes work among threads bound to a defined
parallel region.

Syntax
»»—#—pragma—omp sections——clause >«
Parameters

clause is any of the following clauses:

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in [ist are separated by commas.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

lastprivate (list)
Declares the scope of the data variables in list to be private to each thread. The
final value of each variable in list, if assigned, will be the value assigned to
that variable in the last section. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by commas.

Chapter 5. Compiler pragmas reference 393

reduction (operator: list)
Performs a reduction on all scalar variables in list using the specified operator.
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end of
the statement block, the final values of all private copies of the reduction
variable are combined in a manner appropriate to the operator, and the result
is placed back in the original value of the shared reduction variable. For
example, when the max operator is specified, the original reduction variable
value combines with the final values of the private copies by using the
following expression:

original_reduction_variable = original_reduction_variable < private_copy ?
private_copy : original_reduction_variable;

For variables specified in the reduction clause, they must satisfy the following

conditions:

* Must be of a type appropriate to the operator. If the max or min operator is
specified, the variables must be one of the following types with or without
long, short, signed, or unsigned:

— _Bool
- char

- int

- float
- double

* Must be shared in the enclosing context.

* Must not be const-qualified.

* Must not have pointer type.

nowait
Use this clause to avoid the implied barrier at the end of the sections directive.
This is useful if you have multiple independent work-sharing sections within a
given parallel region. Only one nowait clause can appear on a given sections
directive.

Usage

The omp section directive is optional for the first program code segment inside the
omp sections directive. Following segments must be preceded by an omp section
directive. All omp section directives must appear within the lexical construct of the
program source code segment associated with the omp sections directive.

When program execution reaches a omp sections directive, program segments
defined by the following omp section directive are distributed for parallel
execution among available threads. A barrier is implicitly defined at the end of the
larger program region associated with the omp sections directive unless the
nowait clause is specified.

#pragma omp parallel sections
Purpose

The omp parallel sections directive effectively combines the omp parallel and
omp sections directives. This directive lets you define a parallel region containing

a single sections directive in one step.

Syntax

394 XxLC: Compiler Reference

o

»»—#—pragma—omp parallel sections—Y |_ _| ><
clause

Usage

All clauses and restrictions described in the omp parallel and omp sections
directives apply to the omp parallel sections directive.

#pragma omp single
Purpose

The omp single directive identifies a section of code that must be run by a single
available thread.

Syntax

»»—#—pragma—omp single—Y >«
|—c l auseJ

Parameters

clause is any of the following:

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

A variable in the private clause must not also appear in a copyprivate clause
for the same omp single directive.

copyprivate (list)
Broadcasts the values of variables specified in list from one member of the
team to other members. This occurs after the execution of the structured block
associated with the omp single directive, and before any of the threads leave
the barrier at the end of the construct. For all other threads in the team, each
variable in the list becomes defined with the value of the corresponding
variable in the thread that executed the structured block. Data variables in list
are separated by commas. Usage restrictions for this clause are:

* A variable in the copyprivate clause must not also appear in a private or
firstprivate clause for the same omp single directive.

» If an omp single directive with a copyprivate clause is encountered in the
dynamic extent of a parallel region, all variables specified in the copyprivate
clause must be private in the enclosing context.

* Variables specified in copyprivate clause within dynamic extent of a parallel
region must be private in the enclosing context.

* A variable that is specified in the copyprivate clause must have an accessible
and unambiguous copy assignment operator.

* The copyprivate clause must not be used together with the nowait clause.

Chapter 5. Compiler pragmas reference 395

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized as if there was an implied declaration
within the statement block. Data variables in list are separated by commas.

A variable in the firstprivate clause must not also appear in a copyprivate
clause for the same omp single directive.

nowait
Use this clause to avoid the implied barrier at the end of the single directive.
Only one nowait clause can appear on a given single directive. The nowait
clause must not be used together with the copyprivate clause.

Usage

An implied barrier exists at the end of a parallelized statement block unless the
nowait clause is specified.

#pragma omp master
Purpose

The omp master directive identifies a section of code that must be run only by the
master thread.

Syntax

»>—#—pragma—omp master >

Usage

Threads other than the master thread will not execute the statement block
associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

#pragma omp critical
Purpose

The omp critical directive identifies a section of code that must be executed by a
single thread at a time.

Syntax

H

»»—#—pragma—omp critical——(name) >

where name can optionally be used to identify the critical region. Identifiers
naming a critical region have external linkage and occupy a namespace distinct
from that used by ordinary identifiers.

Usage

A thread waits at the start of a critical region identified by a given name until no
other thread in the program is executing a critical region with that same name.

396 XxLC: Compiler Reference

Critical sections not specifically named by omp critical directive invocation are
mapped to the same unspecified name.

#pragma omp barrier
Purpose

The omp barrier directive identifies a synchronization point at which threads in a
parallel region will not execute beyond the omp barrier until all other threads in
the team complete all explicit tasks in the region.

Syntax

»»>—#—pragma—omp barrier: ><

Usage

The omp barrier directive must appear within a block or compound statement. For
example:

if (x!=0) {
#pragma omp barrier /* valid usage */

if (x!1=0)
#pragma omp barrier /* invalid usage =/

#pragma omp flush
Purpose

The omp flush directive identifies a point at which the compiler ensures that all
threads in a parallel region have the same view of specified objects in memory.

,_Cli

»»—#—pragma—omp flush—Y] ><
list

Syntax

where list is a comma-separated list of variables that will be synchronized.
Usage

If list includes a pointer, the pointer is flushed, not the object being referred to by
the pointer. If list is not specified, all shared objects are synchronized except those
inaccessible with automatic storage duration.

An implied flush directive appears in conjunction with the following directives:
* omp barrier

* Entry to and exit from omp critical.

 Exit from omp parallel.

* Exit from omp for.

* Exit from omp sections.

* Exit from omp single.

Chapter 5. Compiler pragmas reference 397

The omp flush directive must appear within a block or compound statement. For
example:
if (x!1=0) {

#pragma omp flush /* valid usage */

}

if (x!=0)
#pragma omp flush /* invalid usage =/

#pragma omp threadprivate
Purpose

The omp threadprivate directive makes the named file-scope, namespace-scope, or
static block-scope variables private to a thread.

Syntax

»»—#—pragma—omp threadprivate—_—(identifier) ><

where identifier is a file-scope, name space-scope or static block-scope variable.
Usage

Each copy of an omp threadprivate data variable is initialized once prior to first
use of that copy. If an object is changed before being used to initialize a
threadprivate data variable, behavior is unspecified.

A thread must not reference another thread's copy of an omp threadprivate data
variable. References will always be to the master thread's copy of the data variable
when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:

* An omp threadprivate directive must appear at file scope outside of any
definition or declaration.

* The omp threadprivate directive is applicable to static-block scope variables and
may appear in lexical blocks to reference those block-scope variables. The
directive must appear in the scope of the variable and not in a nested scope, and
must precede all references to variables in its list.

* A data variable must be declared with file scope prior to inclusion in an omp
threadprivate directive list.

* An omp threadprivate directive and its list must lexically precede any reference
to a data variable found in that list.

* A data variable specified in an omp threadprivate directive in one translation
unit must also be specified as such in all other translation units in which it is
declared.

* Data variables specified in an omp threadprivate list must not appear in any
clause other than the copyin, copyprivate, if, num_threads, and schedule
clauses.

* The address of a data variable in an omp threadprivate list is not an address
constant.

* A data variable specified in an omp threadprivate /ist must not have an
incomplete or reference type.

398 xLC: Compiler Reference

#pragma omp task
Purpose

The task pragma can be used to explicitly define a task.

Use the task pragma when you want to identify a block of code to be executed in
parallel with the code outside the task region. The task pragma can be useful for

parallelizing irregular algorithms such as pointer chasing or recursive algorithms.
The task directive takes effect only if you specify the -qsmp compiler option.

Syntax

B

»»—#—pragma—omp task——clause ><

Parameters

The clause parameter can be any of the following types of clauses:

default (shared | none)
Defines the default data scope of variable in each task. Only one default
clause can be specified on an omp task directive.

Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the
construct must be explicitly listed in a data scope clause, with the exception of
variables with the following attributes:

* Threadprivate

* Automatic and declared in a scope inside the construct
* Objects with dynamic storage duration

* Static data members

* The loop iteration variables in the associated for-loops for a work-sharing
for or parallel for construct

* Static and declared in a scope inside the construct

final (exp)
If you specify a final clause and exp evaluates to a nonzero value, the
generated task is a All task constructs encountered inside a final task

create final and [included tasks

You can specify only one final clause on the task pragma.

firstprivate (list)
Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original variable as
if there was an implied declaration within the statement block. Data variables
in list are separated by commas.

if (exp)
When the if clause is specified, an [undeferred task]is generated if the scalar
expression exp evaluates to a nonzero value. Only one if clause can be
specified.

Chapter 5. Compiler pragmas reference 399

mergeable
If you specify a mergeable clause and the generated task is an [undeferred task]
or fincluded task} a [merged task| might be generated.

private (list)
Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

shared (list)
Declares the scope of the comma-separated data variables in list to be shared
across all threads.

untied
When a task region is suspended, untied tasks can be resumed by any thread
in a team. The untied clause on a task construct is ignored if either of the
following conditions is a nonzero value:

* A final clause is specified on the same task construct and the final clause
expression evaluates to a nonzero value.

* The task is an
Usage

A final task is a task that makes all its child tasks become final and included tasks.
A final task is generated when either of the following conditions is a nonzero
value:

* A final clause is specified on a task construct and the final clause expression
evaluates to nonzero value.

* The generated task is a child task of a final task.

An undeferred task is a task whose execution is not deferred with respect to its
generating task region. In other words, the generating task region is suspended
until the undeferred task has finished running. An undeferred task is generated
when an if clause is specified on a task construct and the if clause expression
evaluates to zero.

An included task is a task whose execution is sequentially included in the
generating task region. In other words, an included task is undeferred and
executed immediately by the encountering thread. An included task is generated
when the generated task is a child task of a final task.

A merged task is a task that has the same data environment as that of its
generating task region. A merged task might be generated when both the following
conditions nonzero values:

* A mergeable clause is specified on a task construct.
* The generated task is an undeferred task or an included task.

The if clause expression and the final clause expression are evaluated outside of
the task construct, and the evaluation order is not specified.

Related reference:

[“#pragma omp taskwait” on page 401|

#pragma omp taskyield
Purpose

The omp taskyield pragma instructs the compiler to suspend the current task in
favor of running a different task. The taskyield region includes an explicit task

400 xLcC Compiler Reference

scheduling point in the current task region.

Syntax

»»—#—pragma—omp taskyield

#pragma omp taskwait
Purpose

Use the taskwait pragma to specify a wait for child tasks to be completed that are

generated by the current task.

Syntax

»»—#—pragma—omp taskwait

Related reference:

[“#pragma omp task” on page 399

Chapter 5. Compiler pragmas reference

401

402 xLC: Compiler Reference

Chapter 6. Compiler predefined macros

Predefined macros can be used to conditionally compile code for specific
compilers, specific versions of compilers, specific environments, and specific

language features.

Predefined macros fall into several categories:

+ [“General macros”)

* [“Macros related to the platform” on page 405

* [“Macros related to compiler features” on page 405|

[“Examples of predefined macros” on page 412 show how you can use them in

your code.

General macros

The following predefined macros are always predefined by the compiler. Unless
noted otherwise, all the following macros are protected, which means that the
compiler will issue a warning if you try to undefine or redefine them.

Table 34. General predefined macros

increases by 1 each time this macro is expanded.

You can use this macro with the ## operator to
generate unique variable or function names. The
following example shows the declaration of distinct
identifiers with a single token:

#define CONCAT(a, b) a##b

#define CONCAT_VAR(a, b) CONCAT(a, b)
#define VAR CONCAT VAR(var, _ COUNTER)

//Equivalent to int var0 = 1;
int VAR = 1;

//Equivalent to char varl = 'a';
char VAR = 'a';

Predefined macro Description Predefined value

name

__BASE_FILE__ Indicates the name of the primary source file. The fully qualified file name of the
primary source file.

_ COUNTER__ Expands to an integer that starts from 0. The value |An integer variable that starts from 0.

The value increases by 1 each time
this macro is expanded.

__DATE__ Indicates the date that the source file was A character string containing the date
preprocessed. when the source file was
preprocessed.
_FILE__ Indicates the name of the preprocessed source file. | A character string containing the
name of the preprocessed source file.
_ FUNCTION__ Indicates the name of the function currently being | A character string containing the
compiled. name of the function currently being
compiled.
_LINE__ Indicates the current line number in the source file. |An integer constant containing the

line number in the source file.

© Copyright IBM Corp. 1996, 2015

403

Table 34. General predefined macros (continued)

Predefined macro Description Predefined value
name
__SIZE_TYPE__ Indicates the underlying type of size_t on the unsigned int in 32-bit compilation
current platform. Not protected. mode and unsigned long in 64-bit
compilation mode.
__TIME__ Indicates the time that the source file was A character string containing the time
preprocessed. when the source file was
preprocessed.
_ TIMESTAMP__ Indicates the date and time when the source file was | A character string literal in the form
last modified. The value changes as the compiler "Day Mmm dd hh:mm:ss yyyy", where:

processes any include files that are part of your

Day Represents the day of the
source program.

week (Mon, Tue, Wed, Thu, Fri,
Sat, or Sun).

Mmm Represents the month in an
abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dad Represents the day. If the
day is less than 10, the first d
is a blank character.

hh Represents the hour.
mm Represents the minutes.
ss Represents the seconds.

yyyy Represents the year.

Macros indicating the XL C compiler

Macros related to the XL C compiler are always predefined, and they are protected,
which means that the compiler will issue a warning if you try to undefine or
redefine them. You can use the -qshowmacros=pre -E compiler options to view the
values of the predefined macros.

Table 35. Compiler product predefined macros

Predefined macro Description Predefined value
name
_IBMC__ Indicates the level of the XL C An integer in format VRM, where:
compiler 14 Represents the version number
R Represents the release number
M Represents the modification number
_xle__ Indicates the level of the XL C A string in format V.R.M.F, where:
compiler. Vv Represents the version number
R Represents the release number
M Represents the modification number
F Represents the fix level

404 xLC: Compiler Reference

Table 35. Compiler product predefined macros (continued)

Predefined macro Description Predefined value
name
_xIC__ Indicates the VR level of the XL | A 4-digit hexadecimal integer in format OXxVVRR, where:
C compilers in hexadecimal .
f Vv Represents the version number
ormat.
R Represents the release number
_xIC_ver__ Indicates the MF level of the XL | An 8-digit hexadecimal integer in format 0x0000MMFF,

C compilers in hexadecimal
format.

where:
M
F

Represents the modification number

Represents the fix level

For example, in PTF 3, the value of the macro is
0x00000003.

Macros related to the platform

The following predefined macros are provided to facilitate porting applications
between platforms. All platform-related predefined macros are unprotected and

can be undefined or redefined

Table 36. Platform-related predefined macros

without warning unless otherwise specified.

Predefined under the
Predefined macro name Description Predefined value | following conditions
_BIG_ENDIAN, _ BIG_ENDIAN_ Indicates that the platform is 1 Always predefined.
big-endian (that is, the most
significant byte is stored at the
memory location with the
lowest address).
__powerpc, __powerpc__ Indicates that the target is a 1 Predefined when the
Power architecture. target is a Power
architecture.
__PPC, __PPC__ Indicates that the target is a 1 Predefined when the
Power architecture. target is a Power
architecture.
__unix, __unix__ Indicates that the operating 1 Always predefined.
system is a variety of UNIX.

Macros related to compiler features

Feature-related macros are predefined according to the setting of specific compiler

options or pragmas. Unless no

ted otherwise, all feature-related macros are

protected, which means that the compiler will issue a warning if you try to

undefine or redefine them.

Feature-related macros are discussed in the following sections:

* [“Macros related to compiler

option settings” on page 406|

* [“Macros related to architecture settings” on page 407

* [“Macros related to language

levels” on page 408|

405

Chapter 6. Compiler predefined macros

Macros related to compiler option settings

The following macros can be tested for various features, including source input
characteristics, output file characteristics, and optimization. All of these macros are
predefined by a specific compiler option or suboption, or any invocation or
pragma that implies that suboption. If the suboption enabling the feature is not in
effect, then the macro is undefined.

Table 37. General option-related predefined macros

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

__64BIT__ Indicates that 64-bit | 1 @

compilation mode

is in effect.
__ALTIVEC__ Indicates support 1

for vector data

types.

(unprotected)
_CHAR_SIGNED, Indicates that the |1
_ CHAR_SIGNED_ default character

type is signed

char.
_CHAR_UNSIGNED, Indicates that the |1
_ CHAR_UNSIGNED__ default character

type is unsigned

char.

_ DEBUG_ALLOC__ Indicates that 1 gheapdebug]

debug versions of
the standard
memory
management
functions are being
used.
__IBM_GCC_ASM Indicates support |1
for GCC inline asm and
statements. -qlanglvl=extc99 | extc89 |
extended or
0
and
-qlanglvl=extc99 | extc89 |
extended or
__ IBM_DFP__ Indicates support 1 Lqdfp
for decimal
floating-point
types.

__IBM_DFP_SW_EMULATION__ Indicates that 1

decimal
floating-point
computations are
implemented
through software
emulation rather
than in hardware
instructions.

_IBMSMP Indicates that IBM |1 -gsmp)

SMP directives are
recognized.

406 XxLC: Compiler Reference

Table 37. General option-related predefined macros (continued)

Predefined macro name

Description Predefined value

Predefined when the
following compiler option
or equivalent pragma is in
effect

_ IBM_UTE_LITERAL

Indicates support |1
for UTF-16 and
UTEF-32 string

-qlanglvl=extended

literals.
_ LONGDOUBLE64 Indicates that the 1 gnoldbl128}
size of a long
doubTe type is 64
bits.
__LONGDOUBLE128 Indicates that the 1 -qldbl128
size of a long
doubTe type is 128
bits.
__OPTIMIZE__ Indicates the level |2
of optimization in 3 03 | -O4 | -O5
effect.
_ OPTIMIZE_SIZE_ Indicates that 1 -O1-021-031-041-05

optimization for and
code size is in
effect.

__VEC__ Indicates support | 10206

for vector data

types.

Macros related to architecture settings

The following macros can be tested for target architecture settings. All of these
macros are predefined to a value of 1 by a -qarch compiler option setting, or any
other compiler option that implies that setting. If the -qarch suboption enabling the
feature is not in effect, then the macro is undefined.

