
Linear Tape File System (LTFS) Format Specification

August 17, 2011

LTFS Format Version 2.0.1

This document presents the requirements for an interchanged tape conforming to a self de-
scribing format. This format is used by the Linear Tape File System (LTFS). This document
does not describe implementation of LTFS itself.

1



LTFS v2.0.1 August 17, 2011

Table of Contents

1 Introduction 7

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Definitions and Acronyms 10

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Block Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Complete Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Content Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Consistent State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Data Extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.6 Data Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.7 File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.8 filesystem sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.9 generation number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.10 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.11 Index Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.12 Index Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.13 Label Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.14 Linear Tape File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.15 LTFS Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.16 LTFS Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.17 LTFS Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

LTFS Format Specification Page 2 of 71



LTFS v2.0.1 August 17, 2011

2.1.18 LTFS Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.19 Medium Auxiliary Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.20 Partition Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.21 sparse file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.22 UUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.23 Volume Change Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Volume Layout 14

3.1 LTFS Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 LTFS Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Label Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Data Extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Index Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Partition Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Index Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Generation Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Self Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.3 Back Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Data Extents 20

4.1 Extent Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Extents Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Starting and ending Data Extent with full block . . . . . . . . . . . . . . 21

4.2.2 Starting Data Extent with full block and ending with fractional block . . 22

4.2.3 Starting and ending Data Extent in mid-block . . . . . . . . . . . . . . . 22

LTFS Format Specification Page 3 of 71



LTFS v2.0.1 August 17, 2011

4.3 Files Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Simple Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Shared Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.3 Sparse Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.4 Shared Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Data Formats 27

5.1 Boolean format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Creator format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Extended attribute value format . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Name format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Name pattern format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 String format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.7 Time stamp format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.8 UUID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Label Format 31

6.1 Label Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 VOL1 Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.2 LTFS Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.3 Managing LTFS Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Index Format 35

7.1 Index Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2.1 extendedattributes elements . . . . . . . . . . . . . . . . . . . . . . . . 42

LTFS Format Specification Page 4 of 71



LTFS v2.0.1 August 17, 2011

7.2.2 Managing LTFS Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.3 Data Placement Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.4 Data Placement Policy Alteration . . . . . . . . . . . . . . . . . . . . . . 45

7.2.4.1 Allow Policy Update is set . . . . . . . . . . . . . . . . . . . . . 45

7.2.4.2 Allow Policy Update is unset . . . . . . . . . . . . . . . . . . . . 45

7.2.5 Data Placement Policy Application . . . . . . . . . . . . . . . . . . . . . . 46

8 Medium Auxiliary Memory 48

8.1 Volume Change Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.2 Volume Coherency Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Use of Volume Coherency Information for LTFS . . . . . . . . . . . . . . . . . . 50

9 Certification 53

A LTFS Label XML Schema 55

B LTFS Index XML Schema 57

C Reserved Extended Attribute definitions 60

C.1 Object Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.2 Volume Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.3 Media Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D Example of Valid Simple Complete LTFS Volume 65

E Complete Example LTFS Index 66

F Changes between Format Specification versions 70

F.1 Changes between v1.0 and v2.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

LTFS Format Specification Page 5 of 71



LTFS v2.0.1 August 17, 2011

F.2 Changes between v2.0.0 and v2.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 71

LTFS Format Specification Page 6 of 71



LTFS v2.0.1 August 17, 2011

1 Introduction

This document defines a Linear Tape File System (LTFS) Format separate from any imple-
mentation on data storage media. Using this format, data is stored in LTFS Volumes. An LTFS
Volume holds data files and corresponding meta data to completely describe the directory and
file structures stored on the volume.

The LTFS Format has these features:

• An LTFS Volume can be mounted and volume content accessed with full use of the data
without the need to access other information sources.

• Data can be passed between sites and applications using only the information written to
an LTFS Volume.

• Files can be written to, and read from, an LTFS Volume using standard POSIX file oper-
ations.

The LTFS Format is particularly suited to these usages:

• Data export and import.

• Data interchange and exchange.

• Direct file and partial file recall from sequential access media.

• Archival storage of files using a simplified, self-contained or “self-describing” format on
sequential access media.

1.1 Scope

This document defines the LTFS Format requirements for interchanged media that claims
LTFS compliance. Those requirements are specified as the size and sequence of data blocks and
file marks on the media, the content and form of special data constructs (the LTFS Label and
LTFS Index), and the content of the partition labels and use of MAM parameters.

The data content (not the physical media) of the LTFS format shall be interchangeable among
all data storage systems claiming conformance to this format. Physical media interchange is
dependent on compatibility of physical media and the media access devices in use.

Note: This document does not contain instructions or tape command sequences
to build the LTFS structure.

LTFS Format Specification Page 7 of 71



LTFS v2.0.1 August 17, 2011

1.2 Versions

This document describes version 2.0.1 of the Linear Tape File System (LTFS) Format Speci-
fication.

The version number for the LTFS Format Specification consists of three integer elements
separated by period characters of the form M.N.R, where M , N , and R are positive integers or
zero. Differences in the version number between different revisions of this specification indicate
the nature of the changes made between the two revisions. Each of the integers in the format
specification are incremented according to the following table:

Element Description

M Incremented when a major update has been made to the LTFS Format
Specification. Major updates are defined as any change to the on-media format or
specification semantics that are expected to break compatibility with older versions
of the specification.

N Incremented when a minor update has been made to the LTFS Format
Specification. Minor updates are defined as any change to the on-media format or
specification semantics that is not expected to break compatibility with older
versions of the specification that have the same value for M in the version number.

R Incremented when textual revisions are made to the LTFS Format Specification.
Textual revisions are defined as revisions that improve the clarity of the
specification document without changing the intent of the document. By definition,
minor changes do not alter the on-media format or specification semantics.

Note: When any element of the specification version number is incremented, all
sub-ordinate elements to the right are reset to zero. For example, if the version is
1.0.12 and N is incremented to 1, then R is set to zero resulting in version 1.1.0.

Note: The first public version of this document used version number 1.0. This
value should be interpreted as equivalent to 1.0.0 in the version numbering defined
in this document.

The result of comparison between two LTFS version numbers MA.NA.RA andMB .NB .RB is
defined in the following table.

LTFS Format Specification Page 8 of 71



LTFS v2.0.1 August 17, 2011

Conditional Description

MA < MB MA.NA.RA is an earlier version than MB .NB .RB .

MA = MB and
NA < NB

MA.NA.RA is an earlier version than MB .NB .RB .

MA = MB and
NA = NB and
RA < RB

MA.NA.RA is an earlier version than MB .NB .RB . However, as defined above,
changes that result only in a different R value are descriptive changes in the
specification rather than on media changes.

1.3 Conformance

Recorded media claiming conformance to this format shall be in a consistent state when
interchanged or stored. See 2.1.4 Consistent State.

Any implementation conforming to this specification should be able to correctly read Label
and Index structures from all prior versions of this specification and write Label and Index struc-
tures conforming to the descriptions in this document. The current Label and Index structures
are defined in 6 Label Format and 7 Index Format.

Note: Where practical, any implemention supporting a given version value for M
should endevour to support LTFS volumes with version numbers containing higher
values for N and R than those defined at the time of implementation.

LTFS Format Specification Page 9 of 71



LTFS v2.0.1 August 17, 2011

2 Definitions and Acronyms

For the purposes of this document the following definitions and acronyms shall apply.

2.1 Definitions

2.1.1 Block Position

The position or location of a recorded block as specified by its LTFS Partition ID and logical
block number within that partition.

The block position of an Index is the position of the first logical block for the Index.

2.1.2 Complete Partition

An LTFS partition that consists of an LTFS Label Construct and a Content Area, where the
last construct in the Content Area is an Index Construct.

2.1.3 Content Area

A contiguous area in a partition, used to record Index Constructs and Data Extents.

2.1.4 Consistent State

A volume is consistent when both partitions are complete and the last Index Construct in
the Index Partition has a back pointer to the last Index Construct in the Data Partition.

2.1.5 Data Extent

A contiguous sequence of recorded blocks.

2.1.6 Data Partition

An LTFS partition primarily used for data files.

LTFS Format Specification Page 10 of 71



LTFS v2.0.1 August 17, 2011

2.1.7 File

A group of logically related extents together with associated file meta-data.

2.1.8 filesystem sync

An operation during which all cached file data and meta-data is flushed to the media.

2.1.9 generation number

A positive decimal integer which shall indicate the specific generation of an Index within an
LTFS volume.

2.1.10 Index

A data structure that describes all valid data files in an LTFS volume. The Index is an XML
document conforming to the XML schema shown in B LTFS Index XML Schema.

2.1.11 Index Construct

A data construct comprised of an Index and file marks.

2.1.12 Index Partition

An LTFS partition primarily used to store Index Constructs and optionally data files.

2.1.13 Label Construct

A data construct comprised of an ANSI VOL1 tape label, LTFS Label, and tape file marks.

2.1.14 Linear Tape File System (LTFS)

This document describes the Linear Tape File System Format.

LTFS Format Specification Page 11 of 71



LTFS v2.0.1 August 17, 2011

2.1.15 LTFS Construct

Any of three defined constructs that are used in an LTFS partition. The LTFS constructs
are: Label Construct, Index Construct, and Data Extent.

2.1.16 LTFS Label

A data structure that contains information about the LTFS partition on which the structure
is stored. The LTFS Label is an XML document conforming to the XML schema shown in A
LTFS Label XML Schema.

2.1.17 LTFS Partition

A tape partition that is part of an LTFS volume. The partition contains an LTFS Label
Construct and a Content Area.

2.1.18 LTFS Volume

A pair of LTFS partitions, one Data Partition and one Index Partition, that contain a logical
set of files and directories. The pair of partitions in an LTFS Volume must have the same UUID.
All LTFS partitions in an LTFS volume are related partitions.

2.1.19 Medium Auxiliary Memory

An area of non-volatile storage that is part of an individual storage medium. The method of
access to this non-volatile storage is standardized as in the T10/SPC-4 standard.

2.1.20 Partition Identifier (Partition ID)

The logical partition letter to which LTFS data files and Indexes are assigned.

The linkage between LTFS partition letter and physical SCSI partition number is determined
by the SCSI partition in which the LTFS Label is recorded. The LTFS partition letter is recorded
in the LTFS Label construct, and the SCSI partition number is known by the SCSI positional
context where they were read/written.

LTFS Format Specification Page 12 of 71



LTFS v2.0.1 August 17, 2011

2.1.21 sparse file

A file that has some number of empty (unwritten) data regions. These regions are not stored
on the storage media and are implicitly filled with bytes containing the value zero (0x00).

2.1.22 UUID

Universally unique identifier; an identifier use to bind a set of LTFS partitions into an LTFS
volume.

2.1.23 Volume Change Reference (VCR)

A value that represents the state of all partitions on a tape.

2.2 Acronyms

ASCII American Standard Code for Information Interchange
CM Cartridge Memory
DCE Distributed Computing Environment
ISO International Organization for Standardization
LTFS Linear Tape File System
MAM Media Auxiliary Memory
NFC Normalization Form Canonical Composition
OSF Open Software Foundation
POSIX Portable Operating System Interface for Unix
T10/SSC-4 ISO/IEC 14776-334, SCSI Stream Commands - 4 (SSC-4) [T10/2123-D]
UTC Coordinated Universal Time
UTF-8 8-bit UCS/Unicode Transformation Format
UUID Universally Unique Identifier
W3C World Wide Web Consortium
XML Extensible Markup Language

LTFS Format Specification Page 13 of 71



LTFS v2.0.1 August 17, 2011

3 Volume Layout

An LTFS volume is comprised of a pair of LTFS partitions. LTFS defines two partition types:
data partition and index partition. An LTFS volume must contain exactly one Data Partition
and exactly one Index Partition.

3.1 LTFS Partitions

Each partition in an LTFS volume shall consist of a Label Construct followed by a Content
Area. This logical structure is shown in the figure below.

...Label Construct Content Area

The Label Construct is described in 3.2 LTFS Constructs and in 6 Label Format. The
Content Area contains some number of interleaved Index Constructs and Data Extents. These
constructs are described in 3.2 LTFS Constructs and 7 Index Format. The precise layout of
the partitions is defined in 3.3 Partition Layout.

3.2 LTFS Constructs

LTFS constructs are comprised of file marks and records. These are also known as ‘logical
objects’ as found in T10 SSC specifications and are not described here. An LTFS volume contains
three kinds of constructs.

• A Label Construct contains identifying information for the LTFS volume.

• A Data Extent contains file data written as sequential logical blocks. A file consists of zero
or more Data Extents plus associated meta-data stored in the Index Construct.

• An Index Construct contains an Index, which is an XML data structure which describes
the mapping between files and Data Extents.

