
IBM Security Verify Access
Version 10.0.9
January 2025

Advanced Access Control Configuration
topics

IBM

Contents

Figures... ix

Tables.. xi

Chapter 1. Upgrading configuration..1
Upgrading external databases with the dbupdate tool (for appliance at version 9.0.0.0 and later).......2
Upgrading a DB2 external runtime database (for appliance versions earlier than 9.0.0.0)...................... 3
Upgrading an Oracle external runtime database (for appliance versions earlier than 9.0.0.0)................ 4
Setting backward compatibility mode for one-time password...5
Updating template files..5
Updating PreTokenGeneration to limit OAuth tokens... 6
Reviewing existing Web Reverse Proxy instance point of contact settings..6

Chapter 2. Getting Started... 9

Chapter 3. Managing application interfaces.. 11

Chapter 4. Managing runtime component... 13

Chapter 5. Managing user registries... 15

Chapter 6. Runtime security services external authorization service..................... 17
Configuring runtime security services for client certificate authentication... 17
Permitting access decisions when runtime security services cannot be contacted............................... 19
Retaining the version 7.0 attribute IDs in existing policies.. 19

Chapter 7. Adding runtime listening interfaces... 21

Chapter 8. NIST compliance...23

Chapter 9. Authentication..27
Authentication Service configuration overview.. 31
Authentication configuration scenarios.. 32

Configuring step-up authentication...32
Configuring authentication...34

Configuring an HOTP one-time password mechanism... 35
Configuring a TOTP one-time password mechanism..37
Configuring an OTP enrollment mechanism... 40
Configuring a MAC one-time password mechanism... 42
Configuring an RSA one-time password mechanism..44
Configuring one-time password delivery methods...47
Configuring username and password authentication... 50
Configuring an HTTP redirect authentication mechanism..53
Configuring consent to device registration... 54
Configuring an End-User License Agreement authentication mechanism.. 55
Configuring an Email Message mechanism...57

HTML format for OTP email messages.. 58
Configuring the reCAPTCHA Verification authentication mechanism.. 59

 iii

Configuring an Info Map authentication mechanism..60
Embedding reCAPTCHA verification in an Info Map mechanism..62
Available parameters in Info Map..62
Embedded Cloud Identity API calls in an Info Map mechanism.. 64

Configuring a Knowledge Questions authentication mechanism ..66
Configuring a FIDO Universal 2nd Factor authentication mechanism... 69
Configuring a FIDO2/WebAuthn authentication mechanism... 70
Configuring a QR Code authentication mechanism.. 71
Configuring an RSA SecurID one-time password mechanism... 72
Configuring a FIDO2/WebAuthn registration mechanism.. 75
Importing a bundled authentication policy...76
Enabling or disabling authentication policies... 79
Managing mapping rules..79

Authentication Service Credential mapping rule...80
OTPGetMethods mapping rule...81
OTPGenerate mapping rule..82
OTPDeliver mapping rule... 82
OTPVerify mapping rule... 83
Customizing one-time password mapping rules to use access control context data........................84

One-time password and authentication template files.. 85
Push notification registration.. 85

Obtaining the required authentication credentials to configure push notification for IBM
Security Verify... 87

Cloud Identity API Integration.. 88
Cloud Identity JavaScript...88
Authentication flow.. 89
User Self Care flow... 90

Configuring the authentication and access module for cookieless operation... 91
Reverse Proxy Configuration with Authentication Services..92

Configuring advanced access control authentication on a reverse proxy.. 92
Using the isamcfg tool..93

Branching Authentication Policy... 104
Default-Mapping Rules.. 104

Execute authentication service policies in an Info Map... 105
TOTP Example.. 109

Chapter 10. OAuth 2.0 and OIDC support..111
OAuth and OpenID Connect concepts.. 111

OAuth 2.0 concepts..111
OpenID Connect concepts...112

IBM Security Verify Access OIDC Provider... 113
OAuth 2.0 endpoints..114
OAuth 2.0 and OIDC workflows.. 117

Client authentication considerations at the OAuth 2.0 token endpoint...126
Configure authenticated token endpoint with WebSEAL as point of contact...................................127
Token Exchange Implementation..128

OAuth state management... 132
Trusted clients management...133
Proof Key for Code Exchange support...134
Reverse proxy configuration for OAuth and OIDC provider..135

Configuring reverse proxy for OAuth and OIDC provider.. 135
Viewing a reverse proxy automated configuration log..137
Example reverse proxy log for OAuth and OIDC configuration...138
Removing reverse proxy configuration for OAuth and OIDC provider.. 140

Configuring OAuth 2.0 API protection.. 141
Creating an API protection definition.. 141
Managing API protection definitions... 142

iv

API Protection token management properties... 142
API Protection OpenID Connect Provider properties... 144
PIN policy... 146
Register an API protection client...146
Managing registered API protection clients.. 148
Managing policy attachments..149
Using oauthScope attributes in an access control policy... 151
Uploading OAuth response files.. 152
OAuth introspection... 152
OAuth revocation endpoint.. 154

OIDC Claims customization...155
Client authentication to /token through an incoming JSON Web Token..160
Passing parameters through JWT in a request to /authorize... 161
Mapping rules for OAuth and OIDC...162

Managing OAuth 2.0 and OIDC mapping rules..162
OAuth 2.0 mapping rule methods... 163
OAuth and OIDC mapping rules files...164
OAuth and OIDC mapping rules actions..165
Customizing OAuth tokens by updating the sample PreTokenGeneration mapping rule................ 170
OpenID Connect mapping rules.. 170
Device flows verification_uri..172

OAuth 2.0 template files... 172
OAuth 2.0 template page for consent to authorize.. 173
Error responses..176
User self-administration tasks for OAuth... 176

Managing OAuth 2.0 authorization grants...176
APIs for managing OAuth 2.0 authorization grants.. 177

OAuth STS Interface for Authorization Enforcement Points.. 178
API Protection form post response mode.. 185
Access policy for OAuth or OIDC...186

Making an OAuth or OIDC consent decision using access policy... 186
OIDC Dynamic Clients... 186

OIDC Dynamic Clients- Authentication and deployment..187
OIDC Dynamic Clients- Register a client... 187
OIDC Dynamic Clients- Retrieve a dynamic client.. 191
OIDC Dynamic Clients- Custom Identifiers...191
OIDC Dynamic Clients- Update a client...191
OIDC Dynamic Clients- Delete a client..192
OIDC Dynamic Clients – Migrating client...193
OIDC Dynamic Client - Updating URL format.. 193

Chapter 11. Mobile Multi-Factor Authentication..195
Authenticator registration... 195
Authentication method enrollment...196
Configuring Mobile Multi-Factor Authentication...196
Configuring a MMFA Authenticator Mechanism..197
MMFA mapping rule methods... 197

Chapter 12. FIDO and WebAuthn Support.. 201
FIDO2 Server Endpoints..201
Concepts.. 201

WebAuthn Ceremonies.. 202
Attestation..203
Public Key Algorithms.. 204
Metadata...204

Registration..205
U2F Migration...207

 v

FIDO2 Configuration..208
FIDO2 Mediation..210
FIDO Client Manager... 213

Local FIDO Client..213
Authentication Service Mechanism...214
Metadata Services... 214

Adding a metadata service.. 214
Modifying a metadata service..216
Deleting a metadata service.. 217

Limitations... 217

Chapter 13. Access control policies.. 219
Defining a custom application for policy attachments... 219
Invoking the RTSS XACML engine... 219

ContextId JSON example...220
ApplicationId JSON example...221
resource-id JSON example.. 222

Chapter 14. Defining a custom domain for policy attachments............................ 225

Chapter 15. Deploying pending changes... 227

Chapter 16. Options for handling session failover event...................................... 229
No handling of failover events...229
The Distributed Session Cache... 229

Chapter 17. Branching Authentication Policies... 231
Scenarios... 231
Decision..233
Branches.. 234
Steps.. 235

Chapter 18. Global Settings... 237
Advanced Configuration.. 238

Advanced configuration properties... 239
User Registry..271
Runtime Parameters..273
Template files.. 279

Managing template files...279
Customizing the consent page (OIDC)...281
Template file scripting..282
Template files reference.. 285
Template file macros..328
Template File Locales.. 331
Template Files and Content Security Policy..332

Mapping Rules... 334
Managing JavaScript mapping rules..335
Managing mapping rules..337
Managing OAuth 2.0 and OIDC mapping rules..343
Mapping rules actions.. 344
MMFA mapping rule methods..345
XML Mapping Rules Method.. 347
JavaScript allowlist.. 348
Managing JavaScript mapping rules..352
Customizing SAML identity mapping... 354
STSRequest and STSResponse access using a JavaScript mapping rule...356

vi

OpenID Connect mapping rules.. 363
Import mapping rule from another mapping rule... 364
Auditing from Mapping Rules...365
HTTP Claims... 368

Distributed Session Cache...370
Server Connections..370

Server connection properties.. 372
Point of Contact... 376

Creating a point of contact profile... 376
Updating or viewing a point of contact profile...377
Deleting a point of contact profile... 377
Setting a current point of contact profile...378
Callback parameters and values..378

Runtime monitoring using Prometheus.. 380
Managing Cleanup and Archive Tasks...380

Chapter 19. Choose a synchronization mode...383

Index.. 385

 vii

viii

Figures

1. WebSEAL client in an environment with multiple IBM Security Verify Access servers............................ 96

2. OAuth 2.0 JavaScript sample code with state management ..133

3. Template for user_consent.html...175

4. OAuth STS trust chain workflow... 179

5. OAuth authorization enforcement point workflow...185

 ix

x

Tables

1. Advanced Access Control configuration upgrade tasks... 1

2. Runtime security services EAS access decisions...17

3. OAuth 2.0 endpoint definitions and URLs.. 114

4. Response type values for each flow... 121

5. Configurations supported... 126

6. OAuth modes...135

7. Reverse proxy instance... 136

8. Reuse configuration.. 136

9. Reverse proxy instance... 136

10. Reuse configuration.. 137

11. Auto-configuration log files.. 138

12. Mapping rule variable for OAuth revocation...155

13. Claims types..156

14. Example configuration of Attribute Sources.. 157

15. Attribute Mapping... 157

16. LDAP Attribute Source example... 158

17. Chain modules for JWT format...160

18. Mapping Rules...164

19. New request types.. 172

20. FIDO2 Server Endpoints... 201

21. Filter by Category..239

22. HTTP proxy properties..277

23. Valid trace levels... 278

 xi

24. Example JavaScript.. 282

25. Default template files in the ac/ directory... 285

26. Default template files in the mga/ directory.. 286

27. Default template files in the authsvc/ directory.. 287

28. Default template files in the otp/ directory..288

29. Default template files in the authsvc/authenticator directory.. 290

30. Default template files in the authsvc/authenticator/basicldapuser directory......................................291

31. Default template files in the authsvc/authenticator/branching directory.. 291

32. Default template files in the authsvc/authenticator/ci directory.. 293

33. Default template files in the authsvc/authenticator/email_message directory................................... 296

34. Default template files in the authsvc/authenticator/fido directory...297

35. Default template files in the authsvc/authenticator/fido2pair directory.. 299

36. Default template files in the authsvc/authenticator/infomap directory... 300

37. Default template files in the authsvc/authenticator/mmfa directory... 303

38. Default template files in the authsvc/authenticator/mobileuserapproval directory 304

39. Default template files in the authsvc/authenticator/qrlogin directory... 304

40. Default template files in the authsvc/authenticator/recaptcha directory.. 305

41. Default template files in the authsvc/authenticator/rsa_securid directory ...305

42. Default template files in the authsvc/authenticator/u2f directory... 306

43. Default template files in the authsvc/authenticator/verify_gateway directory.................................... 306

44. Default template files in the authsvc/authenticator/password/ directory..307

45. Default template files in the authsvc/authenticator/http_redirect/ directory...................................... 307

46. Default template files in the authsvc/authenticator/macotp/ directory... 308

47. Default template files in the authsvc/authenticator/rsa/ directory.. 309

48. Default template files in the authsvc/authenticator/totp/ directory...310

xii

49. Default template files in the authsvc/authenticator/hotp/ directory..311

50. Default template files in the authsvc/authenticator/consent_register_device/ directory................... 311

51. Default template files in the authsvc/authenticator/eula/ directory.. 312

52. Default template files in the authsvc/authenticator/knowledge_questions/ directory........................313

53. Default template files in the authsvc/authenticator/otp/ directory.. 315

54. Default files in the proper/ directory.. 315

55. Default files in the oauth20/ directory... 317

56. SAML 2.0 HTML page identifiers and macros.. 319

57. Supported consent values for SAML 2.0 response.. 327

58. JSON to SAML2 module chain values.. 357

59. SAML2 to JSON module chain values.. 361

60. Server Connection properties...372

61. Tuning properties..374

 xiii

xiv

Chapter 1. Upgrading configuration
After you install the upgrade software on a Security Verify Access appliance, you must complete several
configuration tasks.

Review the following tasks, and perform the ones that are appropriate for your installation.

Table 1. Advanced Access Control configuration upgrade tasks

Upgrade task See

Run the isamcfg tool to obtain the correct
configuration settings for WebSEAL and Security
Verify Access.

“Using the isamcfg tool” on page 93

If you use DB2® as an external runtime database,
upgrade DB2.

“Upgrading a DB2 external runtime database (for
appliance versions earlier than 9.0.0.0)” on page
3 or “Upgrading external databases with the
dbupdate tool (for appliance at version 9.0.0.0 and
later)” on page 2

If you use Oracle as an external runtime database,
upgrade Oracle.

“Upgrading an Oracle external runtime database
(for appliance versions earlier than 9.0.0.0)” on
page 4 or “Upgrading external databases with
the dbupdate tool (for appliance at version 9.0.0.0
and later)” on page 2

After an upgrade, the setting for one-time
password authentication is set to run in backward
compatibility mode. Disable this mode.

“Setting backward compatibility mode for one-time
password” on page 5

If you customized any template files, upgrade
them.

“Updating template files” on page 5

The new role membership features in later versions
of the appliance are granted the permission of
None by default. Configure the permissions for
these new role membership features, if necessary.

Managing roles of users and groups

To limit the number of OAuth tokens per user per
definition, update the mapping rule.

“Updating PreTokenGeneration to limit OAuth
tokens” on page 6

Review and update some existing Web Reverse
Proxy instance point of contact settings for the
Advanced Access Control runtime.

“ Reviewing existing Web Reverse Proxy instance
point of contact settings” on page 6

After you complete the appropriate configuration tasks, go to Chapter 2, “Getting started with Advanced
Access Control,” on page 9.

Upgrading external databases with the dbupdate tool (for
appliance at version 9.0.0.0 and later)

Use the dbupdate tool that is provided by the appliance to upgrade your external runtime databases,
such as DB2, Oracle, and PostgreSQL.

About this task
Use this task if your Security Verify Access appliance version is 9.0.0.0 or later. If your appliance version
is earlier than 9.0.0.0, you must first update the appliance and the external database to version 9.0.0.0 by
using the following methods:

• “Upgrading a DB2 external runtime database (for appliance versions earlier than 9.0.0.0)” on page 3
• “Upgrading an Oracle external runtime database (for appliance versions earlier than 9.0.0.0)” on page

4

You must have Java version 8 or later to run the database update tool.

Procedure
1. In the local management interface, go to System > Secure Settings > File Downloads.
2. Expand access_control > database.
3. Select the dbupdate9.zip file.

This file contains the database update tool (dbupdate.jar), the README file, and update files for all
databases and SQL types.

4. Click Export.
5. Save the file.
6. Extract the dbupdate9.zip file and run the dbupdate.jar tool for your environment.

• The usage of the tool is as follows:

${JAVA_HOME}/bin/java -jar dbupdate.jar [-t] [-n]
<dbType> <sqlType> <connectString> <user> [<password>]

-t
Enable debug trace output.

-n
Do not perform any updates, but instead output the update operations that would have been
executed.

dbType
The database type. Valid values are config or runtime.

sqlType
The database server type. Valid values are db2, oracle, or postgresql.

connectString

The string that is used when establishing a connection to the database server.

db2
Typically the database name, which is used in "db2 CONNECT TO <connectString>
USER <user> USING <password>;".

oracle
If the string is not empty, it corresponds to the value used for sqlplus "CONNECT
<user>/<password>@<connectString>;". If the string is empty (""), the ORACLE_SID
environment variable is used.

2 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

postgresql

The connectString for PostgreSQL contains the psql command line options that need to
be supplied to connect to the database. This usually consists of the hostname, port and
database name. For example:

'--host=<hostname> --port=<port> --dbname=<db name>'

user
Database user to update the database with.

password
Database user's password. If not provided, the value is read from console.

Note: For DB2 external databases, the db2 command must be in the path. For Oracle external
databases, the sqlplus command must be in the path. For PostgreSQL external database, the psql
command must be in the path.

• Java 8 or later is required for running the tool.
• The following command shows an example of using the tool to update a DB2 database:

/opt/ibm/java-x86_64-80/jre/bin/java -jar dbupdate.jar runtime db2
"HVDB" db2inst1 passw0rd

The following command shows an example of using the tool to update an Oracle database:

/opt/ibm/java-x86_64-80/jre/bin/java -jar dbupdate.jar runtime oracle
"" SYSTEM passw0rd

• If the tool is not flexible enough for your environment, you can see which commands the tool runs
without executing them and manually run those commands to suit your environment. To see which
commands the update tool runs against the database, run the tool with the -n option. This option
still must be able to read from the database to get the current update versions in order to determine
which updates to apply. However, it will not execute any update operations.

• See the README file that is included in the dbupdate9.zip file for more details about the update
tool.

Upgrading a DB2 external runtime database (for appliance
versions earlier than 9.0.0.0)

If DB2 is the external runtime database, upgrade it after you install the appliance upgrade so that you are
using the correct .sql file version.

About this task
Attention: Use this task only if you have not installed v9000 or v1000.

The updates to the .sql file for each release are not cumulative. Therefore, depending on which version
of the isam_access_control_db2_update_v*.sql file you installed, make the following updates:

• v8004.sql not installed: First upgrade to v8004, then to v8005, and finally to v9000.
• v8004.sql is installed: Upgrade to v8005 and then to v9000.
• v8005.sql is installed: Upgrade to v9000.

Use this task to install each version you require, replacing references to
isam_access_control_db2_update_v9000.sql with the version number you are upgrading to each
time, and starting with the earliest version you require.

Procedure
1. Log in to the local management interface.

Chapter 1. Upgrading configuration 3

2. Click System > File Downloads.
3. Expand access_control > database > db2 > runtime.
4. Select isam_access_control_db2_update_v9000.sql
5. Click Export.
6. Save the file.
7. Open the isam_access_control_db2_update_v9000.sql file in an editor on the DB2 server.
8. Replace the following macros with the values specific to your environment:
&DBINSTANCE

The name of the DB2 instance.
&DBUSER

The name of the DB2 administrator.
&DBPASSWORD

The password for the DB2 administrator.
9. Save the changes.

10. Log in to the DB2 Command utility (Windows) or DB2 host (UNIX) as the DB2 administrator.
11. Run the following command:

db2 -tsvf fully_qualified_path_to_script

The following example shows the fully qualified path to the script:

db2 -tsvf tmp/isam_access_control_db2_update_v9000.sql

12. Validate that the tables were successfully updated.
13. Ensure that no errors were returned during the update and log in to the database to manually check

that the tables exist.

Upgrading an Oracle external runtime database (for appliance
versions earlier than 9.0.0.0)

If Oracle is the external runtime database, upgrade it after you install the appliance upgrade so that you
are using the correct .sql file version.

About this task
Attention: Use this task only if you have not installed v9000 or v1000.

The updates to the .sql file for each release are not cumulative. Therefore, depending on which
version of the isam_access_control_oracle_update_v*.sql file you installed, make the following
updates:

• v8011.sql not installed: First upgrade to v8011 and then to v9000.
• v8011.sql is installed: Upgrade to v9000.

Use this task to install each version you require, replacing references to
isam_access_control_oracle_update_v9000.sql with the version number you are upgrading to
each time, and starting with the earliest version you require.

Procedure
1. Log in to the local management interface.
2. Click System > File Downloads.
3. Expand access_control > database > oracle > runtime.
4. Select isam_access_control_oracle_update_v9000.sql

4 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

5. Click Export.
6. Save the file.
7. Copy the downloaded isam_access_control_oracle_update_v9000.sql file into the Oracle

home directory.
For example: ORACLE_HOME=/opt/oracle/app/oracle/product/11.2.0/dbhome_1

8. Log in to SQL*Plus.
9. At the SQL prompt, run START isam_access_control_oracle_update_v9000.sql.

10. Validate that the tables were successfully updated.
11. Ensure that no errors were returned during the update and log in to the database to manually check

that the tables exist.

Setting backward compatibility mode for one-time password
When you upgrade your installation, the setting for one-time password authentication is set to run in
backward compatibility mode. Complete this task if you need to disable this mode.

About this task
The default value for a new installation is false. For an upgrade, the value is set to true.

Procedure
1. Select AAC > Global Settings > Advanced Configuration.
2. Click the edit icon for poc.otp.backwardCompatibilityEnabled.
3. Change the value from true, which enables backward compatibility mode, to false.
4. Click OK.
5. Deploy the changes when prompted.

Updating template files
If you want to update your template files to the latest version, complete this task. Otherwise, the
template files from the previous version are ready for use after the upgrade.

Procedure
1. Download the new template file.
2. Log in to the local management interface.
3. Select System > File Downloads.
4. Expand access_control > pages and select mga_template_files.zip.
5. Click Export.
6. Extract the file.
7. Edit and customize the template files, as necessary.
8. Compress the template files into a .zip file.
9. In the local management interface, select AAC > Global Settings > Template Files.

10. Select Manage > Import Zip.
11. Click Browse and locate the .zip file you compressed in step “8” on page 5.
12. Click Open.
13. Click Import.
14. Deploy the changes.

Chapter 1. Upgrading configuration 5

Updating PreTokenGeneration to limit OAuth tokens
Update the latest version of the PreTokenGeneration mapping rule to limit the number of OAuth tokens
per user per definition.

About this task
Follow this procedure so that any API protection definitions you created in a previous version can take
advantage of limiting OAuth tokens. If you create new definitions, the latest PreTokenGeneration mapping
rule is used.

Procedure
1. Log in to the local management interface.
2. Download the updated mapping rule:

a) Click System > File Downloads.
b) Expand access_control > examples > mapping_rules.
c) Select oauth_20_pre_mapping.js.
d) Click Export.

3. Optional: Edit and customize the mapping rule if you customized it in the previous version.
4. Replace the PreTokenGeneration mapping rule for the existing API protection definitions.

a) Click AAC > API Protection.
b) Click Advanced.
c) Select the appropriate PreTokenGeneration mapping rule.
d) Click Replace.
e) Browse for the updated mapping rule and click OK.

5. Deploy the changes.

Reviewing existing Web Reverse Proxy instance point of contact
settings

After you upgrade from appliance v8.n.n.n to v9.n.n.n, it might be necessary to review and update some
existing Web Reverse Proxy instance point of contact settings for the Advanced Access Control runtime.

Reviewing ACL settings for Authentication Services REST endpoint
A new REST endpoint for the Authentication Services Framework was introduced in v9.0.0.0. The default
URL for this endpoint is “/mga/sps/apiauthsvc”. After an upgrade from a Security Verify Access
appliance at v8.n.n.n, if you want to use the “/mga/sps/apiauthsvc” endpoint with an existing web
reverse proxy, it might be necessary to create an ACL named “isam_mobile_rest_unauth” and attach
it to the “/mga/sps/apiauthsvc” endpoint. You can use the following Security Verify Access policy
administration commands to enable this setting.

acl create "isam_mobile_rest_unauth"
acl modify "isam_mobile_rest_unauth" set user "sec_master" TcmdbsvaBRrxl
acl modify "isam_mobile_rest_unauth" set group iv-admin TcmdbsvaBRrxl
acl modify "isam_mobile_rest_unauth" set group webseal-servers Tgmdbsrxl
acl modify "isam_mobile_rest_unauth" set any-other Tmdrxl
acl modify "isam_mobile_rest_unauth" set unauth Tmdrxl

acl attach "/WebSEAL/<web reverse proxy>/mga/sps/apiauthsvc" "isam_mobile_rest_unauth"

6 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Reviewing EAI point of contact settings
Some of the default settings that are related to Advanced Access Control point of contact and EAI headers
changed in v9.0.0.0. After an upgrade from v8.n.n.n where an existing Web Reverse Proxy instance has
been configured with Advanced Access Control, review the following settings and correct the settings if
required.

In the Web Reverse Proxy configuration file, check the [eai] stanza settings:

EAI HEADER NAMES

EAI PAC header names
eai-pac-header = am-eai-pac
eai-pac-svc-header = am-eai-pac-svc

EAI USER ID header names
eai-user-id-header = am-eai-user-id
eai-auth-level-header = am-eai-auth-level
eai-xattrs-header = am-eai-xattrs

EAI external USER ID header names
eai-ext-user-id-header = am-eai-ext-user-id
eai-ext-user-groups-header = am-eai-ext-user-groups

EAI COMMON header names
eai-redir-url-header = am-eai-redir-url

The names of the headers must match the point of contact settings for the Advanced Access Control
runtime. You can manage these settings with the local management interface by going to AAC > Global
Settings > Point of Contact. Review the parameter value settings for the active point of contact profile.

AAC point of contact parameter Reverse Proxy header name

fim.user.response.header.name am-eai-ext-user-id

fim.target.response.header.name am-eai-redir-url

fim.attributes.response.header.name am-eai-xattrs

fim.groups.response.header.name am-eai-ext

fim.user.request.header.name iv-user

fim.cred.request.header.name iv-creds

fim.groups.request.header.name iv-groups

fim.cred.response.header.name am-eai-pac

Chapter 1. Upgrading configuration 7

8 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 2. Getting started with Advanced Access
Control

Several configuration tasks must be completed in order to start using Advanced Access Control.

After setup of IBM Security Verify Access Appliance, complete an initial configuration of Advanced Access
Control.

Note: If you have not already set up your appliance, see Getting Started.

Complete the following tasks:

1. Activate the product. You must activate both the IBM Security Verify Access Platform offering and the
Advanced Access Control Module.

2. Manage application interfaces.
3. Configure the runtime environment.
4. “Managing user registries” on page 271.
5. Configure the services that you require:

• “Reverse Proxy Configuration with Authentication Services” on page 92
• “Reverse proxy configuration for OAuth and OIDC provider” on page 135
• “Configuring Mobile Multi-Factor Authentication” on page 196

6. Review optional runtime security services EAS configuration tasks.

You also might need to complete the following task to enable communication between appliances. See
Chapter 7, “Adding runtime listening interfaces,” on page 21.

10 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 3. Managing application interfaces
To create or edit your management and application interfaces, see Configuring Interfaces.

12 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 4. Managing the runtime component
To manage configuration files with the local management interface, use the Runtime Component
management page.

About this task
When you first install the appliance, you must configure the runtime component. At any time after
configuration, you can either edit the configuration settings, or unconfigure the runtime component.

Procedure
1. From the top menu, select Web > Manage > Runtime Component.
2. Select one of the following actions.

• Configure

a. On the Main tab, select the User Registry type of LDAP.

Note: The runtime component does not communicate with the user registry, but you must select
a registry type. It does not matter what user registry your system uses. Selection of the user
registry type has no effect on the runtime component. Select LDAP in order to minimize the
configuration steps.

b. On the Policy Server tab, provide settings.

– Host name: The name of the host that hosts the IBM Security Verify Access policy server.
– Port: The port over which communication with the IBM Security Verify Access policy server

takes place.
– Management Domain: The IBM Security Verify Access domain name.

c. Provide settings on the LDAP tab. Enter a Host name and accept the default value for Port.

Note: The host name and port values are just placeholders. The runtime component does not
use the values, but the configuration wizard requires that values must be set.

d. Click Finish to save the settings.
• Unconfigure the remote policy server

a. Select the Force check box if you want the unconfigure operation to forcefully remove all of the
configuration data. By default, this check box is not selected.

Note: Select the Force check box only if the unconfiguration fails repeatedly. Use this option
only as a last resort.

b. Click Submit to confirm operation.
• Edit

a. Select the runtime configuration file of interest.
b. Edit the configuration file and then click Save to save the changes. If you do not want to save the

changes, click Cancel. If you want to revert to the previous version of the configuration file, click
Revert.

Note: For the changes to take effect, they must be deployed.

Related information
Deploy pending changes

14 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 5. Managing user registries
The appliance runtime profile has a user registry associated. Use the User Registry management page to
administer the users and group memberships. The user registry in discussion here is the one used by the
runtime applications, not the one used by the management interface.

Before you begin
Note: From version 9.0.7 and above, these characters "&|\><;" are not allowed for passwords in the AAC
or Federation user registry.

Procedure
1. From the top menu, select the user interface panel for your licensing level.

• AAC > Manage > User Registry
• Federation > Manage > User Registry

A list of all the current users in the registry is displayed. You can filter and reorder the list of users.
2. Select Users (current page) or Groups to manage users or groups, respectively.
3. To manage users, perform one or more of the following actions as needed:

Create a user in the registry

a. Click New.
b. In the Create User window, enter the user name and password for the new user.
c. Click OK.

Delete a user from the registry

a. Select the user to delete.
b. Click Delete.
c. In the Delete User window, click Yes to confirm the delete operation.

Change the password of a user in the registry

a. Select the user for which you want to change password.
b. Click Set Password.
c. In the Set Password window, enter the password in the New Password and Confirm

Password fields.
d. Click OK.

Manage group memberships of a user

a. Select the user of interest. The group memberships that are associated with this user are
displayed under the Group Membership section.

b. You can add the user to a group or delete the user from a group in the registry.
Add the user to a group

i) In the Group Membership section, click Add.
ii) In the Add to Group window, select the group to add this user to.