Table 38. -qarch-related macros

Predefined by the following -qarch

Macro name Description suboptions

_ARCH_PPC Indicates that the application is targeted | Defined for all -qarch suboptions except
to run on any Power processor. auto.

_ARCH_PPC64 Indicates that the application is targeted |ppc64 | ppcbdgr | ppcodgrsq | ppcodv
to run on Power processors with 64-bit | | pwrd | pwrd | pwrbx | pwr6 |
support. pwrée | pwr7 | pwr8 | ppc970

_ARCH_PPCGR Indicates that the application is targeted |ppcgr | ppcodgr | ppcbdgrsq | ppc6dv

to run on Power processors with
graphics support.

I pwrd | pwr5 | pwrbx | pwr6 |
pwrée | pwr7 | pwr8 | ppc970

_ARCH_PPC64GR

Indicates that the application is targeted
to run on Power processors with 64-bit
and graphics support.

ppcbdgr | ppcodv | pwrd | pwr5 |
pwrbx | pwr6 | pwrée | pwr7 | pwr8
| ppc970

_ARCH_PPC64GRSQ

Indicates that the application is targeted
to run on Power processors with 64-bit,
graphics, and square root support.

ppcbdgrsq | ppc6dv | pwrd | pwr5 |
pwrbx | pwr6 | pwrée | pwr7 | pwr8
| ppc970

_ARCH_PPC64V

Indicates that the application is targeted
to run on Power processors with 64-bit
and vector processing support.

ppc6dv | ppc970 | pwré | pwrée |
pwr7 | pwr8

Chapter 6. Compiler predefined macros 407

Table 38. -qarch-related macros (continued)

Macro name

Description

Predefined by the following -qarch
suboptions

_ARCH_PPC970

Indicates that the application is targeted
to run on the PowerPC 970 processor.

ppc970

to run on POWERS processors.

_ARCH_PWR4 Indicates that the application is targeted |pwr4 | pwr5 | pwrbx | pwr6 | pwrée
to run on POWER4 or higher processors. | | pwr7 | pwr8 | ppc970
_ARCH_PWRb5 Indicates that the application is targeted |pwr5 | pwrbx | pwr6 | pwrée | pwr7
to run on POWERS or higher processors. | | pwr8
_ARCH_PWR5X Indicates that the application is targeted |pwrbx | pwr6 | pwrée | pwr7 | pwr8
to run on POWERS5+ or higher
processors.
_ARCH_PWR6 Indicates that the application is targeted |pwr6 | pwrée | pwr7 | pwr8
to run on POWERG6 or higher processors.
_ARCH_PWR6E Indicates that the application is targeted |pwrb6e
to run on POWERS6 processors running
in POWER6 raw mode.
_ARCH_PWR7 Indicates that the application is targeted |pwr7 | pwr8
to run on POWER7 , POWER7+ or
higher processors.
_ARCH_PWRS Indicates that the application is targeted |pwr8

Related information

* |“-qarch” on page 102

Macros related to language levels

The following macros can be tested for C99 features, features related to GNU C,
and other IBM language extensions. All of these macros except

_ STDC_VERSION__ are predefined to a value of 1 by a specific language level,
represented by a suboption of the compiler option, or any invocation or
pragma that implies that suboption. If the suboption enabling the feature is not in
effect, then the macro is undefined. For descriptions of the features related to these
macros, see the XL C Language Reference.

Table 39. Predefined macros for language features

Predefined macro name

Description

Predefined when the following
language level is in effect

__C99_BOOL

_Bool data type.

Indicates support for the

extclx | stdc99 | extc99 |
extc89 | extended

__C99_COMPLEX

included.

Indicates that the support
for C99 complex types is
enabled or that the C99
complex header should be

extclx | stdc99 | extc99 |
extc89 | extended

__C99_COMPLEX_HEADER__

Indicates support for

C99-style complex headers.

c99complexheader

_ C99_CPLUSCMT

Indicates support for C++
style comments

extclx | stdc99 | extc99 |
stdc89 | extc89 | extended (also

-qcpluscmt)

408 xLC: Compiler Reference

Table 39. Predefined macros for language features (continued)

Predefined macro name

Description

Predefined when the following
language level is in effect

_ C99_COMPOUND_LITERAL Indicates support for extclx | stdc99 | extc99 |
compound literals. extc89 | extended

__C99_DESIGNATED_INITIALIZER Indicates support for extclx | stdc99 | extc99 |
designated initialization. |extc89 | extended

_ C99_DUP_TYPE_QUALIFIER Indicates support for extclx | stdc99 | extc99 |
duplicated type qualifiers. |extc89 | extended

_ C99_EMPTY_MACRO_ARGUMENTS Indicates support for extclx | stdc99 | extc99 |
empty macro arguments. |extc89 | extended

_ C99_FLEXIBLE_ARRAY_MEMBER Indicates support for extclx | stdc99 | extc99 |
flexible array members. extc89 | extended

_C99__FUNC__ Indicates support for the |extclx | stdc99 | extc99 |
_ func__ predefined extc89 | extended
identifier.

_C99_HEX_FLOAT_CONST Indicates support for extclx | stdc99 | extc99 |
hexadecimal floating extc89 | extended
constants.

_ C99_INLINE Indicates support for the extclx | stdc99 | extc99 (also
inTine function specifier. |-qkeyword=in1ine[)

__C99_LLONG Indicates support for extclx | stdc99 | extc99

C99-style Tong Tong data
types and literals.

_ C99_MACRO_WITH_VA_ARGS Indicates support for extclx | stdc99 | extc99 |
function-like macros with |extc89 | extended
variable arguments.

_ C99_MAX_LINE_NUMBER Indicates that the extclx | stdc99 | extc99 |
maximum line number is | extc89 | extended
2147483647.

__C99_MIXED_DECL_AND_CODE Indicates support for extclx | stdc99 | extc99 |
mixed declaration and extc89 | extended
code.

__C99_MIXED_STRING_CONCAT Indicates support for extclx | stdc99 | extc99 |
concatenation of wide extc89 | extended
string and non-wide string
literals.

_ C99_NON_LVALUE_ARRAY_SUB Indicates support for extclx | stdc99 | extc99 |
non-lvalue subscripts for |extc89 | extended
arrays.

_ C99_NON_CONST_AGGR_INITIALIZER Indicates support for extclx | stdc99 | extc99 |
non-constant aggregate extc89 | extended
initializers.

__C99_PRAGMA_OPERATOR Indicates support for the extclx | stdc99 | extc99 |
_Pragma operator. extc89 | extended

_ (C99_REQUIRE_FUNC_DECL Indicates that implicit stdc99

function declaration is not
supported.

__C99_RESTRICT

Indicates support for the
C99 restrict qualifier.

Chapter 6. Compiler predefined macros 409

Table 39. Predefined macros for language features (continued)

Predefined macro name

Description

Predefined when the following
language level is in effect

_ (C99_STATIC_ARRAY_SIZE Indicates support for the extclx | stdc99 | extc99 |
static keyword in array extc89 | extended
parameters to functions.

_ (C99_STD_PRAGMAS Indicates support for extclx | stdc99 | extc99 |

universal character names.

standard pragmas. extc89 | extended
__C99_TGMATH Indicates support for extclx | stdc99 | extc99 |
type-generic macros in extc89 | extended
tgmath.h
_C99_UCN Indicates support for extclx | stdc99 | extc99 | ucs

__C99_VAR_LEN_ARRAY

Indicates support for
variable length arrays.

stdc99 | extc99 |
extended

extclx
extc89

__align type qualifier.

__cplusplus The numeric value that The format is yyyymmL. (For
indicates the supported example, the format is 199901L
language standard as for C99.)
defined by that specific
standard.

_ DIGRAPHS__ Indicates support for extclx | stdc99 | extc99 |
digraphs. extc89 | extended (also

_ EXTENDED__ Indicates that language extended
extensions are supported.

__IBM__ALIGN Indicates support for the | Always defined except when

-qnokeyword=__alignof is
specified

__IBM_ALIGNOEF__, _ IBM__ALIGNOF__

Indicates support for the
__alignof__ operator.

extclx | extc99 | extc89 |
extended

__IBM_ATTRIBUTES

Indicates support for type,
variable, and function
attributes.

extclx | extc99 | extc89
extended

__IBM_COMPUTED_GOTO

Indicates support for
computed goto statements.

extclx | extc99 | extc89
extended

__IBM_EXTENSION_KEYWORD

Indicates support for the
__extension__ keyword.

extclx | extc99 | extc89
extended

_IBM_GCC__INLINE__

Indicates support for the
GCC __inline__ specifier.

extclx | extc99 | extc89
extended

__IBM_DOLLAR_IN_ID

Indicates support for
dollar signs in identifiers.

extclx | extc99 | extc89
extended

__IBM_GENERALIZED_LVALUE

Indicates support for
generalized lvalues.

extclx | extc99 | extc89
extended

__IBM_INCLUDE_NEXT

Indicates support for the
#include_next
preprocessing directive.

Always defined

__IBM_LABEL_VALUE

Indicates support for labels
as values.

extclx | extc99 | extc89
extended

_IBM_LOCAL_LABEL

Indicates support for local
labels.

extclx | extc99 | extc89
extended

410 xLC: Compiler Reference

Table 39. Predefined macros for language features (continued)

Predefined macro name

Description

Predefined when the following
language level is in effect

__IBM_MACRO_WITH_VA_ARGS

Indicates support for
variadic macro extensions.

extclx | extc99 | extc89 |
extended

__IBM_NESTED_FUNCTION

Indicates support for
nested functions.

extclx | extc99 | extc89 |
extended

__IBM_PP_PREDICATE

Indicates support for
#assert, #unassert, #cpu,
#machine, and #system
preprocessing directives.

extclx | extc99 | extc89 |
extended

__IBM_PP_WARNING

Indicates support for the
#warning preprocessing
directive.

extclx | extc99 | extc89 |
extended

__IBM_REGISTER_VARS

Indicates support for
variables in specified
registers.

Always defined.

__IBM__TYPEOF__

Indicates support for the
__typeof__ or typeof
keyword.

Always defined

__IBMC_COMPLEX_INIT

Indicates support for the
macro based initialization
of complex types: float
_Complex, double
_Complex, and long
double _Complex.

extclx

__IBMC_GENERIC

Indicates support for the
generic selection feature.

extc89 | extc99 | extended |
extclx

__IBMC_NORETURN

Indicates support for the
_Noreturn function
specifier.

extc89 | extc99 | extended |
extclx

extended | extendedOx |
clxnoreturn

_ IBMC_STATIC_ASSERT

Indicates support for the
static assertions feature.

extc89 | extc99 | extended |
extclx

_LONG_LONG Indicates support for Tong |extclx | stdc99 | extc99 | |
Tong data types. stdc89 | extc89 | extended (also
_SAA__ Indicates that only saa
language constructs that
support the most recent
level of SAA C standards
are allowed.
_SAA_12__ Indicates that only saal2
language constructs that
conform to SAA Level 2 C
standards are allowed.
_STDC__ Indicates that the compiler | Predefined to 1 if ANSI/ISO C

conforms to the ANSI/ISO
C standard.

standard conformance is in
effect.

Chapter 6. Compiler predefined macros 411

Table 39. Predefined macros for language features (continued)

Predefined macro name

Description

Predefined when the following
language level is in effect

_ STDC_HOSTED__

Indicates that the
implementation is a hosted
implementation of the
ANSI/ISO C standard.
(That is, the hosted
environment has all the
facilities of the standard C
available).

extclx | stdc99 | extc99

_ STDC_VERSION__

Indicates the version of
ANSI/ISO C standard
which the compiler
conforms to.

The format is yyyymmL. (For
example, the format is 199901L
for C99.)

Examples of predefined macros

This example illustrates use of the _ FUNCTION__ and the __ C99_ FUNC__
macros to test for the availability of the C99 _ func__ identifier to return the

current function name:
#include <stdio.h>

#if defined(__C99_FUNC_)

#define PRINT_FUNC_NAME() printf (" In function %s \n", _ func_);

#e1if defined(__FUNCTION_)

#define PRINT_FUNC_NAME() printf (" In function %s \n", _ FUNCTION_);

#else

#define PRINT_FUNC_NAME() printf (" Function name unavailable\n");

#endif
void foo(void);
int main(int argc, char x*argv)

int k = 1;
PRINT_FUNC_NAME() ;
foo();

return 0;

}

void foo (void)

PRINT_FUNC_NAME() ;
return;

}

The output of this example is:

In function main
In function foo

412 XxLC: Compiler Reference

Chapter 7. Compiler built-in functions

A built-in function is a coding extension to C that allows a programmer to use the
syntax of C function calls and C variables to access the instruction set of the
processor of the compiling machine. IBM Power architectures have special
instructions that enable the development of highly optimized applications. Access
to some Power instructions cannot be generated using the standard constructs of
the C language. Other instructions can be generated through standard constructs,
but using built-in functions allows exact control of the generated code. Inline
assembly language programming, which uses these instructions directly, is fully
supported starting from XL C, V12.1. Furthermore, the technique can be
time-consuming to implement.

As an alternative to managing hardware registers through assembly language, XL
C built-in functions provide access to the optimized Power instruction set and
allow the compiler to optimize the instruction scheduling.

The following sections describe the available built-in functions for the AIX
platform.

Fixed-point built-in functions

Fixed-point built-in functions are grouped into the following categories:

* |“Absolute value functions”

+ [“Assert functions” on page 414|

+ [“Count zero functions” on page 415|

* [“Load functions” on page 417

[“Multiply functions” on page 417

+ [“Population count functions” on page 418]

[‘Rotate functions” on page 419|

[“Store functions” on page 420|

[“Trap functions” on page 421

Absolute value functions

__labs, __llabs
Purpose

Absolute Value Long, Absolute Value Long Long
Returns the absolute value of the argument.
Prototype

signed long __labs (signed long);

signed long long _ llabs (signed long long);

© Copyright IBM Corp. 1996, 2015 413

Assert functions

__assertl, _ assert2
Purpose

Generates trap instructions.
Prototype
int __assertl (int, int, int);

void __assert2 (int);

Bit permutation functions

__bpermd
Purpose

Byte Permute Doubleword
Returns the result of a bit permutation operation.
Prototype

long long __bpermd (long long bit_selector, long long source);
Usage
Eight bits are returned, each corresponding to a bit within source, and were
selected by a byte of bit_selector. If byte i of bit_selector is less than 64, the
permuted bit i is set to the bit of source specified by byte i of bit_selector;
otherwise, the permuted bit i is set to 0. The permuted bits are placed in the

least-significant byte of the result value and the remaining bits are filled with Os.

Valid only when -qarch is set to target POWER? processors or higher in 64-bit
mode.

Comparison functions

__cmpb
Purpose

Compare Bytes

Compares each of the eight bytes of sourcel with the corresponding byte of source2.
If byte i of sourcel and byte i of source2 are equal, OXFF is placed in the
corresponding byte of the result; otherwise, 0x00 is placed in the corresponding
byte of the result.

Prototype

long long __cmpb (long long sourcel, long long source2);

414 XxLC: Compiler Reference

Usage

Valid only when -qarch is set to target POWERG6 processors or higher.

Count zero functions

__cntlz4, _ cntlz8
Purpose

Count Leading Zeros, 4/8-byte integer
Prototype
unsigned int __cntlz4 (unsigned int);

unsigned int __cntlz8 (unsigned long long);

__cnttz4, _ cntiz8
Purpose

Count Trailing Zeros, 4/8-byte integer
Prototype
unsigned int __cnttz4 (unsigned int);

unsigned int __cnttz8 (unsigned long long);

Division functions

These division functions are valid only when -qarch is set to target POWER7
processors or higher.

__divde
Purpose

Divide Doubleword Extended

Returns the result of a doubleword extended division. The result has a value equal
to dividend / divisor.

Prototype
long long __divde (long long dividend, long long divisor);
Usage

Valid only when -qarch is set to target POWER? processors or higher in 64-bit
mode.

If the result of the division is larger than 32 bits or if the divisor is 0, the return
value of the function is undefined.

Chapter 7. Compiler built-in functions 415

__divdeu
Purpose

Divide Doubleword Extended Unsigned

Returns the result of a double word extended unsigned division. The result has a
value equal to dividend /divisor.

Prototype

unsigned long long __divdeu (unsigned long long dividend, unsigned long
long divisor);

Usage

Valid only when -qarch is set to target POWER?7 processors or higher in 64-bit
mode.

If the result of the division is larger than 32 bits or if the divisor is 0, the return
value of the function is undefined.

__divwe
Purpose

Divide Word Extended

Returns the result of a word extended division. The result has a value equal to
dividend / divisor.

Prototype
int __divwe(int dividend, int divisor);
Usage
Valid only when -qarch is set to target POWERY7 processors or higher.

If the divisor is 0, the return value of the function is undefined.

__divweu
Purpose

Divide Word Extended Unsigned

Returns the result of a word extended unsigned division. The result has a value
equal to dividend / divisor.

Prototype
unsigned int __divweu(unsigned int dividend, unsigned int divisor);
Usage
Valid only when -qarch is set to target POWER? processors or higher.
If the divisor is 0, the return value of the function is undefined.

416 XxLC: Compiler Reference

Load functions

__load2r, _ load4r
Purpose

Load Halfword Byte Reversed, Load Word Byte Reversed
Prototype
unsigned short __load2r (unsigned short*);

unsigned int __load4r (unsigned int*);

__load8r
Purpose

Load with Byte Reversal (8-byte integer)
Performs an eight-byte byte-reversed load from the given address.
Prototype

unsigned long long __load8r (unsigned long long * address);
Usage

Valid only when -qarch is set to target POWER?7 or higher processors in 64-bit
mode.

Multiply functions

__imul_dbl
Purpose

Computes the product of two long integers and stores the result in a pointer.
Prototype
void __imul_dbl (long, long, long*);

__mulhd, __mulhdu
Purpose

Multiply High Doubleword Signed, Multiply High Doubleword Unsigned
Returns the highorder 64 bits of the 128bit product of the two parameters.
Prototype

long long int __mulhd (long int, long int);

unsigned long long int __mulhdu (unsigned long int, unsigned long int);
Usage

Valid only in 64-bit mode.

Chapter 7. Compiler built-in functions 417

__mulhw, _ mulhwu
Purpose

Multiply High Word Signed, Multiply High Word Unsigned
Returns the highorder 32 bits of the 64bit product of the two parameters.
Prototype

int __mulhw (int, int);

unsigned int __mulhwu (unsigned int, unsigned int);

Population count functions

__popcnt4, _ popcnt8
Purpose

Population Count, 4-byte or 8-byte integer
Returns the number of bits set for a 32-bit or 64-bit integer.
Prototype

int __popcnt4 (unsigned int);

int __popcnt8 (unsigned long long);

__popcntb
Purpose

Population Count Byte

Counts the 1 bits in each byte of the parameter and places that count into the
corresponding byte of the result.