LTFS Format Specification Page 14 of 71



LTFS v2.0.1 August 17, 2011

3.2.1 Label Construct

Each partition in an LTFS volume shall contain a Label Construct with the following struc-
ture. As shown in the figure below, the construct shall consist of an ANSI VOL1 label, followed
by a single file mark, followed by one record in LTFS Label format, followed by a single file
mark. Each Label construct for an LTFS volume must contain identical information except for
the “location” field of the LTFS Label.

The content of the ANSI VOL1 label and the LTFS Label is specified in 6 Label Format.

VOL1
Label

LTFS
Label

File MarkFile Mark

3.2.2 Data Extent

A Data Extent is a set of one or more sequential logical blocks used to store file data. The
“blocksize” field of the LTFS Label defines the block size used in Data Extents. All records within
a Data Extent must have this fixed block size except the last block, which may be smaller.

The use of Data Extents to store file data is specified in 4 Data Extents.

3.2.3 Index Construct

The figure below shows the structure of an Index Construct. An Index Construct consists of
a file mark, followed by an Index, followed by a file mark. An Index consists of a record that
follows the same rules as a Data Extent, but it does not contain file data. That is, the Index
is written as a sequence of one or more logical blocks of size “blocksize” using the value stored
in the LTFS Label. Each block in this sequence must have this fixed block size except the last
block, which may be smaller. This sequence of blocks records the Index XML data that holds
the file metadata and the mapping from files to Data Extents. The Index XML data recorded
in an Index Construct must be written from the start of each logical block used. That is, Index
XML data may not be recorded offset from the start of the logical block.

Index

File Mark File Mark

LTFS Format Specification Page 15 of 71



LTFS v2.0.1 August 17, 2011

Indexes also include references to other Indexes in the volume. References to other Indexes
are used to maintain consistency between partitions in a volume. These references (back pointers
and self pointers) are described in 3.4 Index Layout.

The content of the Index is described in 7 Index Format.

3.3 Partition Layout

This section describes the layout of an LTFS Partition in detail. An LTFS Partition contains
a Label Construct followed by a Content Area. The Content Area contains zero or more Data
Extents and Index Constructs in any order. The last construct in the Content Area of a complete
partition must be an Index Construct.

The figure below illustrates an empty complete partition. It contains a Label Construct
followed by an Index Construct. This is the simplest possible complete partition.

...IndexVOL1
Label

LTFS
Label

File Mark File Mark

File Mark File Mark

The figure below illustrates a complete partition containing data. The Content Area on the
illustrated partition contains two Data Extents (the first extent comprising the block ‘A’, the
second extent comprising blocks ‘B’ and ‘C’) and three Index Constructs.

...A B C IndexIndexIndexVOL1
Label

LTFS
Label

File Mark File Mark

File Mark

File Mark

File Mark File Mark

File Mark

File Mark

Note: There must not be any additional data trailing the end of the VOL1 Label,
the LTFS Label, nor any Index on an LTFS Volume. The Label Construct must be
recorded starting at the first logical block in each partition.

LTFS Format Specification Page 16 of 71



LTFS v2.0.1 August 17, 2011

3.4 Index Layout

Each Index data structure contains three pieces of information used to verify the consistency
of an LTFS volume.

• A generation number, which records the age of this Index relative to other Indexes in the
volume.

• A self pointer, which records the volume to which the Index belongs and the block position
of the Index within that volume.

• A back pointer, which records the block position of the last Index present on the Data
Partition immediately before this Index was written.

3.4.1 Generation Number

Each Index in a volume has a generation number, a non-negative integer that increases as
changes are made to the volume. In any consistent LTFS volume, the Index with the highest
generation number on the volume represents the current state of the entire volume. Generation
numbers are assigned in the following way.

• Given two Indexes on a partition, the one with a higher block position shall have a gener-
ation number greater than or equal to that of the one with a lower block position.

• Two Indexes in an LTFS volume may have the same generation number if and only if their
contents are identical except for the following elements:

– access time values for files and directories (described in 7.2 Index),

– the self pointer (described below), and

– the back pointer (described below).

Note: The value of the generation number between any two successive Indexes
may increase by any positive integer value. That is, the magnitude of increase
between any two successive Indexes is not assumed to be equal to 1.

The first Index on an LTFS Volume shall be generation number ‘1’.

3.4.2 Self Pointer

The self pointer for an Index is comprised of the following information.

• The UUID of the volume to which the Index belongs

LTFS Format Specification Page 17 of 71



LTFS v2.0.1 August 17, 2011

• The block position of the Index

The self pointer is used to distinguish between Indexes and Data Extents. An otherwise valid
Index with an invalid self pointer must be considered a Data Extent for the purpose of verifying
that a volume is valid and consistent. This minimizes the likelihood of accidental confusion
between a valid Index and a Data Extent contenting Index-like data.

3.4.3 Back Pointer

Each Index contains at most one back pointer, defined as follows.

• If the Index resides in the Data Partition, the back pointer shall contain the block position
of the preceding Index in the Data Partition. If no preceding Index exists, no back pointer
shall be stored in this Index. Back pointers are stored in the Index as described in 7.2
Index.

• If the Index resides in the Index Partition and has generation number N then the back
pointer for the Index shall contain either the block position of an Index having generation
number N in the Data Partition, or the block position of the last Index having at most
generation number N−1 in the Data Partition. If no Index of generation number N-1 or
less exists in the Data Partition, then the Index in the Index Partition is not required to
store a back pointer.

• On a consistent volume, the final Index in the Index Partition must contain a back pointer
to the final index in the Data Partition.

• As a consequence of the rules above, no Index may contain a back pointer to itself or to an
Index with a higher generation number.

On a consistent volume, the rules above require that the Indexes on the Data Partition and
the final Index on the Index Partition shall form an unbroken chain of back pointers. The figure
below illustrates this state.

LTFS Format Specification Page 18 of 71



LTFS v2.0.1 August 17, 2011

...

......

...... IndexIndexIndexVOL1
Label

LTFS
Label

File Mark

File Mark File Mark File Mark File Mark

File Mark File Mark

File Mark

...VOL1
Label

LTFS
Label

File Mark

Index

File MarkFile Mark File Mark

Data
Partition

Index
Partition

LTFS Format Specification Page 19 of 71



LTFS v2.0.1 August 17, 2011

4 Data Extents

A Data Extent is a set of one or more sequential records subject to the conditions listed in
3.2.2 Data Extent. This section describes how files are arranged into Data Extents for storage
on an LTFS volume. Logically, a file contains a sequence of bytes; the mapping from file byte
offsets to block positions is maintained in an Index. This mapping is called the extent list.

4.1 Extent Lists

A file with zero size has no extent list.

Each entry in the extent list for a file encodes a range of bytes in the file as a range of
contiguous bytes in a Data Extent. An entry in the extent list is known as an extent. Each entry
shall contain the following information:

• partition ID – partition that contains the Data Extent comprising this extent.

• start block (start block number) – block number within the Data Extent where the content
for this extent begins.

• byte offset (offset to first valid byte) – number of bytes from the beginning of the start
block to the beginning of file data for this extent. This value must be strictly less than the
size of the start block. The use of byte offset is described in section 4.2.3.

• byte count – number of bytes of file content in this Data Extent.

• file offset – number of bytes from the beginning of the file to the beginning of the file data
recorded in this extent.

Note: Version 1.0 of this specification, did not explicitly include file offsets in
the extent list. When interpreting LTFS Volumes written based on the version 1.0
specification, the file offsets shall be determined as follows.

• The first extent list entry begins at file offset 0.

• If an extent list entry begins at file offset N and contains K bytes, the following
extent list entry begins at file offset N +K.

These file extent rules for version 1.0 of the specification necessarily imply that
the order of extents recorded in the Index must be preserved during any subsequent
update of the Index to another version 1.0 Index.

The inclusion of the File Offset value for each extent starting from version 2.0.0 of this
specification removes the significance of the order in which extents are recorded in the Index.

LTFS Format Specification Page 20 of 71



LTFS v2.0.1 August 17, 2011

Implementors are encouraged to record extents in the same logical order as the exist in the
represented file.

In the extent list for any file, no extent may contain bytes that extend beyond the logical end
of file. The logical end of file is defined by the file length recorded in the Index. Also, in any
extent list for any file, there shall not exist any pair of extents that contain overlapping logical
file offsets. That is, no extent is allowed to logically overwrite any data stored in another extent.

An extent list entry shall be a byte range within a single Data Extent; that is, it must not
cross a boundary between two Data Extents. This requirement allows a deterministic mapping
from any file offset to the block position where the data can be found. On the other hand, two
extent list entries (in the same file or in different files) may refer to the same Data Extent.

4.2 Extents Illustrated

This section illustrates various forms of extent list entries and the mapping from files to these
extents. The illustrations are not exhaustive. Other combinations of starting and ending blocks
are possible.

The LTFS Partition ID is an essential element of an extent definition. For simplicity, the
LTFS Partition ID and File Offset are not shown explicitly in the extents lists illustrated below.
Note that not all extents in an extent list must be on the same partition.

4.2.1 Starting and ending Data Extent with full block

The following figure illustrates an extent of 3 full size blocks contained within a Data Extent
of 3 blocks, N through N + 2.

N N+1 N+2

The extent list entry for this extent is:

Start Block Offset Length

N 0 3×Blk

Note: Blk is the length of a full sized block.

LTFS Format Specification Page 21 of 71



LTFS v2.0.1 August 17, 2011

4.2.2 Starting Data Extent with full block and ending with fractional block

The following figure illustrates an extent of 2 full size blocks and one fractional block of K
bytes, contained within a Data Extent of 2 full size blocks N and N +1 and one fractional block
N + 2.

N N+1 N+2

K bytes

The extent list entry for this extent is:

Start Block Offset Length

N 0 (2×Blk) +K

Note: K is the length of the fractional block, where K < Blk

4.2.3 Starting and ending Data Extent in mid-block

The following figure illustrates an extent smaller than 3 blocks, contained within a Data
Extent of 3 full size blocks. Valid data begins in block N at byte number J and continues to
byte number K of block N + 2. The last block of the extent, block N + 2, may be a fractional
block.

N N+1 N+2

K bytesJ bytes

The extent list entry for this extent is:

Start Block Byte Offset Byte Count

N J (Blk − J) +Blk +K

LTFS Format Specification Page 22 of 71



LTFS v2.0.1 August 17, 2011

4.3 Files Illustrated

This section illustrates various possible extent lists for files. These illustrations are not ex-
haustive; other combinations of extent geometry and ordering are possible. The extents shown
in this section are always displayed in file offset order, but they may appear in any order on a
partition, or even in different partitions. As in the previous section, Partition IDs are omitted
for simplicity. Unless otherwise noted these examples illustrate non-sparse files that have all file
data written to the media.

4.3.1 Simple Files

The following figure illustrates a file contained in a single Data Extent of three blocks. The
data fills the first two blocks and K bytes in the last block. The last block of the extent, block
N + 2, may be a fractional block. This file is recorded as a regular (non-sparse) file.

N N+1 N+2

K bytes

Start Block Byte Offset Byte Count File Offset

N 0 (2×Blk) +K 0

The following figure illustrates a file contained in two Data Extents of three blocks each. The
data fills the first two blocks of extent N and K bytes of block N + 2, and the first two blocks
of extent M and L bytes of block M +2. The last block of each extent, block N +2 and M +2,
may be fractional blocks. This file is recorded as a regular (non-sparse) file.

N N+1 N+2

K bytes

M M+1 M+2

L bytes

Start Block Byte Offset Byte Count File Offset

N 0 (2×Blk) +K 0

M 0 (2×Blk) + L (2×Blk) +K

LTFS Format Specification Page 23 of 71



LTFS v2.0.1 August 17, 2011

4.3.2 Shared Blocks

The following figure illustrates two full sized blocks which are referenced by three files. Blocks
may be shared among multiple files to improve storage efficiency. File 1 uses the first K bytes
of block N . File 2 uses Q bytes in the mid part of block N , and (Blk − R) bytes at the end of
block N +1. File 3 uses the last (Blk−P −Q) bytes at the end of block N and the first T bytes
of block N + 1.

K TQ

File 2
File 1

N N+1

File 3
P R

The extent lists for files 1, 2, and 3 are:

Start Block Byte Offset Byte Count File Offset

File 1 N 0 K 0

File 2 N P Q 0

N + 1 R Blk −R Q

File 3 N P +Q Blk − P −Q+ T 0

Note: If N were a fractional block, File 3 would map to two entries in the extent
list. As illustrated, block N is a full block, and File 3 may be mapped to the the
single extent list entry shown above. Alternatively, because blocks may always be
treated as independent Data Extents, File 3 could be mapped to two entries in the
extent list, one entry per block (N and N + 1).

4.3.3 Sparse Files

The length of a file, as recorded in the Index, may be greater than the total size of data
encoded in that file’s extent list. A file may also have non-zero size but no extent list. In both
of these cases, the all bytes not encoded in the extent list shall be treated as zero (0x00) bytes.

