
© IBM 2002

Assembler Issues When Assembler Issues When Assembler Issues When Assembler Issues When
Migrating to LMigrating to LMigrating to LMigrating to LE E E E

and/or and/or and/or and/or
AMODE 31AMODE 31AMODE 31AMODE 31

Tom Ross
SHARE Session 8216
August, 2003

S8216TR / 17FEB03

© IBM 2002

Introduction

S8216TR / 24FEB02

Moving COBOL and/or PL/I applications with some
assembler programs mixed in to LE
There are cases when you can run your existing
mixed assembler-COBOL and assembler-PL/I
applications with LE without change!

When can I do this?
When do I have to change my application?
What kinds of changes do I have to make?

There are some nice features in LE for assembler
programs if the assembler programs are
LE-conforming!
How to upgrade assembler programs to AMODE 31

© IBM 2002

Reference Material

S8216TR / 24FEB02

If you do not have one, get a COBOL Migration
Guide! There is an appendix dedicated to the
migration issues of mixed assembler/COBOL
applications. Publication number: GC27-1409-01
If you do not have one, get a PL/I Migration Guide!
Publication number: SC26-3118
 How:

Call 800 879 2755 to order a hard copy
On the web at:
www.ibm.com/s390/le/library/library.html

See the LE Programming Guide for more information
about running assembler with LE.

© IBM 2002

Terminology

S8216TR / 24FEB02

Main program vs sub program
In this presentation, the main program is the program that
brings up LE.
A sub program is any program called from the main program
or from another sub program while running under LE.

LE-conforming assembler
An LE-conforming assembler program is a program that
uses the LE provided macros to generate the required
prolog and epilog code, and follows the register conventions
of LE.
CEEENTRY and CEETERM
Details are in the LE Programming Guide.

© IBM 2002

LE-conforming assembler sample

S8216TR / 24FEB02

A simple LE-conforming assembler main program:
*===
* Bring up LE.
* ===
ASMLE3 CEEENTRY PPA=MAINPPA,AUTO=WORKSIZE,MAIN=YES

USING WORKAREA,13
LA 1,0 Pass no parms
L 15,A1C401B Get the addr of the COBOL or PL/I pgm
BALR 14,15 Call it

* ===
* Terminate LE.
* ===

CEETERM RC=0
MAINPPA CEEPPA Constants describing the code block
A1C401B DC V(A1C401B) VCON for COBOL or PL/I pgm
* ==
* The Workarea and DSA
* ==
WORKAREA DSECT

ORG *+CEEDSASZ Leave space for the DSA fixed part
DS 0D

WORKSIZE EQU *-WORKAREA
CEEDSA Mapping of the Dynamic Save Area
CEECAA Mapping of the Common Anchor Area
CEEEDB Mapping of the Enclave Data Block

END ASMLE3

© IBM 2002

Can I run with LE without changes?

S8216TR / 24FEB02

If your mixed assembler-HLL application meets the
following criteria, there is a good chance it will run
under LE without changes:

Your assembler programs follow the S/390 save area
convention.

R13 must contain the address of a save area.
The first two bytes of the save area must be hex zeros.
The back chain must be a valid 31-bit address. No garbage
in the high order byte!
Each program needs its own save area (no sharing)

OS services ESPIE and ESTAE are not used.
OS service DELETE is not used to delete load
modules containing COBOL or PL/I programs.
OS service LINK is not used to invoke OS/VS COBOL
programs in more than one enclave.

© IBM 2002

Can I run with LE without changes?

S8216TR / 24FEB02

Some users thought they had to change their
assembler programs to put the CAA address in R12

This is not necessarily needed when running under LE!
Source of the problem was the LE Programming Guide in
the section that talked about register conventions.

The book was updated for LE in OS/390 V2R6 to
reflect the requirements for assembler and
LE-conforming assembler.