Prototype
unsigned long __popcntb(unsigned long);

__poppar4, __poppar8
Purpose

Population Parity, 4/8-byte integer

Checks whether the number of bits set in a 32/64-bit integer is an even or odd
number.

Prototype
int __poppar4(unsigned int);

int __poppar8(unsigned long long);

418 XxLC: Compiler Reference

Return value

Returns 1 if the number of bits set in the input parameter is odd. Returns 0
otherwise.

Rotate functions

__rdlam
Purpose

Rotate Double Left and AND with Mask
Rotates the contents of rs left shift bits, and ANDs the rotated data with the mask.
Prototype

unsigned long long _ rdlam (unsigned long long rs, unsigned int shift,
unsigned long long mask);

Parameters

mask
Must be a constant that represents a contiguous bit field.

__ridimi, __rlwimi
Purpose

Rotate Left Doubleword Immediate then Mask Insert, Rotate Left Word Immediate
then Mask Insert

Rotates rs left shift bits then inserts rs into is under bit mask mask.
Prototype

unsigned long long _ rldimi (unsigned long long rs, unsigned long long is,
unsigned int shift, unsigned long long mask);

unsigned int _ rlwimi (unsigned int s, unsigned int is, unsigned int shift,
unsigned int mask);

Parameters

shift
A constant value 0 to 63 (__r1dimi) or 31 (__rlwimi).

mask
Must be a constant that represents a contiguous bit field.

__rlwnm
Purpose

Rotate Left Word then AND with Mask

Rotates rs left shift bits, then ANDs rs with bit mask mask.

Chapter 7. Compiler built-in functions 419

Prototype
unsigned int __rlwnm (unsigned int rs, unsigned int shift, unsigned int mask);

Parameters

mask
Must be a constant that represents a contiguous bit field.

__rotatel4, __ rotatel8
Purpose

Rotate Left Word, Rotate Left Doubleword
Rotates rs left shift bits.
Prototype
unsigned int __rotatel4 (unsigned int rs, unsigned int shift);

unsigned long long __rotatel8 (unsigned long long rs, unsigned long long
shift);

Store functions

__store2r, __storedr
Purpose

Store 2/4-byte Reversal
Prototype
void __store2r (unsigned short, unsigned short*);

void __storedr (unsigned int, unsigned int*);

__store8r
Purpose

Store with Byte-Reversal (eight-byte integer)

Takes the loaded eight-byte integer value and performs a byte-reversed store
operation.

Prototype
void __store8r (unsigned long long source, unsigned long long * address);
Usage

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
mode.

420 XxLC: Compiler Reference

Trap functions

_ tdw, _ tw
Purpose

Trap Doubleword, Trap Word
Compares parameter 4 with parameter b. This comparison results in five conditions
which are ANDed with a 5-bit constant TO. If the result is not 0 the system trap
handler is invoked.
Prototype

void __tdw (long 4, long b, unsigned int TO);

void __tw (int 4, int b, unsigned int TO);

Parameters

T0 A value of 0 to 31 inclusive. Each bit position, if set, indicates one or more of
the following possible conditions:

0 (high-order bit)
a is less than b, using signed comparison.

1 a is greater than b, using signed comparison.
2 a is equal to b
3 a is less than b, using unsigned comparison.

4 (low-order bit)
a is greater than b, using unsigned comparison.

Usage
_ tdw is valid only in 64-bit mode.

__trap, _ trapd
Purpose

Trap if the Parameter is not Zero, Trap if the Parameter is not Zero Doubleword
Prototype

void __trap (int);

void __trapd (long);
Usage

__trapd is valid only in 64-bit mode.

Chapter 7. Compiler built-in functions 421

Binary floating-point built-in functions

Binary floating-point built-in functions are grouped into the following categories:

* [“Absolute value functions” on page 413|
* |“Add functions”]

+ [“Conversion functions” on page 423|

* [“FPSCR functions” on page 425|

+ [“Multiply functions” on page 428|

* [“Multiply-add /subtract functions” on page 428|

* [“Reciprocal estimate functions” on page 429

+ “Rounding functions” on page 430|

* [“Select functions” on page 431|

* [“Square root functions” on page 431

+ |“Software division functions” on page 432|

For decimal floating-point built-in functions, see [Decimal floating-point built-in|

unctions

Absolute value functions

__fnabss
Purpose

Floating Absolute Value Single
Returns the absolute value of the argument.
Prototype

float __fnabss (float);

__fnabs
Purpose

Floating Negative Absolute Value, Floating Negative Absolute Value Single
Returns the negative absolute value of the argument.
Prototype
double __fnabs (double);
float __fnabss (float);
Add functions

_ fadd, _ fadds
Purpose

Floating Add, Floating Add Single

Adds two arguments and returns the result.

422 XLC: Compiler Reference

Prototype
double __fadd (double, double);

float __fadds (float, float);

Conversion functions

__cmplx, __cmplxf, __cmplxI
Purpose

Converts two real parameters into a single complex value.
Prototype

double _Complex __cmplx (double, double);

float _Complex __cmplxf (float, float);

long double _Complex __cmplxl (long double, long double);

_ fcfid
Purpose

Floating Convert from Integer Doubleword

Converts a 64-bit signed integer stored in a double to a double-precision
floating-point value.

Prototype

double __fcfid (double);

__fcfud
Purpose

Floating-point Conversion from Unsigned integer Double word

Converts a 64-bit unsigned integer stored in a double into a double-precision
floating-point value.

Prototype

double __fcfud(double);

_ fetid
Purpose

Floating Convert to Integer Doubleword

Converts a double-precision argument to a 64-bit signed integer, using the current
rounding mode, and returns the result in a double.

Prototype

double __fctid (double);

Chapter 7. Compiler built-in functions 423

__fctidz
Purpose

Floating Convert to Integer Doubleword with Rounding towards Zero

Converts a double-precision argument to a 64-bit signed integer, using the
rounding mode round-toward-zero, and returns the result in a double.

Prototype

double _ fctidz (double);

__fetiw
Purpose

Floating Convert to Integer Word

Converts a double-precision argument to a 32-bit signed integer, using the current
rounding mode, and returns the result in a double.

Prototype

double __fctiw (double);

__fctiwz
Purpose

Floating Convert to Integer Word with Rounding towards Zero

Converts a double-precision argument to a 32-bit signed integer, using the
rounding mode round-toward-zero, and returns the result in a double.

Prototype

double __fctiwz (double);

_ fctudz
Purpose

Floating-point Conversion to Unsigned integer Double word with rounding
towards Zero

Converts a floating-point value to unsigned integer double word and rounds to
Zero.

Prototype
double __fctudz(double);
Result value

The result is a double number, which is rounded to zero.

424 XL C: Compiler Reference

_ fectuwz
Purpose

Floating-point conversion to unsigned integer word with rounding to zero

Converts a floating-point number into a 32-bit unsigned integer and rounds to
zero. The conversion result is stored in a double return value. This function is
intended for use with the __stfiw built-in function.

Prototype
double __fctuwz(double);
Result value

The result is a double number. The low-order 32 bits of the result contain the
unsigned int value from converting the double parameter to unsigned int, rounded
to zero. The high-order 32 bits contain an undefined value.

Example

The following example demonstrates the usage of this function.
#include <stdio.h>

int main(){
double result;
int y;

result = _ fctuwz(-1.5);
__stfiw(&y, result);
printf("%d\n", y); /* prints 0 */

result = fctuwz(1.5);
stfiw(&y, result);

printf("sd\n", y); /x prints 1 +/
return 0;

}

FPSCR functions

__mtfsb0
Purpose

Move to Floating-Point Status/Control Register (FPSCR) Bit 0
Sets bit bt of the FPSCR to 0.
Prototype

void __mtfsb0 (unsigned int bt);

Parameters

bt Must be a constant with a value of 0 to 31.

Chapter 7. Compiler built-in functions 425

__mtfsb1
Purpose

Move to FPSCR Bit 1
Sets bit bt of the FPSCR to 1.
Prototype

void __mtfsbl (unsigned int bt);

Parameters

bt Must be a constant with a value of 0 to 31.

__mifsf
Purpose

Move to FPSCR Fields

Places the contents of frb into the FPSCR under control of the field mask specified
by flm. The field mask fIm identifies the 4bit fields of the FPSCR affected.

Prototype
void __mtfsf (unsigned int flm, unsigned int frb);

Parameters
flm

Must be a constant 8-bit mask.

__mifsfi
Purpose

Move to FPSCR Field Immediate
Places the value of u into the FPSCR field specified by bf.
Prototype

void __mtfsfi (unsigned int bf, unsigned int u);

Parameters
bf Must be a constant with a value of 0 to 7.

u Must be a constant with a value of 0 to 15.

__readflm
Purpose

Returns a 64-bit double precision floating point, whose 32 low order bits contain

the contents of the FPSCR. The 32 low order bits are bits 32 - 63 counting from the
highest order bit.

426 XLC: Compiler Reference

Prototype
double __readflm (void);

__setflm
Purpose

Takes a double precision floating-point number and places the lower 32 bits in the

FPSCR. The 32 low order bits are bits 32 - 63 counting from the highest order bit.
Returns the previous contents of the FPSCR.

Prototype

double __setflm (double);

__setrnd
Purpose

Sets the rounding mode.
Prototype

double __setrnd (int mode);
Parameters

The allowable values for mode are:
* 0 — round to nearest

* 1 — round to zero

* 2 —round to +infinity

* 3 — round to -infinity

__dfp_set_rounding_mode
Purpose

Set Rounding Mode
Sets the current decimal rounding mode.
Prototype
void __dfp_set_rounding_mode (unsigned long rounding_mode);

Parameters

rounding _mode
One of the compile-time constant values (0 to 7) or macros listed in [Table 41 o

Usage

If you change the rounding mode within a function, you must restore the rounding
mode before the function returns.

Chapter 7. Compiler built-in functions 427

__dfp_get_rounding_mode
Purpose

Get Rounding Mode
Gets the current decimal rounding mode.
Prototype
unsigned long __dfp_get_rounding mode (void);

Return value

The current rounding mode as one of the values (0 to 7) listed in [Table 41 on page|
- 48

Multiply functions

_ fmul, _ fmuls
Purpose

Floating Multiply, Floating Multiply Single
Multiplies two arguments and returns the result.
Prototype

double __fmul (double, double);

float __fmuls (float, float);

Multiply-add/subtract functions

_ _fmadd, _ fmadds
Purpose

Floating Multiply-Add, Floating Multiply-Add Single
Multiplies the first two arguments, adds the third argument, and returns the result.
Prototype

double __fmadd (double, double, double);

float __fmadds (float, float, float);

_ _fmsub, _ fmsubs
Purpose

Floating Multiply-Subtract, Floating Multiply-Subtract Single

Multiplies the first two arguments, subtracts the third argument and returns the
result.

428 XLC: Compiler Reference

Prototype
double __fmsub (double, double, double);

float __fmsubs (float, float, float);

_ fnmadd, _ fnmadds
Purpose

Floating Negative Multiply-Add, Floating Negative Multiply-Add Single

Multiplies the first two arguments, adds the third argument, and negates the
result.

Prototype
double __fnmadd (double, double, double);
float __fnmadds (float, float, float);

__fnmsub, _ fnmsubs
Purpose

Floating Negative Multiply-Subtract

Multiplies the first two arguments, subtracts the third argument, and negates the
result.

Prototype
double __fnmsub (double, double, double);

float __fnmsubs (float, float, float);

Reciprocal estimate functions

See also [“Square root functions” on page 431

_ fre, _ fres
Purpose

Floating Reciprocal Estimate, Floating Reciprocal Estimate Single
Prototype

double __fre (double);

float __fres (float);
Usage

__ fre is valid only when -qarch is set to target POWERS or later processors.

Chapter 7. Compiler built-in functions 429

Rounding functions

__fric
Purpose

Floating-point Rounding to Integer with current rounding mode

Rounds a double-precision floating-point value to integer with the current
rounding mode.

Prototype

double __fric(double);

_ frim, _ frims
Purpose

Floating Round to Integer Minus

Rounds the floating-point argument to an integer using round-to-minus-infinity
mode, and returns the value as a floating-point value.

Prototype
double __frim (double);
float __frims (float);
Usage
Valid only when -qarch is set to target POWERS5+ or later processors.

__frin, _ frins
Purpose

Floating Round to Integer Nearest

Rounds the floating-point argument to an integer using round-to-nearest mode,
and returns the value as a floating-point value.

Prototype
double __frin (double);
float __frins (float);
Usage
Valid only when -qarch is set to target POWERS+ or later processors.

__frip, __frips
Purpose

Floating Round to Integer Plus

430 XxLC: Compiler Reference

Rounds the floating-point argument to an integer using round-to-plus-infinity
mode, and returns the value as a floating-point value.

Prototype
double __frip (double);
float __frips (float);
Usage
Valid only when -qarch is set to target POWERS5+ or later processors.

_ friz, _ frizs
Purpose

Floating Round to Integer Zero

Rounds the floating-point argument to an integer using round-to-zero mode, and
returns the value as a floating-point value.

Prototype
double __friz (double);
float __frizs (float);
Usage

Valid only when -qarch is set to target POWERS+ or later processors.

Select functions

_ fsel, _ fsels
Purpose

Floating Select, Floating Select Single

Returns the second argument if the first argument is greater than or equal to zero;
returns the third argument otherwise.

Prototype
double __fsel (double, double, double);

float __fsels (float, float, float);

Square root functions

_ frsqrte, _ frsqrtes
Purpose

Floating Reciprocal Square Root Estimate, Floating Reciprocal Square Root Estimate
Single

Chapter 7. Compiler built-in functions 431

Prototype
double __frsqrte (double);
float _ frsqrtes (float);
Usage
__frsqgrtes is valid only when -qarch is set to target POWER5+ or later processors.

__fsqrt, _ fsqrts
Purpose

Floating Square Root, Floating Square Root Single
Prototype
double __fsqrt (double);

float _ fsqrts (float);

Software division functions

__swdiv, __swdivs
Purpose

Software Divide, Software Divide Single
Divides the first argument by the second argument and returns the result.
Prototype

double __swdiv (double, double);

float __swdivs (float, float);

__swdiv_nochk, _ swdivs_nochk
Purpose

Software Divide No Check, Software Divide No Check Single

Divides the first argument by the second argument, without performing range
checking, and returns the result.

Prototype
double __swdiv_nochk (double a, double b);
float __swdivs_nochk (float a, float b);

Parameters

a Must not equal infinity. When -gstrict is in effect, 2 must have an absolute
value greater than 2" and less than infinity.

b Must not equal infinity, zero, or denormalized values. When -gstrict is in
effect, b must have an absolute value greater than 2% and less than 2'°*.

432 XLC: Compiler Reference

Return value

The result must not be equal to positive or negative infinity. When -qgstrict in
effect, the result must have an absolute value greater than 27" and less than

1023
Usage
This function can provide better performance than the normal divide operator or

the _ swdiv built-in function in situations where division is performed repeatedly
in a loop and when arguments are within the permitted ranges.

Store functions

__stfiw
Purpose

Store Floating Point as Integer Word

Stores the contents of the loworder 32 bits of value, without conversion, into the
word in storage addressed by addr.

Prototype

void __stfiw (const int* addr, double value);

Binary-coded decimal built-in functions

Binary-coded decimal (BCD) values are compressed, with each decimal digit and
sign bit occupying 4 bits. Digits are ordered right-to-left in the order of
significance, and the final 4 bits encode the sign. A valid encoding must have a
value in the range 0 - 9 in each of its 31 digits and a value in the range 10 - 15 for
the sign field.

Source operands with sign codes of 0b1010, 0b1100, 0b1110, or Ob1111 are
interpreted as positive values. Source operands with sign codes of 0b1011 or
0b1101 are interpreted as negative values.

BCD arithmetic operations encode the sign of their result as follows: A value of
0b1101 indicates a negative value, while 0b1100 and 0b1111 indicate positive values
or zero, depending on the value of the preferred sign (PS) bit. These built-in
functions can operate on values of at most 31 digits.

BCD values are stored in memory as contiguous arrays of 1-16 bytes.

BCD add and subtract

The following functions are valid only when -qarch is set to target POWERS
processors:

* [“_bcdadd” on page 434
* [“_bcdsub” on page 434|

Chapter 7. Compiler built-in functions 433

__bcdadd
Purpose

Returns the result of addition on the BCD values a and b.

The sign of the result is determined as follows:

* If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).
* If the result is a nonnegative value and ps is 1, the sign is set to Ob1111 (0xF).
* If the result is a negative value, the sign is set to 0b1101 (0xD).

Prototype

vector unsigned char __bcdadd (vector unsigned char a, vector unsigned char
b, long ps);
Parameters

ps A compile-time known constant.

__bcdsub
Purpose

Returns the result of subtraction on the BCD values a and b.

The sign of the result is determined as follows:

* If the result is a nonnegative value and ps is 0, the sign is set to 0b1100 (0xC).
e If the result is a nonnegative value and ps is 1, the sign is set to Ob1111 (0OxF).
* If the result is a negative value, the sign is set to 0b1101 (0xD).

Prototype

vector unsigned char _bcdsub (vector unsigned char 4, vector unsigned char
b, long ps);
Parameters

ps A compile-time known constant.

BCD test add and subtract for overflow

The following functions are valid only when -qarch is set to target POWERS
processors:

e [bcdadd_ofl”

* |“_bcdsub_ofl” on page 435|
* |“_bed_invalid” on page 435

__bcdadd_ofl
Purpose

Returns 1 if the corresponding BCD add operation results in an overflow, or 0
otherwise.

Prototype

long __bcdadd_ofl (vector unsigned char a, vector unsigned char b);

434 XxLC: Compiler Reference

__bcdsub_ofl
Purpose

Returns 1 if the corresponding BCD subtract operation results in an overflow, or 0
otherwise.