The following figure illustrates a sparse file that is contained in two Data Extents. In this
figure, all white areas of the file are filled with bytes that are set to zero (0x00). The file starts
with T bytes with value zero(0x00). The first extent stores K bytes of data which fills the file

LTFS Format Specification Page 24 of 71



LTFS v2.0.1 August 17, 2011

from byte T to T +K. The file contains R bytes with value zero (0x00) from file offset T +K to
T +K +R. The second extent contains Q file bytes representing the file content from file offset
T +K + R to T +K + R +Q. The end of the file from file offset T +K + R +Q is filled with
bytes set to value zero (0x00) to the defined file size P .

K

T

Q

N N+1

P

R

Extents

File

S

The extent list this file is:

Start Block Byte Offset Byte Count File Offset

N S K T

N + 1 0 Q T +K +R

Note: Version 1.0 of this specification, implied zeros could only appear at the
end of a file; other types of sparse files were not supported. When appending to the
end of a file that is to be stored on a volume in compilance with version 1.0 of this
specification, any implied trailing zero bytes in the file must be explicitly written to
the media to avoid leaving holes in the extent list for the file.

Note: Version 1.0 of this specification did not support sparse files.

4.3.4 Shared Data

The following figure illustrates four Data Extents which are partly shared by two files. Over-
lapping extent lists may be used to improve storage efficiency.

Note: Methods to implement data deduplication are beyond the scope of this
document. Implementations must read files with overlapping extent lists correctly,
but they are not required to generate such extent lists.

In the following figure, File 1 uses all blocks in Data Extents N , M , and R. File 2 uses some
of the blocks in Data Extents N , R and V . The extent lists for the two files are shown below.
The two files share some of the data in blocks N , N + 1, N + 2, R+ 1 and R+ 2.

LTFS Format Specification Page 25 of 71



LTFS v2.0.1 August 17, 2011

N N+1 N+2 R R+1 R+2M M+1 V V+1

K P Q S

File 1

File 2

The extent lists for files 1 and 2 are:

Start Block Byte Offset Byte Count File Offset

File 1 N 0 3×Blk 0

M 0 2×Blk 3×Blk

R 0 3×Blk (3×Blk) + (2×Blk)

File 2 N K (Blk −K) +Blk + P 0

R+1 Q (Blk −Q) +Blk (Blk −K) +Blk + P

V 0 Blk + S (Blk −K) +Blk + P + (Blk −Q) +Blk

LTFS Format Specification Page 26 of 71



LTFS v2.0.1 August 17, 2011

5 Data Formats

The LTFS Format uses the data formats defined in this section to store XML field values in
the Index Construct and Label Construct.

5.1 Boolean format

Boolean values in LTFS structures shall be recorded using the values: “true”, “1”, “false”,
and “0”. When set to the values “true” or “1”, the boolean value is considered to be set and
considered to evaluate to true. When set to the values “false” or “0”, the boolean value is
considered to be unset, and considered to evaluate to false.

5.2 Creator format

LTFS creator values shall be recorded in conformance with the string format defined in 5.6
String format with the additional constraints defined in this section.

LTFS creator values shall be recorded as a Unicode string containing a maximum of 1024
Unicode code points. The creator value shall include product identification information, the
operating platform, and the the name of the executable that wrote the LTFS volume.

An example of the recommended content for creator values is shown below.

IBM LTFS 1.2.0 - Linux - mkltfs

The recommended format for a creator value is a sequence of values separated by a three
character separator. The separator consists of an space character, followed by an hyphen char-
acter, followed by another space character. The recommended content for the creator value is
Company Product Version - Platform - binary name where:

Symbol Description

Company Product Version identifies the product that created the volume.

Platform identifies the operating system platform for the product.

binary name identifies the executable that created the volume.

Any subsequent data in the creator format should be separated from this content by a hyphen
character.

LTFS Format Specification Page 27 of 71



LTFS v2.0.1 August 17, 2011

5.3 Extended attribute value format

An extended attribute value shall be recorded as one of two possible types:

1. the “text” type shall be used when the value of the extended attribute conforms to the
format described in 5.6 String format. The encoded string shall be stored as the value of
the extended attribute and the type of the extended attribute shall be recorded as “text”.

2. the “base64” type shall be used for all values that cannot be represented using the “text”
type. Extended attribute values stored using the “base64” type shall be encoded as base64
according to RFC 4648, and the resulting string shall be recorded as the extended attribute
value with the type recorded as “base64”. The encoded string may contain whitespace
characters as defined by the W3C Extensible Markup Language (XML) 1.0 standard (space,
tab, carriage return, and line feed). These characters must be ignored when decoding the
string.

5.4 Name format

File and directory names, and extended attribute keys in an LTFS Volume must conform to
the following naming rules.

Names must be valid Unicode and must be 255 code points or less after conversion to Nor-
malization Form C (NFC). Names must be stored in a case-preserving manner. Since names are
stored in an Index, they shall be encoded as UTF-8 in NFC. Names may include any characters
allowed by the W3C Extensible Markup Language (XML) 1.0 standard except for the following.

Character Description

U+002F slash

U+003A colon

Note that the null character U+0000 is disallowed by W3C XML 1.0. See that document
for a full list of disallowed characters. The following characters are allowed, but they should be
avoided for reasons of cross-platform compatibility.

LTFS Format Specification Page 28 of 71



LTFS v2.0.1 August 17, 2011

Character Description

U+0009, U+000A and U+000D control codes

U+0022 double quotation mark

U+002A asterisk

U+003F question mark

U+003C less than sign

U+003E greater than sign

U+005C backslash

U+007C vertical line

5.5 Name pattern format

File name patterns in data placement policies shall be valid names as defined in 5.4 Name
format. A file name pattern shall be compared to a file name using the following rules.

1. Comparison shall be performed using canonical caseless matching as defined by the Unicode
Standard, except for the code points U+002A and U+003F.

2. Matching of name patterns to a filenames shall be case insensitive.

3. U+002A (asterisk ‘*’) shall match zero or more Unicode grapheme clusters.

4. U+003F (question mark ‘?’) shall match exactly one grapheme cluster.

For more information on grapheme clusters, see Unicode Standard Annex 29, Unicode Text
Segmentation.

5.6 String format

A character string encoded using UTF-8 in NFC. The string shall only contain characters
allowed in element values by the W3C Extensible Markup Language (XML) 1.0 specification.

5.7 Time stamp format

Time stamps in LTFS data structures must be specified as a string conforming with the ISO
8601 date and time representation standard. The time stamp must be specified in UTC (Zulu)
time as indicated by the ‘Z’ character in the example below. The time must be specified with a
fractional second value that defines 9 decimal places after the period in the format.

LTFS Format Specification Page 29 of 71



LTFS v2.0.1 August 17, 2011

2010-02-01T18:35:47.866846222Z

The general time format is YYYY -MM -DD Thh :mm :ss.nnnnnnnnn Z where:

Symbol Description

YYYY the four-digit year as measured in the Common Era.

MM an integer between 01 and 12 corresponding to the month.

DD an integer between 01 and 31 corresponding to the day in the month.

hh an integer between between 00 and 23 corresponding to the hour in the day.

mm an integer between 00 and 59 corresponding to the minute in the hour.

ss an integer between 00 and 59 corresponding to the second in the minute.

nnnnnnnnn an integer between 000000000 and 999999999 measuring the decimal fractional
second value.

Note: The characters ‘-’, ‘T’, ‘:’, ‘.’, and ‘Z’ in the time stamp format are field
separators. The ‘Z’ character indicates that the time stamp is recorded in UTC
(Zulu) time.

All date and time fields in the time stamp format must be padded to the full width of the
symbol using 0 characters. For example, an integer month value of ‘2’ must be recorded as ‘02’
to fill the width of the MM symbol in the general time format.

5.8 UUID format

LTFS UUID values shall be recorded in a format compatible with OSF DCE 1.1, using 32
hexadecimal case-insensitive digits (0-9, a-f or A-F) formatted as shown. UUID values are
expected to uniquely identify the LTFS Volume.

30a91a08-daae-48d1-ae75-69804e61d2ea

LTFS Format Specification Page 30 of 71



LTFS v2.0.1 August 17, 2011

6 Label Format

This section describes the content of the Label Construct. The content of the Content Area
is described in 3.2 LTFS Constructs and 7 Index Format.

6.1 Label Construct

Each partition in an LTFS Volume shall contain a Label Construct that conforms to the
structure shown in the figure below. The construct shall consist of an ANSI VOL1 Label, followed
by a single file mark, followed by one record in LTFS Label format, followed by a single file mark.
There must not be any additional data trailing the end of the ANSI VOL1 Label, nor any
additional data trailing the end of the LTFS Label. The Label Construct must be recorded
starting at the first logical block in the partition. Both Label constructs in an LTFS Volume
must contain identical information with the exception of the “location” field in the XML data for
the LTFS Label.

VOL1
Label

LTFS
Label

File MarkFile Mark

6.1.1 VOL1 Label

A VOL1 label recorded on an LTFS Volume shall always be recorded in a Label Construct
as defined in 6.1 Label Construct.

The first record in a Label Construct is an ANSI VOL1 record. This record conforms to the
ANSI Standard X 3.27. All bytes in the VOL1 record are stored as ASCII encoded characters.
The record is exactly 80 bytes in length and has the following structure and content.

LTFS Format Specification Page 31 of 71



LTFS v2.0.1 August 17, 2011

Offset Length Name Value Notes

0 3 label identifier ‘VOL’

3 1 label number ‘1’

4 6 volume identifier <volume serial
number>

Typically matches the physical
cartridge label.

10 1 volume accessibility ‘L’ Accessibility limited to confor-
mance to LTFS standard.

11 13 reserved all spaces

24 13 implementation
identifier

‘LTFS’ Value is left-aligned and padded
with spaces to length.

37 14 owner identifier right pad with
spaces

Any printable characters.
Typically reflects some user spec-
ified content oriented identifica-
tion.

51 28 reserved all spaces

79 1 label standard ver-
sion

‘4’

Note: Single quotation marks in the Value column above should not be recorded
in the VOL1 label.

Note: All fields in the VOL1 label must contain the constant values shown in the
table above. The only exceptions are the ‘volume identifier’ and ‘owner identifier’
fields. These two fields should contain user-provided values in conformance to the
Notes provided.

6.1.2 LTFS Label

The LTFS Label is an XML data structure that describes information about the LTFS Volume
and the LTFS Partition on which the LTFS Label is recorded. The LTFS Label shall conform
to the LTFS Label XML schema provided in Appendix A LTFS Label XML Schema. The
LTFS Label shall be be encoded using UTF-8 NFC.

An LTFS Label recorded on an LTFS Volume shall always be recorded in an Label Construct
as defined in 6.1 Label Construct.

A complete schema for the LTFS Label XML data structure is provided in Appendix A LTFS
Label XML Schema. An example LTFS Label is shown below.

LTFS Format Specification Page 32 of 71



LTFS v2.0.1 August 17, 2011

<?xml version="1.0" encoding="UTF-8"?>
<ltfslabel version="2.0.0">

<creator>IBM LTFS 1.2.0 - Linux - mkltfs</creator>
<formattime>2010-02-01T18:35:47.866846222Z</formattime>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<location>

<partition>b</partition>
</location>
<partitions>

<index>a</index>
<data>b</data>

</partitions>
<blocksize>524288</blocksize>
<compression>true</compression>

</ltfslabel>

Every LTFS Label must be an XML data structure that conforms to the W3C Extensible
Markup Language (XML) 1.0 standard. Every LTFS Label must have a first line that contains
an XML Declaration as defined in the XML standard. The XML Declaration must define the
XML version and the encoding used for the Label.

The LTFS Label XML shall be recorded in a single logical data block and must contain the
following information:

ltfslabel: this element defines the contained structure as an LTFS Label structure. The
element must have a version attribute that defines the format version of the LTFS Label in use.
This document describes LTFS Label version 2.0.1.

Note: The LTFS Label version defines the minimum version of the LTFS Format
specification with which the LTFS Volume conforms. Implicitly, the LTFS Label
version defines the lowest permitted version number for all LTFS Indexes written
to the volume.

creator: this element must contain the necessary information to uniquely identify the writer
of the LTFS volume. The value must conform to the creator format definition shown in 5.2
Creator format.

formattime: this element must contain the time when the LTFS Volume was formatted.
The value must conform to the format definition shown in 5.7 Time stamp format.

volumeuuid: this element must contain a universally unique identifier (UUID) value that
uniquely identifies the LTFS Volume to which the LTFS Label is written. The volumeuuid
element must conform to the format definition shown in 5.8 UUID format.

location: shall contain a single partition element. The partition element shall specify the
Partition ID for the LTFS Partition on which the Label is recorded. The Partition ID must be
a lower case ASCII character between ‘a’ and ‘z’.