See the next page for the updated text.
When COBOL is called by assembler, LE always looks up
the address of the CAA (so R12 does not need to point to
the CAA).
When PL/I is called by assembler, LE does NOT look up
the address of the CAA (so R12 DOES need to point to the
CAA).

LE callable services expect R12 to point to the CAA.

© IBM 2002

LE Programming Guide

S8216TR / 24FEB02

5.2.2 Register Conventions
To communicate properly with assembler routines, you must

observe certain register conventions on entry into the assembler
routine (while it runs), and on exit from the assembler routine.

Language Environment-conforming assembler and
non-Language Environment-conforming assembler each has its
own requirements for register conventions when running under
Language Environment.

© IBM 2002

LE Programming Guide

S8216TR / 24FEB02

5.2.2 Language Environment-conforming Assembler
When you use the macros listed in "Assembler Macros" in

topic 5.2.5 to write Language Environment-conforming
assembler routines, the macros generate code that follows the
required register conventions. On entry into the Language
Environment-conforming assembler main routine, registers must
contain the following values because they are passed without
change to the CEEENTRY macro:

R0 Address of a parameter list, if the main routine is
 invoked from VM
R1 Address of the parameter list, or zero if no
 parameters are passed
R13 Caller's standard register save area
R14 Return address
R15 Entry point address

© IBM 2002

LE Programming Guide

S8216TR / 24FEB02

5.2.2 Language Environment-conforming Assembler
 On entry into a Language Environment-conforming

assembler subroutine, these registers must contain the following
values when NAB=YES is specified on the CEEENTRY macro:

R0 Reserved
R1 Address of the parameter list, or zero
R12 Common anchor area (CAA) address
R13 Caller's DSA
R14 Return address
R15 Entry point address
All others Undefined

© IBM 2002

LE Programming Guide

S8216TR / 24FEB02

On entry into a Language Environment-conforming assembler
routine, the caller's registers (R14 through R12) must be saved
into the DSA provided by the caller. After you allocate a DSA
(which sets the NAB field correctly in the new DSA), the first
halfword of the DSA must be set to hex zero so the backchain
will be set appropriately.

At all times while the Language Environment-conforming
assembler routine is running, R13 must contain the executing
routine's DSA.

 At call points, R12 must contain the CAA address, except in
the following cases:

* When calling a COBOL program
* When calling an assembler routine that is not Language
 Environment-conforming
 * When calling a Language Environment-conforming
 assembler routine that specifies NAB=NO on the
 CEEENTRY macro

© IBM 2002

LE Programming Guide

S8216TR / 24FEB02

On exit from a Language Environment-conforming assembler
routine, these registers contain:
R0 Undefined
R1 Undefined
R14 Undefined
R15 Undefined
All others The contents they had upon entry

5.2.2.2 Non-Language Environment-conforming
Assembler

When you run a non-Language Environment-conforming
routine in Language Environment, the following conventions must
be followed:

* R13 must contain the executing routine's register save
 area
* The register save area back chain must be set to a valid
 31-bit address (if the address is a 24 bit address, the first
 byte of the address must be hex zeros)

© IBM 2002

When changes are needed

S8216TR / 24FEB02

There are cases when your assembler programs
need to be changed. We will discuss the following
areas:

Save area conventions are not followed
OS LOAD/DELETE services are used
OS LINK with OS/VS COBOL
OS ATTACH
OS ESTAE/ESPIE
Altering the program mask

© IBM 2002

If save area conventions are not followed

S8216TR / 24FEB02

Save area conventions must be followed:
R13 must contain the address of a save area.
The first two bytes of the save area must be hex zeros.
The back chain must be a valid 31-bit address.

No garbage in the high order byte!
Already required under OS PL/I
The COBOL Migration Guide has more details on this.

The forward chain does not need to be set.

40XX abends occur when conventions not followed.
ABEND U4083 abends occur when there are back chain
problems. Back chain is used every time an assembler
program calls a COBOL sub program.
Back chain is NOT used every time an assembler program
calls a PL/I sub program. You either tell PL/I to initialize or
you tell PL/I that the environment is already initialized.