Note: Only a single group can be selected.
iii) Click OK.

Remove the user from a group

i) In the Group Membership section, select the group to remove the user from.

ii) Click Delete.
iii) In the Remove from Group window, click Yes to confirm the removal.

4. To manage groups, perform one or more of the following actions as needed:
Create a new group in the registry

a. Click New.
b. In the New Group window, enter the group name for the new group.
c. Click OK.

Delete a group from the registry

a. Select the group to delete.
b. Click Delete.
c. In the Delete Group window, click Yes to confirm the delete operation.

Manage group members

a. Select the group of interest. The users that are currently members of this group are displayed
under the Group Members section.

b. You can add a user to the group or delete a user from the group in the registry.

Add a user to the group

a. In the Group Members section, click Add.
b. In the Add to Group window, select the user to add to the group.

Note: Only a single user can be selected.
c. Click OK.

Remove a user from the group

a. In the Group Members section, select the user to remove from the group.
b. Click Remove.
c. In the Remove from Group window, click Yes to confirm the removal.

16 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 6. Runtime security services external
authorization service

The runtime security services external authorization service (EAS) provides the policy enforcement point
function for context-based access.

You can configure the runtime security services EAS to include context-based access decisions as part
of the standard authorization on WebSEAL requests. WebSEAL becomes the authorization enforcement
point for access to resources that context-based access protects.

The runtime security services EAS constructs a request that it sends to the policy decision point (PDP).
Based on the policy decision that is received from the PDP, the EAS takes one of the actions listed in the
following table.

Table 2. Runtime security services EAS access decisions

Action Description

Permit Grants access to the protected resource.

Deny Denies access to the protected resource.

Permit with
Authentication

Grants access to the protected resource, after a specific authentication action
successfully takes place.

Permit with Obligation Grants access to the protected resource, after the user successfully
authenticates with a secondary challenge.

Deny with Obligation Denies access to the protected resource, after the user unsuccessfully
responds to a secondary challenge.

The following steps set up the initial integration with Advanced Access Control:

1. Configure runtime security services for client certificate authentication.
2. Run the isamcfg tool to automatically update the WebSEAL configuration file and to complete other

configuration setup.
3. (Optional) Update the WebSEAL configuration file to:

• Retain the version 7.0 attribute IDs.
• Define custom attributes for the authorization service.
• Map an obligation to a URL.
• Permit access decisions when runtime security services cannot be contacted.

For information about WebSEAL, see Web Reverse Proxy configuration.

Configuring runtime security services for client certificate
authentication

Configure runtime security services for client certificate authentication used for authentication between
WebSEAL and Advanced Access Control.

About this task
Before selecting the client certificate authentication option provided in the isamcfg tool, you must
perform the following general steps for the client certificate:

1. Generate a certificate that represents the user who will be authenticating from WebSEAL, or the Web
Reverse Proxy, to Advanced Access Control. For example, use easuser.

2. Import that certificate into the WebSEAL or Web Reverse Proxy key database as a personal certificate.
3. Import the signer of this certificate as a trusted certificate in the Advanced Access Control keystore.
4. Set Accept Client Certificates to True on the appliance.

Procedure
1. Create a client certificate for user easusercert.

a. In the local management interface, go to System > Secure Settings > SSL Certificates.
b. Select the pdsrv certificate database.
c. Click Manage > Edit SSL Certificate Database.
d. Click Personal Certificates.
e. Click New to create a new personal certificate.
f. Provide the following information:

• Certificate Label: easusercert
• Certificate Distinguished Name: cn=easuser
• Key Size: 2048
• Expiration Time (in days): 365

g. Click Save.
2. Deploy pending changes. See Chapter 15, “Deploying pending changes,” on page 227.
3. Restart your reverse proxy instances.
4. Export the client certificate.

a. Select the pdsrv certificate database.
b. Click Manage > Edit SSL Certificate Database.
c. Click Personal Certificates.
d. Select the easusercert certificate you created.
e. Click Manage > Export.
f. Save the file.

5. Import the exported personal certificate as a signer certificate on the appliance. The signer of the
client certificate needs to be trusted. The certificate is self-signed. Importing the easusercert as a
signer certificate into the appliances allows that trust.

a. Click System > Secure Settings > SSL Certificates.
b. Select the rt_profiles_keys certificate database.
c. Click Manage > Edit SSL Certificate Database.
d. Click Signer Certificates.
e. Click Manage > Import.
f. Click Browse.

g. Browse to the directory that contains the file to be imported and select the file. Click Open.
h. Click Import. A message that indicates successful import is displayed.

6. Deploy pending changes. See Chapter 15, “Deploying pending changes,” on page 227.
7. Configure the appliance for client certificate authentication.

a. In the local management interface, go to AAC > Global Settings > Runtime Parameters.
b. Select Accept Client Certificates.
c. Click Edit and set the value as True.

8. Restart the runtime.

18 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

What to do next
Run the isamcfg tool. Ensure that you respond to the following isamcfg prompts appropriately:

• When answering the question Select the method for authentication between WebSEAL
and the Advanced Access Control rumtime listening interface in the isamcfg tool,
select Certificate Authentication.

• When prompted to enter the Advanced Access Control rumtime listening interface SSL
keyfile label, enter the label of the certificate that represents the user who will be authenticating
from WebSEAL or Web Reverse Proxy to Advanced Access Control.

For more information, see “isamcfg Security Verify Access appliance configuration worksheet” on page
99.

Permitting access decisions when runtime security services cannot
be contacted

Update the WebSEAL configuration file if you want to change the behavior when runtime security services
servers cannot be contacted by the EAS.

About this task
By default, if the EAS cannot contact a runtime security services server, the EAS removes the server from
the pool of servers. If all of the servers are removed from the pool, WebSEAL returns an error. To prevent
the error, you can permit access decisions even if no servers can be contacted. The following instructions
show you how to update the WebSEAL configuration file to make this change.

Important: When you perform this task, every single request will be permitted only when none of the
runtime security services servers are available. This includes access that might not be permitted if the
server was available.

Procedure
1. Open the WebSEAL configuration file.
2. Add the following entry to the [rtss-eas] stanza:

permit-when-no-rtss-available = true

The default value for this entry is false.
3. Save the file.
4. Restart the WebSEAL server for the change to take effect.

Results
If none of the servers are available, the user is always be permitted to access a resource. The access is
granted even when the runtime security services server would normally deny access if it was available.

Retaining the version 7.0 attribute IDs in existing policies
If your existing policies contain any of the changed attribute IDs, you can update your WebSEAL
configuration file to continue using risk-based access version 7.0 IDs.

Before you begin
. Determine whether it is necessary for you to continue using the risk-based access version 7.0 IDs.

About this task
Use the following procedure to continue to use the version 7.0 attribute IDs.

Chapter 6. Runtime security services external authorization service 19

Procedure
1. Open the WebSEAL configuration file, and locate the [rtss-eas] stanza.
2. Add the provide_700_attribute_ids flag and set it to true. This flag enables your existing

policies to use the version 7.0 attribute IDs. For example:

[rtss-eas]
provide_700_attribute_ids = true

3. Save the file.
4. Restart the WebSEAL server for the changes to take effect.

20 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 7. Adding runtime listening interfaces
Add your interfaces to the list of runtime listening interfaces. This procedure enables communication
between an appliance with Advanced Access Control and another Security Verify Access appliance.

Before you begin
When you run the isamcfg tool, ensure that you specify the runtime listening interface host name and
port when prompted.

Define your interfaces.

About this task
If you want to configure a specific IP other than using the Local Host of the Verify Access Appliance, you
must configure this as an Interface.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Global Settings, click Runtime Parameters.
4. On the Runtime Tuning Parameters page, click Add to add a runtime listening interface on port 443:

a) For Interface, select your interface.
b) For Port, select or type 443.
c) Ensure SSL is checked.
d) Click OK.

5. Click Add to add a runtime listening interface on port 80:
a) For Interface, select your interface.
b) For Port, select or type 80.
c) Clear the SSL checkbox.
d) Click OK.

6. Deploy these changes.

22 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 8. Support for compliance with NIST
SP800-131a

Advanced Access Control supports the requirements that are defined by the National Institute of
Standards and Technology (NIST) Special Publications 800-131a.

SP 800-131a strengthens security by defining stronger cryptographic keys and more robust algorithms.
The standard defines a period to allow customers time to make the transition to the new requirements.
The transition period closes at the end of 2013. See the NIST publication Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and Key Lengths for the new standards that are
defined by Special Publication 800-131, and details about allowed protocols, cipher suites, and key
strength.

You can run the appliance that provides Advanced Access Control in either of the two modes that are
supported by NIST SP800-131a:

• Transition mode
• Strict mode

When configured in transition mode, server components support the transition mode Transport Layer
Security (TLS) protocols, which include TLS 1.0 and TLS 1.1. Client components, such as the HTTPS client
that performs one-time password (OTP) delivery and the syslog auditing client, support TLS 1.2 only.

When configured in strict mode, both the server components and the client components of Advanced
Access Control support TLS 1.2 only.

To deploy in transition mode, you need to select only the mode during initial configuration of the
appliance. To run in strict mode, you must also set an extra configuration option.

If your deployment uses client certificate authentication, and you want to use strict mode, you must
complete more configuration steps for the point of contact server. The point of contact server can be
either IBM Security Verify Access WebSEAL or IBM Security Web Gateway appliance 7.0.

Transition mode
When you install the appliance, select the option to enable FIPS 140-2 mode. This selection turns on
compliance for NIST SP800-131a.

When enabled, NIST SP800-131a compliance is run in transition mode. You do not have to complete any
further configuration steps in order to run in transition mode.

Note:

• Enable FIPS 140-2 mode only if you must comply with the NIST SP800-131a requirements. There is no
advantage to enabling FIPS 140-2 mode if your installation does not require this compliance.

Important: The setting of the FIPS 140-2 Mode option is permanent and cannot be turned off after it is
enabled. To disable the option, you must reinstall the appliance.

• If you enable FIPS 140-2 mode, the appliance is automatically restarted before it continues with the
rest of the setup.

• FIPS Limitation: For Advanced Access Control, the FIPS 140-2 mode option in the appliance setup
wizard does not turn on compliance for FIPS 140-2. It turns on compliance for NIST SP800-131a only.

Strict mode
Overview of configuration tasks:

1. Enable FIPS 140-2 mode during appliance configuration.
2. Set a tuning parameter to enable strict mode.

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

3. (Optional) If your deployment uses client certificate authentication, configure TLS v1.2.

Instructions:

1. Install the appliance and choose to enable FIPS 140-2 mode. This selection turns on compliance for
NIST SP800-131a.

2. Use the appliance local management interface (LMI) to modify the advanced tuning parameter
nist.sp800-131a.strict. This parameter is set by default to false. Complete the following steps:

a. Verify that your browser supports TLS 1.2.

CAUTION: Strict mode requires the use of TLS 1.2. Some browsers support TLS 1.2 but have
the support disabled by default. If you set the value of the nist.sp800-131a.strict
parameter to true, and your browser is not configured to support TLS 1.2, you lose access to
the appliance LMI.

b. On the LMI, select System > System Settings > Advanced Tuning Parameters.
c. Select nist.sp800-131a.strict. Select Edit. Change the value to true.

3. Determine whether your deployment uses basic authentication or client certificate authentication, for
communication between Advanced Access Control and the point of contact server.

• If you use basic authentication, the configuration is complete.
• If you use client certificate authentication, continue with the next section.

Client certificate configuration for strict mode
If you use client certificate authentication on the point of contact server, you must configure it to be in
compliance with NIST SP800-131a strict mode.

To comply with strict mode, configure the point of contact server to use TLS v.1.2 for client certificate
authentication.

You must create a self-signed certificate, and configure the point of contact server to use TLS v1.2 with
the runtime security services external authorization service (EAS). Complete each of the following tasks:

1. Create a self-signed certificate.

• Review the "Before you begin" section of “Configuring runtime security services for client certificate
authentication” on page 17. Select one of the following actions, as fits your deployment:

– If your deployment uses Web Reverse Proxy, follow the instructions in “Configuring runtime
security services for client certificate authentication” on page 17. In Step 1 “Create a client
certificate for user easusercert", specify:

 Signature Algorithm: SHA2withRSA

– If your deployment uses WebSEAL:

Manually create a self-signed certificate. To specify a NIST-compliant algorithm, use an external
utility such as gsk7ikm. Open the pd.srv certificate database, and create a self-signed
certificate with these credentials:

 Certificate Label: easusercert
 Certificate Distinguished Name: cn=easuser
 Key Size: 2048
 Expiration Time (in days): 365
 Signature Algorithm: SHA2withRSA

Note:

- The user cn=easuser is the built-in user, but any user with sufficient permissions (as created by
the Advanced Access Control administrator) can be used instead.

- It is not mandatory that WebSEAL has FIPS 140-2 mode configured in order to communicate
with the Advanced Access Control server. However, to comply with NIST SP800-131a strict
mode, client certificate authentication between WebSEAL and the server must be over TLS v1.2.

24 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

- See the WebSEAL information in the IBM Knowledge Center for complete information on
configuring client certificate authentication.

2. Configure the point of contact server to use TLS v1.2 with the Runtime Security Services External
Authorization Service (EAS)

The point of contact server uses the EAS to process authorization requests. The default EAS setting for
communication specifies Secure Sockets Layer (SSL) v2, which is not supported by Advanced Access
Control when it operates in NIST SP800-131a strict mode. If you do not adjust the configuration
setting for the EAS, the authorization request (and the regular ping call) does not succeed.

Select the action that fits your deployment:

• If you deploy your point of contact server on the same computer as the appliance:

a. In the Advanced Access Control local management interface, select Reverse Proxy Settings >
your_instance_name > Manage > Configuration > Edit to open the configuration file. Add the
following parameter to the existing stanza:

[rtss-cluster:cluster1]
gsk-attr-name = enum:438:1

b. Click Save. Deploy the changes. Restart the instance.
• If you deploy your point of contact server on a different computer from the appliance:

a. Open the WebSEAL instance configuration file for editing. For example: /opt/pdweb/etc/
webseald-appliance-default.conf.

b. Add the following parameter to the existing stanza:

[rtss-cluster:cluster1]
gsk-attr-name = enum:438:1

.

Chapter 8. Support for compliance with NIST SP800-131a 25

26 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 9. Authentication
Security Verify Access provides user authentication functions that allow for simple and complex
authentication scenarios.

The users who want to access your protected resources can be challenged to provide credentials to
authenticate with the various authentication technologies that are supported by Security Verify Access.
The component responsible for this capability is called the Authentication Service. The Authentication
Service consists of a framework you can use to enforce the execution of various supported authentication
mechanisms to authenticate users.

Authentication mechanisms are modules that authenticate the user with a specific challenge or
authentication technology, such as user name and password and one-time password. The order on which
the authentication mechanisms are run is controlled by an authentication policy. An authentication policy
is an XML document that you create with the authentication policy editor. The authentication policy
dictates the order of authentication mechanisms to execute.

During an authentication event, the Authentication Service manages the execution of the authentication
policy that is required for the event. Each authentication mechanism is included on the authentication
policy workflow. This workflow is started by the Authentication Service authentication policy. After
the user successfully authenticates to all of the authentication mechanisms that are required by the
authentication policy, the Authentication Service generates a user credential. This user credential creates
an authenticated session for the user at the point of contact.

The administrator can determine what information is included in the credential by configuring the
authentication policy. The authentication policy editor provides a credential editor that an administrator
can use to specify the attributes to be included in the resulting credential.

The generated credential contains:

• authenticationTypes and authenticationMechanismTypes attributes to indicate the
authentication policies.

• Authentication mechanisms that are completed during the authenticated session.

The administrator can use authenticationTypes and authenticationMechanismTypes attributes
to author an access control policy to require:

• The user to authenticate through an authentication policy or mechanism once per policy.
• The user to authenticate every time they access the protected resource.

The Authentication Service supports two flows of execution:

• Enforcement of an authentication event as a result of an access control evaluation.
• Request the user to authenticate as a result of either:

– A point of contact access control list (ACL).
– A protected object policy (POP) evaluation.

Authentication mechanisms
Security Verify Access provides the following authentication mechanisms:
One-time password authentication mechanisms

A one-time password is a password that is generated for an authentication event and is valid for one
use. The one-time password authentication capability in Security Verify Access provides the following
features:

• One-time password generation and validation with support for various implementations as provided.
• One-time password delivery with email and short message service (SMS) implementation.

• Time-based, counter-based, and RSA one-time password generation and validation that requires no
delivery mechanism.

The one-time password authentication mechanisms are described in the following table.

Mechanism Description

One-time password authentication Users provide a one-use password that is
generated for an authentication event and is
typically communicated between the client and
the server through a secure channel. The OTP
mechanism groups all the supported one-time
passwords methods in a single flow and ask
the user to select which one-time password
method to use to login. The user can select from
the supported one-time password authentication
methods:

• HOTP
• TOTP
• RSA OTP
• MAC OTP with SMS delivery
• MAC OTP with email delivery

MAC One-time password authentication Users provide a one-use password that is
generated for an authentication event and is
typically communicated between the client and
the server through a secure channel. The MAC
mechanism generates one-time passwords by
randomly drawing one character at a time from
the configured character set until the configured
number of characters are drawn. The MAC
mechanism also stores the generated one-time
passwords in the configured one-time password
store plug-in. Each one-time password is salted
and hashed before it is stored in the configured
one-time password store plug-in. The user
can select from the supported MAC one-time
password authentication methods:

• MAC OTP with email delivery.

The email delivery sends the email address
of the user and the one-time password in a
message, whose MIME type is text/plain, to the
configured SMTP Server. The SMTP Server then
sends the one-time password to the user by
email. The product does not provide an SMTP
Server. You must configure your own SMTP
Server.

• MAC OTP with SMS delivery.

The SMS Delivery first sends the phone number
of the user and the one-time password in
an HTTP POST request, whose content type
is application/x-www-form-urlencoded,
to the configured SMS Gateway. The SMS
Gateway then sends the one-time password to

28 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Mechanism Description

the user through SMS. The product does not
provide an SMS Gateway. You must configure
your own SMS Gateway.

This mechanism also supports the one-time
password mapping rules.

HOTP One-time password authentication Users provide a one-use password that is
generated for an authentication event. The
one-time password is generated by the HOTP
method.

TOTP One-time password authentication Users provide a one-use password that is
generated for an authentication event. The TOTP
mechanism generates one-time passwords by
using a specified algorithm with a time-based
one-time password application. Passwords are
not communicated or stored, but are verified as
a match between server and client as they are
regenerated at regular intervals.

RSA One-time password authentication Users provide a one-use password that is
generated for an authentication event. The
RSA mechanism works with an RSA SecurID
Authentication Manager and passcode generator.
You must own the RSA Authentication Manager
product to use RSA as a mechanism. The RSA
Authentication Manager and passcode generator
generates a passcode every 30 - 60 seconds.
The user name and passcode are supplied by
the user and passed to the RSA Authentication
Manager. The RSA Authentication Manager
makes a decision and returns it to Security Verify
Access, which relays the decision back to the
user.

Username and Password mechanism
Users provide a user name and password.

HTTP Redirect mechanism
Use this mechanism to integrate a custom authentication mechanism into the workflow of an
authentication policy. Users provide credentials that are required by the custom authentication
mechanism.

Consent to device registration mechanism
Users provide consent to allow their device to be registered.

FIDO Universal 2nd Factor mechanism
Users authenticate through the use of registered FIDO Universal 2nd Factor tokens.

FIDO2/WebAuthn mechanism
Users authenticate through the use of registered FIDO2/WebAuthn authenticators.

FIDO2/WebAuthn registration mechanism
Users can register FIDO2/WebAuthn authenticators.

Decision JavaScript mechanism
This mechanism is used to run JavaScript rules during branching policies.

Chapter 9. Authentication 29

Authentication policies
By grouping the provided authentication mechanisms into the workflow of an authentication policy, you
can achieve several types of authentication:

• Simple authentication

Users provide basic identifying information such as a user name and password.
• Step-up authentication

Users provide a specific type of credential usually to access sensitive resources. The users might be
challenged to authenticate and provide an extra set of credentials to prove that they are allowed to
access sensitive resources.

• Multi-factor authentication

Users provide more than one type of credential to access a protected resource.

Each authentication policy has a unique identifier that you can use with an access policy or to start the
authentication service directly without any prior access policy invocation.

Web-based authentication
For web-based authentication (using HTML template files and responses)

/mga/sps/authsvc?PolicyId=urn:ibm:security:authentication:asf:<Unique PolicyId>

/mga/sps/authsvc/policy/<Unique PolicyId>

For example, the TOTP can be started like this:

/mga/sps/authsvc?PolicyId=urn:ibm:security:authentication:asf:totp

/mga/sps/authsvc/policy/totp

When the policy runs, it cycles based on a rolling StateId parameter, on either the policy URL or the
query string of the authsvc URL, depending on how it is started.

For example, /mga/sps/authsvc/policy/totp?StateId=cf845efa-52d0-4296-
a524-9028acba4108 or /mga/sps/authsvc?StateId=cf845efa-52d0-4296-
a524-9028acba4108.

REST API-based authentication
For REST based authentication (Using JSON Template files and responses). This is suitable for use
from Single Page Applications making ajax requests or other REST clients. For more information, see
Authentication Service Framework for REST API clients.

/mga/sps/apiauthsvc?PolicyId=urn:ibm:security:authentication:asf:<Unique PolicyId>

/mga/sps/apiauthsvc/policy/<Unique PolicyId>

For example, the TOTP policy can be started like this:

/mga/sps/apiauthsvc?PolicyId=urn:ibm:security:authentication:asf:totp

/mga/sps/apiauthsvc/policy/totp

When the policy runs, it cycles based on a rolling StateId parameter, on either the policy URL or the
query string of the authsvc URL, depending on how it is started.

For example, /mga/sps/apiauthsvc/policy/totp?StateId=cf845efa-52d0-4296-
a524-9028acba4108 or /mga/sps/apiauthsvc?StateId=cf845efa-52d0-4296-
a524-9028acba4108.

30 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Note: Query string invocation can be disabled through the advanced configuration parameter:
sps.authService.policyKickoffMethod.

This allows administrators to set or use ACLs or POPs and CBA policy to prevent access to certain
Authentication policies where necessary.

Authentication Service configuration overview
Most of the configuration that is associated with the authentication service and the supported
authentication mechanisms is pre-configured on the appliance. In most scenarios, this configuration is
adequate. However, some scenarios require customization to meet your requirements.

You can configure the following components to customize the authentication support:

• Configure the point of contact settings.
• Customize the authentication mechanism settings.
• Modify the template pages to customize how you interact with your users.

Point of contact settings
You can configure the point of contact in the Advanced Configuration settings of the local management
interface. For more information, see the configuration settings that begin with poc. in Managing
Advanced Configuration.

This version of the Security Verify Access simplified the configuration that is required for the
authentication service. Previous versions relied on a list of preconfigured authentication callbacks to
determine the authentication flow. The addition of the new authentication policy format eliminated
the need to rely on the authentication level value to determine the order of execution of the
authentication mechanisms. The execution of an authentication event now depends on the content of the
authentication policy. You can configure the Authentication Service to allow reauthentication. If enabled,
the Authentication Service runs all the authentication mechanisms included on the authentication policy
regardless of a pre-existing authentication session.

Access policy scenario configuration

This scenario is almost fully configured when you complete deployment and run activation and
isamcfg. To enable this scenario:

1. Create an access policy that references any of the authentication policies that are provided.
2. Attach the access policy to the resource that you want to protect.

No further configuration is needed.

Web Gateway Appliance step-up authentication scenario

This scenario requires a set of manual steps to enable it when you complete deployment and run
activation and isamcfg. This scenario relies on an ACL or POP on the point of contact configuration
to initiate the policy execution. The user must complete an authentication policy flow when the policy
requires that the user step up to a higher authentication. This setup is specific to and dependent on
the point of contact technology you are using in your environment. To configure the Web Gateway
Appliance to enable this scenario, see “Configuring step-up authentication” on page 32.

Web Gateway Appliance authentication scenario
This scenario requires a set of manual steps to enable it when you complete deployment and run
activation and isamcfg. This scenario relies on an ACL or POP on the point of contact configuration
to initiate the policy execution. The user must complete an authentication policy flow when the policy
requires that the user authenticate. This setup is specific to and dependent on the point of contact
technology you are using in your environment. To configure the Web Gateway Appliance to enable this
scenario, see “Configuring authentication” on page 34.

Chapter 9. Authentication 31

Authentication mechanism settings
You can modify authentication mechanism settings through the local management interface. See the
configuring topics for the authentication mechanisms you want to use:

• “Configuring a TOTP one-time password mechanism” on page 37
• “Configuring an HOTP one-time password mechanism” on page 35
• #unique_33
• “Configuring an RSA one-time password mechanism” on page 44
• “Configuring a MAC one-time password mechanism” on page 42
• “Configuring consent to device registration” on page 54
• “Configuring an HTTP redirect authentication mechanism” on page 53
• “Configuring username and password authentication” on page 50
• “Configuring an End-User License Agreement authentication mechanism” on page 55
• “Configuring a Knowledge Questions authentication mechanism ” on page 66

For advanced customization of the authentication service or the one-time password generation, delivery,
and verification, you can customize the mapping rules. See “Managing mapping rules” on page 79.

Template configuration
Many HTML pages and XML documents are provided to interact with your users. The pages prompt users
for authentication information, provide them with one-time passwords, or notify them of errors during
authentication. For information about customizing the template pages, see Managing template files.

Authentication configuration scenarios
Use the configuration scenarios to create a custom configuration for your environment.

Configuring step-up authentication
The appliance reverse proxy server can be configured to use the authentication service for step-up
authentication. The user is required to complete an authentication policy flow when the policy (ACL or
POP) dictates that the user steps up to a higher authentication level.

About this task
This task applies to both the Web Gateway appliance and the Security Verify Access appliance.

Procedure
1. Configure the appliance with the isamcfg tool. See “Using the isamcfg tool” on page 93 .
2. Modify the appliance stepuplogin.html file so that it redirects the authentication request to the

Security Verify Access Authentication Service.
a) Locate the stepuplogin.html file.

For information about working with reverse proxy pages, see HTML server response page
modification.

b) Edit the file to insert the following code in the JavaScript section of the file. Optionally, to indicate
where to send the user agent after successful authentication, pass the Target query string
parameters, which is the default.
For example:

var authnlevel="%AUTHNLEVEL%";
if (authnlevel == "2"){
 window.location = "https://<HOST>:<PORT>/<JUNCTION>

32 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 /sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED%&PolicyId=<POLICY_ID>";
}

Where:
HOST

The host name for the reverse proxy instance.

PORT

The port number for the reverse proxy instance.

JUNCTION
The Advanced Access Control junction name. For example: mga.

POLICY_ID
The authentication policy identifier to execute when the user is requested to step up.

The following example uses one-time password as the step-up mechanism:

var authnlevel="%AUTHNLEVEL%";
if (authnlevel == "2"){
 window.location = "https://example.com/mga/
 sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED%&PolicyId=urn:ibm:security:
 authentication:asf:otp";
}

3. Restart the appliance.
4. Verify the configuration:

a) Create a test user account.
For example:

 pdadmin> user create john cn=john, dc=iswga John Doe password

b) Activate the account.
For example:

pdadmin> user modify john account-valid yes

c) Create a test resource that is protected with level 2 authentication and place it in the document
root of the appliance reverse proxy server.
For example:

/junction-root/test.html

For information about working with reverse proxy pages, see HTML server response page
modification

d) Try accessing that resource through the appliance reverse proxy server.
For example:

https://mga.example.com/test.html

A web form is displayed and prompts you to enter the user name and password.
e) Enter the credential that you created in step “4.a” on page 33. The contents of the resource is

displayed.
f) Create a Protected Object Policy (POP) with a level 2 authentication.

For example:

pdadmin> pop create level2only
pdadmin> pop modify level2only set ipauth anyothernw 2

g) Attach the POP to the protected resource that you created in step “4.c” on page 33.
For example:

Chapter 9. Authentication 33

pdadmin> pop attach /WebSEAL/mga.example.com-default/
 test.html level2only

h) Open a new browser session and try accessing the test resource again. A web form is displayed and
prompts you to enter the user name and password.

i) Enter the credential for the test user. You are forwarded to the extended authentication endpoint.
You are now starting the authentication policy.

j) Enter the required credentials to complete the authentication policy. If you authenticate
successfully, you are redirected to back to the test resource and you can access the contents
of the resource.

Configuring authentication
The appliance reverse proxy server can be configured to use the authentication service for authentication.
The user will be required to complete an authentication policy flow when the Security Verify Access policy
(ACL or POP) dictates that the user authenticates.

Procedure
1. Configure the appliance using the isamcfg tool. See “Using the isamcfg tool” on page 93 .
2. Modify the appliance login.html so that it redirects the authentication request to the Security Verify

Access Authentication Service.
a) Locate the login.html file on the appliance.

For information about working with reverse proxy pages, see HTML server response page
modification.

b) Open the file in a text editor and insert a meta-tag refresh tag to send the request to the
authentication service. Optionally, to indicate where to send the user agent after successful
authentication, pass the Target query string parameters, which is the default.
For example:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
<meta http-equiv="refresh" content="2;url=https://<HOST>:<PORT>/<JUNCTION>/
 sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED&PolicyId=<POLICY_ID>">
<TITLE>Access Manager for Web Login</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
</BODY>
</HTML>

Where:
HOST

The host name for the reverse proxy instance.

PORT

The port number for the reverse proxy instance.

JUNCTION
The Advanced Access Control junction name. For example: mga.