LTFS Format Specification Page 33 of 71



LTFS v2.0.1 August 17, 2011

partitions: this element specifies the Partition IDs of the data and index partitions belonging
to this LTFS volume. It must contain exactly one index element for the Index Partition and
exactly one data element for the Data Partition, formatted as shown. A partition must exist in
the LTFS Volume with a partition identifier that matches the identifier recorded in the index
element. Similarly, a partition must exist in the LTFS Volume with a partition identifier that
matches the identifier recorded in the data element.

blocksize: this element specifies the block size to be used when writing Data Extents to the
LTFS Volume. The blocksize value is an integer specifying the number of 8-bit bytes that must
be written as a record when writing any full block to a Data Extent. Partial blocks may only
be written to a Data Extent in conformance with the definitions provided in 3.2.2 Data Extent
and 4 Data Extents. The minimum blocksize that may be used in an LTFS Volume is 4096
8-bit bytes.

Note: For general-purpose storage on data tape media the recommended blocksize
is 524288 8-bit bytes.

compression: this element shall contain a value conforming to the boolean format defini-
tion provided in 5.1 Boolean format. When the compression element is set, compression
must be enabled when writing to the LTFS Volume. When the compression element is unset,
compression must be disabled when writing to the LTFS Volume. The compression element
indicates use of media-level “on-the-fly” data compression. Use of data compression on a volume
is transparent to readers of the volume.

6.1.3 Managing LTFS Labels

The LTFS Label captures volume-specific values that are constant over the lifetime of the
LTFS Volume. As such, the values recorded in an LTFS Label can only be set or updated at
volume format time.

Implementations should handle additional unknown XML tags when they occur as children
of the ltfslabel element. In general, such unknown tags may be ignored when mounting the
LTFS Volume. This handling of unknown XML tags reduces the risk of compatibility changes
when future versions of this specification are adopted. It is a strict violation of this specification
to add any XML tags to the Label beyond those defined in this document.

LTFS Format Specification Page 34 of 71



LTFS v2.0.1 August 17, 2011

7 Index Format

The Content Area contains zero or more Data Extents and some number of Index Constructs
in any order. This section describes the content of the Index Construct. The Label Construct is
decribed in 6 Label Format. Data Extents are described in 4 Data Extents.

7.1 Index Construct

Each Content Area in an LTFS Volume shall contain some number of Index Constructs that
conform to the structure shown in the figure below. The Index Construct shall contain a single
file mark, followed by one or more records in Index format, followed by a single file mark. There
must not be any additional data trailing the end of the Index.

The contents of the Index are defined in 7.2 Index below.

Index

File Mark File Mark

The Index Constructs in a Content Area may be interleaved with any number of Data Extents.
A complete partition must have an Index Construct as the last construct in the Content Area,
therefore there must be at least one Index Construct per complete partition.

7.2 Index

An Index is an XML data structure that describes all data files, directory information and
associated meta-data for files recorded on the LTFS Volume. An Index recorded on an LTFS
Volume shall always be recorded in an Index Construct as defined in 7.1 Index Construct.

The LTFS Index shall conform to the Index XML schema provided in Appendix B LTFS
Index XML Schema. The Index shall be be encoded using UTF-8 NFC.

A complete schema for the Index XML data structure is provided in Appendix B LTFS
Index XML Schema. The remainder of this section describes the content of the Index using
an example XML Index.

An Index consists of Preface section containing multiple XML elements followed by a single
directory element. This directory element is referred to as the “root” directory element. The
root directory element corresponds to the root of the file system recorded on the LTFS Volume.

LTFS Format Specification Page 35 of 71



LTFS v2.0.1 August 17, 2011

Each directory element may contain zero or more directory elements and zero or more file
elements.

An example Index that omits the body of the directory element is shown below. The omitted
section in this example is represented by the characters ‘...’.

<?xml version="1.0" encoding="UTF-8"?>
<ltfsindex version="2.0.0">

<creator>IBM LTFS 1.2.0 - Linux - ltfs</creator>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<generationnumber>3</generationnumber>
<comment>A sample LTFS Index</comment>
<updatetime>2010-01-28T19:39:57.245954278Z</updatetime>
<location>

<partition>a</partition>
<startblock>6</startblock>

</location>
<previousgenerationlocation>

<partition>b</partition>
<startblock>20</startblock>

</previousgenerationlocation>
<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>

<indexpartitioncriteria>
<size>1048576</size>
<name>*.txt</name>

</indexpartitioncriteria>
</dataplacementpolicy>
<higestfileuid>4</higestfileuid>
<directory>
...
</directory>

</ltfsindex>

Every Index must be an XML data structure that conforms to the W3C Extensible Markup
Language (XML) 1.0 standard. Every Index must have a first line that contains an XML Dec-
laration as defined in the XML standard. The XML Declaration must define the XML version
and the encoding used for the Index.

Every Index must contain the following elements:

ltfsindex: this element defines the contained structure as an Index structure. The element
must have a version attribute that defines the format version of the LTFS Index in use. This
document describes LTFS Index version 2.0.1.

Note: The LTFS Label version defines the minimum version of the LTFS Format
specification with which the LTFS Volume conforms. Implicitly, the LTFS Label
version defines the lowest permitted version number for all LTFS Indexes written
to the volume.

LTFS Format Specification Page 36 of 71



LTFS v2.0.1 August 17, 2011

An Index update occurs when an LTFS Volume containing a current Index of version M.N.R
is written with a new Index using a version number with a higher value for M . The version for
any LTFS Index written to an LTFS Volume shall have an M value that is greater than or equal
to the M value in the current Index. When the M value for the new LTFS Index equals the M
value in the current Index, the new Index may be written in conformance to any value of N and
R so long as N and R match the version of a published LTFS Format Specification.

An Index downgrade occurs when an LTFS Volume containing a current Index of version
M.N.R is written with a new Index using a version number with a lower value for M . Index
downgrades are explicitly disallowed in an LTFS Volume. Further details on Index version
numbering is shown in 1.2 Versions.

creator: this element must contain the necessary information to uniquely identify the writer
of the Index. The value must conform to the creator format definition shown in 5.2 Creator
format.

volumeuuid: this element must contain a universally unique identifier (UUID) value that
uniquely identifies the LTFS Volume to which the Index is written. The value of the volumeuuid
element must conform to the format definition shown in 5.8 UUID format. The volumeuuid
value shall match the value of the volumeuuid element in the LTFS Labels written to the LTFS
Volume.

generationnumber: this element shall contain a non-negative integer corresponding to the
generation number for the Index. The first Index on an LTFS Volume shall be generation number
“1”. The generationnumber must conform to the definitions provided in 3.4.1 Generation
Number.

updatetime: this element shall contain the date and time when the Index was modified.
The value must conform to the format definition shown in 5.7 Time stamp format.

location: this element shall contain a single partition element and a single startblock
element. The partition element shall specify the Partition ID for the LTFS Partition on which
the Index is recorded. The startblock element shall specify the first logical block number,
within the partition, in which the Index is recorded. The location element is a self-pointer to
the location of the Index in the LTFS Volume.

allowpolicyupdate: this element shall contain a value conforming to the boolean format def-
inition provided in 5.1 Boolean format. When the allowpolicyupdate value is set, the writer
may change the content of the dataplacementpolicy element. When the allowpolicyupdate
value is unset, the writer shall not change the content of the dataplacementpolicy element.
Additional rules for the allowpolicyupdate element are provided in 7.2.3 Data Placement
Policy.

highestfileuid: this element contains an integer value that is equal to the value of the
largest assigned fileuid element in the Index. An implementation shall be able to rely on the
highestfileuid element to determine the highest assigned fileuid value in the Index without
traversing all file and directory elements. The valid range of values for the highestfileuid
value is 1 through 264 − 1 with the additional special value of zero (0x0).

LTFS Format Specification Page 37 of 71



LTFS v2.0.1 August 17, 2011

The highestfileuid can be used to determine the highest integer value assigned to the fileuid
element for all directories and files in the Index. While the highestfileuid value not equal to
zero (0x0), an implementation may increment the highestfileuid value to create unique fileuid
values for new directory and file entries.

A highestfileuid element value of zero (0x0) indicates that the LTFS Volume has exhausted
the contiguous range of valid values for fileuid elements in the Index. In this case, an implemen-
tation should use a mechanism such as traversing all file and directory elements to identify an
unused and therefore unique fileuid value for any new file and directory elements.

directory: this element corresponds to the “root” directory element in the Index. The
content of this element is described later in this section.

Every Index may contain the following elements:

comment: this element, if it exists, shall contain a valid UTF-8 encoded string value. The
value of this element shall be used to store a user-provided description of this generation of the
Index for the volume. The value of this element shall conform to the format definition provided
in 5.6 String format. An Index may have at most one comment element. The writer of an
Index may remove or replace the comment element when recording a new Index. The value of
this element shall not exceed 64KiB in size.

previousgenerationlocation: this element, if it exists, defines the back pointer for the In-
dex. The previousgenerationlocation element shall contain a single partition element and
a single startblock element. The value of the partition element shall specify the Partition
ID for the LTFS Partition on which the back pointed Index is recorded. The startblock ele-
ment shall specify the first logical block number, within the partition, in which the back pointed
Index is recorded. If the Index does not have a back pointer there shall be no previousgener-
ationlocation element in the Index. Every Index that does have a back pointer shall have a
previousgenerationlocation. All data values recorded in the previousgenerationlocation
element must conform to the definitions provided in 3.4 Index Layout.

dataplacementpolicy: this element, if it exists, shall contain a single indexpartitioncri-
teria element. The indexpartitioncriteria element shall contain a single size element and
zero or more name elements. The value of the size element shall define the maximum size of
files that may be stored on the Index Partition. Each name element shall specify a file name
pattern. The file name pattern value shall conform to the name pattern format provided in 5.5
Name pattern format. A description of the rules associated with the dataplacementpolicy
element is provided in 7.2.3 Data Placement Policy.

An example Index that omits the Preface section of the Index is shown below. The omitted
section in this example is represented by the characters ‘...’. This example shows the root
directory element for the Index.

LTFS Format Specification Page 38 of 71



LTFS v2.0.1 August 17, 2011

<?xml version="1.0" encoding="UTF-8"?>
<ltfsindex version="2.0.0">

...
<directory>

<fileuid>1</fileuid>
<name>LTFS Volume Name</name>
<creationtime>2010-01-28T19:39:50.715656751Z</creationtime>
<changetime>2010-01-28T19:39:55.231540960Z</changetime>
<modifytime>2010-01-28T19:39:55.231540960Z</modifytime>
<accesstime>2010-01-28T19:39:50.715656751Z</accesstime>
<backuptime>2010-01-28T19:39:50.715656751Z</backuptime>
<contents>

<directory>
<fileuid>2</fileuid>
<name>directory1</name>
<creationtime>2010-01-28T19:39:50.740812831Z</creationtime>
<changetime>2010-01-28T19:39:56.238128620Z</changetime>
<modifytime>2010-01-28T19:39:54.228983707Z</modifytime>
<accesstime>2010-01-28T19:39:50.740812831Z</accesstime>
<backuptime>2010-01-28T19:39:50.740812831Z</backuptime>
<readonly>false</readonly>
<contents>

<directory>
<fileuid>3</fileuid>
<name>subdir1</name>
<readonly>false</readonly>
<creationtime>2010-01-28T19:39:54.228983707Z</creationtime>
<changetime>2010-01-28T19:39:54.228983707Z</changetime>
<modifytime>2010-01-28T19:39:54.228983707Z</modifytime>
<accesstime>2010-01-28T19:39:54.228983707Z</accesstime>
<backuptime>2010-01-28T19:39:54.228983707Z</backuptime>

</directory>
</contents>

</directory>
<file>

<fileuid>4</fileuid>
<name>testfile.txt</name>
<length>5</length>
<creationtime>2010-01-28T19:39:51.744583047Z</creationtime>
<changetime>2010-01-28T19:39:57.245291730Z</changetime>
<modifytime>2010-01-28T19:39:57.245291730Z</modifytime>
<accesstime>2010-01-28T19:39:57.240774456Z</accesstime>
<backuptime>2010-01-29T20:21:45.424385077Z</backuptime>
<readonly>true</readonly>
<extendedattributes>
</extendedattributes>
<extentinfo>

<extent>
<partition>a</partition>
<startblock>4</startblock>
<byteoffset>0</byteoffset>
<bytecount>5</bytecount>
<fileoffset>0</fileoffset>

</extent>
</extentinfo>

</file>
</contents>

</directory>
</ltfsindex>

LTFS Format Specification Page 39 of 71



LTFS v2.0.1 August 17, 2011

An Index shall have exactly one directory element recorded as a child of the ltfsindex
element in the Index. The directory element recorded as a child of the ltfsindex element in
the Index shall represent the root of the filesystem on the LTFS Volume.