Prototype

long __bcdsub_ofl (vector unsigned char 4, vector unsigned char b);

__bed_invalid
Purpose

Returns 1 if a is an invalid encoding of a BCD value, or 0 otherwise.
Prototype

long _ bcd_invalid (vector unsigned char a);

BCD comparison

The following functions are valid only when -qarch is set to target POWERS
processors:

e |“_bcdempeq”
* [“_bcdecmpge”
* ["__bcdempgt”|

* |“_bcdcmple” on page 436|

* |“_bedcmplt” on page 436|

__bcdcmpeq
Purpose

Returns 1 if the BCD value a is equal to b, or 0 otherwise.
Prototype

long __bcdempeq (vector unsigned char a, vector unsigned char b);

__bcdcmpge
Purpose

Returns 1 if the BCD value a is greater than or equal to b, or 0 otherwise.
Prototype

long __bcdempge (vector unsigned char a, vector unsigned char b);

__becdempgt
Purpose

Returns 1 if the BCD value a is greater than b, or 0 otherwise.
Prototype

long _ bcdempgt (vector unsigned char a, vector unsigned char b);

Chapter 7. Compiler built-in functions 435

__bcdcmple
Purpose

Returns 1 if the BCD value a is less than or equal to b, or 0 otherwise.
Prototype

long _ bcdemple (vector unsigned char a, vector unsigned char b);

__bcdcmplt
Purpose

Returns 1 if the BCD value a is less than b, or 0 otherwise.
Prototype

long __bcdemplt (vector unsigned char a, vector unsigned char b);

BCD load and store

The following functions are valid only when -qarch is set to target POWER?7 or
POWERS processors:

e [“__vec_ldrmb”
e [“__vec_strmb”

__vec_Ildrmb
Purpose

Loads a string of bytes into vector register, right-justified. Sets the leftmost
elements (16-cnt) to 0.

Prototype
vector unsigned char __vec_ldrmb (char *ptr, size_t cnt);

Parameters

ptr
Points to a base address.

ent
The number of bytes to load. The value of cnt must be in the range 1 - 16.

__vec_strmb
Purpose

Stores a right-justified string of bytes.
Prototype
void __vec_strmb (char *ptr, size_t cnt, vector unsigned char data);

Parameters

ptr
Points to a base address.

436 XLC: Compiler Reference

cnt
The number of bytes to store. The value of cnt must be in the range 1 - 16 and
must be a compile-time known constant.

Decimal floating-point built-in functions

Decimal floating-point (DFP) built-in functions are grouped into the following
categories:

* |“Absolute value functions”|

» [“Coefficient functions” on page 43§|

* [“Comparison functions” on page 439

+ [“Conversion functions” on page 440|

* |“Exponent functions” on page 445|

* [“NaN functions” on page 446|

+ [“Register transfer functions” on page 447

* “Rounding functions” on page 448|

+ [“Test functions” on page 450|

When -qarch is set to pwr6, pwrée, or later POWER processors,

-qfloat=nodfpemulate becomes the default. This means that DFP hardware

instructions are generated. Lower-performance software emulation code is

generated only when:

* -qarch is set to pwr5.

* -qarch is set to pwr6, pwrée, or later processors, and -qfloat=dfpemulate is
enabled

For binarfr floating-point built-in functions, see [Binary floating-point built-in|

Absolute value functions

Absolute value functions determine the sign of the returned value.

__d64_abs, _ d128_abs
Purpose

Absolute Value
Returns the absolute value of the parameter.
Prototype

_Decimal64 __d64_abs (_Decimal64);

_Decimal128 __d128_abs (_Decimal128);

_ d64_nabs, _ d128_nabs
Purpose

Negative Absolute Value

Returns the negative absolute value of the parameter.

Chapter 7. Compiler built-in functions 437

Prototype
_Decimal64 __d64_nabs (_Decimal64);
_Decimal128 __d128_nabs (_Decimal128);

__d64_copysign, __d128_copysign
Purpose

Copysign

Returns the absolute value of the first parameter, with the sign of the second
parameter.

Prototype
_Decimal64 __d64_copysign (_Decimal64, _Decimal64);

_Decimal128 __d128_copysign (_Decimal128, _Decimal128);

Coefficient functions

Coefficient functions manipulate the fraction without affecting the exponent and
sign, to support decimal-floating point conversion library functions.

__d64_shift_left, _ d128_shift_left
Purpose

Shift Coefficient Left.
Shifts the coefficient of the parameter left.
Prototype
_Decimal64 __d64_shift_left (_Decimal64, unsigned long digits);
_Decimal128 _d128_shift_left (_Decimal128, unsigned long digits);
Parameters
digits
The number of digits to be shifted left. The shift count must be in the range 0
to 63; otherwise the result is undefined.

Return value

The sign and exponent are unchanged. The digits are shifted left.

__d64_shift_right, _ d128_shift_right
Purpose

Shift Coefficient Right.

Shifts the coefficient of the parameter right.

438 XxLC: Compiler Reference

Prototype
_Decimal64 __d64_shift_right (_Decimal64, unsigned long digits);
_Decimal128 __d128_shift_right (_Decimal128, unsigned long digits);

Parameters

digits
The number of digits to be shifted right. The shift count must be in the range 0
to 63; otherwise the result is undefined.

Return value

The sign and exponent are unchanged. The digits are shifted right.

Comparison functions

Comparison functions support extended exception handling and exponent
comparisons.

__d64_compare_exponents, _ d128_compare_exponents
Purpose

Compare Exponents
Compares the exponents of two decimal floating-point values.
Prototype
long _ d64_compare_exponents (_Decimal64, _Decimal64);
long _ d128_compare_exponents (_Decimal128, _Decimall28);
Return value

Returns the following values:

* Less than 0 if the exponent of the first parameter is less than the exponent of the
second parameter.

* 0 if both parameters have the same exponent value or if both are quiet or
signaling NaNs (quiet and signaling are considered equal) or both are infinities.

* Greater than 0 if the exponent of the first argument is greater than the exponent
of the second argument.

* -2 if one of the two parameters is a quiet or signaling NaN or one of the two
parameters is an infinity.

__d64_compare_signaling, _ d128_compare_signaling
Purpose

Compare Signaling Exception on NaN

Compares two decimal floating-point values and raises an Invalid Operation
exception if either is a quiet or signaling NaN.

Chapter 7. Compiler built-in functions 439

Prototype
long _ d64_compare_signaling (_Decimal64, _Decimal64);
long _ d128_compare_signaling (_Decimal128, _Decimal128);
Return value

Returns the following values:

* Less than 0 if the value of the first parameter is less than the value of the second
parameter.

* 0 if both parameters have the same value.

* Greater than 0 if the value of the first parameter is greater than the value of the
second parameter.

If either value is a quiet or signalling NaN, an exception is raised. If no exception
handler has been enabled to trap the exception, the function returns -2.

Usage

If either value is a NaN, normal comparisons using the relational operators (==, !=,
<, <=, > and >=) always return false, which raises an exception for a signaling
NaN but not for a quiet NaN. If you want an exception to be raised when either
value is a quiet or signaling NaN, you should use the Compare Signaling
Exception on NaN built-in functions instead of a relational operator.

Conversion functions

Conversion functions execute decimal floating-point conversions. Some override
the current rounding mode.

__cbcdtd
Purpose

Convert Binary Coded Decimal to Declets.
The low-order 24 bits of each word of the source contain six, 4-bit BCD fields that
are converted to two declets; each set of the two declets is placed into the
low-order 20 bits of the corresponding word in the result. The high-order 12 bits in
each word of the result are set to 0. If a 4-bit BCD field has a value greater than 9,
the results are undefined.
Prototype

long long _ cbcdtd (long long);
Usage

Valid only when -qarch is set to target POWER? processors or higher.

__cdtbcd
Purpose

Convert Declets to Binary Coded Decimal.

440 XxLC: Compiler Reference

The low-order 20 bits of each word of the source contain two declets that are
converted to six, 4-bit BCD fields; each set of six, 4-bit BCD fields is placed into the
low-order 24 bits of the corresponding word in the result. The high-order 8 bits in
each word of the result are set to 0.
Prototype

long long __cdtbed (long long);
Usage
Valid only when -qarch is set to target POWER?7 processors or higher.

__dé64_to_long_long, _ d128_to_long_long
Purpose

Convert to Integer

Converts a decimal floating-point value to a 64-bit signed binary integer, using the
current rounding mode.

Prototype
long long _ d64_to_long_long (_Decimal64);
long long _d128_to_long_long (_Decimal128):
Return value

The input value converted to a long long, using the current rounding mode (not
always rounded towards zero as a cast or implicit conversion would be).

__d64_to_long_long_rounding, _ d128_to_long_long_rounding
Purpose

Convert to Integer

Converts a decimal floating-point value to a 64-bit signed binary integer, using a
specified rounding mode.

Prototype
long long __d64_to_long_long_rounding (_Decimal64, long rounding_mode);
long long __d128_to_long_long_rounding (_Decimall28, long rounding_mode);

Parameters

mode
One of the compile time constant values or macros defined in [Table 41 on page
- 48

Return value

The input value converted to a long long, using the specified rounding mode (not
always rounded towards zero as a cast or implicit conversion would be).

Chapter 7. Compiler built-in functions 441

Usage

These functions temporarily override the rounding mode in effect for the current
operation.

__d64_to_signed_BCD
Purpose

Convert to Signed Binary-Coded Decimal

Converts the lower digits of a 64-bit decimal floating-point value to a Signed
Packed Format (packed decimal).

Prototype
unsigned long long _ d64_to_signed_BCD (_Decimal64, _Bool value);
Return value

Produces 15 decimal digits followed by a decimal sign in a 64-bit result. The
leftmost digit is ignored.

Positive values are given the sign OxF if value is true and 0xC if value is false.
Negative values are given the sign 0xD.
Usage

You can use the __d64_shift_right function to access the leftmost digit.

__d128_to_signed_BCD
Purpose

Convert to Signed Binary Coded Decimal.

Converts the lower digits of a 128-bit decimal floating-point value to a Signed
Packed Format (packed decimal).

Prototype

void __d128_to_signed_BCD (_Decimal128, _Bool value, unsigned long long
*upper, unsigned long long *lower);

Parameters

upper
The address of the variable that will hold the upper digits of the result.

lower
The address of the variable that will hold the lower digits of the result.

Return value
Produces 31 decimal digits followed by a decimal sign in a 128-bit result. Digits to

the left are ignored. The higher 16 digits are stored in the parameter upper. The
lower 15 digits plus the sign are stored in the parameter lower.

442 XL C: Compiler Reference

Positive values are given the sign OxF if value is true and 0xC if value is false.
Negative values are given the sign 0xD.
Usage

You can use the _d128_shift_right function to access the digits to the left.

__d64_to_unsigned_BCD
Purpose

Convert to Unsigned Binary Coded Decimal.

Converts the lower digits of a 64-bit decimal floating-point value to an Unsigned
Packed Format.

Prototype
unsigned long long _d64_to_unsigned_BCD (_Decimal64);
Return value
Returns 16 decimal digits with no sign in a 64-bit result.
Usage

You can use the _d64_shift_right function to access the digits to the left.

__d128_to_unsigned_BCD
Purpose

Convert to Unsigned Binary Coded Decimal.

Converts the lower digits of a 128-bit decimal floating-point value to an Unsigned
Packed Format.

Prototype

void __d128_to_unsigned_BCD (_Decimal128, unsigned long long *upper,
unsigned long long *lower);

Parameters

upper
The address of the variable that will hold the upper digits of the result.

lower
The address of the variable that will hold the lower digits of the result.

Return value
Produces 32 decimal digits with no sign in a 128-bit result. Digits to the left are

ignored. The higher 16 digits are stored in the parameter upper. The lower 16 digits
are stored in the parameter lower.

Chapter 7. Compiler built-in functions 443

Usage

You can use the _ d128_shift_right function to access the digits to the left.

__signed_BCD_to_d64
Purpose

Convert from Signed Binary Coded Decimal.

Converts a 64-bit Signed Packed Format (packed decimal - 15 decimal digits
followed by a decimal sign) to a 64-bit decimal floating-point value.

Prototype
_Decimal64 __signed_BCD_to_d64 (unsigned long long);
Parameters

The signs 0xA, 0xC, OxE, and OxF are treated as positive. The signs 0xB and 0xD
are treated as negative.

__signed_BCD_to_d128
Purpose

Convert from Signed Binary Coded Decimal.

Converts a 128-bit Signed Packed Format (packed decimal - 31 decimal digits
followed by a decimal sign) to a 128-bit decimal floating-point value.

Prototype

_Decimal128 __signed_BCD_to_d128 (unsigned long long upper, unsigned
long long lower);
Parameters

upper
The upper 16 digits of the input value.

lower
The lower 15 digits plus the sign of the input value.

Parameters

The signs 0xA, 0xC, OxE, and OxF are treated as positive. The signs 0xB and 0xD
are treated as negative.

__unsigned_BCD_to_d64
Purpose

Convert from Unsigned Binary Coded Decimal.

Converts a 64-bit Unsigned Packed Format (16 decimal digits with no sign) to a
64-bit decimal floating-point value.

444 XL C: Compiler Reference

Prototype

_Decimal64 __unsigned_BCD_to_d64 (unsigned long long);

__unsigned_BCD_to_d128
Purpose

Convert from Unsigned Binary Coded Decimal.

Converts a 128-bit Unsigned Packed Format (32 decimal digits with no sign) to a
128-bit decimal floating-point value.

Prototype

_Decimal128 __unsigned_BCD_to_d128 (unsigned long long upper, unsigned
long long lower);

Parameters

upper
The upper 16 digits of the input value.

lower
The lower 16 digits of the input value.

Exponent functions

Exponent functions extract the exponent from a value or insert an exponent into a
value, primarily to support decimal-floating point conversion library functions.
They use special values to identify or specify the exponent type.

Table 40. Biased exponents macros and values

Macro Integer value
DFP_BIASED_EXPONENT_FINITE 0
DFP_BIASED_EXPONENT_INFINITY -1
DFP_BIASED_EXPONENT_QNAN -2
DFP_BIASED_EXPONENT_SNAN -3

__d64_biased_exponent, _ d128_biased_exponent
Purpose

Extract Biased Exponent
Returns the exponent of a decimal floating-point value as an integer.
Prototype
long _ d64_biased_exponent (_Decimal64);
long _ d128_biased_exponent (_Decimall28);
Return value

Returns special values for infinity, quiet NaN, and signalling NaN, as listed in

Chapter 7. Compiler built-in functions 445

For finite values, the result is DFP_BIASED_EXPONENT_FINITE plus the
exponent bias (398 for _Decimal64, 6176 for _Decimal128) plus the actual exponent.

__d64_insert_biased_exponent, _ d128_insert_biased_exponent
Purpose

Insert Biased Exponent

Replaces the exponent of a decimal floating-point value.

Prototype
_Decimal64 __d64_insert_biased_exponent (_Decimal64, long exponent);
_Decimal128 __d128_insert_biased_exponent (_Decimall28, long exponent);

Parameters

exponent
The exponent value to be applied to the first parameter. For infinity, quiet NaN
and signalling NaN, use one of the compile-time constant values or macros
listed in [Table 40 on page 445|

For finite values, the result is DFP_BIASED_EXPONENT_FINITE plus the
exponent bias (398 for _Decimal64, 6176 for _Decimal128) plus the
corresponding exponent.

NaN functions

NaN functions create quiet or signaling NaNs.

_ d32_sNaN, _ d64_sNaN, _ d128_sNaN
Purpose

Make Signalling NaN

Creates a signalling NaN of the specified precision, with a positive sign and zero
payload.

Prototype
_Decimal32 __d32_sNan (void);
_Decimal64 __d64_sNaN (void);

_Decimal128 __d128_sNaN (void);

__d32_qNaN, _ d64_gNaN, _ d128qNaN
Purpose

Make Quiet NaN

Creates a quiet NaN of the specified precision, with a positive sign and zero
payload.

446 XLC: Compiler Reference

Prototype
_Decimal32 __d32_gNaN (void);
_Decimal64 __d64_gNaN (void);

_Decimal128 _ d128_gNaN (void);

Register transfer functions

Register transfer functions transfer data between general purpose registers and
floating-point registers. No conversion occurs. Register transfer functions handle
integer data in floating-point registers or floating-point data in general purpose
registers. These functions use instructions that are available with -qarch=pwr6 or
-qarch=pwr6e only, on a POWER6 running in POWERG6e (raw) mode.

__gpr_to_d64
Purpose

Transfer from General Purpose Register to Floating-Point Register

Transfers a value from a general purpose register (64-bit mode) or a general
purpose register pair (32-bit mode).

Prototype
_Decimal64 _ gpr_to_d64 (long long);

__gprs_to_d128
Purpose

Transfer from General Purpose Register to Floating-Point Register.

Transfers a value from a pair of general purpose registers (64-bit mode) or four
general purpose registers (32-bit mode).

Prototype

_Decimal128 __gprs_to_d128 (unsigned long long*upper, unsigned long
long*lower);

Parameters

upper
The address of the variable that will hold the upper 64 bits of the result.

lower
The address of the variable that will hold the lower 64 bits of the result.

Return value

The higher 64 bits are stored in the parameter upper. The lower 64 bits are stored in
the parameter lower.

__d64_to_gpr
Purpose

Transfer from Floating-Point Register to General Purpose Register.

Chapter 7. Compiler built-in functions 447

Transfers a value from a floating-point register to a general purpose register (64-bit
mode) or a general purpose register pair (32-bit mode).

Prototype

long long _ d64_to_gpr (_Decimal64);

__d128_to_gprs
Purpose

Transfer from Floating-Point Register to General Purpose Register.

Transfers a value from a pair of floating-point registers to a pair of general purpose
registers (64-bit mode) or four general purpose registers (32-bit mode).

Prototype

void __d128_to_gprs (_Decimal128, unsigned long long*upper, unsigned long
long*lower);

Parameters

upper
The address of the variable that contains the upper 64 bits of the input value.

lower
The address of the variable that contains the lower 64 bits of the input value.

Rounding functions

Rounding functions perform operations such as rounding and truncation of
floating-point values.

Table 41. Rounding mode macros and values

Macro Integer value
DFP_ROUND_TO_NEAREST_WITH_TIES_TO_EVEN
DFP_ROUND_TOWARD_ZERO
DFP_ROUND_TOWARD_POSITIVE_INFINITY
DFP_ROUND_TOWARD_NEGATIVE_INFINITY
DFP_ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_ZERO
DFP_ROUND_TO_NEAREST_WITH_TIES_TOWARD_ZERO
DFP_ROUND_AWAY_FROM_ZERO
DFP_ROUND_TO_PREPARE_FOR_SHORTER_PRECISION
DFP_ROUND_USING_CURRENT_MODE!

I ||| (N~ |O

Note:

1. This value is valid only for functions that override the current rounding mode;
it is not valid for __dfp_set_rounding_mode and can not be returned by
__dfp_get_rounding_mode.

__d64_integral, _ d128_integral
Purpose

Round to Integral

448 XL C: Compiler Reference

Rounds a decimal floating-point value to an integer, allowing an Inexact exception
to be raised.

Prototype
_Decimal64 __d64_integral (_Decimal64);
_Decimal128 _d128_integral (_Decimall28);
Return value

The integer is returned in decimal floating-point format, rounded using the current
rounding mode. Digits after the decimal point are discarded.