Can be problems if using OPTIONS(COBOL) but calling from
assembler.
LE does NOT initialize PL/I for OPTIONS(COBOL) like OS PL/I

© IBM 2002

OS LOAD and DELETE

S8216TR / 24FEB02

What is allowed/supported in the context of sub
programs (no restrictions for main programs):

OS LOAD to load modules that contain only assembler
and/or COBOL sub programs.
OS DELETE to delete load modules that contain:

OS/VS COBOL programs
 COBOL programs compiled NORENT: VS COBOL II, COBOL
for MVS & VM, or COBOL for OS/390 & VM

OS DELETE warning!!!
 Continuous OS LOAD/DELETE activity of modules
containing COBOL programs compiled with RENT can
cause accumulation of runtime control blocks.
If DELETE function is required, use another approach (we
will discuss this later).

© IBM 2002

OS LOAD and DELETE

S8216TR / 24FEB02

What won't work:
OS LOAD and BALR to load modules that contain PL/I and
the LE PL/I specific runtime is not initialized. See the PL/I
migration guide.
 OS DELETE to delete load modules that contain:

COBOL programs compiled RENT, any compiler
Use of OS DELETE can cause:

Storage accumulation of TGT, WORKING-STORAGE, plus
other runtime control blocks
Program checks in the runtime

© IBM 2002

OS LOAD and DELETE

S8216TR / 24FEB02

OS LOAD\DELETE alternatives
Use a COBOL program to do the dynamic CALL and
CANCEL processing.
Use a PL/I program to do the FETCH and RELEASE
processing.
Use the LE assembler macros: CEEFETCH and
CEERELES. Documentation is in the LE Programming
Guide.

Requires that your assembler program be LE-conforming.
Use the vendor interface IGZCXCC (COBOL dynamic
call/cancel from assembler). Documentation is in the LE
Vendor Interfaces Book (SY28-1152).

Requires that your assembler program be LE-conforming.
Avoid using function codes 3 and 4 (call/cancel with entry point
provided). These function codes are removed in OS/390 V2R6.

© IBM 2002

OS LINK with OS/VS COBOL

S8216TR / 17FEB03

OS LINK with OS/VS COBOL
OS LINK is allowed as long as OS/VS COBOL is run in only
one LE enclave.
For example the following is not supported (it is diagnosed
by LE with message IGZ0168S):

Alternatives:
Recompile the COBOL programs with VS COBOL II or later

Must be done if OS LINK is retained for 'abend protection'
Use COBOL dynamic CALL (and CANCEL)

Instead of OS LINK, no 'abend protection' for caller

OS/VS
 COBOL
 A

ASM
B

OS/VS
COBOL

C

OS LinkCALL

© IBM 2002

OS ATTACH
The default parameter list processing for main
COBOL programs is different compared to the VS
COBOL II runtime.

LE always assumes a "PARM=" style of parameter list
VS COBOL II had an algorithm to decide if the incoming
parameter should be processed as a "PARM=" style of
parameter list or PLIST=OS style (the algorithm is
documented in the COBOL Migration Guide).

Alternatives:
Change the main program to LE-conforming assembler, and
use PLIST=OS keyword in the CEEENTRY macro. Then
have the assembler program ATTACH the COBOL program.
Modify the parameter list processing via the LE exit
IGZEPSX to be compatible with the VS COBOL II behavior.

Note: For PL/I, we recommend using PL/I tasking
facility.

S8216TR / 26FEB03

© IBM 2002

OS ESTAE/ESPIE
On non-CICS, LE issues its own ESPIE and ESTAE
with TRAP(ON). On non-CICS, LE issues its own
ESTAE with TRAP(ON,NOSPIE).

If an assembler program issues an ESPIE or ESTAE when
LE is running, and it remains in effect after leaving the
program, it can lead to ABENDs and unexpected results.