POLICY_ID
The authentication policy identifier to execute when the user is requested to step up.

The following example uses user name and password as the login mechanism:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
<meta http-equiv="refresh" content="2;url=https://example.com/mga/
 sps/authsvc?Target=%HTTPS_BASE%
%URL_ENCODED%&PolicyId=urn:ibm:security:authentication:asf:password">

34 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

<TITLE>Access Manager for Web Login</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
</BODY>
</HTML>

3. Restart the appliance.
4. Verify the configuration:

a) Create a test user account.
For example:

 pdadmin> user create john cn=john,dc=iswga John Doe password

b) Activate the account.
For example:

pdadmin> user modify john account-valid yes

c) Create a test resource that is protected with the isam_mobile_anyauth ACL and place it in the
document root of WebSEAL.
For example:

junction-root/test.html

For information about working with reverse proxy pages, see HTML server response page
modification

d) Attach the isam_mobile_anyauth ACL to the protected resource.
For example:

pdadmin> acl attach /WebSEAL/mga.example.com-default/test.html
 isam_mobile_anyauth

e) Open a new browser session and try accessing the test resource. You are forwarded to the
authentication service endpoint. You are now starting the authentication policy.

f) Enter the required credentials to complete the authentication policy. If you authentication
successfully, you are redirected to the test resource and you can access the contents of that
resource.

Configuring an HOTP one-time password mechanism
The HOTP one-password mechanism relies on a public algorithm to generate the one-time password.

About this task
The HOTP client solution and Security Verify Access use the same algorithm to generate the one-time
password value. No interaction is required between the client software and the Security Verify Access
solution. The algorithm uses a shared secret key and a counter to generate the one-time password value.
Every time a new one-time password is generated, the counter value increments on both server and client
solutions. No delivery of the one-time password is required.

This task describes the steps and properties for configuring a HOTP mechanism. For information about
configuring other providers, see:

• “Configuring a MAC one-time password mechanism” on page 42
• “Configuring a TOTP one-time password mechanism” on page 37
• “Configuring an RSA one-time password mechanism” on page 44

Note: When users attempt to log in using HOTP or TOTP and submit an incorrect one-time password, they
receive one strike against their account. This strike remains on their account for a configurable duration.
By default, the duration is 10 minutes. After that duration, the strike is removed from their account. When
users submit multiple incorrect one-time passwords, they can reach a maximum and are then prevented

Chapter 9. Authentication 35

from making another attempt until one of their strikes expires. By default, the maximum is 5. If the
users log in successfully, any strikes on their account are cleared. Strikes are shared between TOTP and
HOTP. For example, if the users made two incorrect attempts using TOTP, those strikes count against
them on HOTP as well. Because user retries affect only TOTP and HOTP logins, users who exceeded
password attempt using those logins can still use other OTP provider logins or basic username/password
authentication. You can modify the password retry settings through the Advanced Configuration settings
in the local management interface. For more information, see “Managing advanced configuration” on page
238.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click HOTP One-time Password.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
HOTP

Max Counter Lookahead
The number of times to increment the counter to see whether the one-time password is valid
before stopping. Any non-negative number is valid.

The default is 25.

Password Length
The length of the generated one-time passwords, which can be 6 - 9 characters or numbers.

The default is 6.

Generation Algorithm
The algorithm that is used to generate the one-time password. Valid options include the
following algorithms:

• HmacSHA1
• HmacSHA256
• HmacSHA512

The default is HmacSHA1.

Secret key URL

The URL that is used to deliver the secret key. The QR code is also generated using this URL.
The URL format might include information specific to your environment, such as your company
name.

The default URL is:

otpauth://hotp/Example:@USER_NAME@?secret=@SECRET_KEY
@&issuer=Example&counter=0

36 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

The URL supports the following macros and may be positioned wherever their corresponding
values belong.
@SECRET_KEY@

The secret key.
@USER_NAME@

The user name of the authorized user who logs in.
@ALGORITHM@

The one-time password generation algorithm.
@DIGITS@

The one-time password length.

A secret key URL example to utilize all macros is:

otpauth://hotp/Example:@USER_NAME@?secret=@SECRET_KEY@&issuer=Example
&counter=0&algorithm=@ALGORITHM@&digits=@DIGITS@

Secret key attribute name
The attribute name that is used for storage of the HOTP secret key in the database.

Data type: String

Example: otp.hmac.hotp.secret.key

Secret key attribute namespace
The attribute namespace of the HOTP secret key. The namespace in combination with the
attribute name constitutes the unique identifier for the attribute in the database.

Data type: String

Example: urn:ibm:security:otp:hmac

Login Template Page
Override the path of the login template page that displays the form where the user can
enter the one-time password. This config enables customization of the page branding or user
experience.

If no path is specified, the default path /authsvc/authenticator/hotp/login.html is
used.

Error Template Page
Override the path of the error template page that displays errors during the one-time password
authentication. This config enables customization of the page branding or user experience.

If no path is specified, the default path /authsvc/authenticator/hotp/error.html is
used.

9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Configuring a TOTP one-time password mechanism
The TOTP one-password mechanism relies on a public algorithm to generate the one-time password.

About this task
The TOTP client solution and the Security Verify Access use the same algorithm to generate the one-time
password value. No interaction is required between the client software and the Security Verify Access
solution. The algorithm uses a shared secret key and the time to generate the one-time password value.
No delivery of the one-time password is required.

Chapter 9. Authentication 37

This task describes the steps and properties for configuring a TOTP mechanism. For information about
configuring other one-time password providers, see:

• “Configuring a MAC one-time password mechanism” on page 42
• “Configuring an HOTP one-time password mechanism” on page 35
• “Configuring an RSA one-time password mechanism” on page 44

Note: When users attempt to log in using HOTP or TOTP and submit an incorrect one-time password, they
receive one strike against their account. This strike remains on their account for a configurable duration.
By default, the duration is 10 minutes. After that duration, the strike is removed from their account. When
users submit multiple incorrect one-time passwords, they can reach a maximum and are then prevented
from making another attempt until one of their strikes expires. By default, the maximum is 5. If the
users log in successfully, any strikes on their account are cleared. Strikes are shared between TOTP and
HOTP. For example, if the users made two incorrect attempts using TOTP, those strikes count against
them on HOTP as well. Because user retries affect only TOTP and HOTP logins, users who exceeded
password attempt using those logins can still use other OTP provider logins or basic username/password
authentication. You can modify the password retry settings through the Advanced Configuration settings
in the local management interface. For more information, see “Managing advanced configuration” on page
238.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click TOTP One-time Password.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
TOTP

Generation Interval (seconds)
The number of seconds an interval lasts. This number determines how long a one-time
password is active before the next one-time password generates.

The default is 30.

Password Length
The length of the generated one-time passwords, which can be 6 - 9 characters or numbers.

The default is 6.

Skew Intervals
The skew intervals of the algorithm. The skew intervals consider any possible synchronization
delay between the server and the client that generates the one-time password. For example,
a skew interval of 2 means a one-time password in up to two intervals in the past, or two
in the future are valid. For example, if it is interval 563, and intervals are 30 seconds, then
one-time passwords for intervals 561-565 are computed and checked against within a range of
2.5 minutes.

The default is 1.

38 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

One Time Use
Whether to cache one-time passwords if they are used to successfully log in. If set to true,
then the reuse of a one-time password is prevented while it is in cache.

The default is true.

Generation Algorithm
The algorithm that is used to generate the one-time password. Valid options include the
following algorithms:

• HmacSHA1
• HmacSHA256
• HmacSHA512

The default is HmacSHA1.

Secret key URL

The URL that is used to deliver the secret key. The QR code is also generated using this URL.
The URL format might include information specific to your environment, such as your company
name.

The default URL is:

otpauth://totp/Example:@USER_NAME@?secret=@SECRET_KEY@&issuer=Example

The URL supports the following macros and may be positioned wherever their corresponding
values belong.
@SECRET_KEY@

The secret key.
@USER_NAME@

The user name of the authorized user who logs in.
@ALGORITHM@

The one-time password generation algorithm.
@DIGITS@

The one-time password length.
@PERIOD@

The one-time password generation interval.

A secret key URL example to utilize all macros is:

otpauth://totp/Example:@USER_NAME@?secret=@SECRET_KEY@&issuer=Example
&algorithm=@ALGORITHM@&digits=@DIGITS@&period=@PERIOD@

Secret key attribute name
The attribute name that is used for storage of the TOTP secret key in the database.

Data type: String

Example: otp.hmac.totp.secret.key

Secret key attribute namespace
The attribute namespace of the TOTP secret key. The namespace in combination with the
attribute name constitutes the unique identifier for the attribute in the database.

Data type: String

Example: urn:ibm:security:otp:hmac

Login Template Page
Override the path of the login template page that displays the form where the user can
enter the one-time password. This config enables customization of the page branding or user
experience.

Chapter 9. Authentication 39

If no path is specified, the default path /authsvc/authenticator/totp/login.html is
used.

Error Template Page
Override the path of the error template page that displays errors during the one-time password
authentication. This config enables customization of the page branding or user experience.

If no path is specified, the default path /authsvc/authenticator/totp/error.html is
used.

9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Configuring an OTP enrollment mechanism
Use this mechanism to add TOTP or HOTP enrollments by using a QR code or a manual code.

About this task
This task describes the steps and properties for configuring an OTP Enrollment mechanism. For more
information about authenticating with these enrollments, see:

• “Configuring an HOTP one-time password mechanism” on page 35
• “Configuring a TOTP one-time password mechanism” on page 37

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click OTP Enrollment.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Note the properties for the mechanism.
TOTP

Generation Interval
The number of seconds an interval lasts. This number determines how long a one-time
password is active before the next one-time password generates.

The default is 30.

Common
Password Length

The length of the generated one-time passwords, which can be 6-9 characters or numbers.

The default is 6.

40 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Generation Algorithm
The algorithm that is used to generate the one-time password. Valid options include the
following algorithms:

• HmacSHA1
• HmacSHA256
• HmacSHA512

The default algorithm is HmacSHA1.

Secret key URL
The URL that is used to deliver the secret key. The QR code is also generated by using this URL.
The URL format can include information specific to your environment, such as your company
name.

The default URL is:

otpauth://@OTP_METHOD@/Example:@USER_NAME@?
secret=@SECRET_KEY@&issuer=Example&algorithm=@ALGORITHM@&digits=@DIGITS@&period=@PERIO
D@&counter=0

The URL supports the following macros and can be positioned wherever their corresponding
values belong.
@SECRET_KEY@

The secret key.
@USER_NAME@

The username of the authorized user who logs in.
@ALGORITHM@

The one-time password generation algorithm.
@DIGITS@

The one-time password length.
@PERIOD@

The one-time password generation interval.
@COUNTER@

The one-time password counter.

Secret key attribute namespace
The attribute namespace of the secret key. The namespace is combined with the attribute
name to create the identifier for the attribute in the database.

For example,

urn:ibm:security:otp:hmac

Secret Key Length
The length of the secret key, which can be set to 16, 32 or 64.

The default setting is 32.

Type
The type of enrollment to offer to the user. Valid values include totp, hotp, or both. If set to
both, the mechanism prompts the user to choose between TOTP or HOTP. If set to a specific
type, the choice is skipped.

The default setting is both.

Enrollment Template Page
The path of the template page that is sent to the user with the QR code and manual code.

The default path is /authsvc/authenticator/otp/enroll.html.

Chapter 9. Authentication 41

Error Template Page
The path of the template page that is sent to the user when an error occurs.

The default path is /authsvc/authenticator/otp/error.html.

Enable Re-enrollment
If set to true, when a user attempts to add a second enrollment of the same type and that
uses the same Secret Key Attribute Name and Namespace, the pre-existing enrollment is
removed. If false, an error is returned instead.

The default setting is false.

Validate Enrollment
If true, OTP validation is required after enrollment, but before the enrollment is saved.

The default setting is true.
9. Click Save.

What to do next
When you configure one-time password providers, a message indicates that changes are not deployed.
If you finished making changes, deploy them. For more information, see Chapter 15, “Deploying pending
changes,” on page 227.

Configuring a MAC one-time password mechanism
A one-time password is valid for one session or login. The MAC password is generated by Security Verify
Access and can be delivered to the user through Short Message Service (SMS) or e-mail.

About this task
This task describes the steps and properties for configuring a MAC mechanism. For information about
configuring other providers, see:

• “Configuring an HOTP one-time password mechanism” on page 35
• “Configuring a TOTP one-time password mechanism” on page 37
• “Configuring an RSA one-time password mechanism” on page 44

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click MAC One-time Password.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.

42 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

MAC
Password Character Set

The character set from which the characters in the one-time password are generated.

The default is 0123456789.

Password Length
The length of the characters in the one-time password.

The default is 6.

Store Entry Hash Algorithm
The hash algorithm that is used for hashing the one-time password before it is stored in the
one-time password store plug-in. The supported algorithms are:

• SHA1
• SHA-256
• SHA-512

The default is SHA-256.

Store Entry Lifetime (seconds)
The length of time that the one-time password is stored. The lifetime is in seconds.

The default is 300.

Delivery Selection Template Page
Override the path of the delivery selection template page that displays the list of methods for
generating, delivering, and verifying the one-time password. Allows for the page branding or
user experience to be customized.

If no path is specified, the default path /authsvc/authenticator/macotp/
delivery_selection.html is used.

Login Template Page
Override the path of the login template page that displays the form where the user can
enter the MAC one-time password. Allows for the page branding or user experience to be
customized.

If no path is specified, the default path /authsvc/authenticator/macotp/login.html is
used.

Error Template Page
Override the path of the error template page that displays errors during the MAC one-time
password authentication. Allows for the page branding or user experience to be customized.

If no path is specified, the default path /authsvc/authenticator/macotp/error.html is
used.

Email Delivery Template
The path of the XML template to use for the email message. If no path is specified, the default
path /otp/delivery/email_message.xml is used.

SMS Delivery Template
The path of the XML template to use for the SMS message. If no path is specified, the default
path /otp/delivery/sms_message.xml is used.

9. Click Save.

What to do next
When you configure one-time password providers, a message indicates that changes have not been
deployed. If you have finished making changes, deploy them. For more information, see Chapter 15,
“Deploying pending changes,” on page 227.

Chapter 9. Authentication 43

Next, consider configuring the delivery methods for the one-time password. Both SMS and Email delivery
are enabled but you will want to configure the delivery properties, such as SMTP server or connection
URL, for your environment. See “Configuring one-time password delivery methods” on page 47.

Configuring an RSA one-time password mechanism
A one-time password is valid for one session or login. To use RSA as a mechanism, you must own RSA
Authentication Manager. The server and the client generate the passwords with the same algorithm.

Before you begin
Complete the following steps.

1. On your RSA server, generate the following files:
sdconf.rec

The configuration file for connecting to the RSA Authentication server.
sdopts.rec

The configuration properties file that contains optional configurations for load balancing.
2. See your RSA Authentication server documentation for details on creating these files and use the

following guidelines:

• On the appliance, you must specify an Agent Network Interface. See Agent Network Interface in step
“8” on page 45. If you connect the RSA server to the appliance by using an application network
interface with multiple IP addresses, list all the IP addresses in the Alternate IPs box on the RSA
server.

• For Agent type, choose Standard.
• Agent Auto-Registration must be enabled when the first RSA one-time password authentication is

performed. You can disable it after the first successful authentication is completed.

Note: The RSA one-time password mechanism does not support replication of the RSA session
information through the cluster environment. The session information is local to each cluster node
and the environment must be configured to enforce session affinity between the client and the cluster
node.

3. Move or copy the generated files from the RSA server to the appliance.

About this task
This task describes the steps and properties for configuring an RSA mechanism. For information about
configuring other providers, see:

• “Configuring an HOTP one-time password mechanism” on page 35
• “Configuring a MAC one-time password mechanism” on page 42
• “Configuring a TOTP one-time password mechanism” on page 37

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click RSA One-time Password.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

44 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
Agent Network Interface

The name of the network interface that the RSA Agent is using to connect to the RSA server.

Required: Yes

Data type: String

Valid interface values:

• 1.1
• 1.2
• 1.3
• 1.4

Note: If you are using the RSA mechanism in a cluster environment and use an application
interface with multiple IP addresses defined for that interface, use the RSA console to add all of
those IP addresses to the allowlist. See the RSA documentation for information about adding IP
addresses to the allowlist.

Example: 1.1

Server Exchange Initial Timeout
The initial timeout coefficient in milliseconds used to calculate the timeout of the request.

Required: No

Data type: Integer

Example: 1000

Server Exchange Timeout Offset
The offset timeout coefficient in milliseconds used to calculate the timeout of the request.

Required: No

Data type: Integer

Example: 200

Server Exchange Timeout Increment
The increment coefficient in milliseconds used to calculate the timeout of the request.

Required: No

Data type: Integer

Example: 100

Event Log Level
The minimum event level to be logged. Events below the level that is specified in this property are
not logged.

The events in order from lowest level to highest are:

a. OFF
b. DEBUG
c. INFO
d. WARN
e. ERROR

Chapter 9. Authentication 45

f. FATAL

Required:

Data type: String

Example: INFO. If this property is set to INFO, the DEBUG errors are not logged.

Enable Debug Tracing
The property that enables debug tracing.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, debug tracing is not enabled.

Trace Function Entries
The property that enables tracing of function entries.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, function entries are not traced.

Trace Function Exits
The property that enables tracing of exits.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, exits are not traced.

Trace Flow Statements
The property that enables tracing of flow statements.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, flow statements are not traced.

Trace Regular Statements
The property that enables tracing of regular statements.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, regular statements are not traced.

Trace Location
The property that enables the class name and line number to be displayed in the trace.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, class name and line number are not displayed.

Session Timeout
The length of time, in seconds, that a connection to the RSA Authentication Manager server
remains open before it times out when a user attempts to authenticate.

Required: No

Data type: Integer

Example: 1800
9. Click the Agent Files tab.

10. Select a file in the table the corresponds to the file you generated on the RSA server.

46 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

11. Click Upload to upload the file or Clear to remove the contents of the selected file.
The status area indicates one of three statuses:
Not uploaded

Upload is not completed.
Last upload date

Upload was completed on date indicated.
Auto-generated

The SecurID was automatically generated instead of uploaded.
Repeat this step until all of your files have been uploaded to the appliance.

12. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Configuring one-time password delivery methods
Passwords can be delivered to the user through Short Message Service (SMS) or email.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click the delivery type.

• SMS One-time Password
• Email One-time Password

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the delivery method.
SMS

Basic Authentication User Name
The username that is used in HTTP Basic authentication.

SMS Delivery does not perform the HTTP basic authentication if this configuration is not
specified.

Required: False
Multi-value: No
Example: username

Basic Authentication Password
The password that is used in HTTP basic authentication.

SMS Delivery does not perform HTTP Basic authentication if this configuration is not specified.

Chapter 9. Authentication 47

Required: False
Multi-value: No
Example: password

Connection URL
The URL of the SMS Gateway where the phone number of the user and the one-time password
is sent.
Required: True
Multi-value: No
Example: https://smsgateway.tfim.example.com/

HTTP Request Parameters
The list of name and value pairs that is included in the body of the HTTP POST request to the
SMS Gateway. In each pair, the name and the value must be separated by equal sign.

Two macros, $DEST_NO$ and MSG, are replaced by the phone number of the user and the
content of the SMS. These two macros can be used only as value in the name and value pair.

Required: True
Multi-value: Yes
Example:

• From=+0123456789
• To= $DEST_NO$
• Body= MSG

Success HTTP Response Body Regex Pattern
This parameter defines the Java™ regular-expression pattern that matches the HTTP response
body that is returned by the SMS Gateway. When the match is successful, the SMS delivery is
successful.

The default value is empty.

The default behavior is that the HTTP response body is not going to be matched against
any Java regular-expression and the success or failure decision is going to be based on the
SuccessHTTP
ReturnCode value only.

Note: If the HTTP response from the SMS Gateway does not contain a body, this matching is
not performed.

Required: False
Multi-value: No
Example:

• When the body of all responses by the SMS Gateway contains either Success or Failure
followed by no newline character, the sample SuccessHTTP
Response
BodyRegex
Pattern value is

Success

• When the body of all responses by the SMS Gateway contains the following text:

MGDID=TTTT
TTTTTTTTT
RESPONSE
CODE=NNN
SMS=TTTTTTT
TTTTTTTT
TTTTTTT

48 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

DATE=NNNNNNNN

where each line ends with the \n character without any preceding \r character, and the
RESPONSECODE is defined such that a three-digit number from 0 to 199 indicates success,
the sample SuccessHTTP
ResponseBody
RegexPattern value is

(?s).*

RESPONSE
CODE=(\d{1,2}
|[0-1]{1}
\d{2})\n.*

Success HTTP Return Code
The response code from the SMS Gateway that is an acknowledge
ment from the SMS Gateway that the request is successfully processed.

The default SuccessHTTP
ReturnCode, which is 200, is used when this configuration is not specified.

Note: The SuccessHTTP
ReturnCode match must be successful before this matching is done.

Required: False
Multi-value: No
Example: 200

HTTPS Trust Store
The keystore that validates the SMS Gateway SSL certificate.

This configuration must be specified only when SMS Delivery communicates with the SMS
Gateway by using HTTPS.

Required: False
Multi-value: No
Example: rt_profile_keys

Client Authentication Key

The keystore and certificate that are used as client certificate in SSL Client authentication in
the format:

keystore_alias

Where keystore is the name of the keystore to use and alias is the label of the certificate in the
keystore.

SMS Delivery does not perform SSL Client authentication if this configuration is not specified.

Required: False
Multi-value: No
Example: rt_profile_keys_smscert

Email
Sender Email

The email address that is used as the sender of the email that is sent to the user.
Required: True
Multi-value: No
Example: otp_emailer@example.com

SMTP Host Name
The host name of the SMTP Server.

Chapter 9. Authentication 49

Required: True
Multi-value: No
Example: smtpserver.tfim.example.com

SMTP User Name
The username that is used in SMTP authentication.
Required: False
Multi-value: No
Example: username

SMTP Password
The password that is used in SMTP authentication.
Required: False
Multi-value: No
Example: password

Use SSL
Use SSL for the connection to the SMTP server.
Required: True
Multi-value: No
Example: false

Enable STARTTLS
Defines whether STARTTLS will be used to negotiate TLS to the SMTP server.
Required: True
Default: false
Type: Boolean

TLS protocol
TLS protocol to be used when connecting to the SMTP server.
Required: True
Default: TLS
Type: String

9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Configuring username and password authentication
The user name and password authentication mechanism authenticates users with their user name and
password credentials that are stored in the Verify Access user repository.

Before you begin
This authentication mechanism uses the user registry that is configured as part of the runtime component
settings. Ensure that you configured this registry before you use the mechanism. See Chapter 4,
“Managing the runtime component,” on page 13.

Procedure
1. Log in to the local management interface.
2. Click AAC.

50 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Username Password.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
LDAP Bind DN

An LDAP account with sufficient rights to update the user registry entries. For example:
cn=SecurityMaster,secAuthority=Default

One method for creating such an account is using the pdadmin command. For example:

user create no-password-policy testapi cn=testapi,secAuthority=Default
 testapi api passw0rd (SecurityGroup ivacld-servers remote-acl-users)

Data type: String

LDAP Bind Password
The LDAP bind password.

Data type: String

LDAP Host Name
The host name of the LDAP server.

Data type: String

LDAP Port
The port number of the LDAP server.

Data type: String

Default: 389

Management Domain
The Security Verify Access Management Domain name. This name is used to determine the
location of subdomain in the registry. Subdomains are located relative to the Management
Domain LDAP location.

Data type: String

Default: Default.

SSL Enabled
Set this option to true to enable SSL to the LDAP server.

Data type: Boolean

Default: False.

SSL Trust Store
The keystore that contains the trusted CA signers for the LDAP server certificate.

Specify an SSL trust store if you use one of the following LDAP registry scenarios for user name
and password authentication:

• You configure one primary LDAP registry which uses SSL.

Chapter 9. Authentication 51

• You configure federated directories, where at least one of the directories uses SSL. In this
scenario, the Use Federated Directories Configuration property must be set to true.

The trust store you specify must be configured to work with any and all of the LDAP registries that
use SSL.

Data type: String

Use Federated Directories Configuration
Set this option to true to use the configured federated directories when authenticating a user
name and password.

If you specify true:

• The LDAP Host Name and LDAP Port properties must define a Security Verify Access user
registry. This is typically the user registry of the runtime component.

• The users in any of the additional federated directories you configure must exist in the user
registry of the runtime component. Therefore, import these users, if necessary.

Data type: Boolean

Default: false.

User Search Filter
An LDAP search filter that selects any native user entry.

Data type: String

Default: (|(objectclass=ePerson)(objectclass=Person)).

Maximum Server Connections
The maximum number of connections that can exist on the LDAP server. Valid values are 2 though
4096.

Data type: Integer

Default: 16.

Login Failures Persistent
Login failures are used with the three-strikes policy. If you set this option to false, each process
that uses this API stores the number of login failures in memory. If you use multiple appliances in
a cluster, the total number of login failures to trigger a strike-out might vary.

If you set this option to true, the strike count is stored in LDAP and shared across all servers. An
accurate count can be kept in a multiserver environment.

Data type: Boolean

Default: False.

Last successful login
If tthis property is enabled, upon a successful authentication using password, the last successful
login attribute associated with the user is updated. By default this attribute is part of the
secEntity (for full ISVA users). It can be set to a custom attribute. See Authentication service
properties.

Data type: Boolean

Default: False.
9. Click the Attributes tab.

10. Complete any of the following tasks.

Add an attribute. Complete the Registry Attribute, Context Name, Context Namespace fields for
the attribute.

52 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Modify an attribute. Modify the Registry Attribute, Context Name, Context Namespace fields for
the attribute.

Delete an attribute. Select an attribute and click delete.
By default, this mechanism uses the following attributes. These registry attributes are retrieved from
the user account in the user registry and are stored in the Session context with the context name and
name space.

Registry Attribute Context Name Context Namespace

mail emailAddress urn:ibm:security:authenticatio
n :asf:mechanism:password

mobile mobileNumber urn:ibm:security:authenticatio
n: asf:mechanism:password

11. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Configuring an HTTP redirect authentication mechanism
The HTTP redirect authentication mechanism integrates an external application that you provide to use
for authenticating users.

Before you begin
The external application that you plan to use must exist before you begin this task. The application must
meet the following requirements:

• To indicate a successful authentication, the application must generate a credential with an attribute that
matches the Success Credential Attribute Name and Success Credential Attribute Value properties.

• When the authentication is complete, the application must return control to Security Verify Access by
redirecting the browser to the location provided on the ReturnURL query string parameter when the
application was invoked.

About this task
When you are using the HTTP Redirect Authentication Mechanism the value for 'Redirect URL' redirects
the end user to an application that eventually performs an EAI Authentication.

To this effect, the application should have an associated EAI Trigger URL in the Security Verify Access
configuration file. See Configuration of the external authentication interface trigger URL.

The EAI Application should also return an attribute with a name that matches the HTTP Redirect
Authentication Mechanism property 'Success Credential Attribute Name'. The value of that credential
attribute must match the configured value in the property Success Credential Attribute Value to indicate
that the redirected authentication mechanism is successful.

When you are redirecting to the External Application, the HTTP Redirect Authenticaton mechanism
includes a Query Parameter of ReturnURL. This must be provided back to Verify Access as the am-eai-
redir-url to redirect back to the authentication mechanism for validation that the credential attribute is
added as expected.

Chapter 9. Authentication 53

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click HTTP Redirect Authentication.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
Redirect URL

The URL to the external authentication application.

Data type: String

Success Credential Attribute Name
The credential attribute name that verifies successful authentication.

Data type: String

Default: httpRedirectAuthCompleted.

Success Credential Attribute Value
The credential attribute value that verifies successful authentication.

Data type: String

Default: true.
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. When you finish
the changes, deploy them. For more information, see Chapter 15, “Deploying pending changes,” on page
227.

Configuring consent to device registration
Consent-based device registration is the process of registering the device fingerprint only after the user
consents to the device registration.

About this task
The settings of the consent to device registration mechanism specify:

• Whether to set the authentication level of the user's credential when the consent to device registration
is completed.

• The value to be used to set the authentication level. The authentication level on the credential is used to
represent the strength of the authentication that is used to generate the credential.

By default, the authentication level is not set by the consent to device registration operation. Use this task
to enable setting the authentication level on the user credential. When the authentication level is set, it
can be evaluated as part of an access control policy or by the policy enforcement point to grant access to
a resource that requires a specific authentication level .

54 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Consent to device registration.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
Set Authentication Level Credential Attribute

Enables the consent to device registration authentication to set the authentication level on the
session.

Data type: Boolean

Default: False.

Authentication Level Credential Attribute Value
The authentication level value to be used when the consent to device registration is configured to
set the authentication level.

Data type: Integer.

Default: 2.
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Configuring an End-User License Agreement authentication
mechanism

The End-User License Agreement authentication mechanism prompts the user to accept an End-User
License Agreement (EULA) during an authentication flow.

About this task
Configure the End-User License Agreement and the corresponding properties to determine when the
mechanism will show the license agreement.

Note: When you accept the license, the date that you last accepted the license file is stored.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.

Chapter 9. Authentication 55

5. Click End-User License Agreement.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
Accept If Last Accepted Date Before

If the date the user last accepted the license is before this date, the mechanism requires the user
to accept the license again.

Data type: Date

There is not a default value.

Valid values: A date in the following format: YYYY-MM-DD

Always Show License

Set this option to true so that the mechanism always prompts the user to accept the license file.