__d64_integral_no_inexact, _ d128_integral_no_inexact
Purpose

Round to Integral

Rounds a decimal floating-point value to an integer, suppressing any Inexact
exception from being raised.

Prototype
_Decimal64 __d64_integral no_inexact (_Decimal64);
_Decimal128 __d128_integral_no_inexact (_Decimall28);
Return value

The integer is returned in decimal floating-point format, rounded using the current
rounding mode. Digits after the decimal point are discarded.

__d64_quantize, _ d128_quantize
Purpose

Quantize

Returns the arithmetic value of the first parameter, with the exponent adjusted to
match the second parameter, using a specified rounding mode.

Prototype
_Decimal64 __d64_quantize (_Decimal64, _Decimal64, long rounding_mode);

_Decimal128 _d128_quantize (_Decimal128, _Decimall28, long
rounding_mode);

Parameters

rounding_mode
One of the compile-time constant values or macros defined in [Table 41 on page|
- 48

Chapter 7. Compiler built-in functions 449

Usage

These functions temporarily override the rounding mode in effect for the current
operation.

_d64_reround, _ d128_reround
Purpose

Reround

Complete rounding of a partially rounded value, avoiding double rounding which
causes errors.

Prototype

_Decimal64 __d64_reround (_Decimal64, unsigned long number_of_digits,
unsigned long rounding_mode);

_Decimal128 __d128_reround (_Decimall28, unsigned long number_of digits,
unsigned long rounding_mode);

Parameters

number _of digits
The number of digits to round to, from 1 to 15 for _d64_reround and from 1
to 33 for _ d128 reround.

rounding _mode
One of the compile-time constant values or macros defined in [Table 41 on page
448

Usage

These functions temporarily override the rounding mode in effect for the current
operation. The value to be rerounded should have been previously rounded using
mode DFP_ROUND_TO_PREPARE_FOR_SHORTER_PRECISION or 7 to ensure
correct rounding.

Test functions

Test functions allow extended exception handling of invalid results or
categorization of input values, primarily to support math library functions.

Those functions that begin with _d64_is or _ d128_is will not raise an exception,
even for signaling NaNs.

Table 42. Test data class mask macros and values

Macro Integer value
DFP_PPC_DATA_CLASS_ZERO 0x20
DFP_PPC_DATA_CLASS_SUBNORMAL 0x10
DFP_PPC_DATA_CLASS_NORMAL 0x08
DFP_PPC_DATA_CLASS_INFINITY 0x04
DFP_PPC_DATA_CLASS_QUIET_NAN 0x02
DFP_PPC_DATA_CLASS_SIGNALING_NAN 0x01

450 XxLC: Compiler Reference

Table 43. Test data group mask macros and values

Macro Integer value
DFP_PPC_DATA_GROUP_SAFE_ZERO 0x20
DFP_PPC_DATA_GROUP_ZERO_WITH_EXTREME_EXPONENT 0x10
DFP_PPC_DATA_GROUP_NONZERO_WITH_EXTREME_EXPONENT 0x08
DFP_PPC_DATA_GROUP_SAFE_NONZERO 0x04
DFP_PPC_DATA_GROUP_NONZERO_LEFTMOST_DIGIT_NONEXTREME_EXPONENT 0x02
DFP_PPC_DATA_GROUP_SPECIAL 0x01

Table 44. Test data class and group result macros and values

Macro

Integer value

DFP_PPC_DATA_POSITIVE_NO_MATCH

0x00

DFP_PPC_DATA_POSITIVE_MATCH 0x02
DFP_PPC_DATA_NEGATIVE_NO_MATCH 0x08
DFP_PPC_DATA_NEGATIVE_MATCH 0x0A

Table 45. Test data class and group result mask macros and values

Macro

Integer value

DFP_PPC_DATA_NEGATIVE_MASK

0x08

DFP_PPC_DATA_MATCH_MASK

0x02

__d64_same_quantum, _ d128_same_quantum
Purpose

Same Quantum
Returns true if two values have the same quantum
Prototype
_Bool __d64_same_quantum (_Decimal64, _Decimal64);
_Bool __d128_same_quantum (_Decimal28, _Decimal128);

__d64_issigned, _ d128_issigned
Purpose

Is Signed

Returns true if the parameter is negative, negative zero, negative infinity, or

negative NaN.
Prototype
_Bool __d64_issigned (_Decimal64);

_Bool __d128_issigned (_Decimal128);

Chapter 7. Compiler built-in functions

451

__d64_isnormal, _ d128_isnormal
Purpose

Is Normal

Returns true if the parameter is in the normal range (that is, not a subnormal,
infinity or NaN) and not zero.

Prototype
_Bool _dé64_isnormal (_Decimal64);

_Bool _d128_isnormal (_Decimal128);

__d64_isfinite, _ d128_isfinite
Purpose

Is Finite

Returns true if the parameter is not positive or negative infinity and not a quiet or
signaling NaN.

Prototype
_Bool __d64_isfinite (_Decimal64);
_Bool __d128_isfinite (_Decimall128);

__d64_iszero, _ d128_iszero
Purpose

Is Zero
Returns true if the parameter is positive or negative zero.
Prototype

_Bool __d64_iszero (_Decimal64);

_Bool __d128_iszero (_Decimal128);

__d64_issubnormal, _ d128_issubnormal
Purpose

Is Subnormal
Returns true if the parameter is a subnormal.
Prototype

_Bool _d64_issubnormal (_Decimal64);

_Bool _d128_issubnormal (_Decimal128);

452 XLC: Compiler Reference

__d64_isinf, _ d128_isinf
Purpose

Is Infinity
Returns true if the parameter is positive or negative infinity.
Prototype

_Bool __d64_isinf (_Decimal64);

_Bool __d128_isinf (_Decimal128);

_ d64 _isnan, _ d128_isnan
Purpose

Is NaN
Returns true if the parameter is a positive or negative quiet or signaling NalN.
Prototype

_Bool __d64_isnan (_Decimal64);

_Bool __d128_isnan (_Decimal128);

__d64_issignaling, _ d128_issignaling
Purpose

Is Signaling NaN
Returns true if the parameter is a positive or negative signaling NaN.
Prototype

_Bool __d64_issignaling (_Decimal64);

_Bool __d128_issignaling (_Decimal128);

_ d64_test _data_class, _ d128_test data_class
Purpose

Test Data Class

Reports if a value is a zero, subnormal, normal, infinity, quiet NaN or signaling
NaN, and if the value is positive or negative.

Prototype
long _ d64_test_data_class (_Decimal64, unsigned long mask);

long _ d128_test_data_class (_Decimall28, unsigned long mask);

Chapter 7. Compiler built-in functions 453

Parameters

mask
One of the values or macros defined in [Table 42 on page 450| or several ORed
together. The parameter must be a compile time constant expression.

Return value

One of the values listed in [Table 44 on page 451|

Usage

You can use an appropriate mask to check combinations of values at the same
time. Use the masks listed in [Table 42 on page 450| to check input values. Use the
masks listed in [Table 45 on page 451 to check result values.

__d64_test_data_group, _ d128_test_data_group
Purpose

Test Data Group

Reports if a value is a safe zero, a zero with an extreme exponent, a subnormal, a
safe nonzero, a normal with no leading zero, or an infinity or NaN and if the value
is positive or negative. Safe means leading zero digits and a non-extreme exponent.
A subnormal can appear as either an extreme nonzero or safe nonzero. The exact
meaning of some masks depends on the particular CPU model.

Prototype
long _d64_test_data_group (_Decimal64, unsigned long mask);
long _d128_test_data_group (_Decimall28, unsigned long mask);

Parameters

mask
One of the values or macros defined in [Table 43 on page 451| or several ORed
together. The parameter must be a compile time constant expression.

Return value

One of the values listed in [Table 44 on page 451|

Usage

You can use an appropriate mask to check combinations of values at the same
time. Use the masks listed in [Table 43 on page 451|to check input values. Use the
masks listed in [Table 45 on page 451[to check result values.

__d64_test_significance, _ d128_test_significance
Purpose

Test Significance
Checks whether a decimal floating-point value has a specified number of digits of

significance.

454 XL C: Compiler Reference

Prototype
long __d64_test_significance (_Decimal64, unsigned long digits);
long __d128_test_significance (_Decimal128, unsigned long digits);

Parameters

digits
The number of digits of significance to be tested for. digits must be in the range
0 to 63; otherwise the result is undefined. If it is 0, all values including zero
will be considered to have more significant digits, if it is not 0, a zero value
will be considered to have fewer significant digits.

Return value

Returns the following values:

* Less than 0 if the number of digits of significance of the first parameter is less
than the second parameter.

* 0 if the number of digits of significance is the same as the second parameter.

* Greater than 0 if the number of digits of significance of the first parameter is
greater than that of the second parameter or digits is 0.

* -2 if either parameter is a quiet or signaling NaN or positive or negative infinity.

For these functions, the number of significant digits of the value 0 is considered to
be zero.

Miscellaneous functions

This section lists the miscellaneous decimal floating-point built-in functions.

__addg6s
Purpose

Add and Generate Sixes

Adds sourcel to source? and produces 16 carry bits, one for each carry out of
decimal position n (bit position 4xn).

The result is a doubleword composed of the 16 carry bits. The doubleword consists
of a decimal six (0b0110) in every decimal digit position for which the
corresponding carry bit is 0, and a zero (0b0000) in every position for which the
corresponding carry bit is 1.
Prototype

long long __addgbs (long long sourcel, long long source2);

Usage

Valid only when -qarch is set to target POWER?7 processors or higher in 64-bit
mode.

Chapter 7. Compiler built-in functions 455

Synchronization and atomic built-in functions
Synchronization and atomic built-in functions are grouped into the following
categories:
* [“Check lock functions”|

+ [“Clear lock functions” on page 457

+ [“Compare and swap functions” on page 458

* [“Fetch functions” on page 459

+ [“Load functions” on page 461|

+ [“Store functions” on page 462|

* |“Synchronization functions” on page 462|

Check lock functions

__check_lock_mp, _ check_lockd_mp
Purpose

Check Lock on Multiprocessor Systems, Check Lock Doubleword on
Multiprocessor Systems

Conditionally updates a single word or doubleword variable atomically.
Prototype
unsigned int __check_lock_mp (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_mp (const long long* addr, long long old_value,
long long new_value);
Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word or on an 8-byte boundary for a doubleword.

old value
The old value to be checked against the current value in addr.

new_value
The new value to be conditionally assigned to the variable in addr,

Return value

Returns false (0) if the value in addr was equal to old_value and has been set to the
new_value. Returns true (1) if the value in addr was not equal to old_value and has
been left unchanged.

Usage

_ check_Tockd_mp is valid only in 64-bit mode.

456 XLC: Compiler Reference

__check_lock_up, _ check_lockd_up
Purpose

Check Lock on Uniprocessor Systems, Check Lock Doubleword on Uniprocessor
Systems

Conditionally updates a single word or doubleword variable atomically.

Prototype
unsigned int __check_lock_up (const int* addr, int old_value, int new_value);

unsigned int __check_lockd_up (const long* addr, long old_value, long
new_value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

old value
The old value to be checked against the current value in addr.

new_value
The new value to be conditionally assigned to the variable in addr,

Return value

Returns false (0) if the value in addr was equal to old_value and has been set to the
new value. Returns true (1) if the value in addr was not equal to old_value and has
been left unchanged.

Usage

_ check_Tockd_up is valid only in 64-bit mode.

Clear lock functions

__clear_lock_mp, _ clear_lockd_mp
Purpose

Clear Lock on Multiprocessor Systems, Clear Lock Doubleword on Multiprocessor
Systems

Atomic store of the value into the variable at the address addr.
Prototype

void _ clear_lock_mp (const int* addr, int value);

void __clear_lockd_mp (const long* addr, long value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

Chapter 7. Compiler built-in functions 457

value
The new value to be assigned to the variable in addr,

Usage
_ clear_lockd_mp is only valid in 64-bit mode.

__clear_lock_up, __ clear_lockd_up
Purpose

Clear Lock on Uniprocessor Systems, Clear Lock Doubleword on Uniprocessor
Systems

Atomic store of the value into the variable at the address addr.
Prototype

void __clear_lock_up (const int* addr, int value);

void __clear_lockd_up (const long* addr, long value);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The new value to be assigned to the variable in addr.

Usage

_ clear_lockd_up is only valid in 64-bit mode.

Compare and swap functions

__compare_and_swap, _ compare_and_swaplp
Purpose

Conditionally updates a single word or doubleword variable atomically.
Prototype
int __compare_and_swap (volatile int* addr, int* old_val_addr, int new_val);

int __compare_and_swaplp (volatile long* addr, long* old_val_addr, long
new_val);

Parameters

addr
The address of the variable to be copied. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

old_val_addr
The memory location into which the value in addr is to be copied.

458 XL C: Compiler Reference

new_val
The value to be conditionally assigned to the variable in addr,

Return value

Returns true (1) if the value in addr was equal to old_value and has been set to the

new value. Returns false (0) if the value in addr was not equal to old_value and has
been left unchanged. In either case, the contents of the memory location specified

by addr are copied into the memory location specified by old_val_addr.

Usage

The __compare_and_swap function is useful when a single word value must be
updated only if it has not been changed since it was last read. If you use
__compare_and_swap as a locking primitive, insert a call to the __isync built-in
function at the start of any critical sections.

__compare_and_swaplp is valid only in 64-bit mode.

Fetch functions

_ fetch_and_and, _ fetch_and_andlp
Purpose

Clears bits in the word or doubleword specified byaddr by AND-ing that value
with the value specified by val, in a single atomic operation, and returns the
original value of addr.

Prototype
unsigned int _ fetch_and_and (volatile unsigned int* addr, unsigned int val);

unsigned long _ fetch_and_andlp (volatile unsigned long* addr, unsigned
long val);
Parameters

addr
The address of the variable to be ANDed. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The value by which the value in addr is to be ANDed.

Usage

This operation is useful when a variable containing bit flags is shared between
several threads or processes.

_ fetch_and_andlp is valid only in 64-bit mode.

__fetch_and_or, __fetch_and_orlp
Purpose

Sets bits in the word or doubleword specified by addr by OR-ing that value with
the value specified val, in a single atomic operation, and returns the original value
of addr.

Chapter 7. Compiler built-in functions 459

Prototype
unsigned int _ fetch_and_or (volatile unsigned int* addr, unsigned int val);

unsigned long __fetch_and_orlp (volatile unsigned long* addr, unsigned long
val);
Parameters

addr
The address of the variable to be ORed. Must be aligned on a 4-byte boundary
for a single word and on an 8-byte boundary for a doubleword.

value
The value by which the value in addr is to be ORed.

Usage

This operation is useful when a variable containing bit flags is shared between
several threads or processes.

_ fetch_and_orlp is valid only in 64-bit mode.

__fetch_and_swap, __fetch_and_swaplp
Purpose

Sets the word or doubleword specified by addr to the value of val and returns the
original value of addr, in a single atomic operation.

Prototype
unsigned int _ fetch_and_swap (volatile unsigned int* addr, unsigned int val);

unsigned long _ fetch_and_swaplp (volatile unsigned long* addr, unsigned
long wval);
Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

value
The value which is to be assigned to addr.

Usage
This operation is useful when a variable is shared between several threads or
processes, and one thread needs to update the value of the variable without losing

the value that was originally stored in the location.

_ fetch_and_swaplp is valid only in 64-bit mode.

460 xLC: Compiler Reference

Load functions

__lqgarx, __Idarx, __lwarx, __lharx, __Ibarx
Purpose

Load Quadword and Reserve Indexed, Load Doubleword and Reserve Indexed,
Load Word and Reserve Indexed, Load Halfword and Reserve Indexed, Load Byte
and Reserve Indexed

Loads the value from the memory location specified by addr and returns the result.
For __lwarx, in 64-bit mode, the compiler returns the sign-extended result.

Prototype
void __lgarx (volatile long* addr, long dst[2]);
long _ ldarx (volatile long* addr);
int _ lwarx (volatile int* addr);
short __lharx(volatile short* addr);
char __lbarx(volatile char* addr);

Parameters

addr
The address of the value to be loaded. Must be aligned on a 4-byte boundary
for a single word, on an 8-byte boundary for a doubleword, and on a 16-byte
boundary for a quadword.

dst
The address to which the value is loaded.

Usage

This function can be used with a subsequent __stqcx (__stdcx, _stwex, _sthex,
or __stbcx) built-in function to implement a read-modify-write on a specified
memory location. The two built-in functions work together to ensure that if the
store is successfully performed, no other processor or mechanism have modified
the target memory between the time the Toad function is executed and the time the
store function completes. This has the same effect on code motion as inserting
__fence built-in functions before and after the 1oad function and can inhibit
compiler optimization of surrounding code (see [“__alignx” on page 607] for a
description of the _ fence built-in function).

__ldarx and __1garx are valid only in 64-bit mode. _ Tqgarx, __lharx, and __1barx
are valid only when -qarch is set to target POWERS processors.

Chapter 7. Compiler built-in functions 461

Store functions

__stqcx, __stdex, _ stwex, _sthex, _ stbex
Purpose

Store Quadword Conditional Indexed, Store Doubleword Conditional Indexed,
Store Word Conditional Indexed, Store Halfword Conditional Indexed, Store Byte
Conditional Indexed
Stores the value specified by val into the memory location specified by addr.
Prototype

int __stqex(volatile long* addr, long val[2]);

int __stdex(volatile long* addr, long val);

int __stwcex(volatile int* addr, int val);

int __sthex(volatile short* addr, short val);

int __stbex(volatile char* addr, char val);

Parameters

addr
The address of the variable to be updated. Must be aligned on a 4-byte
boundary for a single word and on an 8-byte boundary for a doubleword.

val
The value that is to be assigned to addr.
Return value
Returns 1 if the update of addr is successful and 0 if it is unsuccessful.

Usage

This function can be used with a preceding _ 1qarx (__Tdarx, _ Twarx, _ Tharx, or
__Tbarx) built-in function to implement a read-modify-write on a specified
memory location. The two built-in functions work together to ensure that if the
store is successfully performed, no other processor or mechanism can modify the
target doubleword between the time the _ Tdarx function is executed and the time
the _ stdcx function completes. This has the same effect as inserting _ fence
built-in functions before and after the _ stdcx built-in function and can inhibit
compiler optimization of surrounding code.

_ stdcx is valid only in 64-bit mode. __stqcx, _sthcx, and _stbex are valid only
when -qarch is set to target POWERS processors.