There is no problem if the ESPIE is reset or ESTAE is cancelled
before leaving the program or calling LE services

LE expects to get control for ABENDs and program
interrupts.
LE is designed to recover from program interrupts and
ABENDs.

The LE math library is designed to recover from program
interrupts (designed for performance).
Condition handling is designed to recover from program
interrupts and abends (PL/I ON UNITs, C SIGABND, etc)

S8216TR /17FEB03

© IBM 2002

OS ESTAE/ESPIE
There is no problem if the ESPIE is reset or ESTAE is
cancelled before leaving the program or calling LE
services

S8216TR /17FEB03

ASM program

 ESPIE set

 CALL CBL1

 ESPIE reset

 CALL CBL2

PROBLEM!

No Problem

© IBM 2002

OS ESTAE/ESPIE
OS ESTAE/ESPIE alternative 1

Change your application to use LE condition handlers and
no longer issue ESPIE or ESTAE.

For example, instead of calling an assembler program
to set an ESPIE to catch data exceptions, you would
make a call to register an LE condition handler.

The LE condition handler would take the place of your
ESPIE exit code.
All COBOL programs that are involved with the condition
handling must be compiled with COBOL for MVS & VM,
COBOL for OS/390 & VM, or Enterprise COBOL.

Example code is in the back of this presentation.
Also see the information in the COBOL Migration
Guide.

S8216TR / 24FEB02

© IBM 2002

OS ESTAE/ESPIE
OS ESTAE/ESPIE alternative 2
Change your application to use the LE compiler
writer interfaces (CWI) in support of condition
management.
Callable services that are available include:

CEE3ERP -- Support for User-Provided Error Recovery
CEE3SMS -- Set Machine State CWI
CEEMRCM -- Move resume cursor using a machine state

Documentation of the CWIs are in the LE Vendor
Interfaces Book (SY28-1152).
 Assembler programs using the CWIs must be
LE-conforming.
Also see the text in APAR PQ14362 about
coordinating ESPIEs/ESTAEs with LE.

S8216TR / 24FEB02

© IBM 2002

Setting the Program Mask
If you have assembler sub programs that alter the
program mask, they must restore the program mask
before returning to COBOL or PL/I

Failure to restore the program mask could result in
undetected data errors.
 Issuing an ESPIE can alter the program mask

S8216TR / 24FEB02

© IBM 2002

LE-conforming assembler
Here are some of the things you can do with
LE-conforming assembler:

Use any of the LE callable services (documented in the LE
Programming Reference)
Date/time, math, storage management, program
management, condition management, and more!
Use CEEFETCH and CEERELES for program management
Use the LE services in the LE Vendor Interface Book

Lower level services for those that really need it
Assembler programs that are main (non-CICS only)
Call COBOL for MVS & VM, COBOL for OS/390 & VM, and
Enterprise COBOL programs when running on CICS and
non-CICS
Call PL/I for MVS & VM programs when running on CICS
and non-CICS

Note: PL/I has some FETCH restrictions when called from
programs that are LOADed. See APAR PQ13009.

CALL C functions

S8216TR /17FEB03

© IBM 2002

LE-conforming assembler update
News Flash! APAR PQ46427

Support has been added for specifying more than one base
register for the BASE parameter of the CEEENTRY macro.
When more than one register is specified, the registers must
be enclosed in parentheses and separated by commas like
this: BASE=(9,10,11)
Replace description of the BASE parameter with:

BASE=
Establishes the registers that you specify here as the base
registers for this module. If you do not specify a value,
register 11 is assumed; register 12 cannot be used. Also if
you specify MAIN=YES, you cannot specify register 2 as a
base register for the module. When more than one register
is specified, the registers must be separated by commas
and enclosed in parentheses. The same register cannot be
specified more than once.