Data type: Boolean

Default value: false

License File

Specify the path to the license template file to display for the End-User License Agreement. The
path to the license file is relative to the locale in the template tree. For more information about how
to update the license and add additional license files, see Template files and Template file macros

Data type: String

Default value: /authsvc/authenticator/eula/license.txt

License Renewal Term

Specify the number of days until the user must accept the license again. When you specify a value
that is less than 1, there is not a renewal term. This property compares the date that the user last
accepted the license to the current date. The software then determines the number of days since
the user last accepted the license.

Data type: String

Default value: 0
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy them.
See Chapter 15, “Deploying pending changes,” on page 227.
Related reference
Authentication policy parameters and credentials

56 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Configuring an Email Message mechanism
The Email Message mechanism provides arbitrary information about a user via either email, webpage, or
JSON for consumption by users or applications.

Before you begin
Before using the Email Message mechanism, an SMTP server connection must first be configured. For
more information about how to configure the SMTP server connection, see Managing server connections.

About this task
This mechanism can be used in conjunction with the Info Map mechanism. The Info Map mechanism
populates some session info and potentially enriches the session further through user mapping. The
Email Message mechanism then provides this information to the user via email.

For example, for a forgotten username:

• The user initiates the forgot username flow.
• The user is prompted to enter his or her email and date of birth.
• The user provides the details.
• The Info Map mechanism performs a lookup based on the information and enriches the session with the

user name.
• The Email Message mechanism sends an email that provides the user name to the user.

If this mechanism is not used in conjunction with the Info Map mechanism, only information from the
Verify Access credential will be made available.

To use values in the Verify Access credential or session information added by the Info Map mechanism,
add wrapping @ signs to the attribute identifier in the same way as they are used in macros. For example,
to make use of a user's credential that contains the attribute "firstName" in the template page:

...
This is the welcome page for @firstName@
...

Note: The attribute identifier is case sensitive. For example, @firstname@ cannot be used to reference
the attribute firstName.

You can use the Email Message mechanism to send messages in HTML format. See “HTML format for OTP
email messages” on page 58.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Email Message.
6. Click the Properties tab.

a) Select a property that you want to configure.
b) Click Modify Property.
c) Enter the value for that property.
d) Click OK.

7. Take note of the properties for the mechanism.

Chapter 9. Authentication 57

Email Attribute Identifier

The name of the attribute that contains the email address to be used.

If this attribute is not set, the system always displays the template HTML page to the user.

Default value: emailAddress

Email Sender Value

The value to use in the sender field of an email.

Email Template

The path to the template XML file to be used when sending an email to the user.

Default value: /authsvc/authenticator/sessionattributeresponse/
email_message.xml

Note: The default value omits the locale portion of the path, which you can see in the templates
page view.

Error Template

The path to the template HTML file to be used when displaying an error message to the user.

Default value: /authsvc/authenticator/sessionattributeresponse/error.html

Server Connection
This field defines the SMTP connection that is used to send the email. You can select the SMTP
server from the drop-down list.

8. Click Save.

What to do next
After you have configured the mechanism, a message that indicates the changes are not deployed will
be displayed. Deploy changes when you are finished. For more information, see Chapter 15, “Deploying
pending changes,” on page 227.

After deploying the changes, you can create policies that include this mechanism. For more information,
see Creating an authentication policy.

HTML format for OTP email messages
The HTML format for One-Time Password (OTP) email messages includes an identifying header of the
Security Verify Access host that sent the message.

The email message mechanism supports sending an HTML formatted message to the configured SMTP
server. The server receives a message that contains a Message-ID with information that identifies the
Security Verify Access LMI host that sent the message. When your deployment is a Security Verify Access
cluster, this information is useful for determining which host sent the email.

For example, in the email below, the LMI host acme.com is included in the Message-ID.

Date: Thu, 5 Oct 2017 01:55:29 -0400 (EDT)
From: support@mycompany.com
To: testuser@example.company.com
Message-ID: <1932638797.7.1507182929009.JavaMail.www-data@acme.com>
Subject: Email Subject
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7bit

58 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Configuring the reCAPTCHA Verification authentication mechanism
The reCAPTCHA Verification authentication mechanism provides anti-robot protection.

Before you begin
The appliance uses the Google reCAPTCHA service to provide such verification. For more information, see
www.google.com/recaptcha.

Note: The appliance supports only Google reCAPTCHA V2.

Before configuring a reCAPTCHA Verification mechanism, you must first complete the following steps.

• Ensure that the appliance can connect to www.google.com. You can test the connection in the CLI, for
example:

myappliance.example.ibm.com:tools>
myappliance.example.ibm.com:tools> connect www.google.com:443
Test: www.google.com (address: 216.58.197.68) on port 443
Status: connection was successful

• Add the issuer of the Google CA certificate to the HTTP client default trust store, which is set by the
value of the util.httpClient.defaultTrustStore advanced tuning parameter. The default value
of the util.httpClient.defaultTrustStore parameter is rt_profile_keys.

1. From the top menu, select System > Secure Settings > SSL Certificates.
2. Select the rt_profile_keys key database.
3. Select Manage > Edit SSL Certificate Database.
4. Select the Signer Certificates tab.
5. Select Manage > Load.
6. Specify the following fields.

Server: www.google.com
Port:443
Certificate Label: Google

7. Click Load.

About this task
The reCAPTCHA Verification mechanism can provide protection against spam or abuse caused by robots.
With this mechanism, the user is presented with a web page that contains a simple Turing test provided
by the Google reCAPTCHA API. These tests can distinguish a human user from a robot. You can add this
mechanism to your policy to prevent robots from accessing your applications.

The following HTML snippet shows an example of embedding the reCAPTCHA mechanism in the template
page:

<form method="POST" action="@ACTION@">
 <input type="hidden" name="operation" value="verify"></input>
 <div class="g-recaptcha" data-sitekey="@SITE_KEY@"></div>

 <div class="controls">
 <input class="submitButton" id="Submit" name="Submit"
 type="submit" value="Submit"></input>
 </div>
</form>

Procedure
1. Log in to the local management interface.

Chapter 9. Authentication 59

2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click reCAPTCHA Verification.
6. Click the Properties tab.

a) Select a property that you want to configure.
b) Click Modify Property.
c) Enter the value for that property.
d) Click OK.

7. Take note of the properties for the mechanism.
Site Key

This property is embedded in the HTML template and used to generate the CAPTCHA in the client
browser.

Default value: 6LeIxAcTAAAAAJcZVRqyHh71UMIEGNQ_MXjiZKhI

Secret Key

This property is used on the server side by the appliance to verify reCAPTCHA responses with
Google.

Default value: 6LeIxAcTAAAAAGG-vFI1TnRWxMZNFuojJ4WifJWe

Note: The default Site Key and Secret Key values are designated Google test credentials. When
these default values are used, all verification requests will pass.

Template Page
The path to the template HTML page to be displayed to the user.

Default value: /authsvc/authenticator/recaptcha/standalone.html
8. Click Save.

What to do next
After you have configured the mechanism, a message that indicates the changes are not deployed will
be displayed. Deploy changes when you are finished. For more information, see Chapter 15, “Deploying
pending changes,” on page 227.

After deploying the changes, you can create policies that include this mechanism. For more information,
see Creating an authentication policy.

Configuring an Info Map authentication mechanism
Use this mechanism in your policy to return a template form and perform validation on the responding
POST data. This mechanism is intended to work in conjunction with the Email Message mechanism.

About this task
The Info Map mechanism can be used to implement JavaScript authentication mechanisms. When this
mechanism is invoked, the configured JavaScript mapping rule will be run.

• If the rule returns FALSE, then a page will be returned to the user. The JavaScript can also define which
page to return or it can use a preconfigured page. The JavaScript can also populate any macros on the
page and modify what is displayed to the user.

• If the rule returns TRUE, then the mechanism will return success and the policy will continue.

The following parameters are available in an Info Map mapping rule:

60 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Context

This is an authentication service context. It is identical to what is provided in the Authentication
Service Credential mapping rule. For more information about how to use the context, see the context
attributes section of Authentication policy parameters and credentials.

Use the context to make changes to the credential and the values that the Email Message mechanism
will display.

State

A state map that is used for the lifetime of this mechanism invocation.

Note: Each instance of this mechanism will have a new state map created per invocation of the policy.
If the user invokes the policy again, the state map will be empty because the state map is discarded
when the rule returns TRUE.

Page

The path to the page to be returned. By default, this parameter is set to the value that is configured in
the mechanism properties. It can be modified to return a different page.

Macros

A map of macros that will be populated on the returned page.

Success

Indicates whether the rule execution was successful. This parameter is set to TRUE if the rule was
successful and the policy will continue. It is set to FALSE if the rule was not successful and a page will
be returned to a user.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Info Map Authentication.
6. In the New Authentication Mechanism window, set the name and identifier of the mechanism on the

General tab. If you are modifying an existing Info Map authentication mechanism instead of creating a
new instance, values on the General tab cannot be changed.

7. Click the Properties tab.
a) Select a property that you want to configure.
b) Click Modify Property.
c) Enter the value for that property.

Template Page
This property defines the HTML template page.

Mapping Rule
Select a mapping rule from the list. Only JavaScript mapping rules in the InfoMap category are
displayed in the list for selection.

d) Click OK.
e) Repeat the previous steps as needed.

8. Click Save.

Chapter 9. Authentication 61

What to do next
After you have configured the mechanism, a message that indicates the changes are not deployed will be
displayed. Deploy the changes when you are finished. For more information, see Chapter 15, “Deploying
pending changes,” on page 227.

After deploying the changes, you can create policies that include this mechanism. For more information,
see Creating an authentication policy.

Embedding reCAPTCHA verification in an Info Map mechanism
You can embed reCAPTCHA verification in Info Map mechanism instances.

The Site Key and Secret Key configured in the reCAPTCHA Verification mechanism are made
available to the Info Map mechanism via two default macros: @RECAPTCHASITEKEY@ and
@RECAPTCHASECRETKEY@.

For more information about configuring reCAPTCHA support, see “Configuring the reCAPTCHA Verification
authentication mechanism” on page 59.

In the HTML template:

• Include the reCAPTCHA JavaScript in the head of your template
• Include the reCAPTCHA element in your form

For example:

...
<SCRIPT SRC="https://www.google.com/recaptcha/api.js" ASYNC DEFER></SCRIPT>
...
<DIV CLASS="g-recaptcha" DATA-SITEKEY="@RECAPTCHASITEKEY@"></DIV>
...

In the JavaScript mapping rule:

• The reCAPTCHA response is received in a request parameter named g-recaptcha-response
• Verification can be performed in the JavaScript mapping rule

For example:

importClass(Packages.com.ibm.security.access.recaptcha.RecaptchaClient);
...
// Retrieve the reCAPTCHA response from the request.
var captchaResponse = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:parameter",
"g-recaptcha-response");
// Verify captchaResponse with Google, using @RECAPTCHASECRETKEY@. The third parameter
allows you to overload Google's verify endpoint URL, passing null will use the default.
var captchaVerified = (captchaResponse != null) && RecaptchaClient.verify(captchaResponse,
macros.get("@RECAPTCHASECRETKEY@"), null);

Available parameters in Info Map
The following parameters are available in a mapping rule that is invoked by the Info Map authentication
mechanism.

Input Parameters
context

The same session context that is passed into the authsvc_credential mapping rule. For more
information, see Table 2 in Authentication policy parameters and credentials.
Data type: Context
Example:

62 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

context.get(Scope.REQUEST, "urn:ibm:security:asf:request:parameter", "branch");

state
Any values from earlier invocations of this instance that the Info Map authentication mechanism
placed in the user's state.
Data type: java.util.Map
Example:

state.put("testUsername", "testuser");

Output Parameters
page

The page template to be displayed if this rule returns false.
Data type: com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapString
Methods:

• java.lang.String getValue() - Returns the internal String value.
• void setValue(java.lang.String value) - Sets the internal String value.
• For more information, see the Javadoc on the appliance.

Example:

page.setValue("/authsvc/authenticator/test/error.html");

macros
Values to populate on the returned template page.
Data type: java.util.Map<java.lang.String, java.lang.String>
Example:

macros.put("@MESSAGE@", "Test message");

success
An object that captures the status of this Info Map invocation. Set it to true to signal success or
false to signal failure.
Data type: com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapResult
Methods:

• void setValue(boolean value) - Sets success or failure.
• boolean getValue() - Returns the currently set result value. If not set, the value defaults to
false.

• void endPolicyWithoutCredential() - Sets whether the running policy is ended in an error
case. No credential is returned.

• boolean isEndPolicyWithoutCredential() - Returns the currently set
endPolicyWithoutCredential value.

• For more information, see the Javadoc on the appliance.

Example:

success.setValue(true);

responseHeaders
HTTP headers to be added to the HTTP response returned by the authentication service. Header
syntax must conform to relevant RFC specifications.

Chapter 9. Authentication 63

Data type: java.util.Map<java.lang.String, java.lang.String>
Example:

responseHeaders.put("testheader", "testvalue");

fido2ClientManager
The client manager is used to create instances of LocalFIDOClients, which are used to request
attestations and assertions from a Relying Party. See “FIDO Client Manager” on page 213.
Data type: com.tivoli.am.fim.fido.server.FIDOClientManager
Methods:

• com.tivoli.am.fim.fido.server.LocalFIDOClient getClient(java.lang.String
rpId)

• For more information, see the Javadoc on the appliance.

Example:

fidoClient = fido2ClientManager.getClient("www.test.com");

Embedded Cloud Identity API calls in an Info Map mechanism
You can embed Cloud Identity (CI) API calls in Info Map mechanism instances with a new client, CI Client.
Configure a CI Server connection to make calls with the CI Client.

The client ID and client secret that are configured in the CI Server Connection are made available to the
CI Client by using the Server Connection Factory. The CI Client then automatically manages the client
credentials token.

For more information about configuring the CI Server Connection, see Server connection properties.

There are two implementations of the CI Client that are available for use:

• com.ibm.security.access.ciclient.CiClient
• com.ibm.security.access.ciclient.CiClientV2

They are functionally equivalent. The difference is that the CiClientV2 internally uses the HttpClientV2
which is a newer and more performant version of the HttpClient that is used by CiClient. For details on
how to configure the HttpClientV2 see Advanced configuration properties.

For example, using CiClient:

importPackage(Packages.com.ibm.security.access.ciclient);
importPackage(Packages.com.ibm.security.access.server_connections);
importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils);

IDMappingExtUtils.traceString("entry Cloud Identity Mapping Rule");

var connection = ServerConnectionFactory.getCiConnectionByName("milano");

var id = CiClient.getUserId(connection, "testuser@ibm.com");
if (id != null) {
 IDMappingExtUtils.traceString("CI User ID: " + id);
} else {
 IDMappingExtUtils.traceString("CI User does not exist.");
}

For example, using CiClientV2:

importPackage(Packages.com.ibm.security.access.ciclient);
importPackage(Packages.com.ibm.security.access.server_connections);
importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils);

IDMappingExtUtils.traceString("entry Cloud Identity Mapping Rule");

var connection = ServerConnectionFactory.getCiConnectionByName("milano");

64 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

var id = CiClientV2.getUserId(connection, "testuser@ibm.com");
if (id != null) {
 IDMappingExtUtils.traceString("CI User ID: " + id);
} else {
 IDMappingExtUtils.traceString("CI User does not exist.");
}

Available CI Client methods for both CiClient and CiClientV2 include:

getUser(CiServerConnection connection, String username)
Retrieve a user object (via SCIM) by username

getUserId(CiServerConnection connection, String username)
Retrieve the user's IUI (via SCIM) by username

registerAuthenticator(CiServerConnection connection, String json)
Initiate device registration (to be completed by the user's authenticator app)

getAuthenticators(CiServerConnection connection, String username)
Get all authenticators for the given user

getAuthenticator(CiServerConnection connection, String id)
Get a specific authenticator based on ID

updateAuthenticator(CiServerConnection connection, String id, String json)
Update a specific authenticator based on ID

deleteAuthenticator(CiServerConnection connection, String id)
Delete a specific authenticator based on ID

getAuthMethods(CiServerConnection connection, String username)
Get all auth methods for the given user

getAuthMethod(CiServerConnection connection, String id)
Get a specific auth method based on ID

updateAuthMethod(CiServerConnection connection, String id, String json)
Update a specific auth method based on ID

deleteAuthMethod(CiServerConnection connection, String id)
Delete a specific auth method based on ID

createTransaction(CiServerConnection connection, String authenticatorId, String json)
Create a new transaction for the given authenticator ID

getTransactions(CiServerConnection connection, String authenticatorId)
Get all transactions for the given authenticator ID

getTransaction(CiServerConnection connection, String authenticatorId, String id)
Get a specific transaction for the given authenticator ID

getRequest(CiServerConnection connection, String url)
Generic GET request on the given URL

postRequest(CiServerConnection connection, String url, String json)
Generic POST request on the given URL

putRequest(CiServerConnection connection, String url, String json)
Generic PUT request on the given URL

deleteRequest(CiServerConnection connection, String url)
Generic DELETE request on the given URL

enrollFactor(CiServerConnectionconnection, String type, String json, boolean respAsJson, String
locale)
Enroll an authentication factor based on the given type and JSON.

getFactor(CiServerConnection connection, String type, String id, String locale)
Retrieve a specific authentication factor based on ID.

getFactors(CiServerConnection connection, String search, String locale)
Retrieve all authentication factors, with an optional search string.

createFactorVerification(CiServerConnectionconnection, String type, String id, String json,
String locale)
Create a verification for the given factor based on type and enrollment ID.

getFactorVerification(CiServerConnection connection, String type, String id, String

Chapter 9. Authentication 65

verificationId, String locale)
Retrieve a specific factor verification based on type, enrollment ID, and verification ID.

getFactorVerifications(CiServerConnection connection, String type, String id, String locale)
Retrieve all factor verifications based on type and enrolment ID.

updateFactor(CiServerConnection connection, String type, String id, String json, String locale)
Update a specific authentication factor based on type and ID.

deleteFactor(CiServerConnection connection, String type, String id, String locale)
Delete a specific authentication factor based on type and ID.

verifyFactor(CiServerConnection connection, String type, String id, String verificationId,
String json, String locale)
Verify a specific authentication factor based on type and ID.

verifyTOTPFactor(CiServerConnection connection, String id, String json, String locale)
Verify a TOTP based on ID.

Configuring a Knowledge Questions authentication mechanism
The Knowledge Questions authentication mechanism is an extra step-up authentication measure that
uses knowledge questions and answers to authenticate the user.

Before you begin
The user must register answers to the knowledge questions that the mechanism uses during
authentication.

About this task
The mechanism requires users to provide personal information to successfully authenticate. You can use
the Knowledge Questions authentication mechanism:

• With user ID and password authentication to provide two-factor authentication.
• As a step-up authentication method when the user accesses a high-value resource or performs a

high-value transaction.

The administrator can configure the mechanism to provide a predetermined list of knowledge questions,
or the user can specify and register their own knowledge questions. Typical knowledge questions about
the user might include:

• Mother's maiden name.
• Name of first grade teacher.
• Name of favorite pet.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Knowledge Questions.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

66 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

8. Take note of the properties for the mechanism.
Allow User Provided Questions

Specify true to specify custom questions as opposed to pre-configured questions.

Default value: true

Valid values: Boolean

Answer Hashing Algorithm
Specify this property to indicate the hashing algorithm that the appliance uses to store the
knowledge questions for each user.

Default value: SHA-256

Valid values include the following string values:

• SHA-1
• SHA-256
• SHA-512

Answer Hashing Enabled
The mechanism uses a hashing algorithm to store hash values of the answers to the knowledge
questions provided by the user instead of storing the actual answers to the knowledge questions.
This prevents the administrator from reading the knowledge question answers for the user. Specify
False so that the mechanism does not hash the question answer before it stores it.

Default value: true

Valid values: Boolean

Correct Answers Required
Specify the number of correct answers that is required for the authentication to be successful.

Default value: 1

Valid values: Any positive integer that does not exceed the number of questions that are stored per
user.

Retry Count Attribute Name
Specify the number of times that a user can submit invalid answers to the knowledge questions.
When the user reaches this number, they are unable to authenticate.

Default value: user:knowledge:questions:retry:count

Valid values: String

Grace Period Authentication Count Attribute Name
Specify the name of the attribute that is used to record the number of times the user has
authenticated during the grace period. The number of times that the user has authenticated during
the grace period is stored in the user information database. The mechanism does not require the
user to authenticate during the grace period.

Default value: user:knowledge:questions:grace:period:count

Valid values: String

Maximum Amount of Answers Stored
Specify the maximum number of question and answer combinations that the mechanism can store
for each user.

Default value: 3

Valid values: Any positive integer.

Chapter 9. Authentication 67

Maximum Amount of Grace Period Authentications
Specify the maximum number of user authentications that the mechanism permits during the
grace period. The mechanism does not require the user to configure knowledge questions during
the grace period.

Default value: 0

Valid values: Any positive integer.

Presentation Mode
Specify Individual so that the mechanism presents one knowledge question at a time. When
you specify Group, the mechanism presents all of the knowledge questions in one form.

Default value: Group

Presentation Order
Specify Sequential so that the mechanism presents the questions in the order that they are
stored. When you specify Random, the mechanism presents the questions in random order.

Default value: Random

Questions Attribute Name
Specify the name of the attribute that is used to store the user knowledge questions in the user
information database.

Default value: user:knowledge:questions

Valid values: String

Retry Protection Enabled
Specify false to disable retry protection.

Default value: true

Valid values: Boolean

Retry Protection Max Number Of Attempts
Specify the maximum number of times that a user can supply incorrect answers before the
mechanism prohibits the user from logging in.

Default value: 5

Valid values: Integer

Retry Timeout
Specify the number of seconds that a user must wait before trying to log in again after the user
reaches the maximum number of login attempts.

Note: If a value of -1 is entered the user is locked out indefinitely until an administrator explicitly
unlocks the user with the SCIM API.

Default value: 600

Valid values: Integer

Use Exact Answer Matching
Specify true so that the mechanism performs an exact match when it validates the submitted
answer.
Default value: false
Valid values: Boolean

User Attributes Namespace
Specify the namespace to be used to store all of the user attributes that are related to the
Knowledge Questions authentication mechanism that are stored in the user information database.

Default value:
urn:ibm:security:authentication:asf:mechanism:knowledge_questions

Valid values: String

68 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy them.
See Chapter 15, “Deploying pending changes,” on page 227.
Related reference
Authentication policy parameters and credentials

Configuring a FIDO Universal 2nd Factor authentication
mechanism

The FIDO Universal 2nd Factor authentication mechanism prompts the user to sign a random challenge
string with a FIDO Universal 2nd Factor token provided during the authentication flow.

Before you begin
The user must register a compatible FIDO Universal 2nd Factor token.

Note: Support for the FIDO U2F Specification was deprecated in favor of the new FIDO2/WebAuthn
specification, which includes support for U2F devices. As a result, the ability to register new devices or
authenticate by using the FIDO Universal 2nd Factor mechanism was removed.

About this task
Configure the FIDO Universal 2nd Factor and the corresponding properties to determine the operation of
the mechanism.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click [Obsolete] FIDO Universal 2nd Factor.
6. Click Modify.
7. Click the Properties tab.

a. Select a property that you want to configure.
b. Click Modify.
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.
Application ID

The protocol, hostname, and port that the user will use to attempt authentication.

Default value: https://webseal.com

Valid values: String, valid URL

Attestation Type

The type of certificate attestation validation to perform. Specify None to not perform certificate
attestation validation. Specify Keystore to perform certificate attestation validation using
the keystore configured in attestationSource. Specify JWKS to perform certificate attestation
validation using the JSON Web Key Set configured in attestationSource.

Chapter 9. Authentication 69

Default value: None

Valid values: None, Keystore, JWKS

Attestation Source

The keystore or key set to use for certificate attestation validation. Either the name of the keystore
on the appliance, or the URL for a JSON Web Key Set.

Default value: No default value

Valid values: String

Attestation Enforcement

The level of enforcement of certificate attestation validation. When you specify Required,
certificate attestation validation is required, and requests that fail validation will return a validation
error. When you specify Optional, certificate attestation validation is performed, but requests
that fail validation will not return an error.

Default value: Required

Valid values: Required, Optional
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy them.
See Chapter 15, “Deploying pending changes,” on page 227.
Related information
Authentication policy parameters and credentials

Configuring a FIDO2/WebAuthn authentication mechanism
The FIDO2/WebAuthn authentication mechanism prompts the user to sign a random challenge string with
a FIDO2/WebAuthn authenticator provided during the authentication flow.

Before you begin
The user must register a compatible FIDO2/WebAuthn authenticator.

About this task
Configure the FIDO2/WebAuthn mechanism and the corresponding properties to determine the operation
of the mechanism.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click FIDO2 WebAuthn Authenticator.
6. Click Modify.
7. Click the Properties tab.

a. Select a property that you want to configure.
b. Click Modify.
c. Enter the value for that property.
d. Click OK.

70 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

8. Take note of the properties for the mechanism.
Relying Party Config ID

The relying party configuration ID to use with this mechanism, which identifies the Relying Party
and the relying party specific configuration to use. See “FIDO2 Configuration” on page 208.

Default value: Empty string

Example: 4df78eac-c3a5-4fbb-8e23-22abad2f3b6a

Valid values: String

Abort Policy on Error
Whether the policy should abort completely in an error case, or return a state ID such that a user
can re-attempt authentication.

Default value: false

Example: false

Valid values: boolean
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy them.
See Chapter 15, “Deploying pending changes,” on page 227.

More advanced configuration can be configured for each Relying Party ID. See “FIDO2 Configuration” on
page 208.

Configuring a QR Code authentication mechanism
The QR Code authentication mechanism is an authentication capability that permits a registered device
to scan a QR Code to authenticate the user. It provides a completely alternative-to-password method of
authenticating a user.

About this task
The mechanism requires users to scan a generated QR code to successfully authenticate using a previous
registered application such as IBM Verify or an equivalent built on the IBM Verify SDK. The QR Code
authentication mechanism operates in one of the following modes:
Initiate

In this mode the mechanism generates a QR code and displays it to the user. It then waits for the
code to be scanned or a timeout period to be reached. The waiting process consists of polling the
authentication policy using a device_session_index until it is associated with an authenticated
user. Scanning the code results in the IBM Verify mobile application contacting a companion
authentication policy. This policy uses the same mechanism in Response mode. After successful
login with the QR Code scan, there are three attributes that are made available in the session context
for downstream policies:

• urn:ibm:security:asf:qrcode.prompt- This is a confirmation message that might be used by
other mechanisms to ensure that the QR code login operation is what the user intended.

• urn:ibm:security:asf:qrcode.qr_login_session_index- This is analogous to the
user_code from the OAuth device flow.

• urn:ibm:security:asf:qrcode.qr_device_session_index- This is analogous to the
device_code from the OAuth device flow.

Response
In this mode the mechanism associates the login_session_index with the authenticated
username from the request. Any associated policy using the QR code mechanism in Initiate mode
that is polling on the device_session_index is unblocked and completed.

Chapter 9. Authentication 71

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click QR Code.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the properties for the mechanism.
Timeout

This is the period in seconds that the QR code remains valid.
Enable Browser Testing

This is a flag that can be set such that if a registered device is not available to scan the QR Code,
the user can simulate the back channel flow with another (authenticated) browser. This is only
relevant when the mechanism is configured in Response mode and should only be used for testing
the mechanism.

a. Login to IBM Security Verify Access by using a protected page. For example, <https://
<reverseproxy>>.

b. Navigate to the "backchannel" URL with a browser, where you are able to enter
the login session index (LSI) to authenticate. The LSI is shown on the QR code
login page in clear text for this reason: <https://<reverseproxy>/mga/sps/authsvc?
PolicyId=urn:ibm:security:authentication:asf:qrcode_response>

9. Click Save.

Configuring an RSA SecurID one-time password mechanism
The RSA SecurID mechanism provides support for a one-time password using an RSA SecurID token and
RSA Authentication Manager.

Before you begin
Complete the following steps on your RSA Authentication Manager server:

1. Ensure that the RSA SecurID Authentication API is enabled. Take note of the Access ID and Access
Key.

2. Ensure that an Authentication Agent has been created which can be used by the authentication
mechanism. Take note of the identity of the authentication agent.

3. Obtain the root signing certificate of the server certificate which is used by the RSA Authentication
Manager server and add this to the runtime profile trust store using the Verify Access LMI. This step
is required so that the runtime profile can 'trust' the RSA Authentication Manager server. The default
trust store for the LMI runtime profile is named: ''rt_profile_keys".

For detailed instructions on how to complete these steps, refer to the documentation provided with your
RSA Authentication Manager.

72 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

About this task
This task describes the steps and properties for configuring an RSA SecurID authentication mechanism.
For information about configuring other providers, see the following topics:

• Configuring an HOTP one-time password mechanism
• Configuring a MAC one-time password mechanism
• Configuring a TOTP one-time password mechanism

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click RSA SecurID.

6. Click .
7. Click the Properties tab.

a) Select a property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.
Access Identifier

Description: The Access Identifier for the RSA
Authentication API – as obtained from the RSA
Authentication Manager.

Required: Required if HMAC Security is enabled,
otherwise not required.

Data Type: String

Default: -

Example: 6mxv61ac0811200387sj0emkyh0d
2v3zrlu9ktgvro32y7o3lgtaqs7ac96p75dg

Access Key

Description: The Access Key for the RSA Authentication
API – as obtained from the RSA Authentication
Manager.

Required: Yes

Data Type: String

Default: -

Example: 6mxv61ac0811200387sj0emkyh0d2
v3zrlu9ktgvro32y7o3lgtaqs7ac96p75dh

Chapter 9. Authentication 73

Authentication Attempt Timeout

Description: A number, in seconds, representing how long
the server will keep the authentication attempt
ID available after each call. Defaults to a
server-defined session lifetime. For further
details refer to the RSA SecurID Authentication
API Developer’s Guide.