Synchronization functions

__eieio, __iospace_eioio
Purpose

Enforce In-order Execution of Input/Output

462 XLC: Compiler Reference

Ensures that all I/O storage access instructions preceding the call to __eioeio
complete in main memory before 1/O storage access instructions following the
function call can execute.

Prototype
void __eieio (void);
void __iospace_eieio (void);
Usage
This function is useful for managing shared data instructions where the execution
order of load/store access is significant. The function can provide the necessary

functionality for controlling I/O stores without the cost to performance that can
occur with other synchronization instructions.

__isync
Purpose

Instruction Synchronize

Waits for all previous instructions to complete and then discards any prefetched
instructions, causing subsequent instructions to be fetched (or refetched) and
executed in the context established by previous instructions.

Prototype
void __isync (void);

__lwsync, __iospace_lwsync
Purpose

Lightweight Synchronize

Ensures that all instructions preceding the call to __1wsync complete before any
subsequent store instructions can be executed on the processor that executed the
function. Also, it ensures that all load instructions preceding the call to _ Twsync
complete before any subsequent load instructions can be executed on the processor
that executed the function. This allows you to synchronize between multiple
processors with minimal performance impact, as __lwsync does not wait for
confirmation from each processor.

Prototype
void __lwsync (void);
void __iospace_lwsync (void);

__sync, __iospace_sync
Purpose

Synchronize

Ensures that all instructions preceding the function the call to __sync complete
before any instructions following the function call can execute.

Chapter 7. Compiler built-in functions 463

Prototype
void __sync (void);

void __iospace_sync (void);

Cache-related built-in functions

Cache-related built-in functions are grouped into the following categories:

* |“Data cache functions”|

+ [“Prefetch built-in functions” on page 466|

Data cache functions

__dcbf
Purpose

Data Cache Block Flush

Copies the contents of a modified block from the data cache to main memory and
flushes the copy from the data cache.

Prototype

void __dcbf(const void* addr);

__dcbfl
Purpose

Data Cache Block Flush Line
Flushes the cache line at the specified address from the L1 data cache.
Prototype
void __dcbfl (const void* addr);
Usage
The target storage block is preserved in the L2 cache.

Valid when -qarch is set to target POWERG6 processors or higher.

__dcbflp
Purpose

Data Cache Block Flush Line Primary
Flushes the cache line at address from the primary data cache of a single processor.
Prototype

void __dcbflp(const void* address);

464 XxLC: Compiler Reference

Usage

Valid only when -qarch is set to target POWER?Y processors or higher.

__dcbst
Purpose

Data Cache Block Store
Copies the contents of a modified block from the data cache to main memory.
Prototype

void __dcbst(const void* addr);

__dcbt
Purpose

Data Cache Block Touch
Loads the block of memory containing the specified address into the L1 data cache.
Prototype

void __dcbt (void* addr);

__dcbtna
Purpose

Data cache block hint no longer accessed

Indicates that the block containing address will not be accessed for a long time;
therefore, it must not be kept in the L1 data cache.

Note: Using this function does not necessarily evict the containing block from the
data cache.

Prototype
void __dcbtna (void *addr);
Usage

Valid only when -qarch is set to target POWERS processors.

__dcbtst
Purpose

Data Cache Block Touch for Store
Fetches the block of memory containing the specified address into the data cache.
Prototype

void __dcbtst (void* addr);

Chapter 7. Compiler built-in functions 465

__dcbz
Purpose

Data Cache Block set to Zero
Sets a cache line containing the specified address in the data cache to zero (0).
Prototype

void __dcbz (void* addr);

__icht
Purpose

Instruction cache block touch
Indicates that the program will soon run code in the instruction cache block
containing address, and that the block containing address must be loaded into the
instruction cache.
Prototype

void __icbt (void *addr) ;
Usage

Valid only when -qarch is set to target POWERS processors.

Prefetch built-in functions

__dcbtstt
Purpose

Store Transient Touch provides a hint that describes a block that the program may
perform a store access to. The block is likely to be transient, that is, the time
interval during which the program accesses the unit is likely to be short.
Prototype

void __dcbtstt (void * address);
Usage

Valid only when -qarch is set to target POWERY? processors or higher.

__dcbtt
Purpose

Data Cache Block Touch Transient
Load Transient Touch provides a hint that describes a block that the program

might perform a load access to. The block is likely to be transient, that is, the time
interval during which the program accesses the unit is likely to be short.

466 XLC: Compiler Reference

Prototype
void __dcbtt (void * address);
Usage
Valid only when -qarch is set to target POWERY? processors or higher.

__partial_dcbt
Purpose

Partial Data Cache Block Touch

Loads half of the cache line that contains the specified address into the L3 data

cache.
Prototype
void __partial_dcbt (void * address);
Usage
Valid only when -qarch is set to target POWER? processors or higher.

__prefetch_by_load
Purpose

Touches a memory location by using an explicit load.
Prototype

void __prefetch_by_load (const void*);

__prefetch_by_stream
Purpose

Touches consecutive memory locations by using an explicit stream.
Prototype

void __prefetch_by_stream (const int, const void*);

__protected_stream_count
Purpose

Sets the number of cache lines for a specific limited-length protected stream.
Prototype

void __protected_stream_count (unsigned int unit_cnt, unsigned int
stream_ID);

Parameters

unit_cnt
The number of cache lines. Must be an integer with a value of 0 to 1023.

Chapter 7. Compiler built-in functions

467

stream_ID
An integer with a value 0-7 on POWERS processors, a value 0 to 15 on
POWERG processors, and a value 0 to 11 on POWER7 and POWERS
processors.

Usage
Valid only when -qarch is set to target POWERS processors or higher.

__protected_stream_count_depth
Purpose

Sets the number of cache lines and the prefetch depth for a specific limited-length
protected stream.

Prototype

void _protected_stream_count_depth (unsigned int unit_cnt, unsigned int
prefetch_depth, unsigned int stream_ ID);
Parameters

unit_cnt
The number of cache lines. Must be an integer with a value of 0 to 1023.

prefetch_depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.
1 None.
2 Shallowest.
3 Shallow.
4 Medium.
5 Deep.
6 Deeper.
7 Deepest.
Stream_ID
An integer with a value 0 to 15 on POWERS6 processors, and a value 0 to 11 on
or POWER7 and POWERS processors.
Usage
Valid only when -qarch is set to target POWERG6 processors or higher.

__protected_stream_go
Purpose

Starts prefetching all limited-length protected streams.

468 XxLC: Compiler Reference

Prototype
void __protected_stream_go (void);
Usage
Valid only when -qarch is set to target POWERDS processors or higher.

__protected_stream_set
Purpose

Establishes a limited-length protected stream which fetches from either incremental
(forward) or decremental (backward) memory addresses. The stream is protected
from being replaced by any hardware detected streams.

Prototype

void __protected_stream_set (unsigned int direction, const void* addr,
unsigned int stream_ID);
Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

Stream_ID
An integer with a value 0-7 on POWERS processors, a value 0 to 15 on
POWERG processors, and a value 0 to 11 on POWER7 and POWERS

processors.
Usage
Valid only when -qarch is set to target POWERS processors or higher.

__protected_unlimited_stream_set
Purpose

Establishes an unlimited-length protected stream which fetches from either
incremental (forward) or decremental (backward) memory addresses. The stream is
protected from being replaced by any hardware detected streams.

Prototype

void _protected_unlimited_stream_set (unsigned int direction, const void* addr,
unsigned int ID);
Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

Chapter 7. Compiler built-in functions 469

stream_ID
An integer with a value 0-7 on POWERS processors, a value 0 to 15 on
POWERG processors, and a value 0 to 11 on POWER7 and POWERS
processors.

Usage

Valid only when -qarch is set to target POWERS processors or higher.

__protected_stream_stride
Purpose

Sets the word-offset of the first unit of the stream address_offset, and stride in
word size for protected load or store stream with identifier stream_id

Prototype

void__protected_stream_stride (unsigned int address_offset, unsigned int stride,
unsigned int stream_id);
Parameters

address_offset
The address of the first unit of the prefetch variable.

stride
This is the distance in the number of words of two consecutive elements of the
prefetch stream.

stream_id
An integer with a value 0 to 11.

Usage
Valid only when -qarch is set to target POWERY processors or higher.

__protected_stream_stop
Purpose

Stops prefetching a protected stream.
Prototype
void __protected_stream_stop (unsigned int stream ID);

Parameters

stream_id
An integer with a value 0-7 on POWERS processors, a value 0 to 15 on
POWERG processors, and a value 0 to 11 on POWER7 and POWERS
processors.

Usage

Valid only when -qarch is set to target POWERS processors or higher.

470 XLC: Compiler Reference

__protected_stream_stop_all
Purpose

Stops prefetching all protected streams.
Prototype
void __protected_stream_stop_all (void);
Usage
Valid only when -qarch is set to target POWERS processors or higher.

__protected_store_stream_set
Purpose

Establishes a limited--length protected store stream which fetches from either
incremental (forward) or decremental (backward) memory addresses. The stream is
protected from being replaced by any hardware detected streams.

Prototype

void _protected_store_stream_set (unsigned int direction, const void* addr,
unsigned int stream_ID);
Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

addr
The beginning of the cache line.

stream_ID
An integer with a value 0 to 15 on POWERG6 processors, and a value 0 to 11 on
POWER? and POWERS processors.

Usage
Valid only when -qarch is set to target POWERG6 processors or higher.

__protected_unlimited_store_stream_set
Purpose

Establishes an unlimited-length protected store stream which fetches from either
incremental (forward) or decremental (backward) memory addresses. The stream is
protected from being replaced by any hardware detected streams.

Prototype

void _protected_unlimited_store_stream_set (unsigned int direction, const
void* addr, unsigned int stream_ID);

Parameters

direction
An integer with a value of 1 (forward) or 3 (backward).

Chapter 7. Compiler built-in functions 471

addr
The beginning of the cache line.

stream_ID
An integer with a value 0 to 15 on POWERG6 processors, and a value 0 to 11 on
POWER? and POWERS processors.

Usage
Valid only when -qarch is set to target POWERG6 processors or higher.

__transient_protected_stream_count_depth
Purpose

Sets the number of cache lines unit_cnt and the prefetch depth prefetch_depth for the
limited length protected load or store stream with identifier stream_id. The term
"transient” indicates that the time interval during which the program accesses the
stream's memory is likely to be short, so the processor can remove it from the
cache earlier.

Prototype

void __transient_protected_stream_count_depth (unsigned int unit_cnt,
unsigned int prefetch_depth, unsigned int stream_id);
Parameters

unit_cnt
The number of cache lines. Must be an integer with a value of 0 to 1023.

prefetch _depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.
None.

Shallowest.

Shallow.

Medium.

Deep.

Deeper.

N o o o AW N =

Deepest.

stream_id
An integer with a value 0 to 11.

Usage

Valid only when -qarch is set to target POWER? processors or higher.

472 XLC: Compiler Reference

__transient_unlimited_protected_stream_depth
Purpose

Sets the prefetch depth prefetch_depth for the unlimited length protected load or
store stream with identifier stream_id. The stream is likely to be transient, that is,
the time interval during which the program accesses the unit is likely to be short.

Prototype

void __transient_unlimited_protected_stream_depth (unsigned int
prefetch_depth, unsigned int stream_id);
Parameters

prefetch _depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

0 The default defined in the Data Stream Control Register.
None.

Shallowest.

Shallow.

Medium.

Deep.

Deeper.

N o o AW N =

Deepest.
stream_id

An integer with a value 0 to 11.
Usage

Valid only when -qarch is set to target POWERY processors or higher.

__unlimited_protected_stream_depth
Purpose

Sets the prefetch depth prefetch_depth for the unlimited length protected load or
store stream with identifier stream_id.

Prototype

void __unlimited_protected_stream_depth (unsigned in prefetch_depth,
unsigned int stream_id);

Parameter

prefetch _depth
A relative, qualitative value which sets the steady-state fetch-ahead distance of
the prefetches for a stream. The fetch-ahead distance is the number of lines
being prefetched in advance of the line from which data is currently being
loaded, or to which data is currently being stored. Valid values are as follows:

Chapter 7. Compiler built-in functions 473

The default defined in the Data Stream Control Register.
None.

Shallowest.

Shallow.

Medium.

Deep.

A 1 B W N = o

Deeper.
7 Deepest.

stream_id
An integer with a value 0 to 15 on POWERG6 processors, and a value 0 to 11 on
POWER? and POWERS processors.

Usage

Valid only when -qarch is set to target POWERG6 processors or higher.

Cryptography built-in functions
Cryptography built-in functions are valid only when -qarch is set to target

POWERS processors.

Advanced Encryption Standard functions

Advanced Encryption Standard (AES) functions provide support for Federal
Information Processing Standards Publication 197 (FIPS-197), which is a
specification for encryption and decryption.

__vcipher
Purpose

Performs one round of the AES cipher operation on intermediate state state_array
using a given round_key.

Prototype

vector unsigned char __vcipher (vector unsigned char state_array, vector
unsigned char round_key);
Parameters

state_array
The input data chunk to be encrypted or the result of a previous vcipher
operation.

round_key
The 128-bit AES round key value that is used to encrypt.

Result

Returns the resulting intermediate state.

474 XL C: Compiler Reference

__vcipherlast
Purpose

Performs the final round of the AES cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vcipherlast (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The result of a previous vcipher operation.

round_key
The 128-bit AES round key value that is used to encrypt.

Result

Returns the resulting final state.

__vncipher
Purpose

Performs one round of the AES inverse cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vncipher (vector unsigned char state_array, vector
unsigned char round_key);

Parameters

state_array
The input data chunk to be decrypted or the result of a previous vncipher
operation.

round key
The 128-bit AES round key value that is used to decrypt.

Result

Returns the resulting intermediate state.

__vncipherlast
Purpose

Performs the final round of the AES inverse cipher operation on intermediate state
state_array using a given round_key.

Prototype

vector unsigned char __vncipherlast (vector unsigned char state_array, vector
unsigned char round_key);

Chapter 7. Compiler built-in functions 475

Parameters

state_array
The result of a previous vncipher operation.

round_key
The 128-bit AES round key value that is used to decrypt.

Result

Returns the resulting final state.

__vsbox
Purpose

Performs the SubBytes operation, as defined in FIPS-197, on a state_array.
Prototype
vector unsigned char __vsbox (vector unsigned char state_array);

Parameters

state_array
The input data chunk to be encrypted or the result of a previous vcipher
operation.

Result

Returns the result of the operation.

Secure Hash Algorithm functions

Secure Hash Algorithm (SHA) functions provide support for Federal Information
Processing Standards Publication 180-3 (FIPS-180-3), Secure Hash Standard. All
SHA functions operate on unsigned vector integer types.

__vshasigmad
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

Prototype

vector unsigned long long _ vshasigmad (vector unsigned long long x, int
type, int fmask);

Parameters

type
A compile-time constant in the range 0 - 1. The type parameter selects the
function type, which can be either lowercase sigma or uppercase sigma.

fmask
A compile-time constant in the range 0 - 15. The frmask parameter selects the
function subtype, which can be either sigma-0 or sigma-1.

476 XLC: Compiler Reference

Result
Let mask be the rightmost 4 bits of fmask.

For each element i (i=0,1) of x, element i of the returned value is the following
result SHA-512 function:

* The result SHA-512 function is sigma0(x[i]), if type is 0 and bit 2*i of mask is 0.
* The result SHA-512 function is sigmal(x[i]), if type is 0 and bit 2*i of mask is 1.

* The result SHA-512 function is Sigma0(x[i]), if type is non-zero and bit 2*i of
mask is 0.

* The result SHA-512 function is Sigmal(x[i]), if type is non-zero and bit 2*i of
mask is 1.

__vshasigmaw
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

Prototype
vector unsigned int __vshasigmaw (vector unsigned int x, int type, int fmask)

Parameters

type
A compile-time constant in the range 0 - 1. The type parameter selects the
function type, which can be either lowercase sigma or uppercase sigma.

fmask
A compile-time constant in the range 0 - 15. The fmask parameter selects the
function subtype, which can be either sigma-0 or sigma-1.

Result
Let mask be the rightmost 4 bits of fmask.

For each element i (i1=0,1,2,3) of x, element i of the returned value is the following
result SHA-256 function:

* The result SHA-256 function is sigma@(x[i]), if type is 0 and bit i of mask is 0.
* The result SHA-256 function is sigmal(x[i]), if type is 0 and bit i of mask is 1.

* The result SHA-256 function is Sigma@(x[i]), if type is nonzero and bit i of
mask is 0.

* The result SHA-256 function is Sigmal(x[i]), if type is nonzero and bit i of
mask is 1.

Miscellaneous functions

__vpermxor
Purpose

Applies a permute and exclusive-OR operation on two byte vectors.

Chapter 7. Compiler built-in functions 477

Prototype

vector unsigned char __vpermxor (vector unsigned char a, vector unsigned
char b, vector unsigned char mask);

Result

For each i (0 <=1 < 16), let indexA be bits 0 - 3 and indexB be bits 4 - 7 of byte
element i of mask.

Byte element i of the result is set to the exclusive-OR of byte elements indexA of a
and indexB of b.

__vpmsumb
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned char __vpmsumb (vector unsigned char a, vector unsigned
char b)

Result

For each i (0 <= i < 16), let prod[i] be the result of polynomial multiplication of
byte elements i of a and b.

For each i (0 <= i < 8), each halfword element i of the result is set as follows:
* Bit 0 is set to 0.
* Bits 1 - 15 are set to prod[2*i] (xor) prod[2*i+1].

__vpmsumd
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned long long _ vpmsumd (vector unsigned long long a, vector
unsigned long long b);

Result

For each i (0 <= i < 2), let prod[i] be the result of polynomial multiplication of
doubleword elements i of a and b.

Bit 0 of the result is set to 0.

Bits 1 - 127 of the result are set to prod[0] (xor) prod[1].

478 XLC: Compiler Reference

__vpmsumh
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned short __vpmsumh (vector unsigned short a, vector unsigned
short b);

Result

For each i (0 <=1 < 8), let prod[i] be the result of polynomial multiplication of
halfword elements i of 2 and b.

For eachi (0 <= i < 4), each word element i of the result is set as follows:
* Bit 0 is set to 0.
* Bits 1 - 31 are set to prod[2*i] (xor) prod[2*i+1].

__vpmsumw
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Prototype

vector unsigned int __vpmsumw (vector unsigned int a, vector unsigned int

b);
Result

For each i (0 <= i < 4), let prod[i] be the result of polynomial multiplication of
word elements i of 2 and b.

For each i (0 <= i < 2), each doubleword element i of the result is set as follows:
* Bit 0 is set to 0.
* Bits 1 - 63 are set to prod[2*i] (xor) prod[2xi+1].