Every directory element (at any level) must contain the following information:

fileuid: this element must contain an integer value that is a unique identifier with respect
to directories and files in the Index. The valid range of values for the fileuid value is 1 through
264 − 1. An example of how to calculate this unique value is provided in the description of
highestfileuid above. The directory element corresponding to the root of the filesystem shall
have a fileuid value of one (0x1).

name: this element must contain the name of the directory. A directory name must conform
to the format specified in 5.4 Name format.

creationtime: this element must contain the date and time when the directory was created
in the LTFS Volume. The value must conform to the format definition shown in 5.7 Time stamp
format.

changetime: this element must contain the date and time when the extended attributes
or readonly element for the directory was last altered. The value must conform to the format
definition shown in 5.7 Time stamp format.

modifytime: this element must contain the date and time when the content of the directory
was most recently altered. The value must conform to the format definition shown in 5.7 Time
stamp format.

accesstime: this element may contain the date and time when the content of the directory
was last read. Implementators of the LTFS Format may choose to avoid or otherwise minimize
recording Index updates that only change the accesstime element. The value must conform to
the format definition shown in 5.7 Time stamp format.

backuptime: this element may contain the date and time when the content of the directory
was last archived or backed-up. If the directory has never been archived or backed up this element
shall contain a value equal to the value of the createtime element. The value must conform to
the format definition shown in 5.7 Time stamp format.

readonly: this element shall contain a value conforming to the boolean format definition
provided in 5.1 Boolean format. When the readonly element is set, the directory shall not be
modified by any writer. When the readonly element is unset, the directory may be modified by
any writer. The following operations are considered to be modifications to a directory; adding
a child file or directory, removing a child file or directory, and any change to the extendedat-
tributes element.

contents: this element shall contain zero or more directory elements and zero or more file
elements. The elements contained in the contents element are children of the directory.

LTFS Format Specification Page 40 of 71



LTFS v2.0.1 August 17, 2011

Every directory element may contain the following elements:

extendedattributes: this element, if it exists, may contain zero or more xattr elements.
The xattr elements are described in 7.2.1 extendedattributes elements. A directory element
may have zero or one extendedattributes elements.

The value of the name element for the root directory element in an Index shall be used to
store the name of the LTFS Volume.

Every file element must contain the following information:

fileuid: this element must contain an integer value that is a unique identifier with respect
to directories and files in the Index. The valid range of values for the fileuid value is 2 through
264 − 1. An example of how to calculate this unique value is provided in the description of
highestfileuid above.

Note: The value of the ‘fileuid’ element for the root directory is defined above as
1. All ‘fileuid’ elements must be unique in the index therefore no file may have a
‘fileuid’ less than 2.

name: this element must contain the name of the file. A file name must conform to the
format specified in 5.4 Name format.

length: this element must contain the integer length of the file. The length is measured in
bytes.

creationtime: this element must contain the date and time when the file was created in
the LTFS Volume. The value must conform to the format definition shown in 5.7 Time stamp
format.

changetime: this element must contain the date and time when the extended attributes or
readonly element for the file was last altered. The value must conform to the format definition
shown in 5.7 Time stamp format.

modifytime: this element must contain the date and time when the content of the file was
most recently altered. The value must conform to the format definition shown in 5.7 Time
stamp format.

accesstime: this element may contain the date and time when the content of the file was last
read. Implementators of the LTFS Format may choose to avoid or otherwise minimize recording
Index updates that only change the accesstime element. The value must conform to the format
definition shown in 5.7 Time stamp format.

backuptime: this element may contain the date and time when the content of the file was
last archived or backed-up. If the file has never been archived or backed-up, this element shall
contain a value equal to the value of the createtime element. The value must conform to the
format definition shown in 5.7 Time stamp format.

LTFS Format Specification Page 41 of 71



LTFS v2.0.1 August 17, 2011

readonly: this element shall contain a value conforming to the boolean format definition
provided in 5.1 Boolean format. When the readonly element is set, the file shall not be
modified by any writer. When the readonly element is unset, the file may be modified by any
writer.

Every file element may contain the following elements:

extendedattributes: this element, if it exists, may contain zero or more xattr elements.
The xattr elements are described in 7.2.1 extendedattributes elements. A file element may
have zero or one extendedattributes elements.

extentinfo: this element, if it exists, may contain zero or more extent elements. A file
element may have zero or one extentinfo elements.

Every extent element shall describe the location where a file extent is recorded in the
LTFS Volume. Every extent element must contain one partition element, one startblock
element, one byteoffset element, one bytecount element, and one fileoffset element. The val-
ues recorded in elements contained by the extentinfo element must conform to the definitions
provided in 3.2.2 Data Extent and 4 Data Extents. The partition element shall contain the
Partition ID corresponding to the LTFS partition in which the Data Extent is recorded. The
startblock element shall specify the first logical block number, within the partition, in which
the Data Extent is recorded. The byteoffset element shall specify the offset into the start block
within the Data Extent at which the valid data for the extent is recorded. The bytecount
element shall specify the number of bytes that comprise the extent. The fileoffset element shall
specify the offset into the file where the data stored in this Data Extent starts.

The order of extent elements within an extentinfo element is not significant. Implementors
are encouraged to record extentinfo in the same order that the extents occur in the file. The
definition of how extent values are determined and used is provided in section 4 Data Extents
and 4.1 Extent Lists.

7.2.1 extendedattributes elements

All directory and file elements in an Index may specify zero or more extended attributes.
These extended attributes are recorded as xattr elements in the extendedattributes element
for the directory or file.

An example directory element is shown below with three extended attributes recorded. The
empty_xattr and document_name extended attributes in this example both record string values.
The binary_xattr attribute is an example of storing a binary extended attribute value. This
example omits parts of the Index outside of the directory. The omitted sections in this example
are represented by the characters “...”.

LTFS Format Specification Page 42 of 71



LTFS v2.0.1 August 17, 2011

...
<directory>

<fileuid>2</fileuid>
<name>directory1</name>
<creationtime>2010-01-28T19:39:50.740812831Z</creationtime>
<changetime>2010-01-28T19:39:56.238128620Z</changetime>
<modifytime>2010-01-28T19:39:54.228983707Z</modifytime>
<accesstime>2010-01-28T19:39:50.740812831Z</accesstime>
<backuptime>2010-01-28T19:39:50.740812831Z</backuptime>
<extendedattributes>

<xattr>
<key>binary_xattr</key>
<value type="base64">/42n2QaEWDSX+g==</value>

</xattr>
<xattr>

<key>empty_xattr</key>
<value/>

</xattr>
<xattr>

<key>document_name</key>
<value type="text">LTFS Format Specification</value>

</xattr>
</extendedattributes>
<contents>
</contents>

</directory>
...

Each extendedattributes element may contain zero or more xattr elements.

Each xattr element must contain one key element and one value element. The key element
shall contain the name of the extended attribute. The name of the extended attribute must
conform to the format specified in 5.4 Name format. Extended attribute names must be
unique within any single extendedattributes element. The value element shall contain the
value of the extended attribute. The value element may have a type attribute that defines
the type of the extended attribute value. If the type attribute is omitted then the type for the
extended attribute value shall be “text”. The value of the extended attribute shall conform to
the format specified in 5.3 Extended attribute value format.

All extended attribute names that match the prefix “ltfs” with any capitalization are reserved
for use by the LTFS Format. (That is, any name starting with a case-insensitive match for the
letters “ltfs” are reserved.) Any writer of an LTFS Volume shall only use reserved extended
attribute names to store extended attribute values in conformance with the reserved extended
attribute definitions shown in C Reserved Extended Attribute definitions.

LTFS Format Specification Page 43 of 71



LTFS v2.0.1 August 17, 2011

7.2.2 Managing LTFS Indexes

An Index is a snapshot representation of the entire content of the LTFS Volume at a given
point in time. Any alteration of an LTFS Volume shall record a complete snapshot of the entire
content of the LTFS Volume.

Note: In practice, to maintain this snapshot sematic, an implementor generally
should read the current Index from an LTFS Volume, make necessary changes to
the Index and write the modified Index back to the LTFS Volume.

Implementations should handle additional unknown XML tags when they occur as children
of the ltfsindex, directory, and file elements. These additional tags must be preserved when a
new generation of the Index is written to the LTFS Volume. This handling of unknown XML tags
reduces the risk of compatibility changes when future versions of this specification are adopted.
It is a strict violation of this specification to add any XML tags to the Index beyond those defined
in this document.

7.2.3 Data Placement Policy

An Index may specify a Data Placement Policy. This policy defines when the Data Extents
for a file may be placed on the Index Partition. A Data Placement Policy specifies the conditions
under which it is allowed to place Data Extents on the Index Parition.

An example Index that shows the elements that define the Data Placement Policy for an
LTFS Volume is shown below. This example omits part of the Preface section and the root
directory element. The omitted sections in this example are represented by the characters ‘...’.

<?xml version="1.0" encoding="UTF-8"?>
<ltfsindex version="2.0.0">

...
<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>

<indexpartitioncriteria>
<size>1048576</size>
<name>*.txt</name>
<name>*.bin</name>

</indexpartitioncriteria>
</dataplacementpolicy>
<directory>
...
</directory>

</ltfsindex>

The Data Placement Policy for an LTFS Volume shall be defined in a dataplacementpolicy
element in an Index. An Index may contain zero or one dataplacementpolicy elements.

LTFS Format Specification Page 44 of 71



LTFS v2.0.1 August 17, 2011

Every dataplacementpolicy element must contain exactly one indexpartitioncriteria
element. This means that the dataplacementpolicy constructs <dataplacementpolicy/> and
<dataplacementpolicy></dataplacementpolicy> are explicitly disallowed.

Every indexpartitioncriteria element must contain exactly one size element. The size
element shall define the maximum file size for the Data Placement Policy.

Every indexpartitioncriteria element may contain zero or more name elements. The
value of each name element shall define a Filename Pattern for the Data Placement Policy. The
Filename Pattern value shall conform to the format defined in 5.5 Name pattern format.

7.2.4 Data Placement Policy Alteration

An LTFS Volume shall have an associated Allow Policy Update value. The current Allow
Policy Update value for an LTFS Volume shall be defined in the current Index as described in
7.2.3 Data Placement Policy.

This section describes the conditions under which the Data Placement Policy and Allow Policy
Update values may be altered.

7.2.4.1 Allow Policy Update is set

If the current Allow Policy Update value is set, as defined in 7.2.3 Data Placement Policy,
a writer may record an Index that indicates the Allow Policy Update value is set or unset.

If the current Allow Policy Update value is set, as defined in 7.2.3 Data Placement Policy,
a writer may record an Index with the same dataplacementpolicy values recorded in the
previous generation of the Index.

If the current Allow Policy Update value is set, as defined in 7.2.3 Data Placement Policy,
a writer may record an Index with dataplacementpolicy values that differ from the data-
placementpolicy values recorded in the previous generation of the Index.

If the current Allow Policy Update value is set, as defined in 7.2.3 Data Placement Policy,
a writer may record an Index without any dataplacementpolicy element.

7.2.4.2 Allow Policy Update is unset

If the current Allow Policy Update value is unset, as defined in 7.2.3 Data Placement
Policy, a writer shall only record an Index that indicates the Allow Policy Update is unset.

If the current Allow Policy Update value is unset, as defined in 7.2.3 Data Placement
Policy, a writer shall only record an Index without a dataplacementpolicy element when the

LTFS Format Specification Page 45 of 71



LTFS v2.0.1 August 17, 2011

previous generation of the Index does not contain a dataplacementpolicy element.

If the current Allow Policy Update value is unset, as defined in 7.2.3 Data Placement
Policy, a writer shall only record an Index with dataplacementpolicy values when those
values exactly match the dataplacementpolicy values recorded in the previous generation of
the Index.

7.2.5 Data Placement Policy Application

An LTFS Volume may have an associated Data Placement Policy. The current Data Place-
ment Policy for an LTFS Volume shall be defined in the current Index as described in 7.2.3 Data
Placement Policy. This section describes how the current Data Placement Policy and current
Allow Policy Update value shall affect the valid placement options for Data Extents when adding
files to an LTFS Volume.

The Data Placement Policy defines criteria controlling the conditions under which Data Ex-
tents may be recorded to the Index Partition. The current Data Placement Policy only affects
the placement of Data Extents for new files written to the LTFS Volume. The Data Placement
Policy has no impact on Data Extents already written to the LTFS Volume. Similarly, the Data
Placement Policy does not imply any constraint on Data Extents previously written to the LTFS
Volume.