Required: No

Data Type: Integer

Default: 180

Example: 180

Authentication Manager Base URL

Description: The base URL to be used when accessing the
authentication API. This URL should include
everything up to, but not including, the
‘/mfa/v1_1/authn’ part of the RSA SecurID
Authentication API URL.

Required: Yes

Data Type: String

Default: -

Example: https://rsaauthmgr.ibm.com:5555

Client Identifier

Description: The client identifier to be used by this
authentication mechanism. The identifier
should match an authentication agent
which has been registered with the RSA
Authentication Manager.

Required: Yes

Data Type: String

Default: -

Enable HMAC Security

Description: Should a Hash-based Message Authentication
Code (HMAC) be used to authenticate
to the RSA Authentication Manager? This
property should only be enabled if the RSA
Authentication Manager has been configured to
require HMAC for authentication.

Required: No

Data Type: Boolean

Default: false

Example: true

74 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Network Timeout

Description: The length of time, in seconds, to wait
for a response from the RSA Authentication
Manager.

Required: No

Data Type: Integer

Default: 30

Example: 30

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Deploy pending changes.

Configuring a FIDO2/WebAuthn registration mechanism
The FIDO2/WebAuthn registration mechanism prompts the user to enroll a new FIDO2/WebAuthn
authenticator.

Before you begin
The user must own a compatible FIDO2/WebAuthn authenticator.

About this task
Configure the FIDO2/WebAuthn registration mechanism and the corresponding properties to determine
the operation of the mechanism.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click FIDO2 WebAuthn Registration.
6. Click Modify.
7. Click the Properties tab.

a. Select a property that you want to configure.
b. Click Modify.
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.
Relying Party Config ID

The relying party configuration ID to use with this mechanism, which identifies the Relying Party
and the relying party specific configuration to use. See “FIDO2 Configuration” on page 208.

Default value: Empty string

Example: 4df78eac-c3a5-4fbb-8e23-22abad2f3b6a

Valid values: String

Chapter 9. Authentication 75

Template Page
The template page to be displayed to the end user as part of this mechanism. Allows for the page
branding or user experience to be customized depending on the policy.

Default value: /authsvc/authenticator/fido/attestation.html

Example: /authsvc/authenticator/howtofido/howtofido_reg_mechanism.html

Valid values: String, valid template file

Options JSON Template
In the attestation flow an options request is usually sent from the browser to the server,
and the response is passed into the navigator.credentials.create call. This registration
mechanism will populate the options request from the Options JSON template file, instead of a
request payload. Allows for the user experience to be customized depending on the policy.

Default value: /authsvc/authenticator/fido/default_attestation_options.json

Example: /authsvc/authenticator/howtofido/
howtofido_attestation_options.json

Valid values: String, valid template file

Abort Policy on Error
Whether the policy should abort completely in an error case, or return a state ID such that a user
can re-attempt registration.

Default value: false

Example: false

Valid values: boolean
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy them.
See Chapter 15, “Deploying pending changes,” on page 227.

More advanced configuration can be configured for each Relying Party ID. See “FIDO2 Configuration” on
page 208.

Importing a bundled authentication policy
You can import an authentication policy bundle into Security Verify Access. The bundle can include the
policy definition, optional infomap-mechanism definitions, and any required mapping rules or template
files.

About this task
A complete authentication policy is made up of several different components:

1. The authentication policy definition. This definition includes a list of steps, decisions, and branches
along with any required configuration for each.

2. The authentication mechanisms.
3. Optional mapping rules.
4. Optional template files.

An authentication policy bundle is a compressed file that contains all the required components alongside
a yaml file that describes the authentication policy.

The bundle file must be a compressed file that contains:

• policy.yaml A policy file that describes the authentication policy and any required infomap
mechanisms, mapping rules and template files.

76 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

• mapping_rules An optional directory that includes all the mapping rules that are listed in the
policy.yaml file.

• template_files An optional directory that includes the template files that are listed in the
policy.yaml file.

The policy.yaml file must adhere to the schema file found at: https://github.com/IBM-Security/verify-
access-aac-authentication-policies/blob/master/policy.yaml.schema.

Existing authentication policy bundles and examples can be found at: https://github.com/IBM-Security/
verify-access-aac-authentication-policies.

The following import wizard performs these actions:

1. Upload the compressed file to Security Verify Access and validate the policy.yaml file.
2. Populate wizard pages based on the content of the policy.yaml file.
3. Allow user-defined substitutions for any macro values in the mapping rules and template files that

were defined in the policy.yaml file.
4. Create the included template files in Security Verify Access.
5. Create the included mapping rules in Security Verify Access.
6. Create the defined infomap authentication mechanisms in Security Verify Access.
7. Create the defined authentication policy in Security Verify Access.
8. Show the summary of the operations that were performed and their JSON payloads.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. In the dropdown menu item, select Import.
5. A dialog opens with a single tab that allows the authentication policy compressed file to be selected.

Click Browse to locate and select the compressed file to be imported.
6. Click Next. This action performs an upload of the compressed file to Security Verify Access where

the contents are validated. Any problems display an error message. Upon successful validation, the
wizard dialog is updated to show the details of the authentication policy that is going to be created.

7. Read through the General Information page to see a description of the authentication policy. At this
stage, make sure that any prerequisite tasks that are listed were performed. Also take note of any
post configuration tasks that need to be run upon successful completion.

8. Click Next.
9. The Authentication Policy page is shown. The page shows the name, description, identifier, and

enabled settings along with a flowchart of the authentication policy that is going to be created. If a
matching existing authentication policy exists, a warning is shown along with a checkbox that can
be selected to overwrite the existing policy. In this situation, the wizard cannot continue unless
the overwrite checkbox is selected. All the fields except the Description field are read only. The
description is pre-populated with the bundle data from the policy yaml file. If a different description
is required, update it in the field.

10. Click Next.
11. If any infomap authentication mechanisms are listed in the policy.yaml file, a page is shown in

the wizard for each mechanism. Each page shows the name, description, identifier, mapping rule, and
template file that are defined for the specific mechanism. If a matching authentication mechanism
exists, a warning is shown along with a checkbox that can be selected to overwrite the existing
mechanism. In this situation, the wizard cannot continue unless the overwrite checkbox is selected.
All the fields are read only.

12. Click Next on each authentication mechanism page.

Chapter 9. Authentication 77

https://github.com/IBM-Security/verify-access-aac-authentication-policies/blob/master/policy.yaml.schema
https://github.com/IBM-Security/verify-access-aac-authentication-policies/blob/master/policy.yaml.schema
https://github.com/IBM-Security/verify-access-aac-authentication-policies
https://github.com/IBM-Security/verify-access-aac-authentication-policies

13. If any mapping rules are listed in the policy.yaml file, a page is shown in the wizard for each
mapping rule. Each page shows the name and category of the mapping rules along with a list of
macros that can be updated for the specific mapping rule. If a matching mapping rule exists, a
warning is shown along with a checkbox that can be selected to overwrite the existing mapping. In
this situation, the wizard cannot continue unless the overwrite checkbox is selected. All the fields are
read only.

The macros table shows a list of any macros that can be set for the mapping rule. The initial value
for each macro in the list is either the default value from the policy.yaml file or the actual macro
name if no default value is set. The wizard does not enforce the update of this value. If the value is
not changed, the resulting mapping rule contains the value that is shown on the page. If the value is
set as an empty string, the macro is removed from the mapping rule.

a) To modify a macro value, select the macro in the list and click Edit.
b) Update the value and click OK.

14. Click Next for each mapping rule page.
15. If any template files are listed in the policy.yaml file, a page is shown in the wizard for each

template file. Each page shows the name and location of the template files along with a list of macros
that can be updated for the specific template file. If a matching template file exists, a warning is
shown along with a checkbox that can be selected to overwrite the existing template file. In this
situation, the wizard cannot continue unless the overwrite checkbox is selected. All the fields are
read only.

The macros table shows a list of any macros that can be set for the template file. The initial value
for each macro in the list is either the default value from the policy.yaml file or the actual macro
name if no default value is set. The wizard does not enforce the update of this value. If the value is
not changed, the resulting template file contains the value that is shown on the page. If the value is
set as an empty string, the macro is removed from the template file.

a) To modify a macro value, select the macro in the list and click Edit.
b) Update the value and click OK.

16. The Summary page is shown. The page lists all the configuration steps that are performed. Review
the operations to verify that no problems exist and click OK. The wizard performs each of the listed
configuration steps in order.

17. On completion of the configuration steps a new Summary page is shown. This screen lists the
configuration steps and the result of the operation.

18. Click Next to see the JSON Payloads page. The page shows the details of the configuration
operations that were performed. For each operation, the HTTP action and the JSON payload can
be viewed or copied. Use the Copy All button to copy the HTTP actions and JSON payloads for all the
operations to the clipboard.

19. Click Close to finish the wizard operation.

What to do next
When you configure the mechanism, a message indicates that changes are not deployed. Deploy changes
when you are finished. For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Note: During the operation of the wizard and after the authentication mechanisms are created, an
automatic deployment of any changes up to that point is performed. This deployment includes any
nondeployed changes that were performed before the running of this wizard. This deployment step is
required to make the mechanisms available during the authentication policy creation.

78 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Enabling or disabling authentication policies
You can selectively enable or disable authentication policies to control exactly which authentication
policies are enabled in your environment.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Policies.

• To enable or disable a specific authentication policy, select the authentication policy and then click
Enable or Disable. Follow the prompts.

• To enable or disable all authentication policies, click Enable all or Disable all. Follow the prompts.

Managing mapping rules
The mapping rules are JavaScript code that run during the authentication flow. Use the rules to customize
the authentication service and the one-time password generation, delivery, and verification.

Before you begin
Attention: Use extreme care when you replace mapping rules. Any change that you make to a
mapping rule can affect the entire runtime environment. Always export a copy of the original rule
you plan to replace so that you have a backup copy.

About this task
You can customize several components through JavaScript code. For example, you can customize the
Authentication Service to modify the content of user credential by modifying the AuthSvcCredential
mapping rule.

The JavaScript code is run by the Rhino JavaScript engine. Your JavaScript code must conform to
JavaScript 1.7. Your JavaScript code is not run under a browser environment. Therefore, you cannot
use objects and functions that are available only in a browser environment. You can, however, use
standard JavaScript objects (such as Math) and functions (such as parseInt). In addition, your
JavaScript code can use allowed Java classes, which you might need so that you can use operations
that are not supported by standard JavaScript functions. You can find the list of these Java classes at
“JavaScript Allowlist” on page 348. To find out more about using Java classes in JavaScript, see the Rhino
documentation https://developer.mozilla.org/en/docs/Rhino.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Advanced.
5. Take one of the following actions:

View a mapping rule:

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the mapping rule is displayed.
c. Click OK to close the panel.

Chapter 9. Authentication 79

https://developer.mozilla.org/en/docs/Rhino

Export a mapping rule:

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:
Use an existing mapping rule as the basis for the updated mapping rule.

Attention: When you replace this file, an error in the JavaScript source might be found
immediately after it is replaced or it might not be found until the file is run.

a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or the Browse button and select a file.

Attention: The name of the mapping rule cannot be replaced. The name of the uploaded
file is ignored.

d. Click OK to upload the mapping rule.

What to do next
When you replace a mapping rule, the appliance displays a message that there are undeployed changes.
Deploy the changes when you are done. For more information, see Chapter 15, “Deploying pending
changes,” on page 227.

Authentication Service Credential mapping rule
The Authentication Service Credential mapping rule is JavaScript code that you can use to customize the
information that is contained in the user credential.

During authentication, the Authentication Service gathers information about the authenticated user,
including attributes associated with the user ID. After successful authentication, the Authentication
Service provides this information to the Authentication Service Credential mapping rule. The main task
of the mapping rule is to modify or add attributes to the user information before it is used to generate a
credential.

Customizing the mapping rule is an advanced way to customize the credential. To specify basic credential
attributes, use an authentication policy and the Credentials panel in the local management interface
instead of creating a custom mapping rule. See Creating an authentication policy.

If you write your own mapping rule and use it to replace the existing rule, be aware of the following
considerations:

• Credential attributes are string values. For example, user names and lists of groups are string arrays.
• Do not use spaces, commas, or colons in credential attribute names. Use alphanumeric characters.

The sample mapping rule provides more descriptions about considerations for writing your own mapping
rule.

A default AuthSvcCredential mapping rule is provided. To review the rule:

1. Log in to the local management interface.
2. Click AAC
3. Under Policy, click Authentication.
4. Click Advanced.
5. Select AuthSvcCredential.

6. Click .

80 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

7. Choose a location and save the file.

To review an example of a customized credential mapping rule:

1. Log in to the local management interface.
2. Click System.
3. Click File Downloads.
4. Click access_control > examples > mapping_rules.
5. Select authsvc_credential.js.
6. Click Export to download the file.

If you create your own rule, use it to replace the existing rule. See the replacement instructions in
“Managing mapping rules” on page 79.

OTPGetMethods mapping rule
OTPGetMethods specifies the methods for delivering the one-time password to the user.

This sample mapping rule sets password delivery conditions for the following delivery methods:

• By email
• By SMS
• No delivery

Each delivery method includes the following attributes and their corresponding value:

id
Specifies a unique delivery method ID. This value replaces the @OTP_METHOD_ID@ macro in the OTP
Method Selection page. Use a unique value across different methods. For example, sms.

deliveryType
Specifies the delivery plug-in that delivers the one-time password. The value must match one of the
types in the DeliveryTypesToOTPDeliveryModuleIds parameter of the OTP response file. For
example, sms_delivery.

deliveryAttribute
Specifies an attribute that is associated with the delivery type. The value depends on the one-time
password provider plug-in for the delivery type. For example:

• For SMS delivery, the value is the mobile number of the user. For example, mobileNumber.
• For email delivery, the value is the email address of the user. For example, emailAddress.
• For no delivery, the value is an empty string.

label
Specifies the unique delivery method to the user. For time-based and counter-based one-time
password, use this attribute to specify the secret key of the user. If label is not specified, the time-
based and counter-based one-time password code retrieves the key by invoking the user information
provider plug-in. This parameter replaces the @OTP_METHOD_LABEL@ macro in the OTP Method
Selection page.

otpType
Specifies the one-time password provider plug-in that generates and verifies the password. The value
must match one of the types in the OTPTypesToOTPProviderModuleIds parameter of the OTP
response file. For example, mac_otp.

userInfoType
Specifies which user information provider plug-in to use to retrieve user information that is required
to calculate the one-time password. This parameter is only required if user information is used for
calculation of the one-time password.

To customize one-time password delivery, you can do one of the following actions:

• Create your own mapping rules that are based on the sample OTPGetMethods mapping rule.

Chapter 9. Authentication 81

• Modify the sample OTPGetMethods mapping rule.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

OTPGenerate mapping rule
OTPGenerate mapping rule specifies the generation of the one-time password for the user.

You can use the OTPGenerate mapping rule in the following configuration:

Modify the one-time password type of the selected method to generate the one-time password
Indicates the one-time password type to determine the one-time password Provider plug-in that
generates the one-time password for the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

OTPDeliver mapping rule
The OTPDeliver mapping rule specifies the delivery method of the one-time password to the user.

Use the following OTPDeliver mapping rules:

Generate the one-time password hint
The one-time password hint is a sequence of characters that is associated with the one-time
password. The one-time password hint is displayed in the One-Time Password Login page. It is
also sent to the user together with the one-time password.

You can customize the way the one-time password hint is generated by modifying the following
section in the default OTPDeliver mapping rule:

var otpHint = Math.floor(1000 + (Math.random() * 9000));

Note: See the comments in the mapping rule for more details.

Generate the formatted one-time password
The formatted one-time password is the formatted version of the one-time password. The
formatted one-time password, instead of the actual one-time password, is sent to the user. For
example, for one-time password hint abcd, and one-time password 12345678, you can set the
formatted one-time password as abcd-12345678. For one-time password hint efgh, and one-time
password87654321, you can set the one-time password as efgh#8765#4321.

You can customize the way that the one-time password is generated by modifying the following
section in the sample OTPDeliver mapping rule:

var otpFormatted = otpHint + "-" + otp;

Note: See the comments in the mapping rule for more details.

Modify the delivery type of the selected method for delivering the one-time password
The delivery type specifies the one-time password Delivery plug-in that delivers the one-time
password to the user.

Modify the delivery attribute of the selected method to deliver
The delivery attribute is an attribute that is associated with delivery type. The meaning of the delivery
attribute depends on the one-time password provider plug-in for the delivery type. For example, for
SMS delivery type, the delivery attribute is the mobile number of the user. For email delivery type, the
delivery attribute is the email address of the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

82 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

OTPVerify mapping rule
OTPVerify specifies the verification of the one-time password that is submitted by the user.

You can customize the sample OTPVerify mapping rule to modify the following verification rules:

Modify the one-time password type of the user
Indicates the one-time password type to determine the one-time Provider plug-in that verifies the
one-time password submitted by the user.

Set the authentication level of the user
After one-time password authentication completes, a credential is issued that contains the
authentication level of the user. You can customize the authentication level by modifying the following
section in the mapping rule:

var authenticationLevel = contextAttributesAttributeContainer.getAttributeValueByNameAndType
 ("otp.otp-callback.authentication-level", "otp.otp-callback.type");
var attributeAuthenticationLevel = new Attribute("AUTHENTICATION_LEVEL",
 "urn:ibm:names:ITFIM:5.1:accessmanager", authenticationLevel);
attributeContainer.setAttribute(attributeAuthenticationLevel);

Enforce the number of times the user can submit the one-time password in the one-time password
login page

If a user exceeds the permitted number of times to submit a one-time password, an error message
displays. You can customize the number of times that the user can submit the one-time password in
the one-time password login page by modifying the following section in the mapping rule:

var retryLimit = 5;

By default, this option is set to false.

Note: This setting applies only to MAC OTP.

Identify the secret key of a user
When a user registers with a time-based one-time password application, they are assigned a secret
key. Store the secret key in this mapping rule for verification of the user by modifying the following
code:

var secretStr = new java.lang.String(SECRET_KEY_GOES_HERE);

By default, this option is set to false.
Override the one-time password target URL

By default, a user is redirected to a target URL upon completion of an one-time password flow. That
target URL was either the initial cached request at the WebSEAL or reverse proxy instance or was
specified as part of the one-time password invocation using the Target query string parameter.
You can use the OTPVerify mapping rule to override this target URL by adding an attribute called
itfim_override_targeturl_attr. This attribute ensures that at the completion of a successful
one-time password flow, the user is redirected to the override target instead of the initial target.
Example code:

var targetUrl = new java.lang.String("http://www.example.com/url");
var targetUrlAttr = new Attribute("itfim_override_targeturl_attr",
"urn:ibm:names:ITFIM:5.1:accessmanager", targetUrl);
attributeContainer.setAttribute(targetUrlAttr);

To customize one-time password verification, you can do one of the following actions:

• Create your own verification rules that are based on the sample OTPVerify mapping rule.
• Modify the sample OTPVerify mapping rule.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

Chapter 9. Authentication 83

Customizing one-time password mapping rules to use access control context
data

Some authentication scenarios require that context data used in making an access control decision be
available during authentication. You can configure Security Verify Access to capture the content data and
make it available to the one-time password mapping rules.

About this task
You can configure Security Verify Access to perform access control policy evaluation when a resource is
accessed. The access control policy evaluation can result on a permit with authentication. The required
authentication is determined by the access control policy. Some scenarios require that the context data
used to perform the access control decision be available during the authentication. In order to provide
access to the access control context data, you can persist the context information for the predefined
authentication obligations that perform one-time password authentication.

Note: The context data available is limited to the attributes referenced by the access control policy and
the request attributes provided by the policy enforcement point. If the policy relies on the risk score to
perform access control, the context data available also includes the risk-profile attributes.

Procedure
1. Log in to the local management interface.
2. Click AAC > Global Settings > Advanced Configuration.
3. Select attributeCollection.authenticationContextAttributes.

4. Click for the property.
5. In the text field, enter a list of comma separated attribute names to be collected during the

authorization policy evaluation.
For example, if your scenario requires the authentication level and host of the request the
configuration property, enter authenticationLevel, http:host.
The access control context data is provided to the one-time password mapping rules as context
attributes values. The following format is used:

<stsuuser:Attribute name="AttributeName-AttributeURI"
 type=""authn.service.context.attribute.type.AttributeDatatype">
<stsuuser:Value>AttributeValue</stsuuser:Value>
</stsuuser:Attribute>

Where:

• name is the attribute name and attribute identifier separated by a dash (-).
• type is the attribute data type prefixed by authn.service.context.attribute.type.

For example the authenticationLevel attribute value is added as:

<stsuuser:Attribute name="authenticationlevel-urn-ibm:
 security:subject:authenticationlevel"
 type="authn.service.context.attribute.type.Integer">
<stsuuser:Value>1</stsuuser:Value>
</stsuuser:Attribute>

6. Click OK.
7. When you edit a property, a message indicates that there are undeployed changes. If you have finished

making changes, deploy them.

For more information, see Chapter 15, “Deploying pending changes,” on page 227.
8. Configure the mapping rule to use the information collected by this property as the context attribute.

a) Click AAC.
b) Under Policy, click Authentication.

84 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

c) Click Advanced.
d) Select and export the mapping rule.
e) Use a text editor and modify the rule to access the attributes collected during the access control

policy evaluation in the following format:

var accessControlAttribute =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("AttributeName-AttributeURI",
"authn.service.context.attribute.type.AttributeDatatype");

Where:

• name is the attribute name and attribute identifier separated by a dash (-).
• type is the attribute data type prefixed by authn.service.context.attribute.type.

For example, the authenticationLevel attribute can be obtained using the following
information:

var accessControlAuthenticationLevel =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("authenticationlevel-urn-ibm:security:subject:authenticationlevel",
"authn.service.context.attribute.type.Integer");

f) Save the mapping rule and take note of its location.
g) In the local management interface, click AAC.
h) Under Policy, click Authentication.
i) Click Advanced.
j) Select the mapping rule you want to replace.

k) Click Replace. The Replace Mapping Rule panel opens.
l) Click the field or the Browse button and select the file for your saved mapping rule.

Attention: The name of the mapping rule cannot be replaced. The name of the uploaded file
is ignored.

m) Click OK to upload the mapping rule.

One-time password and authentication template files
The one-time password and authentication methods rely on HTML pages to interact with users, such as
displaying errors or prompting users to provide a password or pin or to indicate the method by which
they want to receive the password. You can customize these pages using the one-time password and
authentication template files.

For information about one-time password and authentication template files, see Template files.

Push notification registration
Security Verify Access supports push notifications on both iOS and Android platforms. It can also be
configured to send push notifications to the IBM Security Verify application.

About this task
To issue a notification to a client device, a specific payload must be generated and sent to the push
notification service of the device's platform (Apple Push Notification Service, Firebase Cloud Messaging,
or Push for IBM Verify). This notification request requires a form of authentication and authorization.
To establish a trusted connection, Apple Push Notification Service requires a provider certificate,
Firebase Cloud Messaging requires a server (API) key, and Push for IBM Verify requires configuration
of authentication credentials.

Chapter 9. Authentication 85

As an administrator, you must register such forms of authentication for your authenticator applications to
successfully deliver push notifications to clients on demand. Such registration can be done through either
the local management interface or the RESTful API. For details about how to register push notification
endpoints through the RESTful API, see the RESTful API documentation.

Note: For certificate-based push notification registration, use a specific SSL certificate database for this
purpose and import all required certificates to the SSL certificate database before registration.

The Apple Push Notification Provider implementation was previously based on the Binary Provider API
prior to 10.0.2.0. When upgrading to 10.0.2.0, existing provider configurations will be updated to match
the expected settings for the new implementation, based on the Apple Push Notification service (APNs).

The only changes performed will be to change the Push Provider Host (provider_address) when the
values in the following table match.

Old Push Provider Hosts Migrated to new Push Provider Host

gateway.push.apple.com
 feedback.push.apple.com

api.push.apple.com:443

gateway.sandbox.push.apple.com
 feedback.sandbox.push.apple.com

api.development.push.apple.com:443

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Manage, click Push Notification Providers.

Adding a push notification provider

a. Click Add.
b. Provide values for the displayed fields.

Mobile Platform
Specifies whether the push notification is for iOS or Android platform.

Application ID
Identifier of the application.

Push Provider Host
Host name to be used to connect to the push service provider. The value can include port
number, for example, fcm.googleapis.com:443.

Push Provider
Select the provider for your push notifications. The available options are Firebase (Google's
push notification provider), Apple (Apple's push notification service), or Push for IBM
Verify.

Service Account File
If Firebase is selected as the Push Provider, then this field becomes available to provide
the mandatory service account JSON file. This file is obtained from the accounts section in
the external Firebase console.

Certificate Store
If iOS Application is selected in the Mobile Platform field and Apple is selected as
the Push Provider, then this field becomes available to select the certificate store on
the appliance that contains the certificate to be used to authenticate to the Apple push
notification service.

86 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Certificate Label
If iOS Application is selected in the Mobile Platform field and Apple is selected as the
Push Provider, then this field becomes available to select the certificate to be used to
authenticate to the Apple push notification service.

c. Click Save.
d. Deploy the changes.

Modifying a push notification provider

a. Select the push notification provider to be modified.
b. Click Edit.
c. Change the settings as needed.
d. Click Save.
e. Deploy the changes.

IBM Verify has the ability to send push notifications to a mobile device where the device owner after
unlocking the device can process an action of the push notification without launching IBM Verify
mobile app. This is functionality supported with a silent push payload. Security Verify Access will send
a silent push payload when the MMFA response authentication policy has a user presence mechanism
as the first step in the workflow. No other configurations will result in a silent push payload.

The silent push payload functionality is enabled by default but can be disabled by using the advanced
configuration parameter mmfa.silentpush.enabled.

Obtaining the required authentication credentials to configure push
notification for IBM Security Verify

IBM Security Verify mobile application (referred to as IBM Verify hereafter) can receive push notifications
from Security Verify Access to alert users about pending transactions. But first Security Verify Access
must be configured to have the required IBM Verify authentication credentials before it can send push
notifications to IBM Verify.

To configure your Security Verify Access appliance to send push notifications to IBM Verify, you must
create a push notification application in Security Verify Access. This process requires you to have a push
notification account including a unique client ID and client secret for push notification.

1. Send an email to the IBM Verify Administrator, verify@au1.ibm.com, with the subject line “IBM
Verify Push Notification Registration”.

In the email contents, include your Name, IBM ID, company name, customer number, and site number
(as provided in your Passport Advantage account).

For example:

Name: Joe Smith
IBM ID: jblack@thecompany.com
Company Name: The Company Pty Ltd
Customer Number: 7654321
Site Number: 1768

Privacy information:
By registering an IBM push notification account you are agreeing to provide your personal details
for registration purposes and to be kept informed via email regarding the Mobile Push service. This
data will not be shared or distributed.

View IBM Privacy Statement.

In the case that you require a copy of the data collected, you can email the IBM Verify
Administrator.

Similarly, if you would like to delete your push notification account, please send an email to the
IBM Verify administrator, verify@au1.ibm.com, with a request to delete your account. You will

Chapter 9. Authentication 87

https://www.ibm.com/privacy/us/en/?lnk=flg-priv-usen

then receive email confirmation when your account and associated personal details have been
deleted.

2. You will receive an email reply within two business days with the required configuration details
including your unique Client Id and Client Secret.

Mobile platform: iOS Application
Application ID: com.ibm.security.verifyapp
Push Provider Host: push.verify.ibm.com/v1.0/push
Push Provider: Push for IBM Verify
Client ID: xxx
Client Secret: xxx

Mobile platform: Android Application
Application ID: com.ibm.security.verifyapp
Push Provider Host: push.verify.ibm.com/v1.0/push
Push Provider: Push for IBM Verify
Client ID: xxx
Client Secret: xxx

3. Configure a new push notification application on your appliance with the configuration details provided
in the email. Select Push for IBM Verify as the Push Provider during the configuration. For more
information, see “Push notification registration” on page 85.

Cloud Identity API Integration
Cloud Identity supports several multi-factor authentication types including IBM Verify. One advantage
of leveraging authentication methods from the cloud is that the methods can be updated with newer
technology more rapidly, and new methods can be adopted without the need for a Security Verify Access
update.

A second advantage is that Cloud Identity supplies both an email gateway and an SMS gateway, for SMS
and Email OTP methods.

Instead of redirecting users to Cloud Identity to perform authentication the Cloud Identity API integration
within Verify Access can be used. This allows for complete control over the look and feel of the
authentication experience.

The API Integration is achieved through a series of Info Map rules as well as a new Authentication
Mechanism type - Cloud Identity JavaScript. The new mechanism type is very similar to an Info Map
mechanism, with a few extra properties.

Cloud Identity JavaScript
The Cloud Identity JavaScript mechanism can be used to implement authentication and user self care
flows between Security Verify Access, Cloud Identity, and the end user.

This mechanism has several properties:

Mapping Rule
The configured Info Map mapping rule to be run

Server Connection
The Cloud Identity server connection to use to perform all operations

Verify Client ID
The client ID configured for IBM Verify in Cloud Identity

Bypass if not enrolled
A boolean indicating whether to return success without attempting authentication if no multi-factor
authentication methods are enrolled.

Similar to Info Map mechanisms, if the configured mapping rule returns FALSE, then a page will be
returned to the user. The JavaScript must define which page to return. The JavaScript can also populate
any macros on the page and modify what is displayed to the user. If the rule returns TRUE, then the
mechanism will return success and the policy will continue.