PQ46427 applies to LE V2R8, V2R9, V2R10, z/OS R2
Included in base for z/OS R3 and later

S8216TR / 24FEB02

© IBM 2002

Converting assembler to AMODE 31

More than just link-editing with AMODE=31!
Sometimes just changing AMODE 24 to AMODE 31 in
source is all you need to do
Before you do that, check out the following first

Use of the SPM (set program mask) instruction
LA instruction used to clear the high-order byte of a register
Address fields that are less than 4 bytes
Use of the ICM (insert characters under mask) instruction
AMODE of subprograms
AMODE of CALLing programs

S8216TR / 24FEB02

© IBM 2002

Converting assembler to AMODE 31

For a good discussion of 31-bit addressability issues,
see the OS/390 MVS Assembler Services Guide,
Chapter 5, "Understanding 31-Bit Addressing."

Chapter 5.2 has notes on converting from
24- to 31-bit addressing mode.

For 31-bit I/O issues, see DFSMS Macro Instructions
for Data Sets,

Chapter 2, "Non-VSAM Macros" contains information for
each macro, regarding 31-bit addressability considerations.
Appendix A in Appendix 1.1 contains a table, indicating for
each macro, whether it can be issued in 31-bit amode.

http://publibz.boulder.ibm.com:80/cgi-bin/
 bookmgr_OS390/BOOKS/iea1a630/5.2.1

S8216TR / 17FEB03

© IBM 2002

Converting assembler to AMODE 31

Use of the SPM (set program mask) instruction
Does the module depend on the instruction length code,
condition code, or program mask placed in the high order
byte of the return address register by a 24-bit mode BAL or
BALR instruction?

One way to determine some of the dependencies is by checking
all uses of the SPM (set program mask) instruction. SPM might
indicate places where BAL or BALR were used to save the old
program mask, which SPM might then have reset. The IPM
(insert program mask) instruction can be used to save the
condition code and the program mask.

LA instruction used to clear high-order byte of register
This practice will not clear the high-order byte in 31-bit
addressing mode
Use SR and ICM

S8216TR / 24FEB02

© IBM 2002

Converting assembler to AMODE 31

Address fields that are less than 4 bytes
Are any address fields that are less than 4 bytes still
appropriate?
Make sure that a load instruction does not pick up a 4-byte
field containing a 3-byte address with extraneous data in the
high-order byte
Make sure that bits 1-7 are zero

Use of ICM (insert characters under mask) instruction
The use of this instruction is sometimes a problem because it
can put data into the high-order byte of a register containing
an address, or
It can put a 3-byte address into a register without first zeroing
the register.
If the register is then used as a base, index, or branch
address register in 31-bit addressing mode, it might not
indicate the proper address

S8216TR / 24FEB02

© IBM 2002

Converting assembler to AMODE 31

S8216TR / 24FEB02

AMODE of subprograms
If AMODE 24 then shared data must be below 16M line

AMODE of CALLing programs
If AMODE 24, might have to handle mode switching
COBOL dynamic CALL handles this for you

© IBM 2002

Other interesting items

OS ATTACH support for COBOL
You can run COBOL programs with LE in multiple tasks
when all of the COBOL programs are compiled with
COBOL for MVS & VM, COBOL for OS/390 & VM or
Enterprise COBOL for z/OS and OS/390
A separate LE is set up for each task
ISPF split screen now allows COBOL to be run from both
screens without having to use NORES

Tips:
Specify a separate LE MSGFILE per task
See the LE Programming Guide for more considerations
Note: For PL/I, we recommend using PL/I tasking facility.

S8216TR / 24FEB02

© IBM 2002

Other interesting items

Performance Notes
Assembler calling a COBOL sub program running on LE is
faster than it is when running with the VS COBOL II runtime
Additional performance benefits when the called program is
COBOL for MVS & VM, COBOL for OS/390 & VM or
Enterprise COBOL (compared to VS COBOL II programs)
Call overhead performance measured in CPU time
improved up to 8x when running minimum programs
A COBOL CALL to another COBOL program is always
faster than a call from assembler to COBOL
A PL/I CALL to another PL/I program is about the same cost
as a call from assembler to PL/I

S8216TR / 24FEB02

© IBM 2002

Other interesting items
LE Storage Allocation on non-CICS

OS/VS COBOL and VS COBOL II runtime allocated storage
from subpool 0
LE allocates storage from subpool 1 and subpool 2.