The Data Placement Policy in use for an LTFS Volume does not require that Data Extents
conforming to the policy be written to the Index Partition. A Data Placement Policy only defines
the conditions under which it is valid to write Data Extents to the Index Partition. When the
Data Placement Policy in use does not allow a Data Extent to be written to the Index Partition
the Data Extent shall be written to the Data Partition. Any Data Extent may be written to the
Data Partition regardless of the Data Placement Policy in use.

Any LTFS Volume without a defined Data Placement Policy, as described in 7.2.3 Data
Placement Policy, shall have a NULL Data Placement Policy.

A NULL Data Placement Policy shall mean that no criteria exist to control the conditions under
which Data Extents may be recorded to the Index Partition. When a NULL Data Placement Policy
is in effect, any Data Extent may be written to the Index Partition. In general, it is recommended
that implementations should avoid use of NULL Data Placement Policies.

A Data Placement Policy other than the NULL policy shall define the criteria under which the
Data Extents for a new file may be written to the Index Partition.

A non-NULL Data Placement Policy shall define a maximum file size for the policy. The
maximum file size may be “0” or any positive integer.

A non-NULL Data Placement Policy may define zero or more Filename Pattern values for
the policy. The Filename Pattern values shall be defined and interpreted as file name patterns
conforming to the format defined in 5.5 Name pattern format.

LTFS Format Specification Page 46 of 71



LTFS v2.0.1 August 17, 2011

A non-NULL Data Placement Policy shall “match” the Data Extents being recorded to an
LTFS Volume if and only if all of the the following conditions are met:

• the size of the file being recorded is smaller than the maximum file size for the Data
Placement Policy in effect, and

• the file name of the file being recorded matches any of the file name patterns defined in
the Data Placement Policy. The rules for matching file name patterns to file names are
provided in 5.5 Name pattern format.

Note: Files with a size of 0 bytes have no Data Extents recorded anywhere in the
volume. Therefore, a Data Placement Policy with size value of “0” indicates that
no file shall have Data Extents stored on the Index Partition.

As described in 7.2 Index, every Index shall contain a boolean allowpolicyupdate element
corresponding to the Allow Policy Update value for the Index. When Allow Policy Update is
unset, a writer shall not modify an LTFS Volume unless the modification conforms with the
Data Placement Policy defined for the Index. Any writer unable to comply with the current
Data Placement Policy shall leave the LTFS Volume unchanged.

Writers are encouraged to comply with the current Data Placement Policy at all times. How-
ever, when Allow Policy Update is set, a writer is permitted to violate the Data Placement Policy.
Violating the policy in this case is equivalent to changing the Policy, modifying the Volume, then
changing the Policy back to the original Policy.

Note: It is always valid to write a non-empty Data Extent to the Data Partition.
This results from the Data Placement Policy and Allow Policy Update values defin-
ing when it is permitted to write Data Extents to the Index Partition rather than
these values defining when it is required that Data Extents be written to the Index
Partition.

LTFS Format Specification Page 47 of 71



LTFS v2.0.1 August 17, 2011

8 Medium Auxiliary Memory

An LTFS Volume may use standard Medium Auxiliary Memory (MAM) to store auxiliary
information with the volume to improve the efficiency of LTFS Index retrieval. Values stored in
the MAM are stored on the medium in non-volatile storage as MAM attributes. Use of these
attributes can enhance performance of an implementation but are not required for compliance
to the LTFS Format Specification. That is, an LTFS Volume may still be correctly read and
written if the MAM attributes become inaccessible or are not updated.

For each partition, LTFS stores a standardized Volume Coherency Information (VCI) value
in a MAM attribute. This attribute contains a standardized value known as the Volume Change
Reference (VCR), together with the Index generation number for the current Index and the on-
media location of the current Index. These values can be used to determine whether a partition
is complete and to verify volume consistency without requiring that the Index be read from
both partitions. This allows an implementation to avoid the cost of seeking to the end of both
partitions when verifying the consistency of an LTFS Volume.

For performance reasons, it is strongly recommended that LTFS implementors use the MAM
attributes as described in 8.3 Use of Volume Coherency Information for LTFS if such
usage is supported by the underlying storage technology.

Note: For consistency with the referenced specifications, throughout the Medium
Auxiliary Memory section the word ’Volume’ is used to refer to a data storage
medium (e.g. a tape cartridge). The words ’LTFS Volume’ will is used when ref-
erencing an ’LTFS Volume’ as defined in 2.1.18 LTFS Volume and throughout this
document.

8.1 Volume Change Reference

Volume Change Reference (VCR) is a non-repeating, unique value associated with a volume
coherency point. The following is for information only. See the T10/SSC4 Standard for a
complete description of the VCR.

The VCR attribute indicates changes in the state of the medium related to logical objects
or format specific symbols of the currently mounted volume. There is one value for the volume
change reference. The VCR attribute for each partition shall use the same single VCR value.
The VCR attribute value shall:

• be written to non-volatile medium auxiliary memory before the change on medium is valid
for reading, and

• change in a non-repeating fashion (i.e., never repeat for the life of the volume).

LTFS Format Specification Page 48 of 71



LTFS v2.0.1 August 17, 2011

The VCR attribute value shall change when:

• the first logical object for each mount is written on the medium in any partition;

• the first logical object is written after GOOD status has been returned for a READ ATTRIBUTE
command with the SERVICE ACTION field set to ATTRIBUTE VALUES (i.e., 0x00) and the
FIRST ATTRIBUTE IDENTIFIER field set to VOLUME CHANGE REFERENCE (i.e, 0x0009);

• any logical object on the medium (i.e., in any partition) is overwritten; or

• the medium is formatted.

The VCR attribute may change at other times when the contents on the medium change.

The VCR attribute should not change if the logical objects on the medium do not change.

A binary value of all zeros (e.g., 0x0000) in the VCR attribute indicates that the medium has
not had any logical objects written to it (i.e., the volume is blank and has never been written to)
or the value is unknown. A binary value of all ones (e.g., 0xFFFF) in the VCR attribute indicates
that the VCR attribute has overflowed and is therefore unreliable. In this situation, the VCR
value shall not be used.

8.2 Volume Coherency Information

The Volume Coherency Information (VCI) attribute contains information used to maintain
coherency of information for a volume. The VCI has six fields as listed in the table below.
There shall be one VCI attribute for each LTFS Partition that is part of an LTFS Volume.
The correspondence between LTFS nomenclature and T10/SSC-4 nomenclature is shown in the
following table.

The following is for information only. See the T10/SSC-4 Standard for a complete description
of the Volume Coherency Information attribute.

LTFS Name T10 SSC-4 Name

VCR Length VOLUME CHANGE REFERENCE VALUE
LENGTH

VCR VOLUME CHANGE REFERENCE VALUE

generation number VOLUME COHERENCY COUNT

block number VOLUME COHERENCY SET IDENTIFIER

Application Client Specific
Information Length

APPLICATION CLIENT SPECIFIC
INFORMATION LENGTH

Application Client Specific
Information

APPLICATION CLIENT SPECIFIC
INFORMATION

LTFS Format Specification Page 49 of 71



LTFS v2.0.1 August 17, 2011

• VCR Length: this field contains the length of the VCR field. The VCR Length field is a
one-byte field.

• VCR: this field contains the value returned in the VCR attribute after all information for
which coherency is desired was written to the volume. The length of this field is specified
by the value of the VCR Length field.

• generation number: this field contains the generation number of the LTFS Index that is
pointed to by the block number field. The generation number field is an 8-byte field. The
value stored in this field shall be a big-endian binary integer value.

• block number: this field contains the logical block number of the LTFS Index on this
partition for which coherency is desired. Typically coherency is desired for the most recently
written LTFS Index. This field and the partition ID of this partition comprise the position
of the LTFS Index on the media. A value of zero is invalid. The block number field is an
8-byte field.

• Application Client Specific Information Length: this field contains the length of the Ap-
plication Client Specific Information field. The Application Client Specific Information
Length field is a two-byte field.

• Application Client Specific Information: this field contains information the application
client associates with this coherency set. The length of this field is specified by the value
of the Application Client Specific Information Length field.

8.3 Use of Volume Coherency Information for LTFS

Use of the Volume Coherency Information (VCI) attribute with the LTFS format is optional,
but it is recommended to improve performance. If the VCI attribute is stored for an LTFS
Partition, it shall be used as described in this section.

The VCI attribute for each volume partition contains the Application Client Specific Infor-
mation (ACSI) for the LTFS Partition stored on the volume partition. The ACSI for LTFS shall
be formatted as shown in the following table. All offsets and lengths are measured in bytes.

Offset Length Value Notes

0 4 ‘LTFS’

4 1 0x00 string terminator (binary)

5 36 <volume UUID> as defined in 5.8 UUID format

41 1 0x00 string terminator (binary)

42 1 0x01 version number (binary)

Note: Single quotation marks in the ‘Value’ column above shall not be recorded
in the Application Client Specific Information.

LTFS Format Specification Page 50 of 71



LTFS v2.0.1 August 17, 2011

The first 43 bytes of the Application Client Specific Information will retain their current
meaning in all future versions of the LTFS Format. A future version of the LTFS Format may
define additional content to be appended to the Application Client Specific Information, in which
case the version number field will be incremented.

Note: The version number stored at offset 42 has been incremented from 0x0 in
LTFS Format Specification version 1.0 to 0x1 for LTFS Format Specification version
2.0.0. This increment allows identification of LTFS Volumes created with incorrect
MAM values by an implementation of the LTFS Format Specification version 1.0.

An application may write the VCI attribute for an LTFS Partition at any time when the
partition is complete. The attribute shall contain the VCR of the cartridge and the generation
number of the last LTFS Index on the partition, with both values determined at the time the
attribute is written. When writing the VCI attribute for any LTFS Partition, an application
should write the VCI attribute for all complete partitions. Implementations of the LTFS Format
Specification should update the VCI attribute for all complete partitions immediately after fully
writing an Index Construct to any partition. The recommended order of operations is:

1. Write an Index Construct to a partition.

2. Ensure that all pending write requests are flushed to the medium. The procedure for doing
this may depend on the underlying storage technology.

3. Read the VCR attribute immediately (before issuing any additional write requests to the
medium).

4. If the VCR attribute value is valid (i.e., does not contain a binary value of all ones or
all zeros), compute and write the VCI attributes containing the read VCR value for all
complete partitions.

A VCR instance in a VCI attribute is up-to-date if it equals the VCR value of the cartridge.
Any LTFS Partition with a corresponding VCI attribute that contains an up-to-date VCR in-
stance is complete. If all partitions in an LTFS Volume have VCI attributes containing up-to-date
VCR instances, the attribute with the highest generation number determines the block position
of the current Index for the LTFS Volume. This allows an implementation to determine the state
of an LTFS Volume quickly by reading that single LTFS Index.

If any partition in an LTFS Volume has a VCI attribute containing a VCR instance which is
not up-to-date, that partition is not guaranteed to be complete. In this case, the consistency of
the LTFS Volume cannot be determined from the values in the VCI attributes for each partition.
For example, the following sequence of operations results in exactly one partition having a VCI
attribute containing an up-to-date VCR instance but the LTFS Volume is not consistent.

1. An implementation writes an Index Construct to partition ‘a’, then writes the VCI attribute
for partition ‘a’.

2. The implementation appends a Data Extent to partition ‘a’. The VCI attribute for partition
‘a’ now contains an out-of-date VCR instance.

LTFS Format Specification Page 51 of 71



LTFS v2.0.1 August 17, 2011

3. The implementation Writes an Index Construct to partition ‘b’, then writes the VCI at-
tribute for partition ‘b’.

In this case, the current Index for the LTFS Volume cannot be identified without reading
Indexes from both partitions and comparing their generation numbers.

LTFS Format Specification Page 52 of 71



LTFS v2.0.1 August 17, 2011

9 Certification

TBD

Voluntary certification of compliance to the LTFS can be obtained by submitting Volume im-
ages to ...

Certified compliance allows the display of the “LTFS Compliant” logo.