88 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

http://www.ibm.com/security/identity-access-management/cloud-identity

The following parameters are available in the mapping rule: “Available parameters in Info Map” on page
62

After you have configured the mechanism, you can create policies that include this mechanism. For more
information, see Creating an authentication policy

Authentication flow
One of the Cloud Identity JavaScript mapping rules provided out of the box is the Authentication rule,
which operates at a high level as follows.

Action Result

Empty or "initiate" Produce a landing page with all authentication
methods listed such that the user can choose
which method they would like to perform
authentication with.

"chooseMethod" Create a transaction (if required) and return a page
relevant to the chosen method. Waiting page for
IBM Verify, OTP input page for SMS/Email/Time-
Based OTP, and OTP delivery detail input page for
Transient Email/SMS.

"submitTransient" Create a transient transaction with the given OTP
delivery detail. Returns a OTP input page.

"verifyOTP" Send the OTP to Cloud Identity for verification. If
the verification succeeds, progress to the next step
in the policy. If verification fails, display an error to
the user.

"poll" Check the status of the IBM Verify transaction. If
the transaction was successful progress to the next
step in the policy, otherwise display an error to the
user.

"register" When jitEnrollment is enabled, users may just-in-
time enroll if they have no enrollments when
prompted for authentication. This action is then
used to perform that enrollment.

"pollEnrollment" Used to poll an in-progress authenticator
enrollment to check if it is completed successfully
yet.

"validateOTP" In some cases, new enrollments must be
validated before they can be used at runtime for
authentication/verification. This action validates
the given OTP.

Several parameters can be modified at the beginning of the mapping rule to control different behavior:

Variable Affect Default

otpCorrelation The correlation to use in SMS and
Email OTP transactions.

"Verify Access verification"

enabledMethods The type of methods to display to
a user, if enrolled.

["Verify", "SMSOTP" "EmailOTP",
"TOTP", "TransientEmail",
"TransientSMS"]

Chapter 9. Authentication 89

Variable Affect Default

verifyTransactionMessage The transaction message to
send when creating Verify
transactions.

"You have a pending
authentication challenge."

expandVerifyMethods A boolean indicating whether all
available Verify methods should
be displayed to the user, or only
one (which is the highest priority
in verifyMethodPriority).

false

verifyMethodPriority The priority of Verify methods to
display if expandVerifyMethods is
false.

["face", "iris", "retina", "eye",
"fingerprint", "userpresence"]

jitEnrollment A boolean indicating whether to
redirect to the USC flow if no
enrollments are found.

false

hideTransientIfEnrolled A boolean indicating if transient
factors should be hidden if
the corresponding factor is fully
enrolled. For example, hide
transient email if there is a
validated email OTP enrollment
that can be used for verification.

true

User Self Care flow
One of the Cloud Identity Javascript mapping rules provided out of the box is the User Self Care rule,
which operates at a high level as follows:

Action Result

Empty or "initiate" Produce a landing page with all authentication
methods listed and an Add new button.

"register" Either register a new authenticator, or enroll a new
method type.

"validateOTP" In some cases, new enrollments must be
validated before they can be used at runtime for
authentication/verification. This action validates
the given OTP.

"pollEnrollment" Used to poll an in-progress authenticator
enrollment to check if it is completed successfully
yet.

"remove" Remove the enrollment with the given ID.

"update" Update the enrollment with a given ID. This is
mainly used to enable or disable an enrollment.

Several parameters can be modified at the beginning of the mapping rule to control different behavior:

Variable Affect Default

enabledMethods The type of methods to display
to a user, and to allow to be
enrolled.

["Verify", "SMSOTP"
"EmailOTP", "TOTP"]

90 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Configuring the authentication and access module for cookieless
operation

To allow the Authentication and access module to function in like an API, use of a client side cookie can
be avoided with an advanced configuration option.

Before you begin
Configure the appliance to use Authentication-based and Content-based access with one of the following
methods:

• Set up the Distributed Map (DMap)
• Set up a Distributed Session Cache (DSC)

About this task
When the cookieless operation is enabled, several configuration options are available to suit a range of
deployment configurations and use cases.

In a high availability or clustered environments it is recommended that session affinity is enforced for a
sufficient period of time to allow session replication between nodes. The length of time that sticky session
is enforced depends on the deployment.

During normal operation a jsession cookie is still returned. However if this sessions cookie is returned
in subsequent requests, it is ignored by the authentication service.

Note: This configuration option only removes the reliance on session cookies for the authentication
service (/sps/authsvc and /sps/apiauthsvc) endpoints. Users still require a WebSEAL session
cookie to maintain state.

Configure the Authentication-based and Content-based access module to not rely on client side cookies
to store authentication information.

Administrators can choose to store this information in either the DSC, Memory, or the DMap, depending
on deployment requirements.

Procedure
1. In the local management interface, click AAC > Advanced Configuration.
2. To enable cookies operation, toggle the authsvc.stateMgmt.cookieless key to Enabled.
3. Select session store by using the authsvc.stateMgmt.store key (either DSC for the Distributed

Session Cache, DMap for the Distributed Map, or Memory for JVM memory caching):

• Distributed Session Cache (DSC)

a. Enable the distributedSessionCache.enabled key.
b. Set DSC parameters:

– distributedSessionCache.localCacheEnabled
– distributedSessionCache.localCacheSize
– distributedSessionCache.externalServers

• Distributed Map (DMap) or Memory

a. Set authsvc.stateMgmt.lifetime for the maximum lifetime of a session in the DMap or in
Memory.

• Memory only

a. Set authsvc.stateMgmt.memory.cleanupThread.batchSize if a maximum cleanup
batch size is required

Chapter 9. Authentication 91

Note: Setting this parameter as 0 disables this option.
b. Set authsvc.stateMgmt.memory.cleanupWait to control the cleanup thread run

frequency.

Note: Setting this parameter to -1 disables the cleanup thread.
c. Set authsvc.stateMgmt.memory.maxSessions to control the maximum number of

sessions to cache. When this value is exceeded, IBM Security Verify Access removes the oldest
sessions in the case.

Reverse Proxy Configuration with Authentication Services
In order to use the authentication service and advanced access control features, the reverse proxy
protecting resources must be configured first.

Configuring advanced access control authentication on a reverse proxy
Configure the reverse proxy protecting resources to use the authentication service and access control
features.

About this task
There is a tool in the Local Management Interface that configures a reverse proxy to work with these
services. This tool can be invoked by the User Interface or with REST APIs.

When you invoke the REST API to configure the reverse proxy from the Local Management Interface, the
following changes are made:

• The reverse proxy configuration is updated.
• Access control lists (ACLs) are created and attached.
• The rba-pop is created.
• The Runtime Server certificate is loaded into the WebSEAL Truststore.

All the changes that this API performs are documented in the REST API documentation, under
Authentication and Context based access configuration for a reverse proxy.

This API does not perform any configuration which cannot be performed with public interfaces.

After this API is invoked, the autocfg_authsvc.log file in the reverse proxy logs is available to view
the configuration that is performed.

Note: This topic only covers Authentication and Context based access. For OAuth, MMFA, or Federation,
see one of the following topics:

• “Reverse proxy configuration for OAuth and OIDC provider” on page 135
• Configuring Mobile Multi-Factor Authentication
• Configuring a reverse proxy point of contact server

To configure a reverse proxy for use with Advanced Access Control, follow the procedure below:

Procedure
1. From the local management interface, select Web > Manage > Reverse Proxy.

A list of reverse proxy instances displays.
2. Select the reverse proxy instance name from the list.
3. Select Manage > AAC and Federation Configuration > Authentication and Context Based Access

Configuration.
A window opens where you can add the configuration information. Populate or port the host as
appropriate.

92 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://www.ibm.com/support/knowledgecenter/SSPREK_9.0.6/com.ibm.isam.doc/develop/rapi/index.html

The username and password which are required are that of the RTSS and STS service user. It is, by
default easuser.

For more information on managing these users, see “Managing user registries” on page 271.

Using the isamcfg tool
The isamcfg tool is deprecated. The configuration API invoked on a reverse proxy is used instead.

Various features of Advanced Access Control can be configured with the isamcfg tool. The isamcfg tool
helps automate configuration of the following software and appliances:

• WebSEAL
• Security Verify Access appliance
• Security Verify Access for Web appliance
• Security Verify Access for Web software version
• Security Web Gateway appliance

The tools helps with:

• Creating a junction that points to the Advanced Access Control runtime endpoint.
• Creating a Security Verify Access POP used by Advanced Access Control to attach a policy.
• Configuring the instance of the appliance that supplies the web function, such as WebSEAL, with the

instance of the appliance that provides the authorization server for Advanced Access Control.
• Configuring SSL, sets up key stores, trust stores, and authentication configuration between Advanced

Access Control and the web function.
• Configuring a set of default obligation-to-URL mappings for the authentication service.
• Modifying the Security Verify Access appliance authentication configuration to support the

authentication service.

Note: If you are upgrading, see the installation and configuration instructions in the IBM Knowledge
Center.

If you are upgrading from a previous version of the product, run the isamcfg tool to unconfigure the
current version. Then, run the isamcfg tool to configure the new version.

Configuring an appliance reverse proxy instance from the appliance
Use the isamcfg tool to configure an appliance reverse proxy instance from a local or remote appliance.

About this task
Run the command from the appliance command-line interface.

You must use this method to configure a reverse proxy instance on an appliance that is a restricted node
in a cluster.

Note: Your appliance can be one of the following product versions:

• Security Verify Access 9.*
• Security Verify Access for Web 8.*
• Security Web Gateway 7.*

Procedure
1. Connect to the appliance with SSH.
2. Enter the administrator user ID and password.
3. Navigate to isva > aac > config. The isamcfg tool starts.

Chapter 9. Authentication 93

4. Use isamcfg to complete the configuration. For configuration details, see “isamcfg Security Verify
Access appliance configuration worksheet” on page 99.

Results
When you complete the configuration, a summary screen displays indicating that the configuration is
complete.

Configuring an appliance reverse proxy instance from an external machine
Use the isamcfg tool to configure an appliance reverse proxy instance from a remote machine.

Before you begin
Your appliance server and Advanced Access Control servers must be listening for connections on the
appropriate management IP addresses and port numbers.

To use the isamcfg tool, you must meet the following conditions:

• Obtain an IBM® JRE v6.0 Update 10 or later.
• At least one reverse proxy instance exists on the appliance.
• Configure the com.ibm.security.cmskeystore.CMSProvider in the java.security file, which is in
$JAVA_HOME/lib/security, of the IBM® JRE. The isamcfg tool uses the ikeycmd command to
manipulate key database files. This requires the JRE to have the CMS provider that is configured in the
java.security file.

• Ensure that the ikeycmd tool in the $JAVA_HOME/bin is on the system path.
• The reverse proxy instance that you are configuring cannot be on an appliance that is a restricted node

in a cluster. See “Configuring an appliance reverse proxy instance from the appliance” on page 93.

About this task
Use this procedure if you want to configure an appliance that is on a machine that is separate from
the Advanced Access Control appliance. Once you download the tool from the Advanced Access Control
appliance, you can then use the command shell to configure an existing remote appliance.

The appliance you configure can be one of the following product versions:

• Security Verify Access 9.*
• Security Verify Access for Web 8.*
• Security Web Gateway 7.*

Procedure
1. Download the isamcfg.jar from the IBM Security Verify Access appliance with Advanced Access

Control activated.
2. From the command line, type:

java -jar isamcfg -action config -cfgurl http://isam-appliance-host-url/

The isam-appliance-host-url/ refers to the URL of the activated Security Verify Access appliance base.
3. Use the isamcfg tool to complete the configuration. For configuration details, see “isamcfg Security

Verify Access appliance configuration worksheet” on page 99.

Results
When you complete the configuration, a summary screen displays indicating that the configuration is
complete.

94 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Configuring a WebSEAL instance
Use the isamcfg tool to configure WebSEAL as a point of contact and policy enforcement point for an
appliance that has Advanced Access Control activated.

Before you begin
Make sure that your WebSEAL server is listening for connections on the appropriate IP addresses and port
numbers. You can control the IP address and port number by using the WebSEAL configuration file. The
IP address is controlled by the [server] network-interface configuration option, and the port numbers are
controlled by the [server] https-port and [server] http-port options.

To use the isamcfg tool, you must:

• Obtain an IBM JRE, version 8.0 or later that is supported by the version of PDJrte installed.
• Ensure that the Java Runtime used to start the isamcfg tool is configured into the Security Verify

Access domain in full mode that uses the PDJRTE. An error is displayed if this condition is not
met. For more information about using the PDJRTE, see http://download.boulder.ibm.com/ibmdl/pub/
software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf.

• Ensure that the isamcfg tool is able to access the application interface for Advanced Access Control.
• Run the command from the appliance that hosts the reverse proxy instance, if the instance is a

restricted node in a cluster. Also, you must use the command-line interface to run the command.

For IBM Security Verify Access WebSEAL, version 7.0 or later, you must also meet the following
conditions:

• Configure the com.ibm.security.cmskeystore.CMSProvider in the java.security file, which is in
$JAVA_HOME/lib/security, of the IBM JRE. The isamcfg tool uses the ikeycmd command to
manipulate key database files. This requires the JRE to have the CMS provider that is configured in the
java.security file.

• Ensure that the ikeycmd tool in the $JAVA_HOME/bin is on the system path.

For Tivoli Access Manager for e-business WebSEAL versions 6.1.1 or prior, ensure that gsk7ikm tool is on
the system path.

Run the tool on the same system where WebSEAL is located.

About this task
This procedure connects the WebSEAL software version 7.* to Security Verify Access.

Note: This procedure is not intended for deployments that have a Security Verify Access appliance with
the WebSEAL function.

Procedure
1. Download the isamcfg.jar from the Security Verify Access appliance with Advanced Access Control.
2. On the WebSEAL machine, set up a JAVA_HOME environment variable for the JRE:

For example:

export JAVA_HOME=/opt/ibm/java-x86_64-60/jre, or

export JAVA_HOME=/opt/IBM/WebSphere/AppServer/java/jre
3. Add $JAVA_HOME/bin to the path export PATH=$JAVA_HOME/bin:$PATH.
4. From the command line, type:

java -jar isamcfg.jar -action config -cfgfile /path/to/webseald.conf

5. Use the isamcfg tool to complete the configuration. For configuration details, see “isamcfg WebSEAL
configuration worksheet” on page 101.

Chapter 9. Authentication 95

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf

Results
When you complete the configuration, a summary screen displays indicating that the configuration is
complete.

Configuring WebSEAL in a highly available environment
When you are working in an environment with multiple Security Verify Access with Advanced Access
Control servers, you can configure WebSEAL for failover and high availability.

About this task
You can configure the WebSEAL junction and Runtime Security Services External Authorization Service
(RTSS EAS) to take advantage of high availability.

Figure 1 on page 96 depicts an environment where WebSEAL is configured to use two Security Verify
Access servers, AAC_1 and AAC_2. AAC_1 and AAC_2 are appliances with Advanced Access Control
activated. For high availability, you can configure a stateful junction to each available appliance. You can
also include each server in the RTSS EAS configuration.

Figure 1. WebSEAL client in an environment with multiple IBM Security Verify Access servers

Advanced Access Control provides the isamcfg tool which configures each WebSEAL instance. This tool
sets up a single junction server and configures the RTSS EAS to point to a single appliance.

If you have more than one appliance with Advanced Access Control activated, you need to manually
configure the additional servers.

Procedure
1. For each Advanced Access Control appliance, include a server entry in the [rtss-
cluster:<cluster>] stanza in the WebSEAL configuration file (for example, webseald-
default.conf).

96 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

[rtss-cluster:cluster1]
server = 9,https://192.0.2.0:443/rtss/authz/services/AuthzService
server = 9,https://192.0.2.5:443/rtss/authz/services/AuthzService

Note:

• The first parameter in each entry is the priority of the server in the cluster. Set the priority of your
servers as appropriate to your environment. Using a priority of 9 for all servers evenly distributes the
load and switches between the available appliances.

• The second parameter is a well-formed Uniform Resource Locator (URL) for the runtime security
services on the appliance. Use the IP address of the application interface on the Advanced Access
Control-activated appliance.

2. Use the pdadmin utility to add extra servers to the junction.

pdadmin sec_master> server task default-webseald-test.example.com add -h
 192.0.2.0 -p 443 /mga
pdadmin sec_master> server task default-webseald-test.example.com add -h
 192.0.2.5 -p 443 /mga

Note:

• You must replace all example values in these commands with values that are appropriate to your
environment.

• The first parameter in this server task command is the fully qualified name of the WebSEAL server.
For example, default-webseald-test.example.com.

• The -h option specifies the appliance that you want to add to the junction. Use the IP address of the
application interface on the target appliance.

• The isamcfg tool creates an SSL junction by default. Therefore, when you are adding servers to this
junction, use the SSL port number 443.

• By default, the isamcfg tool creates a junction that is called /mga. This default value is used in the
example commands.

3. For secure communication between WebSEAL and the appliance, use trusted certificates. WebSEAL
must trust the certificates that are presented by the appliance. To establish this trust, you can use a
common certificate authority (CA) that is trusted in your environment or you can configure WebSEAL to
trust each individual certificate.

Similarly, for client certificate authentication, the Advanced Access Control appliance must trust the
certificates that are presented by WebSEAL.

4. To configure failover between junctioned servers, set the use-new-stateful-on-error stanza
entry to yes for the stateful junction to the appliance. That is, update the use-new-stateful-on-
error entry in the [junction:/mga] stanza in the WebSEAL configuration file. Where /mga is the
name of the junction. The isamcfg tool creates a junction that is called /mga by default, but this name
is configurable.

If a stateful junction becomes unavailable when this value is set to yes, WebSEAL fails over to a
different server. For example, if the stateful junction to AAC_1 in Figure 1 on page 96 becomes
unavailable, WebSEAL fails over to AAC_2.

isamcfg reference
Use the isamcfg tool to configure WebSEAL and Security Verify Access appliance servers. You configure
a point of contact and policy enforcement point.

The appliance you configure can be one of the following product versions:

• Security Verify Access 9.*
• Security Verify Access for Web 8.*
• Security Web Gateway 7.*

Chapter 9. Authentication 97

isamcfg command line reference
Use the command line options described in this section to configure and unconfigure WebSEAL and
Security Verify Access appliance servers.

Syntax
java -jar isamcfg.jar -action mode options

Description
The configuration tool has two modes of operation:

• config
• unconfig

Each mode uses different command line options.

Options
-action config options

This command configures a WebSEAL or Secure Verify Access appliance server. This mode uses
different command line options:
-cfgfile file

Specifies which WebSEAL configuration file to use. This option is required when configuring a
WebSEAL server.

-cfgurl URL
Specifies the appliance configuration URL to use. This option is required if configuring a Security
Verify Access appliance.

-rspfile file
Specifies the response file for a configuration that is not interactive.
Default value: Interactive configuration.

-record
Generates a response file and make some necessary changes to WebSEAL configuration file but
does not modify any other Security Verify Access appliance configuration.

-sslfactory
Specifies the secure socket connection factory to use.
When the Security Verify Access environment is enabled for NIST SP800-131a Strict mode, the
only supported factory type is TLSv1.2.
If the parameter is not specified, the factory default is TLS.

-action unconfig options
This command unconfigures a WebSEAL or Security Verify Access appliance server. This mode uses
different command line options:
-cfgfile file

Specifies which WebSEAL configuration file to use. This option is required when unconfiguring a
WebSEAL server.

-cfgurl URL
Specifies the Security Verify Access appliance configuration URL to use. This option is required
when unconfiguring a Security Verify Access appliance.

-rspfile file
Specifies the response file for a configuration that is not interactive.
Default value: Interactive configuration.

98 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

-record
Generates a response file and make some necessary changes to WebSEAL configuration file but
does not modify any other Security Verify Access appliance configuration.

-sslfactory
Specifies the secure socket connection factory to use.
When the IBM Security Verify Access environment is enabled for NIST SP800-131a Strict mode,
the only supported factory type is TLSv1.2.
If the parameter is not specified, the factory default is TLS.

Example

java -jar isamcfg.jar -action -config -cfgfile webseald.conf

The log files for the isamcfg tool are written to the system temporary directory. The system temporary
file directory is specified by the system property java.io.tmpdir.

isamcfg Security Verify Access appliance configuration worksheet
Use the worksheet for the isamcfg command-line tool to collect the information you need about the
configuration properties before you run the tool.

Description of properties
Note: If you are upgrading the Advanced Access Control module, see the installation and configuration
instructions.

Select/deselect the capabilities you would like to configure by typing its
number.

By default, the tool selects context-based authorization, authentication service, and API protection.
You can configure all of them at the same time. If you do not want to configure them all, clear the
capability that you do not want to configure by selecting its corresponding number.

Context-based Authorization

Configure this capability if your environment requires the use of behavioral and contextual data
analytics to calculate the risk of a transaction.

Authentication service

Configure this capability if your environment requires the use of a step-up authentication type of
authentication.

API Protection

Configure this capability if your environment requires the use of an OAuth authentication type to
protect your Application Programming Interface (API).

Advanced Access Control Local Management Interface hostname
Enter the Local Management Interface hostname or IP address.

Advanced Access Control Local Management Interface port

Specify the port number of the Local Management Interface. The tool displays a port number.

Example value: 443

Press Enter to use the displayed port or enter your preferred port.

Advanced Access Control administrator user ID

Press Enter to use the displayed user ID or enter your preferred user ID.

Advanced Access Control administrator password

Enter the corresponding administrator password.

Chapter 9. Authentication 99

SSL certificate data valid (y/n)

Press y to validate that the displayed SSL certificate values are valid otherwise, press n.

Security Verify Access Appliance Local Management Interface hostname

Enter the Security Verify Access Appliance Local Management Interface hostname or IP address. The
tool might display a value. Press Enter to use the displayed value or enter your preferred hostname or
IP address.

Security Verify Access Appliance Local Management Interface port

Specify the port number of the Local Management Interface port. The tool displays a port number.

Example value: 443

Press Enter to use the port or enter your preferred port.

Security Verify Access Appliance administrator user ID
Press Enter to use the user ID or enter your preferred user ID.

Security Verify Access Appliance administrator password
Enter the corresponding administrator password.

SSL certificate data valid (y/n)

Press y to validated that the displayed SSL certificate values are valid otherwise, press n.

Instance to configure
The tool displays the available instances that you can configure in a list. Select the instance that you
would like to configure.

Security Verify Access administrator user ID

Press Enter to use the displayed user ID or enter your preferred user ID.

Security Verify Access administrator password

Enter the corresponding administrator password.

Security Verify Access domain name [Default]:
Enter the corresponding domain name.

Advanced Access Control runtime listening interface hostname

Enter the hostname or IP address of the runtime listening interface for the appliance that has
Advanced Access Control activated.

Example value: 172.16.229.10

Advanced Access Control runtime listening interface port

Specify the port number of the runtime listening interface for the appliance that has Advanced Access
Control activated.

Example value: 443

Select the method for authentication between WebSEAL and the Advanced Access
Control runtime listening interface

Certificate authentication
Use a certificate to authenticate between WebSEAL and the Advanced Access Control runtime
listening interface.

User ID and password authentication
Use credentials to authenticate between WebSEAL and the Advanced Access Control runtime
listening interface.

The default username is easuser and the default password is passw0rd.

Advanced Access Control runtime listening interface user ID:

Press Enter to use the displayed user ID or enter your preferred user ID.

100 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Advanced Access Control runtime listening interface password:

Enter the corresponding Advanced Access Control runtime listening interface password.

SSL certificate data valid (y/n):

Press y to validated that the displayed SSL certificate values are valid otherwise, press n.

Automatically add CA certificate to the key database (y/n)
Press y if you want to automatically add the CA certificate to the key database, otherwise press n.

Note: Web Reverse Proxy instance restarts if y is selected.

The CA certificate already exists in the key database. Replace the CA
certificate? (y/n)

Press y if you want to automatically replace the CA certificate to the key database, otherwise press n.
The following files are available on the Security Verify Access Appliance.

Choose one file for the following pages:

• The 400 Bad Request response page. The default page is
oauth_template_rsp_400_bad_request.html.

• The 401 Unauthorized response page. The default page is
oauth_template_rsp_401_unauthorized.html.

• The 502 Bad Gateway response page. The default page is
oauth_template_rsp_502_bad_gateway.html.

If you are not running theisamcfg tool on the appliance, you can choose Cancel to upload a local file.

If you are running theisamcfg tool on the appliance, you must upload your custom response file.
Upload the file to the Security Verify Access appliance first before you run the isamcfg tool so that
the file is displayed as an option. See “Uploading OAuth response files” on page 152.

The junction mga contains endpoints that require Authorization HTTP header to
be forwarded to the backend server. Do you want to enable this feature? [y|n]?

Press y to allow endpoints that require Authorization HTTP header to be forwarded to the backend
server. Otherwise, press n.

isamcfg WebSEAL configuration worksheet
Use the worksheet for the isamcfg command-line tool to collect the information you need about the
configuration properties before you run the tool.

Description of properties
Note: If you are upgrading the Advanced Access Control module, see the installation and configuration
instructions.

Select/deselect the capabilities you would like to configure by typing its
number.

By default, the tool selects context-based authorization, authentication service, and API protection.
You can configure all of them at the same time. If you do not want to configure them all, clear the
capability that you do not want to configure by selecting its corresponding number.

Context-based Authorization

Configure this capability if your environment requires the use of behavioral and contextual data
analytics to calculate the risk of a transaction.

Authentication service

Configure this capability if your environment requires the use of a step-up authentication type of
authentication.

Chapter 9. Authentication 101

API Protection

Configure this capability if your environment requires the use of an OAuth authentication type to
protect your Application Programming Interface (API).

Advanced Access Control Local Management Interface hostname
Enter the Local Management Interface hostname or IP address.

Advanced Access Control Local Management Interface port

Specify the port number of the Local Management Interface. The tool displays a port number.

Example value: 443

Press Enter to use the displayed port or enter your preferred port.

Advanced Access Control Appliance administrator user ID

Press Enter to use the displayed user ID or enter your preferred user ID.

Advanced Access Control Appliance administrator password

Enter the corresponding administrator password.

Domain name
Enter the Security Verify Access domain name. Press Enter to use the default domain name or enter
your preferred domain name.

Security Verify Access administrator user ID

Enter a valid Security Verify Access administrator user ID. Press Enter to use the user ID or enter your
preferred user ID.

Security Verify Access administrator password
Enter the corresponding Security Verify Access administrator password.

Advanced Access Control runtime listening interface hostname

Enter the hostname or IP address of the runtime listening interface for the appliance that has
Advanced Access Control activated.

Example value: 172.16.229.10

Advanced Access Control runtime listening interface port

Specify the port number of the runtime listening interface for the appliance that has Advanced Access
Control activated.

Example value: 443

Advanced Access Control runtime listening interface SSL key file

Specify the path to the keystore that contains the SSL keys that are required to connect to the
Advanced Access Control runtime listening interface. Press Enter to use the default key file.

Advanced Access Control runtime listening interface SSL stash file

Specify the path to the stash file that contains the password to the Advanced Access Control runtime
listening interface SSL keyfile. Press Enter to use the default stash file.

Select the method for authentication between WebSEAL and the Advanced Access
Control runtime listening interface

Certificate authentication

Use a certificate to authenticate between WebSEAL and the Advanced Access Control runtime
listening interface.

Note: On Windows operating systems, you must use certificate authentication for WebSEAL from
IBM Security Verify Access for Web 7.0.0.2.

102 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

User ID and password authentication
Use credentials to authenticate between WebSEAL and the Advanced Access Control runtime
listening interface.

The default username is easuser and the default password is passw0rd.

Advanced Access Control runtime listening interface SSL key file label

Specify the key label of the certificate to present to Advanced Access Control at run time.

SSL certificate data valid (y/n)

Press y to validated that the displayed SSL certificate values are valid otherwise, press n.

Automatically add CA certificate to the key database (y/n)
Press y if you want to automatically add the CA certificate to the key database, otherwise press n.

Note: Web Reverse Proxy instance restarts if y is selected.

The CA certificate already exists in the key database. Replace the CA
certificate? (y/n)

Press y if you want to automatically replace the CA certificate to the key database, otherwise press n.
Runtime security service external authorization service library

By default, the tool displays the available library. Press Enter to use the available library or enter your
preferred library.

The 400 Bad Request response page:
Choose one for the 400 Bad Request response page. The default page is
oauth_template_rsp_400_bad_request.html.

The following files are available on the Secure Verify Access Appliance.
Choose one file for the following pages:

• The 400 Bad Request response page. The default page is
oauth_template_rsp_400_bad_request.html.

• The 401 Unauthorized response page. The default page is
oauth_template_rsp_401_unauthorized.html.

• The 502 Bad Gateway response page. The default page is
oauth_template_rsp_502_bad_gateway.html.

Using a response file
Create and use a response file with the isamcfg tool to configure WebSEAL and IBM Security Verify
Access for Web 7.0.

A response file records the actions to be taken by the isamcfg tool.