Subpool 1 storage is for runtime storage. For
example: runtime control blocks, LIBSTACK,
ANYHEAP, and BELOWHEAP.
Subpool 2 storage is for user storage. For example:
HEAP and STACK.
COBOL WORKING STORAGE for RENT programs will
be allocated from HEAP

 (which is allocated from subpool 2).

Some storage is still allocated out of subpool 0 when
running OS/VS COBOL programs and VS COBOL II
programs under LE

S8216TR / 24FEB02

© IBM 2002

Items not covered here...
Items not covered here but are discussed in the
COBOL Migration Guide:

List of the possible combinations of calls involving COBOL
programs and assembler programs and whether the calls
are supported or not
Change in behavior when the same COBOL program
(compiled RENT) is dynamically called from a COBOL
program and also called from an assembler program via
LOAD and branch

The same copy of WORKING-STORAGE is used when running
in the same enclave

S8216TR / 24FEB02

© IBM 2002

Condition handling example

S8216TR / 24FEB02

CBL APOST,NODYNAM,RENT
**
* Sample COBOL MVS & VM application that was converted
* from an OS/VS COBOL program that used a SPIE for
* error recovery.
*
* Routines used:
* A1C3CHA1 - Main driver routine. It reads records from a
* file and processes each record. If a program
* check occurs while processing the record
* display the record and keep going.
* A1C3CHAX - The condition handler.

IDENTIFICATION DIVISION.
PROGRAM-ID. A1C3CHA1.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT F1 ASSIGN TO DD1
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.

FD F1 RECORDING MODE IS F
BLOCK 0 RECORD 40
LABEL RECORD STANDARD

DATA RECORD R1.

01 R1.
02 R1-CTR PIC 9(10).
02 R1-INFO PIC X(30).

© IBM 2002

Condition handling example

S8216TR / 24FEB02

WORKING-STORAGE SECTION.

01 FILE-STATUS PIC 99.
88 EOF VALUE 10.

*---
* Data items needed for condition handling
*---
01 PROCPTR USAGE IS PROCEDURE-POINTER.

01 TOKEN PIC X(4) VALUE SPACES.

01 RECOVERY-AREA EXTERNAL.
05 RECOVERY-POINT POINTER.
05 RECOVERY-IN-PROGRESS PIC X(01).

*--
* START THE PROGRAM...
*--
PROCEDURE DIVISION.

DISPLAY 'A1C3CHA1: ENTERING A1C3CHA1.... '
*--
* Open the input file.
*--

OPEN INPUT F1
IF FILE-STATUS NOT = 0 THEN

DISPLAY
'A1C3CHA1: OPEN FAILURE ON FILE F1, FILE STATUS: '
FILE-STATUS

PERFORM UNEXPECTED-ERROR
END-IF

© IBM 2002

Condition handling example

S8216TR / 24FEB02

*--
* Set up a condition handler.
*--

SET PROCPTR TO ENTRY 'A1C3CHAX'
CALL 'CEEHDLR' USING PROCPTR, TOKEN, OMITTED

*--
* Set up the resume point where the condition handler
* can resume to (which is the next COBOL statement below).
*--

MOVE SPACES TO RECOVERY-IN-PROGRESS
CALL 'CEE3SRP' USING RECOVERY-POINT, OMITTED

*--
* We get here for one of two cases. Handle the flow based
* on each case.
* 1) We just sucessfully called CEE3SRP. We want to
* keep going in this case.
* 2) We got control here due to condition handling.
* Go to the paragraph that handles errors.
*
* NOTE: the SERVICE LABEL is required.
*--

SERVICE LABEL
IF RECOVERY-IN-PROGRESS = 'Y' THEN

MOVE SPACES TO RECOVERY-IN-PROGRESS
GO TO PROGRAM-CHECK-OCCURED

END-IF

© IBM 2002

Condition handling example

S8216TR / 24FEB02

*--
* Read all of the records in the file and process them.
* If there is a data exeception while processing a record,
* display the record, and continue processing.
*--
PROCESS-RECORDS.