LTFS Format Specification Page 53 of 71



LTFS v2.0.1 August 17, 2011

Appendices

LTFS Format Specification Page 54 of 71



LTFS v2.0.1 August 17, 2011

A LTFS Label XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ltfslabel">
<xs:complexType>

<xs:all>
<xs:element name="creator" type="xs:string"/>
<xs:element name="formattime" type="datetime"/>
<xs:element name="volumeuuid" type="uuid"/>
<xs:element name="location">

<xs:complexType>
<xs:sequence>

<xs:element name="partition" type="partitionid"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="partitions">

<xs:complexType>
<xs:all>

<xs:element name="index" type="partitionid"/>
<xs:element name="data" type="partitionid"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:element name="blocksize" type="blocksize"/>
<xs:element name="compression" type="xs:boolean"/>

</xs:all>
<xs:attribute name="version" use="required" type="version"/>

</xs:complexType>
</xs:element>

<xs:simpleType name="blocksize">
<xs:restriction base="xs:integer">

<xs:minInclusive value="4096"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="version">
<xs:restriction base="xs:string">

<xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/>
<xs:enumeration value="2.0.0"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="datetime">
<xs:restriction base="xs:string">

<xs:pattern
value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z"/>

</xs:restriction>
</xs:simpleType>

LTFS Format Specification Page 55 of 71



LTFS v2.0.1 August 17, 2011

<xs:simpleType name="partitionid">
<xs:restriction base="xs:string">

<xs:pattern value="[a-z]"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="uuid">
<xs:restriction base="xs:string">

<xs:pattern
value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

LTFS Format Specification Page 56 of 71



LTFS v2.0.1 August 17, 2011

B LTFS Index XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ltfsindex">
<xs:complexType>

<xs:all>
<xs:element name="creator" type="xs:string"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xs:element name="volumeuuid" type="uuid"/>
<xs:element name="generationnumber" type="xs:nonNegativeInteger"/>
<xs:element name="updatetime" type="datetime"/>
<xs:element name="location" type="tapeposition"/>
<xs:element name="previousgenerationlocation" type="tapeposition" minOccurs="0"/>
<xs:element name="allowpolicyupdate" type="xs:boolean"/>
<xs:element name="dataplacementpolicy" type="policy" minOccurs="0"/>
<xs:element name="highestfileuid" type="xs:nonNegativeInteger"/>
<xs:element ref="directory"/>

</xs:all>
<xs:attribute name="version" use="required" type="version"/>

</xs:complexType>
</xs:element>

<xs:element name="directory">
<xs:complexType>

<xs:all>
<xs:element name="fileuid" type="xs:nonNegativeInteger"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="creationtime" type="datetime"/>
<xs:element name="changetime" type="datetime"/>
<xs:element name="modifytime" type="datetime"/>
<xs:element name="accesstime" type="datetime"/>
<xs:element name="backuptime" type="datetime"/>
<xs:element name="readonly" type="xs:boolean"/>
<xs:element ref="extendedattributes" minOccurs="0"/>
<xs:element name="contents">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="directory"/>
<xs:element ref="file"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:all>

</xs:complexType>
</xs:element>

<xs:element name="file">
<xs:complexType>

<xs:all>
<xs:element name="fileuid" type="xs:nonNegativeInteger"/>
<xs:element name="name" type="xs:string"/>

LTFS Format Specification Page 57 of 71



LTFS v2.0.1 August 17, 2011

<xs:element name="length" type="xs:nonNegativeInteger"/>
<xs:element name="creationtime" type="datetime"/>
<xs:element name="changetime" type="datetime"/>
<xs:element name="modifytime" type="datetime"/>
<xs:element name="accesstime" type="datetime"/>
<xs:element name="backuptime" type="datetime"/>
<xs:element name="readonly" type="xs:boolean"/>
<xs:element ref="extendedattributes" minOccurs="0"/>
<xs:element name="extentinfo" minOccurs="0">

<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="extent">
<xs:complexType>

<xs:all>
<xs:element name="partition" type="partitionid"/>
<xs:element name="startblock" type="xs:nonNegativeInteger"/>
<xs:element name="byteoffset" type="xs:nonNegativeInteger"/>
<xs:element name="bytecount" type="xs:positiveInteger"/>
<xs:element name="fileoffset" type="xs:nonNegativeInteger"/>

</xs:all>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:all>
</xs:complexType>

</xs:element>

<xs:element name="extendedattributes">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="xattr">

<xs:complexType>
<xs:all>

<xs:element name="key" type="xs:string"/>
<xs:element name="value">

<xs:complexType mixed="true">
<xs:attribute name="type">

<xs:simpleType>
<xs:restriction base="xs:token">

<xs:enumeration value="base64"/>
<xs:enumeration value="text"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
</xs:all>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

LTFS Format Specification Page 58 of 71



LTFS v2.0.1 August 17, 2011

</xs:element>

<xs:complexType name="policy">
<xs:sequence>

<xs:element name="indexpartitioncriteria">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="size" type="xs:nonNegativeInteger"/>
<xs:element name="name" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

<xs:complexType name="tapeposition">
<xs:all>

<xs:element name="partition" type="partitionid"/>
<xs:element name="startblock" type="xs:nonNegativeInteger"/>

</xs:all>
</xs:complexType>

<xs:simpleType name="version">
<xs:restriction base="xs:string">

<xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/>
<xs:enumeration value="2.0.0"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="datetime">
<xs:restriction base="xs:string">

<xs:pattern
value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="partitionid">
<xs:restriction base="xs:string">

<xs:pattern value="[a-z]"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="uuid">
<xs:restriction base="xs:string">

<xs:pattern
value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

LTFS Format Specification Page 59 of 71



LTFS v2.0.1 August 17, 2011

C Reserved Extended Attribute definitions

In an LTFS Index, all extended attribute names that start with the prefix “ltfs” with any
capitalization are reserved for use by the LTFS Format. (That is, any name starting with a
case-insensitive match for the letters “ltfs” are reserved.)

Any writer of an LTFS Volume shall only use reserved extended attribute names to store
extended attribute values in conformance with the list below. This section describes meaning of
defined, reserved extended attributes.

Support for each of these defined, reserved extended attributes is optional for implementations
in compliance with the LTFS Format Specification.

C.1 Object Metadata

Extended Attribute Value description

ltfs.accessTime Date and time of last access to object.

ltfs.backupTime Date and time of last archive or backup of object.

ltfs.changeTime Date and time of last status change to object.

ltfs.createTime Date and time of object creation.

ltfs.fileUID Integer identifier for objects in the filesystem. Guaranteed to be
unique within the LTFS Volume.

ltfs.modifyTime Date and time of last object modification.

ltfs.partition Partition on which the first extent of the file is stored.

ltfs.startblock Block address where the first extent of the file is stored.

LTFS Format Specification Page 60 of 71



LTFS v2.0.1 August 17, 2011

C.2 Volume Metadata

Extended Attribute Value description

ltfs.commitMessage Commit message for the last Index on the LTFS Volume.

ltfs.indexCreator Creator string for the Index. This string provides a human-
readable identifier for the product that generated the Index. As
defined in 5.2 Creator format.

ltfs.indexGeneration Last LTFS Index generation number written to media.

ltfs.indexLocation Location of the last Index on the media in the form ‘p:l’, where
p is an alphabetic character value indicating the internal LTFS
partition identifier, and l is the logical block number within the
partition. For example, the value ‘a:1000’ indicates that the last
Index starts at logical block 1000 on partition a.

ltfs.indexPrevious Location of the previous Index on the media in the form ‘p:l’,
where p is an alphabetic character value indicating the internal
LTFS partition identifier, and l is the logical block number within
the partition. For example, the value ‘b:55’ indicates that the
previous Index starts at logical block 55 on partition b.

ltfs.indexTime Date and time of when last LTFS Index was written to media.

ltfs.labelCreator Creator string for the LTFS Label. This string provides a human-
readable identifier for the product that generated the LTFS Label.
As defined in 5.2 Creator format.

ltfs.partitionMap The on media partition layout for the LTFS Volume. Value is of
the form “W:x,Y:z” where W and Y have the value ‘I’ indicating an
index partition, or ‘D’ indicating a data partition. x and y are an
alphabetic character value indicating the internal LTFS partition
identifier. For example, the value “I:a,D:b” indicates that LTFS
Partition ‘a’ is used as the index partition, and LTFS Partition
‘b’ is used as the data partition.

ltfs.policyAllowUpdate Indicates whether the data placement policy for the volume may
be updated.

ltfs.policyExists Indicates whether a data placement policy has been set for the
volume.

ltfs.policyMaxFileSize Maximum file size for files that match the data placement policy
for the volume.

ltfs.sync Writing any value to this extended attribute shall trigger a filesys-
tem sync on any implementation that supports this extended at-
tribute. A filesystem sync is an operation that causes all in-
memory filesystem changes to be flushed to the storage medium.
The sync operation is not required to produce a consistent LTFS
Volume. The sync operation must ensure that sufficient data is
written to the medium so as to allow the LTFS Volume to be re-
covered to a consistent state without loss of data.

LTFS Format Specification Page 61 of 71



LTFS v2.0.1 August 17, 2011

Extended Attribute Value description

ltfs.volumeBlocksize Blocksize for the LTFS Volume specified at format time.

ltfs.volumeCompression Compression setting for the LTFS Volume.

ltfs.volumeFormatTime Date and time when the LTFS Volume was formatted.

ltfs.volumeName Name of the LTFS Volume.

ltfs.volumeSerial Serial number for the LTFS Volume specified at format time.

ltfs.volumeUUID UUID for the LTFS Volume.

LTFS Format Specification Page 62 of 71



LTFS v2.0.1 August 17, 2011

C.3 Media Metadata

Extended Attribute Value description

ltfs.mediaBeginningMediumPasses Total number of times the beginning of medium position has been
passed. If the storage hardware cannot report this data the value
will be −1.

ltfs.mediaDataPartitionAvailableSpace Total available space in the Data Partition on the medium. Value
is an integer count measured in units of 1048576 bytes.

ltfs.mediaDataPartitionTotalCapacity Total capacity of the Data Partition on the medium. Value is an
integer count measured in units of 1048576 bytes.

ltfs.mediaDatasetsRead Total number of datasets read from the medium over the lifetime
of the media. If the storage hardware cannot report this data the
value will be −1.

ltfs.mediaDatasetsWritten Total number of datasets written to the medium over the lifetime
of the media. If the storage hardware cannot report this data the
value will be −1.

ltfs.mediaEfficiency An overall measure of the condition of the loaded media. The value
0x00 indicates that the condition is unknown. The range of known
values is from 0x01 (best condition) to 0xFF (worst condition).
If the storage hardware cannot report this data the value will be
−1.

ltfs.mediaIndexPartitionAvailableSpace Total available space in the Index Partition on the medium. Value
is an integer count measured in units of 1048576 bytes.

ltfs.mediaIndexPartitionTotalCapacity Total capacity of the Index Partition on the medium. Value is an
integer count measured in units of 1048576 bytes.

ltfs.mediaLoads Number of times the media has been loaded in a drive. For ex-
ample, with tape media this will be the tread count. If the storage
hardware cannot report this data the value will be −1.

ltfs.mediaMBRead Total number of megabytes of logical object data read from the
medium after compression over the lifetime of the media. The
value shall be rounded up to the next whole megabyte. The value
reported shall include bytes read as part of reading filemarks from
the media. If the storage hardware cannot report this data the
value will be −1.

ltfs.mediaMBWritten Total number of megabytes of logical object data written to the
medium after compression over the lifetime of the media. The
value shall be rounded up to the next whole megabyte. The value
reported shall include bytes written as part of writting filemarks
to the media. If the storage hardware cannot report this data the
value will be −1.

ltfs.mediaMiddleMediumPasses Total number of times the physical middle position of the user data
region of medium has been passed. If the storage hardware cannot
report this data the value will be −1.

LTFS Format Specification Page 63 of 71



LTFS v2.0.1 August 17, 2011

Extended Attribute Value description

ltfs.mediaPermanentReadErrors Total number of unrecovered data read errors over the lifetime of
the media. This is the total number of times that a read type com-
mand terminated with a sense key of MEDIUM ERROR, HARDWARE
ERROR, or equivalent over the media life. If the storage hardware
cannot report this data the value will be −1.

ltfs.mediaPermanentWriteErrors Total number of unrecovered data write errors over the lifetime of
the media. This is the total number of times that a write type com-
mand terminated with a sense key of MEDIUM ERROR, HARDWARE
ERROR, or equivalent over the media life. If the storage hardware
cannot report this data the value will be −1.

ltfs.mediaPreviousPermanentReadErrors Total number of unrecovered read errors that occured during the
previous load of the media. This is the total number of times that a
read type command terminated with a sense key of MEDIUM ERROR,
HARDWARE ERROR, or equivalent during the previous load session.
If the storage hardware cannot report this data the value will be
−1.

ltfs.mediaPreviousPermanentWriteErrors Total number of unrecovered write errors that occured during the
previous load of the media. This is the total number of times
that a write type command terminated with a sense key of MEDIUM
ERROR, HARDWARE ERROR, or equivalent during the previous load
session. If the storage hardware cannot report this data the value
will be −1.

ltfs.mediaRecoveredReadErrors Total number of recovered read errors for the lifetime of the media.
If the storage hardware cannot report this data the value will be
−1.

ltfs.mediaRecoveredWriteErrors Total number of recovered data write correction errors over the
lifetime of the media. If the storage hardware cannot report this
data the value will be −1.

ltfs.mediaStorageAlert A 64bit value containing alert flags for the storage system. For
data tape media this value is equal to the standard tape alert flags.
If the storage hardware cannot report this data the value will be
the string “UNKNOWN”.