Use the -record command to create a response file without changing the configuration. For example:

/usr/lib/jvm/jre-1.7.0-ibm.x86_64/bin/java -jar
/opt/IBM/FIM/tools/isamcfg/isamcfg.jar -action config
-cfgurl https://1.1.1.1/ -record

You can then use the response file to run the isamcfg tool non-interactively. Use the -rspfile
command to run the isamcfg tool with a response file. For example:

/usr/lib/jvm/jre-1.7.0-ibm.x86_64/bin/java -jar
/opt/IBM/FIM/tools/isamcfg/isamcfg.jar -action config
-cfgurl https://1.1.1.1/ -rspfile /tmp/isamcfg-access-control.properties

The contents of a response varies depending on your configuration, for example:

#Fri Sep 06 12:45:28 EST 2013
webseal.addcacert=y
tam.admin=sec_master
wga.pass=
pop.replace=pop.reuse
mga.admin.ssl.sha1fingerprint=CD\:1C\:F0\:D9\:A6\:3A\:7A\:11\

Chapter 9. Authentication 103

:16\:CC\:18\:CB\:56\:02\:08\:E2\:53\:99\:83\:3B
mga.runtime.auth.mode=mga.runtime.auth.ba
mga.runtime.ssl.md5fingerprint=E4\:65\:16\:A9\:D8\:B2\:97\
:3C\:F6\:13\:19\:77\:25\:8B\:B0\:0A
mga.admin.ssl.subjectdn=CN\=amapp800
wga.ssl.md5fingerprint=B2\:9F\:87\:8A\:D1\:49\:D9\:A1\:BA\
:03\:4B\:41\:E9\:DF\:44\:C7
rtss.password=
wga.ssl.sha1fingerprint=CD\:1C\:F0\:D9\:A6\:3A\:7A\:11\:16\
:CC\:18\:CB\:56\:02\:08\:E2\:53\:99\:83\:3B
wga.instance=mobile
mga.admin.user=admin
wga.port=443
isam.mode=context_based_authorization,
authentication_service,
mga.runtime.port=443
mga.admin.pass=
jct.replace=reuse
wga.host=1.1.1.1
mga.runtime.host=1.1.1.1
mga.admin.ssl.md5fingerprint=B2\:9F\:87\:8A\:D1\:49\:D9\
:A1\:BA\:03\:4B\:41\:E9\:DF\:44\:C7
wga.ssl.subjectdn=CN\=amapp800
mga.runtime.ssl.subjectdn=CN\=isva, O\=ibm, C\=us
mga.admin.ssl.issuerdn=CN\=amapp800
rtss.user=admin
mga.runtime.ssl.sha1fingerprint=F9\:38\:5A\:53\:0A\:DA\:1A\
:FF\:67\:46\:C9\:58\:3F\:F1\:2B\:00\:B0\:6C\:83\:32
mga.admin.port=443
tam.password=
wga.ssl.issuerdn=CN\=amapp800
mga.runtime.ssl.issuerdn=CN\=isva, O\=ibm, C\=us
wga.user=admin
mga.admin.host=1.1.1.1

Branching Authentication Policy

Default-Mapping Rules
You can use several mapping rules that are immediately available as examples of typical branching policy
flows.

Generic Rule and Template
The Generic rule extracts only the branch names from the policy and provides those names to the
template page to display to the user. The user then picks a branch that is based only on the name.

For example, a policy with two branches called “Forgotten Username” and “Forgotten Password”. A
template page with those two names as individual options is displayed to the user.

Second Factor Rule and Template
The Second Factor rule fetches a user’s enrollment status and displays the three most used second factor
options to the user. The template displays relevant information for each second factor mechanism. For
example, device name for MMFA Authenticator. The user must be authenticated to use this mapping rule
and template.

MMFA and TOTP Fallback
The MMFA with TOTP Fallback defaults are a subset of the Second Factor rule and template page. The
rule is simpler but also demonstrates the server automatically choosing an option for the user, but allows
them to return and choose a fallback method.

104 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Username-less Login
The Username-less Login rule does not require a user to be logged in, and automatically displays the QR
Code for login. It also offers the user the choice to do a FIDO2 username-less login instead.

FIDO2 Platform Authenticator Inline Registration (PAIR)
The following mapping rules are used in the FIDO2 PAIR flow:
Authentication decision mapping rule

Determines whether the user is already authenticated, or whether to prompt for FIDO2 or username
and password authentication.

Registration decision mapping rule
Used to enroll or skip registration.

Info Map mapping rule
Required to switch between API and browser requests, and is included in the FIDO2 authentication
and registration branches.

Identifier First Authenticatio (IFA)
The IFA scenario utilizes multiple mapping rules in both decisions and InfoMap mechanisms.
Branching_IdentiferFirstAuth

The first decision in the policy fetches the username and returns a choice of authentication methods
to the user based on the scenario wizard configuration and the methods that the user has enrolled.

IFA_Credential_Complete
After successful authentication, the details of the MMFA or FIDO2/WebAuthn registration used to
perform authentication are added to the user’s credential.

IFA_Prep_FIDO2_PAIR
Determines if the user should be prompted to complete the registration step of the FIDO2 PAIR.

FIDO2PAIR_Reg_Decision
Used to enroll or skip registration.

FIDO2PAIR_Completed_InfoMap
Required to switch between API and browser requests.

Execute authentication service policies in an Info Map
The AuthSvcClient class can be used to make internal calls to authentication service policies. This
allows for extra customization of authentication flows without needing to contact the authentication
service through HTTP requests within an Info Map.

There are three pairs of functions that can be called. This is dependent on the calling location. If a context
variable is provided, the policy state and context will be stored in that context variable (InfoMap, Access
Policy). Otherwise, use the non-context functions which will store the policy state and context in the
DMAP.

When you are calling from an InfoMap policy, the following functions should be used with the InfoMap
context variable:

executeInInfoMap(Context, String)
executeInInfoMap(Context, String, STSUniversalUser)

When you are calling from an Access Policy, the following functions should be used with the Access Policy
context variable:

executeInAccessPolicy(Context, String)
executeInAccessPolicy(Context, String, STSUniversalUser)

Chapter 9. Authentication 105

When you are calling from other contexts, or for state-less invocation in the outer calling layer, the
following functions will store state and context in the DMAP:

execute(String)
execute(String, STSUniversalUser)

See distributedMap to customize the DMAP store and other parameters.

To pass user credential information to the policy, use the functions that take a STSUniversalUser
object. This will be required in most cases, for example when performing second factor authentication.
Helpers have been provided to build the STSUniversalUser object, see getRequestTokenAttrAsStsuu
(Context) and getSimpleSTSUU (String).

executeInInfoMap

public static String executeInInfoMap(
 Context context,
 String payload
)

Execute an authentication policy from within a running InfoMap. The policy request, response,
session, and context objects are completely recreated from the given arguments, and stored
separately from the objects of the already running policy (for example, the objects of the outer layer
of policy execution, which contains the InfoMap).This method will store the policy context within the
outer InfoMap context. No user credential information or request tokens are passed to the policy.
See executeInInfoMap(Context, String, STSUniversalUser) to include user information.

This method executes the policy specified in the given payload. Use the following parameters:
context

The context variable provided to the Info Map. Required to save the inner policy execution context,
and fetch locale for translated messages.

payload
The policy payload as stringified JSON. Must include either the policy ID (PolicyId), or a state
ID (StateId), and other request parameters dependent on the policy being run. For example, the
'operation' parameter is required to complete most policies.

Returns:
A stringfied JSON payload that contains 3 parameters, status, page, and response. The status
value will be set to one of three values, indicating the status of the policy: "pause", "abort", or
"success". The response value will be set to the JSON payload returned from the policy.

executeInInfoMap

public static String execute(
 Context context,
 String payload,
 STSUniversalUser stsuu
)

Execute an authentication policy from within a running InfoMap, with the user identity specified by
the input STSUniversalUser. The policy request, response, session, and context objects are completely
recreated from the given arguments, and stored separately from the objects of the already running
policy (for example, the objects of the outer layer of policy execution, which contains the InfoMap).

This method will store the policy context within the outer InfoMap context. Use the following
parameters:

context
The context variable provided to the InfoMap. Required to save the inner policy execution
context, and fetch locale for translated messages.

payload
The policy payload as stringified JSON. Must include either the policy ID (PolicyId), or a state
ID (StateId), and other request parameters dependent on the policy being run. For example, the
'operation' parameter is required to complete most policies.

106 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

stsuu
The user identity to complete the policy with. Can be constructed as per usual for mapping rules,
or by using one of the AuthSvcClient helper functions.

Returns:
A stringfied JSON payload that contains 3 parameters, status, page, and response. The status
value will be set to one of three values, indicating the status of the policy: "pause", "abort", or
"success". The response value will be set to the JSON payload returned from the policy.

executeInAccessPolicy

public static String executeInAccessPolicy(
 Context accessPolicyContext,
 String payload
)

Execute an authentication policy from within a running Access Policy. The policy request, response,
session, and context objects are completely recreated from the given arguments, and stored
separately from the objects of the already running context (for example, the new request object will
not impact the Access Policy request object).

This method will store the policy context within the session from the Access Policy context.

No user credential information or request tokens are passed to the policy. See
executeInAccessPolicy(Context, String, STSUniversalUser) to include user information.

Use the following parameters:
accessPolicyContext

The context variable provided to the Access Policy. Required to save the inner policy execution
context, and fetch locale for translated messages.

payload
The policy payload as stringified JSON. Must include either policy ID (PolicyId), or a state ID
(StateId), and other request parameters dependent on the policy being run. For example, the
“operation” parameter is required to complete most policies.

Returns:
A stringfied JSON payload that contains 3 parameters, status, page, and response. The status
value will be set to one of three values, indicating the status of the policy: "pause", "abort", or
"success". The response value will be set to the JSON payload returned from the policy.

executeInAccessPolicy

public static String executeInAccessPolicy(
 Context accessPolicyContext,
 String payload,
 STSUniversalUser stsuu
)

Execute an authentication policy from within a running Access Policy. The policy request, response,
session, and context objects are completely recreated from the given arguments, and stored
separately from the objects of the already running context (for example, the new request object will
not impact the Access Policy request object).

This method will store the policy context within the session from the Access Policy context.

Use the following parameters:
accessPolicyContext

The context variable provided to the Access Policy. Required to save the inner policy execution
context, and fetch locale for translated messages.

payload
The policy payload as stringified JSON. Must include either policy ID (PolicyId), or a state ID
(StateId), and other request parameters dependent on the policy being run. For example, the
“operation” parameter is required to complete most policies.

Chapter 9. Authentication 107

Returns:
A stringfied JSON payload that contains 3 parameters, status, page, and response. The status
value will be set to one of three values, indicating the status of the policy: "pause", "abort", or
"success". The response value will be set to the JSON payload returned from the policy.

execute

public static String execute(
 String payload
)

Execute an authentication policy from within a mapping rule. The policy request, response, session,
and context objects are completely recreated from the given arguments, and stored separately from
the objects of the already running context.

This method will store the policy context within the DMAP, which can be configured to use multiple
different stores (for example, HVDB, Redis). No user credential information or request tokens are
passed to the policy. See execute(String, STSUniversalUser) to include user information.

Use the following parameters:

payload
The policy payload as stringified JSON. Must include either the policy ID (PolicyId), or a state
ID (StateId), and other request parameters dependent on the policy being run. For example, the
'operation' parameter is required to complete most policies.

Returns:
A stringfied JSON payload that contains 3 parameters, status, page, and response. The status
value will be set to one of three values, indicating the status of the policy: "pause", "abort", or
"success". The response value will be set to the JSON payload returned from the policy.

execute

public static String execute(
 String payload,
 STSUniversalUser stsuu
)

Execute an authentication policy from within a mapping rule. The policy request, response, session,
and context objects are completely recreated from the given arguments, and stored separately from
the objects of the already running context.

This method will store the policy context within the DMAP, which can be configured to use multiple
different stores (for example, HVDB, Redis).

Use the following parameters:

payload
The policy payload as stringified JSON. Must include either the policy ID (PolicyId), or a state
ID (StateId), and other request parameters dependent on the policy being run. For example, the
'operation' parameter is required to complete most policies.

stsuu
The user identity to complete the policy with. Can be constructed as per usual for mapping rules,
or by using one of the AuthSvcClient helper functions.

Returns:

A stringfied JSON payload that contains 3 parameters, status, page, and response. The status
value will be set to one of three values, indicating the status of the policy: "pause", "abort", or
"success". The response value will be set to the JSON payload returned from the policy.

getRequestTokenAttrAsStsuu

public static STSUniversalUser getRequestTokenAttrAsStsuu(
 Context context
)

108 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

This method creates a new STSUniversalUser object with the attributes in any identity tokens
available in the given InfoMap context.

Use the following parameters:
context

The context variable provided to the Info Map which contains identity attributes.
Returns:

The STSUniversalUser populated with identity attributes.

getSimpleSTSUU

public static STSUniversalUser getSimpleSTSUU(
 String username
)

This method creates a new STSUniversalUser object with the principal name set to the given
username. Use the following parameters:

username
The username to set as the principal name of the new STSUniversalUser object.

Returns:
The STSUniversalUser populated with the principal name.

TOTP Example
For example, to perform TOTP authentication within the context of an Info Map, the following mapping
rule can be used.

importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils);
importClass(Packages.com.tivoli.am.fim.authsvc.local.client.AuthSvcClient);

var result = false;

var otp = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:parameter", "otp");
IDMappingExtUtils.traceString("TOTP to verify: "+otp);

if(otp != null) {

 var jsonRequest = {
 "PolicyId": "urn:ibm:security:authentication:asf:totp",
 "otp":""+otp,
 "operation":"verify"
 };
 IDMappingExtUtils.traceString("AuthSvcClient JSON request: " + JSON.stringify(jsonRequest));
 var response = AuthSvcClient.executeInInfoMap(context, JSON.stringify(jsonRequest),
AuthSvcClient.getSimpleSTSUU("testuser"));
 IDMappingExtUtils.traceString("AuthSvcClient JSON response: " + response);

 var jsonResponse = JSON.parse(response);
 if(jsonResponse.status == "success") {
 // Policy completed successfully, return true.
 result = true;
 context.set(Scope.SESSION, "urn:ibm:security:asf:response:token:attributes",
"username", "testuser");
 } else {
 // Policy failed, prompt for TOTP again.
 macros.put("@ERROR_MESSAGE@", jsonResponse.response.message);
 page.setValue("/authsvc/authenticator/totp/login.html");
 }
} else {
 // Return a page to gather the TOTP
 page.setValue("/authsvc/authenticator/totp/login.html");
}

// Set result. Either true for stop running this rule, or false for run the rule again.
success.setValue(result);
IDMappingExtUtils.traceString("Result of mapping rule: "+result);

Chapter 9. Authentication 109

110 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 10. OAuth 2.0 and OIDC support
Security Verify Access supports the OAuth 2.0 protocol, including OpenID Connect.

The support is provided at both the Advanced Access Control and the Federation licensing levels.

• OAuth is an HTTP-based authorization protocol. It gives third-party applications scoped access to a
protected resource on behalf of the resource owner. It gives scoped access by creating an approval
interaction between the resource owner, client, and the resource server. It gives users the ability
to share their private resources between sites without providing usernames and passwords. Private
resources can be anything, but common examples include photos, videos, and contact lists.

The implementation of OAuth 2.0 in Advanced Access Control strictly follows the OAuth 2.0
standards. For a complete description of the OAuth 2.0 specifications, see the OAuth website http://
www.oauth.net.

The OAuth 2.0 implementation of Advanced Access Control also integrates with WebSphere DataPower.
For more information, see DataPower Integration.

• OpenID Connect is an extension of the OAuth protocol to better support identity and authentication.
For a complete description of the OpenID Connect specifications, see the OpenID website: http://
openid.net/specs/

OAuth and OpenID Connect concepts
You can use the following topics to review the main concepts for the OAuth 2.0 protocol and for the
OpenID Connect extensions to the protocol.

OAuth 2.0 concepts
This topic introduces the main concepts of OAuth 2.0.

The following concepts are generally used in OAuth 2.0.

Resource owner
An entity capable of authorizing access to a protected resource. When the resource owner is a person,
it is called an user.

OAuth client
A third-party application that wants access to the private resources of the resource owner. The OAuth
client can make protected resource requests on behalf of the resource owner after the resource
owner grants it authorization. OAuth 2.0 introduces two types of clients: confidential and public.
Confidential clients are registered with a client secret, while public clients are not.

OAuth server
Known as the Authorization server in OAuth 2.0. The server that gives OAuth clients scoped access
to a protected resource on behalf of the resource owner. The server issues an access token to the
OAuth client after it successfully does the following actions:

• Authenticates the resource owner.
• Validates a request or an authorization grant.
• Obtains resource owner authorization.

An authorization server can also be the resource server.
Scope

A property requested by the OAuth client, to specify the scope of the access request. The scope is
used by the caller to tag the intended use of the token. The authorization server can use the scope
response parameter to tell the client the scope of the access token that was issued. Scopes are
usually shown on the consent page, so that a user can understand the client's intended use of the
token. Common scopes include profile and email.

http://www.oauth.net
http://www.oauth.net
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20Security%20Federated%20Identity%20Manager/page/DataPower%20Integration
http://openid.net/specs/
http://openid.net/specs/

Access token
A string that represents authorization granted to the OAuth client by the resource owner. This string
represents specific scopes and durations of access. It is granted by the resource owner and enforced
by the OAuth server.

Bearer token
Token issued from the token endpoint. This includes an access token and potentially a refresh token.
See http://tools.ietf.org/html/rfc6750 for more information on bearer tokens.

Protected resource
A restricted resource that can be accessed from the OAuth server using authenticated requests.

Resource server
The server that hosts the protected resources. It can use access tokens to accept and respond to
protected resource requests. The resource server might be the same server as the authorization
server.

Authorization grant
A grant that represents the resource owner authorization to access its protected resources. OAuth
clients use an authorization grant to obtain an access token. There are four authorization grant types:
authorization code, implicit, resource owner password credentials, and client credentials.

Authorization code
A code that the Authorization server generates when the resource owner authorizes a request.

Refresh token
A string that is used to obtain a new access token.
A refresh token is optionally issued by the authorization server to the OAuth client together with an
access token. The OAuth client can use the refresh token to request another access token that is
based on the same authorization, without involving the resource owner again.

OpenID Connect concepts
OpenID Connect extends OAuth 2.0 function. The OpenID Connect concepts include the OAuth 2.0
concepts.
OpenID Connect Provider (OP)

OAuth 2.0 Authorization Server that can authenticate the user and providing claims to a Relying Party
about the authentication event and the user.

Relying Party (RP)
OAuth 2.0 Client application that requires user authentication and claims from an OpenID Connect
Provider.

Claim

Piece of information asserted about an entity that is included in the ID token. An OpenID Connect
Provider must document which claims it includes in its ID tokens.

The following claims are required claims about the authentication event:

• aud (Audience): Must contain the client identifier of the RP registered at the issuer.
• iss(Issuer): The issuer identifier of the OP.
• exp (Expiration time): The RP must validate the ID token before this time.
• iat (Issued at): The time at which the ID token was issued.

The following claims are required claims about the user:

• sub (Subject): A locally unique and permanent (never reassigned) identifier of the user at the issuer.

Optional claims about the user can include first_name, last_name, picture, gender, etc.

Scope
A property that is requested by the Relying Party, which can be consented to by the user, that requests
certain claims be included in the ID token. In addition to the definition of scope in OAuth, OpenID

112 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

http://tools.ietf.org/html/rfc6750

Connect adds some well-defined scopes. It requires the openid scope to identify a request to an
OpenID Connect flow. It also includes the common scopes profile and email, which pertain to a
specific set of claims.

Bearer token
In addition to the types of tokens that are listed in the description of Bearer token for OAuth 2.0
support, for OpenID Connect the token can be an ID token.

ID token

JSON Web Token (JWT) that contains claims about the authentication event and the user.

JWTs are Base64 encoded JSON objects with three sections: Header, Claims Set, and JSON Web
Signature (JWS). The sections are separated in the JWT by a period ('.'). The Header must at least
contain the algorithm that is used to sign the JWT (the alg claim).

The Claims Set includes claims about the authentication event and the user.

The JSON Web Signature (JWS) is used to verify the signing of the JWT. For more information, see
RFC7515.

For more information about JWTs, see RFC7519.

Issuer
Entity that issues a set of claims.

Issuer identifier
Verifiable identifier for an issuer. An issuer identifier is a case-sensitive URL that uses the HTTPS
scheme that contains scheme, host, and optionally, port number and path components and no query
or fragment components.

Hybrid flow

The OpenID Connect hybrid flow is a request to /authorize, where both an authorization code and
either an access token or id_token, or both, are returned. The value of response_type for a hybrid
flow is any of the following values.

• code id_token
• code id_token token
• code token

Some tokens are returned by the authorization endpoint, and others are returned by the token
endpoint.

Note: Hybrid flow is supported in OpenID Connect but not in OAuth. See http://openid.net/specs/
openid-connect-core-1_0.html#HybridFlowAuth.

Metadata
Metadata is the discovery information that the OpenID Provider (OP) exposes. If metadata
is configured, the Relying Party (RP) uses it as the source of the /authorize, /
token, /jwks, and /userinfo URLs for the RP. See http://openid.net/specs/openid-connect-
discovery-1_0.html#ProviderMetadata.

Userinfo
The Userinfo endpoint is an OAuth 2.0 protected resource that returns claims about the authenticated
user. These claims are normally represented by a JSON object that contains a collection of name
and value pairs for each claim. For more information, see http://openid.net/specs/openid-connect-
core-1_0.html#UserInfo.

IBM Security Verify Access OIDC Provider
IBM Security Verify Access OIDC Provider is a containerized lightweight OIDC provider that is ready for
immediate use. It supports OIDC and OAuth standards and can be deployed and scaled by using any
modern orchestration stack, including Kubernetes.

The IBM Security Verify Access OIDC Provider has the following advantages.

Chapter 10. OAuth 2.0 and OIDC support 113

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

• It supports the current OAuth and OIDC standards for immediate use, such as pushed authorization
request and client-initiated back-channel authentication.

• It is cloud native and lightweight. It can be deployed and scaled with any modern orchestration stack,
including Kubernetes.

• It is declarative configuration that uses YAML and does not require a configured database.
• Similar customization options are supported by using JavaScript mapping rules and access policies.
• It provides continuous delivery.

For more information that includes setup and configuration, see https://docs.verify.ibm.com/ibm-security-
verify-access.

OAuth 2.0 endpoints
Endpoints provide OAuth clients the ability to communicate with the OAuth server or authorization server
within a definition.

All endpoints can be accessed through URLs. The syntax of the URLs is specific to the purpose of the
access.

If you are responsible for installing and configuring the appliance, you might find it helpful to be familiar
with these endpoints and URLs.

API protection definitions
The API protection definitions naming follows the standard Advanced Access Control naming convention.
The syntax is:

https://<hostname:port>/<junction>/sps/oauth/oauth20

For example:

https://server.oauth.com/mga/sps/oauth/oauth20

The following table describes the endpoints that are used in an API protection definition.

Notes:

• There is only a single set of endpoints.
• Not all authorization grant types use all three endpoints in a single OAuth 2.0 flow.

Table 3. OAuth 2.0 endpoint definitions and URLs

Endpoint name Description Example

Authorization endpoint An authorization URL where the resource
owner grants authorization to the OAuth
client to access the protected resource.

https://
server.oauth.com/mga/sps/
oauth/oauth20/authorize

Token endpoint A token request URL where the OAuth
client exchanges an authorization grant
for an access token and an optional
refresh token.

https://
server.oauth.com/mga/sps/
oauth/oauth20/token

114 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://docs.verify.ibm.com/ibm-security-verify-access
https://docs.verify.ibm.com/ibm-security-verify-access

Table 3. OAuth 2.0 endpoint definitions and URLs (continued)

Endpoint name Description Example

Clients manager
endpoint

A URL for resource owners to manage
their trusted clients.

The resource owner can use the clients
manager endpoint to access and modify
the list of clients that are authorized
to access the protected resource. The
trusted clients manager shows the
client name and permitted scope of an
authorized client.

Note: The list does not show clients
that are disabled or deleted from the
definition.

The resource owner can optionally
remove trusted client information from
the list. In doing so, the resource owner
is prompted for consent to authorize the
next time the OAuth client attempts to
access the protected resource.

https://
server.oauth.com/mga/sps/
oauth/oauth20/clients

Session endpoint A URL where an access_token can
be exchanged for a web session. The
client uses the endpoint to obtain
an authenticated web session for the
resource owner that is typically used in
hybrid mobile application scenarios.

Note: The session endpoint is disabled
by default and can be enabled by using
advanced configuration.

The client must send a POST request
with the access_token in the body.

POST /mga/sps/oauth/oauth20/session
 HTTP/1.1Host: server.oauth.com
Content-Type: application
/x-www-form-urlencoded
access_token=abc123...

https://
server.oauth.com/mga/sps/
oauth/oauth20/session

Authorization grant
management endpoint

A URL where you can view your
authorization grants and the tokens and
attributes of each authorization grant.

http://
server.oauth.com/mga/sps/mga/
user/mgmt/html/device/
device_selection.html

Logout endpoint A URL where you can end a session by
revoking an access_token. The token
must be provided in the Authorization
header or a session cookie must be used.

http://
server.oauth.com/mga/sps/
oauth/oauth20/logout

Chapter 10. OAuth 2.0 and OIDC support 115

Table 3. OAuth 2.0 endpoint definitions and URLs (continued)

Endpoint name Description Example

Introspect endpoint A URL where an access_token can
be inspected by an oauth_client. For
more details, see “OAuth introspection”
on page 152.

Note: The introspect endpoint is enabled
by default and can be disabled by using
the advanced configuration.

https://
server.oauth.com/mga/sps/
oauth/oauth20/introspect

Revocation endpoint A URL where you can revoke OAuth
tokens issued to a client. For more
details, see “OAuth revocation endpoint”
on page 154.

https://
server.oauth.com/mga/sps/
oauth/oauth20/revoke

Metadata endpoint Final portion of URL is a path parameter
that is the name of your API Protection
definition. Template file available:

<locale>/oauth20/metadata.json

If a custom template is needed per
definition use:

<Locale>/oauth20/
<Your_API_Definition_Name>/
metadata.json

Example:

{"issuer":"https://mywebseal.com",
"authorization_endpoint":"https://
mywebseal.com/sps/oauth/oauth20/authorize",
"token_endpoint":"htps://mywebseal.com/sps/
oauth/oauth20/token",
"userinfo_endpoint":"https://mywebseal.com/sps/
oauth/oauth20/userinfo",
"jwks_uri":"http://mywebseal.com/sps/oauth/
oauth20/jwks/testDef",
"response_types_supported":
["token","id_token","token id_token","code"],
"response_modes_supported":
["fragment","form_post"],
"grant_types_supported":"implicit","password","
authorization_code"],
"id_token_signing_alg_values_supported:
["RS256"],
"introspect_endpoint":"https://
mywebseal.com/sps/oauth/oauth20/introspect",
"revocation_endpoint":"https://
mywebseal.com/sps/oauth/oauth20/revoke"}

https://
server.oauth.com/mga/sps/
oauth/oauth20/metadata/
<Definition_Name>

Userinfo Endpoint The Userinfo endpoint is an OAuth
2.0 protected resource that returns
claims about the authenticated end-
user. These claims are normally
represented by a JSON object that
contains a collection of name and value
pairs for each claim. For more info,
see http://openid.net/specs/openid-
connect-core-1_0.html#UserInfo

https://
server.oauth.com/mga/sps/
oauth/oauth20/userinfo

116 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

Table 3. OAuth 2.0 endpoint definitions and URLs (continued)

Endpoint name Description Example

JWKS Uri The URL of the JSON Web Key (JWK) Set
document for the OpenID Provider. This
data contains the signing key (or keys)
that the Relying Party uses to validate
signatures from the OpenID Provider.
Optionally, the JWK Set can contain the
Server's encryption key (or keys), which
Relying Parties use to encrypt requests
to the Server.

https://
server.oauth.com/mga/sps/
oauth/oauth20/jwks/
<Definition_Name>

Client Registration
Endpoint

The Client Registration Endpoint where
an application can request a clientId
in order to make OAuth/OIDC requests.
This is also the endpoint to retrieve a
registered client's definition, or delete it.

https://
server.oauth.com/mga/sps/
oauth/oauth20/register/
<Definition_Name>

Device Authorize
Endpoint

Endpoint initially visited by the device
client to obtain a device code and user
code.

https://
server.oauth.com/mga/sps/
oauth/oauth20/device_authorize

User Authorize Endpoint Endpoint visited by a user to verify a
user_code so a device client may obtain
an authorization grant for the user.

https://
server.oauth.com/mga/sps/
oauth/oauth20/user_authorize

Authorization grants
management API
endpoint

An API to list all of a user's grants. https://
server.oauth.com/mga/sps/mga/
user/mgmt/grant

Authorization grant
management API
endpoint

An API to retrieve a specific grant based
on a grant ID. This API can also be used
to delete a grant.

https://
server.oauth.com/mga/sps/mga/
user/mgmt/grant/{grantId}

OAuth 2.0 and OIDC workflows
The OAuth 2.0 support in IBM Security Verify Access provides four different ways for an OAuth client to
obtain access the protected resource.

OAuth 2.0 workflow
Advanced Access Control supports the following OAuth 2.0 workflows.

Authorization code flow

The authorization code grant type is suitable for OAuth clients that can keep their client credentials
confidential when authenticating with the authorization server. For example, a client implemented on a
secure server. As a redirection-based flow, the OAuth client must be able to interact with the user agent
of the resource owner. It also must be able to receive incoming requests through redirection from the
authorization server.

Note: For OIDC, a Relying Party is an OAuth Client, and an OIDC Provider is an OAuth Authorization
server. For OIDC, the authorization code flow returns an authorization code to the Relying Party, which
can then directly exchange it for an ID token and access token. This mechanism provides the benefit of
not exposing any tokens to the browser or end-user. The OpenID Connect Provider also authenticates
the Relying Party before exchanging the authorization code for an access token. The authorization code
flow is suitable for Relying Parties that can securely maintain a client secret between themselves and the
OpenID Connect Provider.

Chapter 10. OAuth 2.0 and OIDC support 117

1. The OAuth client initiates the flow when it directs the user agent of the resource owner to the
authorization endpoint. The OAuth client includes its client identifier, requested scope, local state, and
a redirection URI. The authorization server sends the user agent back to the redirection URI after
access is granted or denied.