PERFORM PROCESS-DATA UNTIL EOF
* Unregister the condition handler.

CALL 'CEEHDLU' USING PROCPTR OMITTED
CLOSE F1
DISPLAY 'A1C3CHA1: EXITING SUCCESSFULLY.'
STOP RUN
.

*--
* Read the record and process it
*--
PROCESS-DATA.

PERFORM READ-RCD
IF NOT EOF THEN

* The following Add may cause a data exception, if garbage input
ADD 1 TO R1-CTR

* Put out some messages if all went well.

DISPLAY 'A1C3CHA1: PROCESSING COMPLETED SUCCESSFULLY.'
DISPLAY ' RECORD "' R1 '"'

END-IF
.

© IBM 2002

Condition handling example

S8216TR / 24FEB02

*---
* Read a record from file F1.
*--
READ-RCD.

READ F1
IF FILE-STATUS > 10 THEN

DISPLAY 'A1C3CHA1: I/O ERROR ON FILE F1, FILE STATUS: '
FILE-STATUS

PERFORM UNEXPECTED-ERROR
.

*--
* Control comes to this paragraph if a program check occurs
* while processing a record. Display the bogus record and
* continue processing.
*--
PROGRAM-CHECK-OCCURED.

DISPLAY 'A1C3CHA1: DATA EXCEPTION ENCOUNTERED.'
DISPLAY ' PROCESSING WILL CONTINUE.'
DISPLAY ' RECORD "' R1 '"'
GO TO PROCESS-DATA
.

*--
* Unexpected error!
*--
UNEXPECTED-ERROR.

DISPLAY 'A1C3CHA1: EXITING WITH AN ERROR.'
MOVE 16 TO RETURN-CODE
STOP RUN

© IBM 2002

Condition handling example

S8216TR / 24FEB02

*---
* The condition handler
*---
CBL APOST OPT(FULL) LIB
IDENTIFICATION DIVISION.
PROGRAM-ID. A1C3CHAX RECURSIVE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 RECOVERY-AREA EXTERNAL.
05 RECOVERY-POINT POINTER.
05 RECOVERY-IN-PROGRESS PIC X(01).

LINKAGE SECTION.

01 CURRENT-CONDITION.
05 FILLER PIC X(8).
COPY CEEIGZCT.
05 FILLER PIC X(4).

01 TOKEN PIC X(04).
01 RESULT-CODE PIC S9(09) BINARY.

88 RESUME VALUE +10.
88 PERCOLATE VALUE +20.
88 PERC-SF VALUE +21.
88 PROMOTE VALUE +30.
88 PROMOTE-SF VALUE +31.

01 NEW-CONDITION PIC X(12).

© IBM 2002

Condition handling example

S8216TR / 24FEB02

PROCEDURE DIVISION USING CURRENT-CONDITION,
TOKEN,
RESULT-CODE,
NEW-CONDITION.

*---
* If we are here due to a data exception, set the resume
* point and resume. Otherwise
* percolate the error (we don't want to handle it).
*
* We could add more code and verify that the name of
* routine we took the error in by using service CEE3GRN.
*---

IF CEE347 THEN
MOVE 'Y' TO RECOVERY-IN-PROGRESS
CALL 'CEEMRCE' USING RECOVERY-POINT, OMITTED
SET RESUME TO TRUE

ELSE
SET PERCOLATE TO TRUE

END-IF
GOBACK