Block-related built-in functions

__bcopy
Purpose

Copies n bytes from src to dest. The result is correct even when both areas overlap.
Prototype

void __bcopy(const void* src, void* dest, size_t n);

Chapter 7. Compiler built-in functions 479

Parameters

src
The source address of data to be copied.

dest
The destination address of data to be copied

n The size of the data.

bzero
Purpose

Sets the first n bytes of the byte area starting at s to zero.
Prototype
void bzero(void* s, size_t n);

Parameters
n The size of the data.

s The starting address in the byte area.

Vector built-in functions

Individual elements of vectors can be accessed by using the Vector Multimedia
Extension (VMX) or the Vector Scalar Extension (VSX) built-in functions. This
section provides an alphabetical reference to the VMX and the VSX built-in
functions. You can use these functions to manipulate vectors.

You must specify appropriate compiler options for your architecture when you use
the built-in functions. Built-in functions that use or return a vector unsigned long
long, vector signed long long, vector bool long long, or vector double type
require an architecture that supports the VSX instruction set extensions, such as
POWER?. You must specify an appropriate -qarch suboption, such as-qarch=pw17,
when you use these types.

Function syntax

This section uses pseudocode description to represent function syntax, as shown
below:

d=func_name(a, b, c)

In the description,

* d represents the return value of the function.

* 3, b, and c represent the arguments of the function.
» func_name is the name of the function.

For example, the syntax for the function vector double vec_x1d2(int, doublex);
is represented by d=vec_x1d2(a, b).

480 xLC: Compiler Reference

Note: This section only describes the IBM specific vector built-in functions and the
AltiVec built-in functions with IBM extensions. For information about the other
AltiVec built-in functions, see the AltiVec Application Programming Interface

specification.
vec_abs

Purpose

Returns a vector containing the absolute values of the contents of the given vector.

Syntax

d=vec_abs(a)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 46. Types of the returned value and function argument

d

a

vector signed char

vector signed char

vector signed short

vector signed short

vector signed int

vector signed int

vector float

vector float

vector double

vector double

Result value

The value of each element of the result is the absolute value of the corresponding

element of a.

vec_abss
Purpose

Returns a vector containing the saturated absolute values of the elements of a

given vector.

Syntax

d=vec_abss(a)

Result and argument types

The following table describes the types of the returned value and the function

argument.

Table 47. Types of the returned value and function argument

d

a

vector signed char

vector signed char

vector signed short

vector signed short

vector signed int

vector signed int

Chapter 7. Compiler built-in functions 481

Result value

The value of each element of the result is the saturated absolute value of the

corresponding element of a.

vec_add

Purpose

Returns a vector containing the sums of each set of corresponding elements of the

given vectors.

This function emulates the operation on long long vectors.

Syntax
d=vec_add(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 48. Result and argument types

d

a

b

The same type as argument a

vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

The same type as argument a

Result value

The value of each element of the result is the sum of the corresponding elements
of a and b. For integer vectors and unsigned vectors, the arithmetic is modular.

vec_addc

Purpose

Returns a vector containing the carries produced by adding each set of
corresponding elements of two given vectors.

Syntax
d=vec_addc(a, b)

482 XLC: Compiler Reference

Result and argument types

The type of d, a, and b must be vector unsigned int.

Result value

If a carry is produced by adding the corresponding elements of a and b, the
corresponding element of the result is 1; otherwise, it is 0.

vec_adds

Purpose

Returns a vector containing the saturated sums of each set of corresponding
elements of two given vectors.

Syntax
d=vec_adds(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 49. Types of the returned value and function arguments

d

a

b

vector signed char

vector bool char

vector signed char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector bool char

vector unsigned char

vector signed short

vector bool short

vector signed short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector bool short

vector unsigned short

vector signed int

vector bool int

vector signed int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector bool int

vector unsigned int

Result value

The value of each element of the result is the saturated sum of the corresponding

elements of a and b.

Chapter 7. Compiler built-in functions

vec_add_ui28
Purpose

Adds unsigned quadword values.
The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax
d=vec_add ul28(a, b)

Result and argument types
The type of d, a, and b must be vector unsigned char.
Result value

Returns low 128 bits of a + b.

vec_addc_u128
Purpose

Gets the carry bit of the 128-bit addition of two quadword values.
The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax
d=vec_addc_ul28(a, b)

Result and argument types
The type of d, a, and b must be vector unsigned char.
Result value

Returns the carry out of a + b.

vec_adde_u128
Purpose

Adds unsigned quadword values with carry bit from the previous operation.
The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax
d=vec_adde ul28(a, b, c)

484 XxLC: Compiler Reference

Result and argument types
The type of d, a, b, and ¢ must be vector unsigned char.
Result value

Returns low 128 bits of a + b + (c & 1).

vec_addec ui128
Purpose

Gets the carry bit of the 128-bit addition of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax
d=vec_addec_ul28(a, b, c)

Result and argument types
The type of d, a, and b must be vector unsigned char.
Result value

Returns the carry out of a + b + (¢ & 1).

vec_all_eq
Purpose

Tests whether all sets of corresponding elements of the given vectors are equal.

Syntax
d=vec_all_eq(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 485

Table 50. Result and argument types

d

a

b

int

vector bool char

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is equal to the corresponding element of b.
Otherwise, the result is 0.

vec_all_ge
Purpose

Tests whether all elements of the first argument are greater than or equal to the
corresponding elements of the second argument.

486 XxLC: Compiler Reference

Syntax
d=vec_all_ge(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 51. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are greater than or equal to the corresponding
elements of b. Otherwise, the result is 0.

Chapter 7. Compiler built-in functions

487

vec_all_gt
Purpose

Tests whether all elements of the first argument are greater than the corresponding

elements of the second argument.

Syntax
d=vec_all_gt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 52. Result and argument types

d a

b

int vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

488 XxLC: Compiler Reference

Result value

The result is 1 if all elements of a are greater than the corresponding elements of b.
Otherwise, the result is 0.

vec_all in
Purpose

Tests whether each element of a given vector is within a given range.

Syntax

d=vec_all _in(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 53. Types of the returned value and the function arguments
d a b

int vector float vector float

Result value
The result is 1 if all elements of a have a value less than or equal to the value of

the corresponding element of b, and greater than or equal to the negative of the
value of the corresponding element of b. Otherwise, the result is 0.

vec_all_le
Purpose

Tests whether all elements of the first argument are less than or equal to the
corresponding elements of the second argument.

Syntax
d=vec_all_le(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 489

Table 54. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are less than or equal to the corresponding
elements of b. Otherwise, the result is 0.

vec_all_It
Purpose

Tests whether all elements of the first argument are less than the corresponding
elements of the second argument.

Syntax
d=vec_all_1t(a, b)

490 xLcC: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 55. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if all elements of a are less than the corresponding elements of b.

Otherwise, the result is 0.

vec_all nan
Purpose

Tests whether each element of the given vector is a NaN.

Syntax

d=vec_all_nan(a)

Chapter 7. Compiler built-in functions

491

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 56. Result and argument types

d a

int vector float

vector double

Result value

The result is 1 if each element of a is a NaN. Otherwise, the result is 0.

vec_all_ne
Purpose

Tests whether all sets of corresponding elements of the given vectors are not equal.

Syntax

d=vec_all _ne(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

492 XLC: Compiler Reference

Table 57. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is not equal to the corresponding element of b.

Otherwise, the result is 0.

vec_all_nge

Purpose

Tests whether each element of the first argument is not greater than or equal to the
corresponding element of the second argument.

Syntax

d=vec_all_nge(a, b)

Chapter 7. Compiler built-in functions

493

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 58. Result and argument types

d a b
int vector float vector float
vector double vector double

Result value

The result is 1 if each element of a is not greater than or equal to the
corresponding element of b. Otherwise, the result is 0.

vec_all_ngt
Purpose

Tests whether each element of the first argument is not greater than the
corresponding element of the second argument.

Syntax
d=vec_all_ngt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 59. Result and argument types

d a b
int vector float vector float
vector double vector double

Result value

The result is 1 if each element of a is not greater than the corresponding element of
b. Otherwise, the result is 0.

vec_all_nle
Purpose

Tests whether each element of the first argument is not less than or equal to the
corresponding element of the second argument.

Syntax

d=vec_all _nle(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

494 XxLC: Compiler Reference

Table 60. Result and argument types

d

a

b

int

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_all nlt

Purpose

Tests whether each element of the first argument is not less than the corresponding
element of the second argument.

Syntax
d=vec_all nlt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 61. Result and argument types

d

a

b

int

vector float

vector float

vector double

vector double

Result value

The result is 1 if each element of a is not less than the corresponding element of b.
Otherwise, the result is 0.

vec_all numeric

Purpose
Tests whether each element of the given vector is numeric (not a NaN).

Syntax

d=vec_all_numeric(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 495

Table 62. Result and argument types

d

a

int

vector float

vector double

Result value

The result is 1 if each element of a is numeric (not a NaN). Otherwise, the result is

0.

vec_and

Purpose

Performs a bitwise AND of the given vectors.

Syntax

d=vec_and(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 63. Result and argument types

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector bool short

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

496 XxLC: Compiler Reference

Table 63. Result and argument types (continued)

d

a

b

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector float

vector bool int

vector float

vector float

vector bool int

vector float

vector double

vector bool long long

vector double

vector double

vector double

vector bool long long

vec_andc

Purpose

Performs a bitwise AND of the first argument and the bitwise complement of the

second argument.

Syntax

d=vec_andc(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 64. Result and argument types

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector bool short

vector bool short

vector bool short

Chapter 7. Compiler built-in functions

497

Table 64. Result and argument types (continued)

d

a

b

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector bool int

vector bool int

vector bool int

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector bool long long

vector bool long long

vector bool long long

vector signed long long

vector bool long long

vector signed long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector float

vector bool int

vector float

vector float

vector bool int

vector float

vector double

vector bool long long

vector double

vector double

vector bool long long

vector double

Result value

The result is the bitwise AND of a with the bitwise complement of b.

vec_any_eq

Purpose

Tests whether any set of corresponding elements of the given vectors are equal.

Syntax
d=vec_any _eq(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

498 XxLC: Compiler Reference

Table 65. Result and argument types

d

a

b

int

vector bool char

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is equal to the corresponding element of b.

Otherwise, the result is 0.

vec_any_ge
Purpose

Tests whether any element of the first argument is greater than or equal to the
corresponding element of the second argument.

Chapter 7. Compiler built-in functions

Syntax
d=vec_any ge(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 66. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

500 xLcC: Compiler Reference

vec_any_gt
Purpose

Tests whether any element of the first argument is greater than the corresponding

element of the second argument.

Syntax
d=vec_any gt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 67. Result and argument types

d a

b

int vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Chapter 7. Compiler built-in functions

501

Result value

The result is 1 if any element of a is greater than the corresponding element of b.
Otherwise, the result is 0.

vec_any_le
Purpose

Tests whether any element of the first argument is less than or equal to the
corresponding element of the second argument.

Syntax

d=vec_any le(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

502 XxLC: Compiler Reference

Table 68. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_It
Purpose

Tests whether any element of the first argument is less than the corresponding
element of the second argument.

Syntax

d=vec_any 1t(a, b)

Chapter 7. Compiler built-in functions

503

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 69. Result and argument types

d

a

b

int

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector signed short

vector unsigned short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is less than the corresponding element of b.
Otherwise, the result is 0.

vecC_any_nan
Purpose

Tests whether any element of the given vector is a NaN.

Syntax

d=vec_any_nan(a)

504 xLC: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 70. Result and argument types

d

a

int

vector float

vector double

Result value

The result is 1 if any element of a is a NaN. Otherwise, the result is 0.

vec_any_ne
Purpose

Tests whether any set of corresponding elements of the given vectors are not equal.

Syntax

d=vec_any ne(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 7. Compiler built-in functions

505

Table 71. Result and argument types

d

a

b

int

vector bool char

vector bool char

vector signed char

vector unsigned char

vector signed char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector unsigned char

vector bool short

vector bool short

vector signed short

vector unsigned short

vector signed short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector unsigned short

vector bool int

vector bool int

vector signed int

vector unsigned int

vector signed int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector unsigned int

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector signed long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector unsigned long long

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is not equal to the corresponding element of b.
Otherwise, the result is 0.

vec_any_nge
Purpose

Tests whether any element of the first argument is not greater than or equal to the
corresponding element of the second argument.

506 XxLC: Compiler Reference

Syntax

d=vec_any nge(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 72. Result and argument types

d a b
int vector float vector float
vector double vector double

Result value

The result is 1 if any element of a is not greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_ngt

Purpose

Tests whether any element of the first argument is not greater than the
corresponding element of the second argument.

Syntax
d=vec_any ngt(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 73. Result and argument types

d a b
int vector float vector float
vector double vector double

Result value

The result is 1 if any element of a is not greater than the corresponding element of
b. Otherwise, the result is 0.

vec_any_nle

Purpose

Tests whether any element of the first argument is not less than or equal to the
corresponding element of the second argument.

Syntax

d=vec_any nle(a, b)

Chapter 7. Compiler built-in functions 507

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 74. Result and argument types

d

a

b

int

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

vec_any_nlt
Purpose

Tests whether any element of the first argument is not less than the corresponding
element of the second argument.

Syntax

d=vec_any _nlt(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 75. Result and argument types

d

a

b

int

vector float

vector float

vector double

vector double

Result value

The result is 1 if any element of a is not less than the corresponding element of b.
Otherwise, the result is 0.

vec_any_nhumeric
Purpose

Tests whether any element of the given vector is numeric (not a NaN).

Syntax

d=vec_any_numeric(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

508 XxLC: Compiler Reference

Table 76. Result and argument types
d a

int vector float

vector double

Result value

The result is 1 if any element of a is numeric (not a NaN). Otherwise, the result is 0.

vec_any_out
Purpose

Tests whether the value of any element of a given vector is outside of a given
range.

Syntax

d=vec_any out(a, b)
Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 77. Types of the returned value and the function arguments

d a b

int vector float vector float

Result value

The result is 1 if the absolute value of any element of a is greater than the value of
the corresponding element of b or less than the negative of the value of the
corresponding element of b. Otherwise, the result is 0.

vec_avg
Purpose

Returns a vector containing the rounded average of each set of corresponding
elements of two given vectors.

Syntax

d=vec_avg(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 509

Table 78. Types of the returned value and function arguments
d a b

The same type as argument a | vector signed char The same type as argument a

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

Result value

The value of each element of the result is the rounded average of the values of the
corresponding elements of a and b.

vec_bperm
Purpose
Gathers up to 16 1-bit values from a quadword in the specified order, and places
them in the specified order in the rightmost 16 bits of the leftmost doubleword of

the result vector register, with the rest of the result zeroed.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax

d=vec_bperm(a, b)

Result and argument types

The type of d, a, and b must be vector unsigned char.

Result value

For each i (0 <=1 < 16), let index denote the byte value of the ith element of b.
If index is greater than or equal to 128, bit 48+i of the result is set to 0.

If index is smaller than 128, bit 48+i of the result is set to the value of the indexth
bit of input a.

vec_ceil
Purpose
Returns a vector containing the smallest representable floating-point integral values

greater than or equal to the values of the corresponding elements of the given
vector.

Note: vec_ceil is another name for vec_roundp. For details, see [“vec_roundp” on|
-ae 563

510 xLcC: Compiler Reference

vec_cmpb
Purpose

Performs a bounds comparison of each set of corresponding elements of the given
vectors.

Syntax
d=vec_cmpb(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 79. Types of the returned value and function arguments
d a b

vector signed int vector float vector float

Result value

Each element of the result has the value 0 if the value of the corresponding
element of a is less than or equal to the value of the corresponding element of b
and greater than or equal to the negative of the value of the corresponding element
of b. Otherwise, the result is determined as follows:

* If an element of b is greater than or equal to zero, the value of the corresponding
element of the result is 0 if the absolute value of the corresponding element of a
is equal to the value of the corresponding element of b, negative if it is greater
than the value of the corresponding element of b, and positive if it is less than
the value of the corresponding element of b.

e If an element of b is less than zero, the value of the element of the result is
positive if the value of the corresponding element of a is less than or equal to
the value of the element of b, and negative otherwise.

vec_cmpeq
Purpose

Returns a vector containing the results of comparing each set of corresponding
elements of the given vectors for equality.

This function emulates the operation on long long vectors.

Syntax

d=vec_cmpeq(a, b)
Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 511

Table 80. Result and argument types

d

a

b

vector bool char

vector bool char

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector bool short

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector bool int

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector bool long long

vector bool long long

vector double

vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWERS processors.

Table 81. Result and argument types supported only on POWERS8 processors

d

a

b

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the corresponding
elements of a and b are equal. Otherwise, the value of each bit is 0.

vec_cmpge
Purpose

Returns a vector containing the results of a greater-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Syntax

d=vec_cmpge(a, b)

Result and argument types

The following tables describe the types of the returned value and the function

arguments.

Table 82. Result and argument types

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

512 XxLC: Compiler Reference

Table 82. Result and argument types (continued)

d

a

b

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector double

vector double

When you call this built-in function, the following types are valid only when
-garch is set to target POWERS processors.

Table 83. Result and argument types supported only on POWERS8 processors

d

a

b

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than or equal to the value of the
corresponding element of b. Otherwise, the value of each bit is 0.

vec_cmpgt

Purpose

Returns a vector containing the results of a greater-than comparison between each
set of corresponding elements of the given vectors.

This function emulates the operation on long long vectors.

Syntax
d=vec_cmpgt(a, b)

Result and argument types

The following tables describe the types of the returned value and the function

arguments.

Table 84. Result and argument types

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

Chapter 7. Compiler built-in functions

513

Table 84. Result and argument types (continued)

d

a

b

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector double

vector double

When you call this built-in function, the following types are valid only when
-garch is set to target POWERS processors.

Table 85. Result and argument types supported only on POWERS8 processors

d

a

b

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than the value of the corresponding element
of b. Otherwise, the value of each bit is 0.

vec_cmple
Purpose

Returns a vector containing the results of a less-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Syntax

d=vec_cmple(a, b)

Result and argument types

The following tables describe the types of the returned value and the function

arguments.

Table 86. Result and argument types

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector double

vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWERS processors.

514 xLcC: Compiler Reference

Table 87. Result and argument types supported only on POWERS8 processors

d

a

b

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is less than or equal to the value of the corresponding
element of b. Otherwise, the value of each bit is 0.

vec_cmplt

Purpose

Returns a vector containing the results of a less-than comparison between each set
of corresponding elements of the given vectors.