LTFS Format Specification Page 64 of 71



LTFS v2.0.1 August 17, 2011

D Example of Valid Simple Complete LTFS Volume

The following figure shows the content of a simple LTFS volume. This volume contains three
files “A”, “B”, and “C”. File “A” is comprised of three extents. Files “B” and “C” each have one
extent.

...A0 A1 A2 B0 C0 IndexVOL1
Label

LTFS
Label

File Mark File Mark

File Mark File Mark

Data
Partition

Index
Partition ...IndexVOL1

Label
LTFS
Label

File Mark File Mark

File Mark File Mark LTFS
Volume

LTFS Format Specification Page 65 of 71



LTFS v2.0.1 August 17, 2011

E Complete Example LTFS Index

The following Index shows the important features of the Index format. Notes:

• The file directory2/binary_file.bin has a length (20000000 bytes) greater than that
of its extent list (10485760 bytes). The extra length is implicitly filled with zero bytes as
described in 4.1 Extent Lists.

• Block 8 of partition ‘b’ is shared. The first 720000 bytes of the block are used by
directory2/binary_file.bin and directory2/binary_file2.bin. The next 105008
bytes are used only by directory2/binary_file2.bin. This form of sharing data be-
tween files is described in 4.3.4 Shared Data.

<?xml version="1.0" encoding="UTF-8"?>
<ltfsindex version="2.0.0">

<creator>IBM LTFS 1.2.0 - Linux - ltfs</creator>
<volumeuuid>5d217f76-53e6-4d6f-91d1-c4213d94a742</volumeuuid>
<generationnumber>3</generationnumber>
<updatetime>2010-02-16T19:13:49.532656726Z</updatetime>
<location>

<partition>a</partition>
<startblock>6</startblock>

</location>
<previousgenerationlocation>

<partition>b</partition>
<startblock>20</startblock>

</previousgenerationlocation>
<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>

<indexpartitioncriteria>
<size>1048576</size>
<name>*.txt</name>

</indexpartitioncriteria>
</dataplacementpolicy>
<highestfileuid>8</highestfileuid>
<directory>

<fileuid>1</fileuid>
<name>LTFS Volume Name</name>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:42.986549106Z</creationtime>
<changetime>2010-02-16T19:13:47.517309274Z</changetime>
<modifytime>2010-02-16T19:13:47.517309274Z</modifytime>
<accesstime>2010-02-16T19:13:42.986549106Z</accesstime>
<backuptime>2010-02-16T19:13:42.986549106Z</backuptime>
<contents>

<directory>
<fileuid>2</fileuid>

LTFS Format Specification Page 66 of 71



LTFS v2.0.1 August 17, 2011

<name>directory1</name>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:43.006599071Z</creationtime>
<changetime>2010-02-16T19:13:48.524075283Z</changetime>
<modifytime>2010-02-16T19:13:46.514736591Z</modifytime>
<accesstime>2010-02-16T19:13:43.006599071Z</accesstime>
<backuptime>2010-02-16T19:13:43.006599071Z</backuptime>
<extendedattributes>

<xattr>
<key>binary_xattr</key>
<value type="base64">yDaaBPBdIUqMhg==</value>

</xattr>
<xattr>

<key>empty_xattr</key>
<value/>

</xattr>
</extendedattributes>
<contents>

<directory>
<fileuid>3</fileuid>
<name>subdir1</name>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:46.514736591Z</creationtime>
<changetime>2010-02-16T19:13:46.514736591Z</changetime>
<modifytime>2010-02-16T19:13:46.514736591Z</modifytime>
<accesstime>2010-02-16T19:13:46.514736591Z</accesstime>
<backuptime>2010-02-16T19:13:46.514736591Z</backuptime>

</directory>
</contents>

</directory>
<directory>

<fileuid>4</fileuid>
<name>directory2</name>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:43.007872849Z</creationtime>
<changetime>2010-02-16T19:13:46.512350773Z</changetime>
<modifytime>2010-02-16T19:13:46.512350773Z</modifytime>
<accesstime>2010-02-16T19:13:43.007872849Z</accesstime>
<backuptime>2010-02-16T19:13:43.007872849Z</backuptime>
<contents>

<file>
<fileuid>5</fileuid>
<name>sparse_file.bin</name>
<length>20000000</length>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:45.012828533Z</creationtime>
<changetime>2010-02-16T19:13:46.509553802Z</changetime>
<modifytime>2010-02-16T19:13:46.509553802Z</modifytime>

LTFS Format Specification Page 67 of 71



LTFS v2.0.1 August 17, 2011

<accesstime>2010-02-16T19:13:45.012828533Z</accesstime>
<backuptime>2010-02-17T19:15:34.032137221Z</backuptime>
<extentinfo>

<extent>
<partition>b</partition>
<startblock>8</startblock>
<byteoffset>0</byteoffset>
<bytecount>720000</bytecount>
<fileoffset>0</fileoffset>

</extent>
<extent>

<partition>b</partition>
<startblock>18</startblock>
<byteoffset>0</byteoffset>
<bytecount>600000</bytecount>
<fileoffset>720000</fileoffset>

</extent>
<extent>

<partition>b</partition>
<startblock>9</startblock>
<byteoffset>271424</byteoffset>
<bytecount>9165760</bytecount>
<fileoffset>1375000</fileoffset>

</extent>
</extentinfo>

</file>
<file>

<fileuid>6</fileuid>
<name>binary_file2.bin</name>
<length>825008</length>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:46.512350773Z</creationtime>
<changetime>2010-02-16T19:13:46.513510263Z</changetime>
<modifytime>2010-02-16T19:13:46.513510263Z</modifytime>
<accesstime>2010-02-16T19:13:46.000000000Z</accesstime>
<backuptime>2010-02-16T19:13:46.512350773Z</backuptime>
<extentinfo>

<extent>
<partition>b</partition>
<startblock>8</startblock>
<byteoffset>0</byteoffset>
<bytecount>825008</bytecount>
<fileoffset>0</fileoffset>

</extent>
</extentinfo>

</file>
</contents>

</directory>

LTFS Format Specification Page 68 of 71



LTFS v2.0.1 August 17, 2011

<file>
<fileuid>7</fileuid>
<name>testfile.txt</name>
<length>5</length>
<readonly>false</readonly>
<creationtime>2010-02-16T19:13:44.009581288Z</creationtime>
<changetime>2010-02-16T19:13:49.532111261Z</changetime>
<modifytime>2010-02-16T19:13:49.532111261Z</modifytime>
<accesstime>2010-02-16T19:13:49.527726902Z</accesstime>
<backuptime>2010-02-16T19:13:44.009581288Z</backuptime>
<extendedattributes>

<xattr>
<key>author_name</key>
<value>Michael Richmond</value>

</xattr>
</extendedattributes>
<extentinfo>

<extent>
<partition>a</partition>
<startblock>4</startblock>
<byteoffset>0</byteoffset>
<bytecount>5</bytecount>
<fileoffset>0</fileoffset>

</extent>
</extentinfo>

</file>
<file>

<fileuid>8</fileuid>
<name>read_only_file</name>
<length>0</length>
<readonly>true</readonly>
<creationtime>2010-02-16T19:13:47.517309274Z</creationtime>
<changetime>2010-02-16T19:13:47.519534438Z</changetime>
<modifytime>2010-02-16T19:13:47.000000000Z</modifytime>
<accesstime>2010-02-16T19:13:47.000000000Z</accesstime>
<backuptime>2010-02-16T19:13:47.517309274Z</backuptime>
<extendedattributes>

<xattr>
<key>author_name</key>
<value>Brian Biskeborn</value>

</xattr>
</extendedattributes>

</file>
</contents>

</directory>
</ltfsindex>

LTFS Format Specification Page 69 of 71



LTFS v2.0.1 August 17, 2011

F Changes between Format Specification versions

This appendix contains a log of all high-level changes that were applied between each revision
of this LTFS Format Specification document. Appendix lists changes in order of increasing
specification version number to maintain continuity of sub-section numbering.

F.1 Changes between v1.0 and v2.0.0

Incremented specification version number to 2.0.1.

Updated specification date to August 17, 2011.

Improvements in specification text to remove ambiguity and clarify intention of the specifi-
cation. These changes were made at several locations throughout the document.

Improvements to clarify description of MAM parameters in section 8 Medium Auxiliary
Memory.

Removed reference to a specific version of the Unicode standard in 5.5 Name pattern for-
mat. This removes any requirement to use specific versions of Unicode support code in an
implementation.

Improved description of Name pattern format to remove ambiguity in 5.5 Name pattern
format.

Added description of LTFS Format specification version numbering in 1.2 Versions.

Updated XML Schema for Label and Index to match version number format in A LTFS
Label XML Schema and B LTFS Index XML Schema.

Added specification of minimum and recommended blocksize value for LTFS Volumes to 6.1.2
LTFS Label.

Added definition of allowed version numbers to 6.1.2 LTFS Label and 7.2 Index.

Added definition of fileoffset tag in 7.2 Index.

Extended description in 4 Data Extents to support addition of fileoffset tag and asso-
ciated functionality.

Added definition of highestfileuid tag in 7.2 Index.

Added definition of fileuid tag in 7.2 Index.

Added definition of backuptime tag in 7.2 Index.

LTFS Format Specification Page 70 of 71



LTFS v2.0.1 August 17, 2011

Incremented version number in Application Client Specific Information (ACSI) structure
shown in 8.3 Use of Volume Coherency Information for LTFS. This increment allows
identification of LTFS Volumes written with a LTFS v1.0 compliant implementation. A widely
used v1.0 implementation wrote ambiguous ACSI values due to an implementation bug.

Added definition of extended attributes in the ltfs.* namespace in Appendix C Reserved
Extended Attribute definitions.

Added description for handling unknown XML tags in Index to 7.2.2 Managing LTFS
Indexes.

F.2 Changes between v2.0.0 and v2.0.1

Incremented specification version number to 2.0.1.

Updated specification date to August 17, 2011.

Expanded F Changes between Format Specification versions to provide historical
record of changes between revisions of LTFS Format Specification.

Improved description of constraints for two Indexes having the same generation number in
3.4.1 Generation Number to make it clear that differences in access time values is permitted
between Indexes that are otherwise except for self pointer and index pointer values.

Added note in 3.4.1 Generation Number to explicitly state that Index generation numbers
may increase by integer values other than 1.

Expanded description of the ltfs.sync extended attribute in Appendix C Reserved Ex-
tended Attribute definitions. The expanded description explicitly states that this extended
attribute triggers a sync of the in-memory data to the storage media. That is, the operation is
analogous to a POSIX sync operation.

LTFS Format Specification Page 71 of 71


	Introduction
	Scope
	Versions
	Conformance

	Definitions and Acronyms
	Definitions
	Block Position
	Complete Partition
	Content Area
	Consistent State
	Data Extent
	Data Partition
	File
	filesystem sync
	generation number
	Index
	Index Construct
	Index Partition
	Label Construct
	Linear Tape File System
	LTFS Construct
	LTFS Label
	LTFS Partition
	LTFS Volume
	Medium Auxiliary Memory
	Partition Identifier
	sparse file
	UUID
	Volume Change Reference

	Acronyms

	Volume Layout
	LTFS Partitions
	LTFS Constructs
	Label Construct
	Data Extent
	Index Construct

	Partition Layout
	Index Layout
	Generation Number
	Self Pointer
	Back Pointer


	Data Extents
	Extent Lists
	Extents Illustrated
	Starting and ending Data Extent with full block
	Starting Data Extent with full block and ending with fractional block
	Starting and ending Data Extent in mid-block

	Files Illustrated
	Simple Files
	Shared Blocks
	Sparse Files
	Shared Data


	Data Formats
	Boolean format
	Creator format
	Extended attribute value format
	Name format
	Name pattern format
	String format
	Time stamp format
	UUID format

	Label Format
	Label Construct
	VOL1 Label
	LTFS Label
	Managing LTFS Labels


	Index Format
	Index Construct
	Index
	extendedattributes elements
	Managing LTFS Indexes
	Data Placement Policy
	Data Placement Policy Alteration
	Allow Policy Update is set
	Allow Policy Update is unset

	Data Placement Policy Application


	Medium Auxiliary Memory
	Volume Change Reference
	Volume Coherency Information
	Use of Volume Coherency Information for LTFS

	Certification
	LTFS Label XML Schema
	LTFS Index XML Schema
	Reserved Extended Attribute definitions
	Object Metadata
	Volume Metadata
	Media Metadata

	Example of Valid Simple Complete LTFS Volume
	Complete Example LTFS Index
	Changes between Format Specification versions
	Changes between v1.0 and v2.0.0
	Changes between v2.0.0 and v2.0.1