This operation emulates the operation on long long vectors.

Syntax
d=vec_cmplt(a, b)

Result and argument types

The following tables describe the types of the returned value and the function

arguments.

Table 88. Result and argument types

d

a

b

vector bool char

vector signed char

vector signed char

vector unsigned char

vector unsigned char

vector bool short

vector signed short

vector signed short

vector unsigned short

vector unsigned short

vector bool int

vector signed int

vector signed int

vector unsigned int

vector unsigned int

vector float

vector float

vector bool long long

vector double

vector double

When you call this built-in function, the following types are valid only when
-qarch is set to target POWERS processors.

Table 89. Result and argument types supported only on POWERS8 processors

d

a

b

vector bool long long

vector signed long long

vector signed long long

vector unsigned long long

vector unsigned long long

Chapter 7. Compiler built-in functions

515

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is less than the value of the corresponding element of
b. Otherwise, the value of each bit is 0.

vec_cntlz
Purpose

Computes the count of leading zero bits of each element of the input.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax

d=vec_cntlz(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 90. Result and argument types

d a

vector unsigned char vector unsigned char

vector signed char

vector unsigned short vector unsigned short

vector signed short

vector unsigned int vector unsigned int

vector signed int

vector unsigned long long vector unsigned long long

vector signed long long

Result value

Each element of the result is set to the number of leading zeros of the
corresponding element of a.

vec_cpsgn
Purpose

Returns a vector by copying the sign of the elements in vector a to the sign of the
corresponding elements in vector b.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Syntax

d=vec_cpsgn(a, b)

516 XxLC: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 91. Result and argument types

d

a

b

vector float

vector float

vector float

vector double

vector double

vector double

vec_ctd
Purpose

Converts the type of each element in a from integer to floating-point single

precision and divides the result by 2 to the power of b.

Syntax
d=vec_ctd(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 92. Result and argument types

d

a

vector double

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

0-31

vec_ctf
Purpose

Converts a vector of fixed-point numbers into a vector of floating-point numbers.

Syntax
d=vec_ctf(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 7. Compiler built-in functions

517

Table 93. Result and argument types

d

a

vector float

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

0-31

Result value

The value of each element of the result is the closest floating-point estimate of the
value of the corresponding element of a divided by 2 to the power of b.

Note: The second and fourth elements of the result vector are undefined when the
argument a is a signed long long or unsigned long long vector.

vec_cts
Purpose

Converts a vector of floating-point numbers into a vector of signed fixed-point

numbers.

Syntax

d=vec_cts(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 94. Result and argument types

d

a

vector signed int

vector float

0-31

vector double

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of a by 2 to the power of b.

vec_ctsl
Purpose

Multiplies each element in a by 2 to the power of b and converts the result into an

integer.

Note: This function does not use elements 1 and 3 of a when a is a double vector.

Syntax

d=vec_cts1(a, b)

518 xLC: Compiler Reference

Result and argument types
The following table describes the types of the returned value and the function
arguments.

Table 95. Result and argument types
d a b

vector signed long long vector float 0-31

vector double

vec_ctu
Purpose

Converts a vector of floating-point numbers into a vector of unsigned fixed-point
numbers.

Note: Elements 1 and 3 of the result vector are undefined when a is a double
vector.

Syntax

d=vec_ctu(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 96. Result and argument types
d a b

vector unsigned int vector float 0-31

vector double

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of a by 2 to the power of b.

vec_ctul
Purpose

Multiplies each element in a by 2 to the power of b and converts the result into an
unsigned type.

Syntax
d=vec_ctul(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 519

Table 97. Result and argument types

d a b

vector unsigned long long vector float 0-31

vector double

Result value

This function does not use elements 1 and 3 of a when a is a float vector.

vec_cvf
Purpose

Converts a single-precision floating-point vector to a double-precision
floating-point vector or converts a double-precision floating-point vector to a
single-precision floating-point vector.

Syntax

d=vec_cvf(a)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 98. Result and argument types

d a
vector float vector double
vector double vector float

Result value

When this function converts from vector float to vector double, it converts the
types of elements 0 and 2 in the vector.

When this function converts from vector double to vector float, the types of
element 1 and 3 in the result vector are undefined.

vec_div
Purpose

Divides the elements in vector a by the corresponding elements in vector b and
then assigns the result to corresponding elements in the result vector.

This function emulates the operation on integer vectors. This built-in function is
valid only when -qarch is set to target POWER?Y processors or higher.

Syntax
d=vec_div(a, b)

520 xLcC: Compiler Reference

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 99. Result and argument types

d

a

b

The same type as argument a

vector signed char

vector unsigned char

vector signed short

vector unsigned short

vector signed int

vector unsigned int

vector signed long long

vector unsigned long long

vector float

vector double

The same type as argument a

vec_dss
Purpose

Stops the data stream read specified by a.

Syntax

vec_dss(a)

Result and argument types

a must be a 2-bit unsigned literal. This function does not return any value.

vec_dssall
Purpose

Stops all data stream reads.

Syntax

vec_dssall()

vec_dst
Purpose

Initiates the data read of a line into cache in a state most efficient for reading.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. After using this built-in function, the
specified data stream is relatively persistent.

Syntax

vec_dst(a, b, c)

Chapter 7. Compiler built-in functions 521

Result and argument types
This function does not return any value. The following table describes the types of
the function arguments.

Table 100. Types of the function arguments
a b

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:
1. ¢ must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_dstst

Purpose

Initiates the data read of a line into cache in a state most efficient for writing.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. Use of this built-in function indicates that
the specified data stream is relatively persistent in nature.

Syntax

vec_dstst(a, b, c)
Result and argument types

This function does not return any value. The following table describes the types of
the function arguments.

Table 101. Types of the function arguments

a b

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:
1. ¢ must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_dststt

Purpose

Initiates the data read of a line into cache in a state most efficient for writing.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. Use of this built-in function indicates that
the specified data stream is relatively transient in nature.

522 XLC: Compiler Reference

Syntax
vec_dststt(a, b, c)

Result and argument types

This function does not return a value. The following table describes the types of
the function arguments.

Table 102. Types of the function arguments
a b

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:
1. ¢ must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_dstt
Purpose

Initiates the data read of a line into cache in a state most efficient for reading.

The data stream specified by c is read beginning at the address specified by a
using the control word specified by b. Use of this built-in function indicates that
the specified data stream is relatively transient in nature.

Syntax
vec_dstt(a, b, c)

Result and argument types

This function does not return a value. The following table describes the types of
the function arguments.

Table 103. Types of the function arguments

a b a

const signed char * any integral type unsigned int

const signed short *

const signed int *

const float *

Note:
1. ¢ must be an unsigned literal with a value in the range 0 - 3 inclusive.

vec_eqv
Purpose

Performs a bitwise equivalence operation on the input vectors.

Chapter 7. Compiler built-in functions 523

This built-in function is valid only when -qarch is set to target POWERS

processors.

Syntax

d=vec_eqv(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 104. Types of the returned value and function arguments

d

a

b

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector bool char

vector signed char

vector unsigned char

vector bool char

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector bool short

vector signed short

vector unsigned short

vector bool short

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector bool int

vector signed int

vector unsigned int

vector bool int

vector signed long long

vector signed long long

vector signed long long

vector bool long long

vector unsigned long long

vector unsigned long long

vector unsigned long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector bool long long

vector signed long long

vector unsigned long long

vector bool long long

vector float

vector float

vector bool int

vector float

vector bool int

vector float

524 XxLC: Compiler Reference

Table 104. Types of the returned value and function arguments (continued)
d a b

vector double vector double vector double

vector bool long long

vector bool long long vector double

Result value
Each bit of the result is set to the result of the bitwise operation (a == b) of the

corresponding bits of a and b. For 0 <= i < 128, bit i of the result is set to 1 only if
bit i of a is equal to bit i of b.

vec_expte
Purpose

Returns a vector containing estimates of 2 raised to the values of the corresponding
elements of a given vector.

Syntax

d=vec_expte(a)

Result and argument types

The type of d and a must be vector float.
Result value

Each element of the result contains the estimated value of 2 raised to the value of
the corresponding element of a.

Vec_extract
Purpose
Returns the value of element b from the vector a.

Syntax

d=vec_extract(a, b)
Result and argument types

The following table describes the types of the returned value and the function
arguments.

Chapter 7. Compiler built-in functions 525

Table 105. Result and argument types

d

a

b

signed char

vector signed char

unsigned char

vector unsigned char

vector bool char

signed short

vector signed short

unsigned short

vector unsigned short

vector bool short

signed int

vector signed int

unsigned int

vector unsigned int

vector bool int

signed long long

vector signed long long

unsigned long long

vector unsigned long long

vector bool long long

float

vector float

double

vector double

signed int

Result value
This function uses the modulo arithmetic on b to determine the element number.

For example, if b is out of range, the compiler uses b modulo the number of
elements in the vector to determine the element position.

vec_floor

Purpose

Returns a vector containing the largest representable floating-point integral values
less than or equal to the values of the corresponding elements of the given vector.

Note: vec_floor is another name for vec_roundm. For details, see [“vec_roundm” on|

vec_gbb
Purpose

Performs a gather-bits-by-bytes operation on the input.

This built-in function is valid only when -qarch is set to target POWERS
processors.

Syntax
d=vec_gbb(a)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

526 XLC: Compiler Reference

Table 106. Result and argument types

d

a

vector unsigned long long

vector unsigned long long

vector signed long long

vector signed long long

Result value

Each doubleword element of the result is set as follows: Let x(i) (0 <= i < 8)
denote the byte elements of the corresponding input doubleword element, with
x(7) the most significant byte. For each pair of i and j (0 <=1 < 8,0 <=j < 8), the
jth bit of the ith byte element of the result is set to the value of the ith bit of the
Jjth byte element of the input.

vec_insert

Purpose

Returns a copy of the vector b with the value of its element c replaced by a.

Syntax

d=vec_insert(a, b, c)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Table 107. Result and argument types

d

a

b

vector signed char

signed char

vector signed char

vector unsigned char

unsigned char

vector bool char

vector unsigned char

vector signed short

signed short

vector signed short

vector unsigned short

unsigned short

vector bool short

vector unsigned short

vector signed int

signed int

vector signed int

vector unsigned int

unsigned int

vector bool int

vector unsigned int

vector signed long
long

signed long long

vector signed long
long

vector unsigned long
long

unsigned long long

vector bool long long

vector unsigned long
long

vector float

float

vector float

vector double

double

vector double

signed int

Chapter 7. Compiler built-in functions

527

Result value

This function uses the modulo arithmetic on c to determine the element number.
For example, if ¢ is out of range, the compiler uses ¢ modulo the number of
elements in the vector to determine the element position.

vec _l|d

Purpose
Loads a vector from the given memory address.

Syntax
d=vec_1d(a, b)

Result and argument types

The following tables describe the types of the returned value and the function

arguments.

Table 108. Data type of function returned value and arguments (in 32-bit mode)

d

a

b

vector float vector float

vector signed int

vector unsigned int

vector signed short

vector unsigned short

vector signed char

vector unsigned char

vector bool char

vector bool int

vector bool short

vector pixel

int

const vector float *

const float *

const vector signed int *

const signed int *

const vector unsigned int *

const unsigned int *

const vector signed short *

const signed short *

const vector unsigned short *

const unsigned short *

const vector signed char *

const signed char*

const vector unsigned char *

const unsigned char *

const vector bool char *

const vector bool int *

const vector bool short *

const vector pixel *

Table 109. Data type of function returned value and arguments (in 64-bit mode)

d

a

b

vector unsigned int

vector signed int

int

const unsigned long*

const signed long?*

528 XxLC: Compiler Reference

Table 109. Data type of function returned value and arguments (in 64-bit mode) (continued)

d

a

b

vector unsigned char

vector signed char

vector unsigned short

vector signed short

vector unsigned int

vector signed int

vector float

vector bool int

vector bool char

vector bool short

vector pixel

long

const vector unsigned char*

const unsigned char*

const vector signed char*

const signed char*

const vector unsigned short*

const unsigned short*

const vector signed short*

const signed short*

const vector unsigned int*

const unsigned int*

const vector signed int*

const signed int*

const vector float*

const float*

const vector bool int*

const vector bool char*

const vector bool short*

const vector pixel*

Result value

a is added to the address of b, and the sum is truncated to a multiple of 16 bytes.
The result is the content of the 16 bytes of memory starting at this address.

vec_lde
Purpose

Loads an element from a given memory address into a vector.

Syntax
d=vec_lde(a, b)

Result and argument types

The following table describes the types of the returned value and the function

arguments.

Chapter 7. Compiler built-in functions 529

Table 110. Types of the returned value and function arguments

d a b

vector signed char Any integral type const signed char *
vector unsigned char const unsigned char *
vector signed short const short *

vector unsigned short const unsigned short *
vector signed int const int *

vector unsigned int const unsigned int *
vector float const float *

Result value

The effective address is the sum of a and the address specified by b, truncated to a
multiple of the size in bytes of an element of the result vector. The contents of
memory at the effective address are loaded into the result vector at the byte offset
corresponding to the four least significant bits of the effective address. The
remaining elements of the result vector are undefined.

vec_ldI
Purpose

Loads a vector from a given memory address, and marks the cache line containing
the data as Least Recently Used.

Syntax
d=vec_1d1(a, b)

Result and argument types

The following table describes the types of the returned value and the function
arguments.

530 xLcC: Compiler Reference

Table 111. Types of the returned value and function arguments

d a b
vector bool char Any integral type const vector bool char *
vector signed char const signed char *

const vector signed char *

vector unsigned char const unsigned char *

const vector unsigned char *

vector bool short const vector bool short *

vector signed short const signed short *

const vector signed short *

vector unsigned short const unsigned short *

const vector unsigned short *

vector bool int const vector bool int *

vector signed int const signed int *

const vector signed int *

vector unsigned int const unsigned int *

const vector unsigned int *

vector float const float *

const vector float *

vector pixel const vector pixel *

Result value
a is added to the address specified by b, and the sum is truncated to a multiple of

16 bytes. The result is the contents of the 16 bytes of memory starting at this
address. This data is marked as Least Recently Used.

vec_loge
Purpose

Returns a vector containing estimates of the base-2 logarithms of the corresponding
elements of the given vector.

Syntax

d=vec_loge(a)

Result and argument types

The type of d and a must be vector float.
Result value

Each element of the result contains the estimated value of the base-2 logarithm of
the corresponding element of a.

Chapter 7. Compiler built-in functions 531

vec_lvsl
Purpose
Returns a vector useful for aligning non-aligned data.

Syntax

d=vec_lvsi(a, b)
Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 112. Data type of function returned value and arguments (in 32-bit mode)

d a b

vector unsigned char int unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Table 113. Data type of function returned value and arguments (in 64-bit mode)

d a b
vector unsigned char int unsigned long*
long*
long unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Result value

The first element of the result vector is the sum of a and the address of b, modulo
16. Each successive element contains the previous element's value plus 1.

vec_lvsr

Purpose

Returns a vector useful for aligning non-aligned data.

532 XLC: Compiler Reference

Syntax

d=vec_lvsr(a, b)
Result and argument types

The following tables describe the types of the returned value and the function
arguments.

Table 114. Data type of function returned value and arguments (in 32-bit mode)

a a b

vector unsigned char int unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Table 115. Data type of function returned value and arguments (in 64-bit mode)

d a b
vector unsigned char int unsigned long*
long?*
long unsigned char*

signed char*

unsigned short*

short*

unsigned int*

int*

float*

Result value
The effective address is the sum of a and the address of b, modulo 16. The first

element of the result vector contains the value 16 minus the effective address. Each
successive element contains the previous element's value plus 1.

vec_madd
Purpose

Returns a vector containing the results of performing a fused multiply-add
operation on each corresponding set of elements of three given vectors.

Syntax

d=vec_madd(a, b, c)

Chapter 7. Compiler built-in functions 533

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 116. Types of the returned value and the function arguments

d a b c

The same type as vector float The same type as The same type as

argument a argument a argument a
vector double

Result value

The value of each element of the result is the product of the values of the
corresponding elements of a and b, added to the value of the corresponding
element of c.

vec_madds
Purpose

Returns a vector containing the results of performing a saturated
multiply-high-and-add operation on each corresponding set of elements of three
given vectors.

Syntax

d=vec_madds(a, b, c)

Result and argument types

The type of d, a, b, and ¢ must be vector signed short.

Result value

For each element of the result, the value is produced in the following way: the
values of the corresponding elements of a and b are multiplied. The value of the 17

most significant bits of this product is then added, using 16-bit-saturated addition,
to the value of the corresponding element of c.

vec_max
Purpose

Returns a vector containing the maximum value from each set of corresponding
elements of the given vectors.

Syntax

d=vec_max(a, b)
Result and argument types

The following tables describe the types of the returned value and the function
arguments.

534 xLC: Compiler Reference

Table 117. Result and argument types

d

a

b

vector signed char

vector bool char

vector signed char

vector signed char

vector signed char

vector bool char

vector unsigned char

vector bool char

vector unsigned char

vector unsigned char

vector unsigned char

vector bool char

vector signed short

vector bool short

vector signed short

vector signed short

vector signed short

vector bool short

vector unsigned short

vector bool short

vector unsigned short

vector unsigned short

vector unsigned short

vector bool short

vector signed int

vector bool int

vector signed int

vector signed int

vector signed int

vector bool int

vector unsigned int

vector bool int

vector unsigned int

vector unsigned int

vector unsigned int

vector bool int

vector float

vector float

vector float

vector double

vector double

vector double

When you call this built-in function, the following types are valid only when
-garch is set to target POWERS processors.

Table 118. Result and argument types supported only on POWERS8 processors

d

a

b

The same type as argument a

vector signed long long

vector unsigned long long

vector bool long long

The same type as argument a

Result value

The value of each element of the result is the maximum of the values of the
corresponding elements of a and b.

vec_mergee

Purpose

Merges the values of even-numbered elements of two vectors.

Syntax

d=vec_mergee(a,b)

Chapter 7. Compiler built-in functions 535

Result and argument types

The following table describes the types of the returned value and the function
arguments.

Table 119. Result and argument types

d a b

The same type as argument a | vector bool int The same type as argument a

vector signed int

vector unsigned int

Result value

Assume that the elements of each vector are numbered beginning with zero. The
even-numbered elements of the result are obtained, in order, from the
even-numbered elements of a. The odd-numbered elements of the result are
obtained, in order, from the even-numbered elements of b.

Related information

[“vec_mergeo” on page 538|

vec_mergeh
Purpose

Merges the most significant halves of two vectors.

Syntax

d=vec_mergeh(a, b)
Result and argument