For OIDC, the scope must include openid. The state parameter must also be included.
2. The authorization server authenticates the resource owner through the user agent and establishes

whether the resource owner grants or denies the access request.
3. If the resource owner grants access, the OAuth client uses the redirection URI provided earlier to

redirect the user agent back to the OAuth client. The redirection URI includes an authorization code
and any local state previously provided by the OAuth client.

If this is an OpenID Connect request, then the redirection URI must be present. For Oauth, by contrast,
it can be sourced from the client configuration. This requirement exists because OpenID Connect is
stricter on request validation.

4. The OAuth client requests an access token from the authorization server through the token endpoint.
The OAuth client authenticates with its client credentials and includes the authorization code
received in the previous step. The OAuth client also includes the redirection URI used to obtain the
authorization code for verification.

For OIDC, the Relying Party requests an access token and, in addition, an ID token from the OpenID
Connect Provider through the token endpoint.

5. The authorization server validates the client credentials and the authorization code. The server also
ensures that the redirection URI received matches the URI used to redirect the client in Step 3. If
valid, the authorization server responds back with an access token. If OIDC is configured, an id token is
returned.

For OIDC, if the redirection URI is valid, the OpenID Connect Provider responds back with an access
token and an ID token.

The authorization server can be the same server as the resource server or a separate entity. A single
authorization server can issue access tokens accepted by multiple resource servers.

118 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Authorization code flow with refresh token

The authorization code workflow with refresh token diagram involves the following steps:

1. The OAuth client requests an access token by authenticating with the authorization server with its
client credentials, and presenting an authorization grant.

2. The authorization server validates the client credentials and the authorization grant. If valid, the
authorization server issues an access token and a refresh token.

3. The OAuth client makes a protected resource request to the resource server by presenting the access
token.de

4. The resource server validates the access token. If the access token is valid, the resource owner serves
the request.

5. Repeat steps 3 and 4 until the access token expires. If the OAuth client knows that the access token
has expired, skip to Step 7. Otherwise, the OAuth client makes another protected resource request.

6. If access token is not valid, the resource server returns an error.
7. The OAuth client requests a new access token by authenticating with the authorization server with its

client credentials, and presenting the refresh token.
8. The authorization server validates the client credentials and the refresh token, and if valid, issues a

new access token and a new refresh token. For OpenID Connect, an ID token is returned in addition to
the new access token and refresh token.

Implicit grant flow

The implicit grant type is suitable for clients that are not capable of maintaining their client credentials
confidential for authenticating with the authorization server. An example can be in the form of client
applications that are in a user agent, typically implemented in a browser using a scripting language such
as JavaScript.

As a redirection-based flow, the OAuth client must be able to interact with the user agent of the resource
owner, typically a web browser. The OAuth client must also be able to receive incoming requests through
redirection from the authorization server.

Note: For OIDC, a Relying Party is an OAuth Client, and an OIDC Provider is an OAuth Authorization
server. For OIDC, the implicit flow can be used by Relying Parties with an in-browser scripting language
component. The access token and ID token are returned directly to the Relying Party, which may expose
them to the end-user and applications that have access to the end-user's browser. The token endpoint is
not used and the OpenID Connect Provider does not perform authentication on the Relying Party in this

Chapter 10. OAuth 2.0 and OIDC support 119

flow. The Relying Party does not have to directly communicate with the OpenID Connect Provider as all
interactions can be performed through the browser.

The implicit grant workflow diagram involves the following steps:

1. The OAuth client initiates the flow by directing the user agent of the resource owner to the
authorization endpoint. The OAuth client includes its client identifier, requested scope, local state,
and a redirection URI. The authorization server sends the user agent back to the redirection URI after
access is granted or denied.

For OIDC, the requested scope must include openid, and the parameters nonce and state must also
be included.

2. The authorization server authenticates the resource owner through the user agent and establishes
whether the resource owner grants or denies the access request.

3. If the resource owner grants access, the authorization server redirects the user agent back to the
client using the redirection URI provided earlier. The redirection URI includes the access token in the
URI fragment.

For OIDC, the redirection URI includes both the access token and the ID token in the URI fragment.
4. The user agent follows the redirection instructions by making a request to the web server without the

fragment. The user agent retains the fragment information locally.
5. The web server returns a web page, which is typically an HTML document with an embedded script.

The web page accesses the full redirection URI including the fragment retained by the user agent. It
can also extract the access token and other parameters contained in the fragment.

120 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

6. For OAuth 2.0, the user agent runs the script provided by the web server locally, which extracts the
access token and passes it to the client.

For OIDC, the script extracts both the access token and the ID token. If response_mode=form_post
is specified, the OpenID Provider returns a self-posting form.

Note: When the response type includes token or ID token, the parameter
response_mode=form_post is set by default. You can use advanced mapping to change or remove
this parameter if necessary. However, by default most authorization servers ignore this parameter if
they do not support it.

Hybrid flow

OpenID Connect supports a hybrid flow. In the OAuth 2.0 hybrid flow, an authorization code
(response_type = code) or an access token (response_type = token) is returned by the authorization
endpoint. Some tokens are returned by the authorization endpoint, and others are returned by the token
endpoint.

The hybrid flow is similar to authorization code flow in allowing clients to be authenticated, and in
supporting refresh tokens. The hybrid flow is similar to implicit grant flow in allowing tokens to be
revealed to the user agent.

The hybrid flow supports multiple response_type values.

Table 4. Response type values for each flow

response_type value Flow

code Authorization Code Flow

id_token Implicit Flow

id_token token Implicit Flow

code id_token Hybrid Flow

code token Hybrid Flow

code id_token token Hybrid Flow

The hybrid flow uses the steps shown in the diagram for authorization code.

1. The OAuth client initiates the flow when it directs the user agent of the resource owner to the
authorization endpoint. The OAuth client includes its client identifier, requested scope, local state, and
a redirection URI. The authorization server sends the user agent back to the redirection URI after
access is granted or denied.

For OIDC, the scope must include openid. The state parameter must also be included.

For hybrid flow, the response type is more than just code. For example, response_type = code +
id_token will result in the return of both an id_token and code in step 3.

2. The authorization server authenticates the resource owner through the user agent and establishes
whether the resource owner grants or denies the access request.

3. If the resource owner grants access, the OAuth client uses the redirection URI provided earlier to
redirect the user agent back to the OAuth client. The redirection URI includes an authorization code
and any local state previously provided by the OAuth client.

If this is an OpenID Connect request, then the redirection URI must be present. For OAuth, by contrast,
it can be sourced from the client configuration. This requirement exists because OpenID Connect is
stricter on request validation.

For hybrid flow, when the authorization code is returned, an id_token and (or) an access token may
also be returned.

4. The OAuth client requests an access token from the authorization server through the token endpoint.
The OAuth client authenticates with its client credentials and includes the authorization code

Chapter 10. OAuth 2.0 and OIDC support 121

received in the previous step. The OAuth client also includes the redirection URI used to obtain the
authorization code for verification.

For OIDC, the Relying Party requests an access token and, in addition, an ID token from the OpenID
Connect Provider through the token endpoint.

5. The authorization server validates the client credentials and the authorization code. The server also
ensures that the redirection URI received matches the URI used to redirect the client in Step 3. If
valid, the authorization server responds back with an access token. If OIDC is configured, an id token is
returned.

For OIDC, if the redirection URI is valid, the OpenID Connect Provider responds back with an access
token and an ID token.

For more information on the hybrid flow, see http://openid.net/specs/openid-connect-
core-1_0.html#HybridFlowSteps.

Resource owner password credentials flow

The resource owner password credentials grant type is suitable in cases where the resource owner has a
trust relationship with the client. For example, the resource owner can be a computer operating system of
the OAuth client or a highly privileged application.

You can only use this grant type when the OAuth client has obtained the credentials of the resource
owner. It is also used to migrate existing clients using direct authentication schemes by converting the
stored credentials to an access token.

The resource owner password credentials workflow diagram involves the following steps:

1. The resource owner provides the client with its user name and password.
2. The OAuth client requests an access token from the authorization server through the token endpoint.

The OAuth client authenticates with its client credentials and includes the credentials received from
the resource owner.

3. After the authorization server validates the resource owner credentials and the client credentials, it
issues an access token and optionally a refresh token.

OIDC requests can return, from a request to /authorize, any combination of the following:

• An access token
• An id_token
• A code

If a code is returned, then the following can be returned to /token:

• An access token
• An ID token
• A refresh token, if enabled

If a refresh token is presented to /token, then following are returned:

• An access token
• An ID token

122 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowSteps
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowSteps

• A refresh token

JWT and SAML bearer grant type flows

The assertion bearer grant types are an extension to the OAuth 2.0 framework. In such flows, a client
presents a JWT or SAML assertion to the token endpoint in exchange for tokens. The assertion that is
presented must represent the resource owner for whom tokens will be issued to. See RFC 7522 and RFC
7523 for further details.

The assertions must be validated in the pre-token mapping rule. A callout to the STS is one way to
validate a presented assertion.

The following diagram describes the steps in the assertion bearer grant type flows:

1. The client obtains a JWT or SAML assertion from the resource owner.
2. The client presents the assertion to the authorization server.
3. The authorization server validates the presented assertion through signature validation, decryption, or

both. The issuer and subject are extracted and validated. If the issuer is trusted, tokens are issued to
the subject that is captured in the assertion.

Client credentials flow

The client credentials flow is used when the OAuth client requests an access token using only its client
credentials. This flow is applicable in one of the following situations:

• The OAuth client is requesting access to the protected resources under its control.
• The OAuth client is requesting access to a different protected resource, where authorization has been

previously arranged with the authorization server.

The client credentials workflow diagram involves the following steps:

Chapter 10. OAuth 2.0 and OIDC support 123

https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523

1. The OAuth client requests an access token from the token endpoint by authenticating with its client
credentials.

2. After the authorization server validates the client credentials, it issues an access token.

Device flow

The OAuth device flow is a draft RFC (Currently version 9, see: https://tools.ietf.org/html/draft-ietf-oauth-
device-flow-09). The OAuth device flow is intended for use where the OAuth client is unable to provide
any input mechanism to the user, and is only able to broadcast information. Such applications would be
smart devices which can display (for example, a smart device plugged into a TV) content, but not provide
a user-agent. This means the flow of information is one way from the client to the resource owner. There
are three endpoints used in this flow, the device_authorize endpoint, a JSON endpoint used by the client
to get the initial device and user codes. The user authorize endpoint, where the user visits to authenticate
and authorize the client, and the token endpoint, where the client will poll with the device code.

The steps of a device flow are:

1. The client makes a request to device authorize and receives a device_code, a user_code and a
verification_uri.

2. The client shows the user_code on the screen, along with the verification uri. The client may also
choose to show an alternative method of consuming this user_code and verification code, such as a QR
code to be scanned by a resource owner with a mobile device.

3. The client begins polling the token endpoint with the device_code, it will receive errors of
'authorization_pending' or 'slow_down' while it waits for a user to verify the user code.

4. The user visits the verification uri presenting the user_code. The user will then be prompted to
authenticate and consent. After the user has authenticated and consented, asuccess page is shown.

5. The client, which has been continuing to poll will now receive a bearer token rather than an
'authorization_pending' error.

The following diagram describes the steps in the device flows:

124 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Token Exchange Flow

The Token Exchange grant type is a draft protocol that allows one user to act on behalf of another. One
common use case for a Security Token Service (STS) is to allow a resource server A to make calls to a
backend service C on behalf of the requesting user B.

Note: An STS is a service capable of validating security tokens provided to it and issuing new security
tokens in response, which enables clients to obtain appropriate access credentials for resources in
heterogeneous environments or across security domains.

In the request, the "subject_token" represents the identity of the party on behalf of whom the token is
being requested while the "actor_token" represents the identity of the party to whom the access rights of
the issued token are being delegated.

Impersonation
When principal A impersonates principal B, A is given all the rights that B has within some defined
rights context and is indistinguishable from B in that context. In Impersonation request, only
"subject_token" is required.

Chapter 10. OAuth 2.0 and OIDC support 125

Delegation
With delegation semantics, principal A still has its own identity separate from B, and it is explicitly
understood that while B may have delegated some of its rights to A. In a sense, A is an agent for B. In
Delegation request, "subject_token" and "actor_token" are both required.

For more information, see https://tools.ietf.org/html/rfc8693.

Client authentication considerations at the OAuth 2.0 token endpoint
The OAuth 2.0 token endpoint is used for direct communications between an OAuth client and the
authorization server. The token endpoint is used to obtain an OAuth token.

The client type, whether public or confidential, determines the authentication requirements of the OAuth
2.0 token endpoint. The Advanced Access Control runtime is responsible for authenticating the client by
using the client_id and client_secret in sending the request.

OAuth 2.0 workflows for confidential clients that require client authentication at the token endpoint, can
be configured in one of the following ways:

1. The Advanced Access Control point of contact requires authentication at the token endpoint:

• The point of contact is responsible for authenticating the client.
• The Confidential check box from the client instance panel is not relevant. A client_secret

parameter must not be sent in the token endpoint request.
• If a client_id parameter is sent in the request, it must match the identity of the client that is

authenticated by the point of contact.
2. The Advanced Access Control point of contact permits unauthenticated access to the token endpoint:

• The client_id parameter in the token endpoint request is used to identify the client.
• The Confidential check box from the client instance panel determines whether a client_secret

parameter is required in the token endpoint request. A client secret is required for confidential
clients only.

3. Basic Authentication can be performed by the runtime instead of by the point of contact server.

Note: When enforcing client authentication at the token endpoint, the point of contact must contain
the client ID and client secret within its user registry. The point of contact must be able to map the
authenticated user credential to the client_id parameter sent in the OAuth 2.0 token endpoint request.

Based on this information, the following configurations are supported:

Table 5. Configurations supported

Client types Configurations
WebSEAL point of contact token
endpoint URI considerations

Check box setting
for the Confidential
parameter

Confidential
clients

The point of contact performs
client authentication.

• Authenticated ACL on token
endpoint is required.

• Token endpoint port must
match WebSEAL port.

N/A

Confidential
clients

Basic Authentication is
performed by the runtime.

The point of contact configuration
does not need to make any
change to the Authorization
header.

N/A

Confidential
clients

The client_id and
client_secret parameters in
the token endpoint request
are used to perform client
authentication.

• Unauthenticated ACL on token
endpoint is required.

• Token endpoint port must
match WebSEAL port.

Must be cleared.

126 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://tools.ietf.org/html/rfc8693

Table 5. Configurations supported (continued)

Client types Configurations
WebSEAL point of contact token
endpoint URI considerations

Check box setting
for the Confidential
parameter

Public clients The client_id parameter
is used to perform client
validation.

• Unauthenticated ACL on token
endpoint is required.

• Token endpoint port must
match the WebSEAL port.

Must be selected.

Configuring an authenticated token endpoint with WebSEAL as the point of
contact

Configure an authenticated token endpoint with WebSEAL as the point of contact to delegate
authentication of the client to WebSEAL. Note that basic authentication can be completed without
configuration of WebSEAL as the point of contact.

Before you begin
When you want WebSEAL to do client authentication, you must attach an authenticated ACL on the token
endpoint. You can use the isam_mobile_anyauth ACL that you can create by using the oauth_config
REST API. See “Configuring a reverse proxy for OAuth and an OIDC Connect provider” on page 135.

You must also know how to enable Basic Authentication and Certificate Authentication. For more
information, see Basic authentication and Client-side certificate authentication.

About this task
Use separate WebSEAL instances for the token and authorization endpoints to enforce authentication
at WebSEAL for the token endpoint. Clients can authenticate with authentication mechanisms, such as
Basic Authentication and Client Certificates. At the same time, users can authenticate by using forms
authentication at the authorize and clients manager endpoints.

Procedure
1. Log in to the pdadmin utility with the sec_master account.
2. Attach the isam_mobile_anyauth ACL to the token endpoint
/WebSEAL/<WebSEAL_instance_name>/mga/sps/oauth/oauth20/token.
For example,

acl attach /WebSEAL/server-default/mga/sps/oauth/oauth20/token
isam_mobile_anyauth

3. Enable Basic Authentication, Certificate Authentication, or both.
4. Ensure that the point of contact contains the client ID and client secret within its user registry by

running the following command:

user list * 0

5. Verify the configuration:
a) Ensure that the token endpoint is protected.

For example, run the following command and verify that you get a login form:

curl -kv https://server:445/mga/sps/oauth/oauth20/token

b) If you enabled Basic Authentication or Certificate authentication, ensure that you can authenticate
to the point of contact with the Basic Authentication header or Client Certificate.

Chapter 10. OAuth 2.0 and OIDC support 127

For example, run the following commands and ensure that you can reach the token endpoint:
Basic Authentication

curl -kv https://server:445/mga/sps/oauth/oauth20/token
--basic -u jHTzyil9lQAcFsJu9Dw3:CDrQlexadocQ6FwTzEUG

Certificate Authentication

curl -kv https://server:445/mga/sps/oauth/oauth20/token
--cert /path/to/cert.pem

Token Exchange Implementation
There is a sample token exchange mapping rule that is provided in Federation > OIDC > Mapping Rules.

Currently, the out-of-the-box support for token exchange grant type is based on JSON Web Token (JWT),
although this can be extended for other token types. Implementation is done by using a combination of
Javascript and STS Chains. See STS Chains.

• doTokenExchangePre(useSTSforTokenGenerate, store_db)
• doTokenExchangePost()

These two functions are wrapped in the oauth_20_token_exchange.js which should be imported and
called within other mapping rules. For example:

importMappingRule("Oauth_20_TokenExchange"); // import the mapping rule
 /*
 * Config option to generate the token from this pre mapping rule.
 * ISVA will issue a regular access token if the varialbe set to false.
 * If set to true, STS chain will be called to generate the token.
 */
 var useSTSforTokenGenerate = false;

 /*
 * Config option to stored the token which generated through this mapping rule to DB. This
should be set
 * to true if need to store the token into the oauth20_token_cache and set to flase if not.
 * This variable is ignored if not using the STS to generate the token.
 */
 var store_db = false;
doTokenExchangePre(useSTSforTokenGenerate, store_db); // call the mapping rule

To implement the token exchange, see the following steps:

1. Validation of the incoming tokens
2. Extraction of information
3. Gathering information for new (requested) token
4. Issuing of the new (requested) token

Validating the incoming tokens
Validate the incoming "subject_token" and "actor_token" (optional).

Procedure
1. Validate the OAuth/OIDC opaque token.

The "subject_token" or "actor_token" with urn:ietf:params:oauth:token-
type:access_token or urn:ietf:params:oauth:token-type:refresh_token might be an
OAuth/OIDC opaque token that is generated by the authorization server.

You can use utilities like OAuthMappingExtUtils.getToken(tokenId) to
verify if such token exists in the token cache and use

128 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

OAuthMappingExtUtils.retrieveAllAssociations(stateId) to retrieve any other attributes
that are associated with the opaque token.

2. Use the STS Chain to validate "subject_token" and/or "actor_token".

Use STS Chains to validate many kind of tokens. Verify Access supports validation of token like
IvCred, SAML, STSUU, and JWT. For more information about creating STS Chain, see Configuring STS
modules.

To use the STS Chain to validate a token, refer to the following example:

var claims =
 LocalSTSClient.doRequest("http://schemas.xmlsoap.org/ws/2005/02/trust/Validate",
 actor_token_type,
 issuer,
 baseElement,
 null);

You can determine the issuer and appliesTo of the STS Chains as required. You can set the issuer
as the token issuer and set the appliesTo as the `subject_token_type` or actor_token_type.

In Verify Access, for example, to extract the issuer you can use
OAuthMappingExtUtils.extractIssuer(token, token_type). This tool currently only
supports JWT (extracted from iss claim) and SAML (extract from Issuer node).

3. Throw exception.
When you validate the incoming token, there might be validation errors and when an error is returned
from the call to the STS, the exception should be thrown. For example, signature invalid
and STS Chain does not exist. You can throw exception for such scenarios by using the following
example:

OAuthMappingExtUtils.throwSTSCustomUserPageException("The subject_token verification
failed.", 400, "invalid_request");

The same method can also be used if you choose not to support the resource or audience specified.
For example:

OAuthMappingExtUtils.throwSTSCustomUserPageException("The audience or resource is not
valid.", 400, "invalid_target");

Extracting information
Different tokens might have different names under which the information of interest resides. Map the
different attributes into a common name to enable application of any business logic.

Procedure
1. When you working with different kind of token, the information may exist under many different names.

A pre-defined json which contain token type and original name and universal name mapping can be
provided:

var universalNameMapJson = {
 "urn:ietf:params:oauth:token-type:jwt": {
 "sub": "uni_sub",
 "aud": "uni_aud",
 "exp": "uni_exp",
 "iss": "uni_iss",
 "scope": "uni_scope",
 "act": "uni_act"
 },
 "urn:ietf:params:oauth:token-type:saml2": {
 "subject": "uni_sub",
 "audience": "uni_aud",
 "expire": "uni_exp",
 "issuer": "uni_iss"
 }
};

Chapter 10. OAuth 2.0 and OIDC support 129

2. Put all the information with common name into a JSON. For example:

var actClaimsJson = JSON.parse(
 OAuthMappingExtUtils.parseSTSUUToJson(act_stsuu, actor_token_type,
JSON.stringify(universalNameMapJson))
);

Gathering information for new (requested) token
Decide whether the new token can be issued and gather the claims that are associated with the issued
token.

Procedure
1. Gather claims for the newly issued token. For a JWT example, set the claims in the attribute container

under the type "urn:ibm:jwt:claim":

var req_stsuu = new STSUniversalUser();
req_stsuu.addAttribute(new Attribute("act", "urn:ibm:jwt:claim", actClaimsJson.uni_sub));

2. In the delegation flow, add the "act" claims into the STSUU and save it in the database in the post
mapping rule.

stsuu.addContextAttribute(new Attribute("act",
"urn:ibm:names:ITFIM:oauth:body:param", JSON.stringify(actClaimsJson.uni_act)));

Issuing of the new (requested) token
The new token is generated.

Procedure
1. Use the default Implementation.

The default implementation of token exchange generates an opaque access token,
and a refresh token (optional). To execute the default implementation, at the end
of pre-mapping rule execution, ensure that access_token context attribute type,
urn:ibm:names:ITFIM:oauth:response:attribute does not exist.

Note: Since the subject_token can be any kind of token (SAML, IvCred, JWT, opaque, STSUU, LTPA),
the default implementation will require you to extract and set the username that will be associated
with the issued access token. This username will be the sub of the opaque access token. Do the
following:

var username=<extracted from subject_token>;

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("username",
"urn:ibm:names:ITFIM:oauth:rule:decision", username));

2. Use the STS Chain to issue token.

Use the STS Chains to issue many kind of tokens. Verify Access supports issuance of token like IvCred,
SAML, STSUU, JWT. For more information about creating STS Chain, see Configuring STS modules.

To use the STS Chain to issue the token, refer to the following example:

var rsp = LocalSTSClient.doRequest("http://schemas.xmlsoap.org/ws/2005/02/trust/Issue",
 requested_token_type, // Based on the 'requested_token_type'
 target, // Based on the 'audience' or 'resource' requested
 base_element, // claims for the issued token
 null);

You can determine the issuer and appliesTo of the STS Chains as required. You can set the issuer
as the input requested_token_type and set the appliesTo as the `audience` or resource
input parameter.

130 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

After you issue the new token, set the following context attributes so that the default implementation
will not be executed and uses the issued token in Javascript.

stsuu.addContextAttribute(new Attribute("access_token",
"urn:ibm:names:ITFIM:oauth:response:attribute", issuedToken));
stsuu.addContextAttribute(new Attribute("issued_token_type",
"urn:ibm:names:ITFIM:oauth:response:attribute", requested_token_type)); // set it to
appropriate value
stsuu.addContextAttribute(new Attribute("token_type",
"urn:ibm:names:ITFIM:oauth:response:attribute", "Bearer"));
stsuu.addContextAttribute(new Attribute("expires_in",
"urn:ibm:names:ITFIM:oauth:response:attribute", "3600"));

3. Optional: Persist issued token into Token Cache table.

By default, if you issue a token in the pre-token mapping rule, it is not stored in the token cache table.
The main reason is that the token that is produced might not be OAuth/OIDC token. Since it is not an
OAuth/OIDC token, OAuth/OIDC will not support such token introspection or revocation, so there's no
point to store it into token cache.

However if you choose to do so, you can do the following:

stsuu.addContextAttribute(new Attribute("urn:ibm:ITFIM:oauth20:custom:token:access_token",
"urn:ibm:ITFIM:oauth20:custom:token", issuedToken));
stsuu.addContextAttribute(new Attribute("urn:ibm:ITFIM:oauth20:custom:token:access_token",
"urn:ibm:ITFIM:oauth20:custom:token:persistent", "true"));
stsuu.addContextAttribute(new Attribute("issued_token_type",
"urn:ibm:names:ITFIM:oauth:response:attribute", requested_token_type)); // set to
appropriate value

This way, the default implementation will be executed, however it will not generate opaque access
token, but use the custom token provided.

Note: The token cache table column size may not fit to store a lengthy token. You can workaround it by
enabling the hashing when storing the token.

4. Optional: Issue the refresh token as result of token exchange.
This is a unique scenario, when the requested_token_type is urn:ietf:params:oauth:token-
type:refresh_token, it is not advisable to generate your own refresh token in the Javascript. What
you can do here is to let the default implementation to be executed but then you need to set the
following context attribute to generate refresh token.

stsuu.addContextAttribute(new Attribute("issued_token_type",
"urn:ibm:names:ITFIM:oauth:response:attribute", requested_token_type));

5. Track actor information.
As part of the delegation scenario, we need to track the chain of actors for the issued token. Some
token like JWT or SAML can easily contain such information inside the token itself. However for
the opaque token, it is tracked inside the EXTRA_ATTRIBUTE table. The tricky part is this actor
information can be nested, and EXTRA_ATTRIBUTE column size is only 256 characters. So, when
storing the actor information, it will be stored as multiple indexed keys act:<idx>.

For example, the "act" claims is:

{
 "act": {
 "sub": "https://service16.example.com",
 "act": {
 "sub": "https://service77.example.com"
 }
 }
}

The oauth20_token_extra_attribute will be stored as:

state_id attr_name attr_value

id act:0 https://
service16.example.com

Chapter 10. OAuth 2.0 and OIDC support 131

state_id attr_name attr_value

id act:1 https://
service77.example.com

Verify Access provides a special utility to store and retrieve actor information from EXTRA_ATTRIBUTE
table.

See: OAuthMappingExtUtils.storeJwtActor(String act, String stateId) and
OAuthMappingExtUtils.retrieveActor(String stateId). However the support currently
limited for JWT token.

For other token type, the specification does not clarify how the actor is going to be represented. For
token type like IvCred, for example, which is only key value pair, probably you can represented is just
like using indexed keys as well.

State management
The state_id parameter in the STSUniversalUser module is used as a key to store or retrieve state
information for each invocation of the trust chain of an OAuth flow.

Advance Access Control provides sample mapping rules. These sample mapping rules use state
management API and are applicable to OAuth 2.0 protocols. You can get the sample mapping rules
from the File downloads section.

OAuth 2.0
OAuth 2.0 tokens, such as grants, access tokens, and refresh tokens, have a state_id parameter that
is used in Security Token Service mapping rules. The state_id parameter maintains state between
associated Security Token Service calls in an OAuth 2.0 flow.

The OAuth 2.0 mapping rule uses the state_id as the key to issue an authorization grant. The key is
used to add the token storage time to a cache. The storage time is then retrieved from the cache during a
request for a protected resource.

Figure 2 on page 133 shows a section of the sample JavaScript mapping rule for OAuth 2.0.

132 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

...
var request_type = null;
var grant_type = null;

// The request type - if none available assume 'resource'
temp_attr = stsuu.getContextAttributes().getAttributeValuesByNameAndType("request_type", "urn:ibm:names:ITFIM:oauth:request");
if (temp_attr != null && temp_attr.length > 0) {
 request_type = temp_attr[0];
} else {
 request_type = "resource";
}

// The grant type
temp_attr = stsuu.getContextAttributes().getAttributeValuesByNameAndType("grant_type", "urn:ibm:names:ITFIM:oauth:body:param");
if (temp_attr != null && temp_attr.length > 0) {
 grant_type = temp_attr[0];
}

/* The following demonstrates the use of the state management API.
 *
 * request_type = 'authorization' ==> Store the UTC time of the request into a cache
 with state_id as key [authorization_code, implicit]
 * request_type = 'access_token' && grant_type = 'client_credentials' ==> Store the UTC time of the request
 into a cache with state_id as key [client_credentials]
 * request_type = 'access_token' && grant_type = 'password' ==> Store the UTC time of the request into a cache
 with state_id as key [password]
 * request_type = 'resource' ==> Retrieve the stored time and put it into an attribute named recovered_state
 *
 * It also stores the flow type we are in be used later to detect if this is a client_credentials two-legged flow or not.
 */
if (request_type == "authorization" || (request_type == "access_token" &&
 (grant_type == "client_credentials" || grant_type == "password"))) {
 var curr_utc_time = "State storage time was: " + IDMappingExtUtils.getCurrentTimeStringUTC();
 IDMappingExtUtils.getIDMappingExtCache().put(state_id, curr_utc_time, 1000);
} else if (request_type == "resource") {
 var recovered_state = IDMappingExtUtils.getIDMappingExtCache().get(state_id);

 if (recovered_state != null) {
 var state_arr = java.lang.reflect.Array.newInstance(java.lang.String, 1);
 state_arr[0] = recovered_state;
 stsuu.addContextAttribute(new Attribute("recovered_state",
 "urn:ibm:names:ITFIM:oauth:response:attribute", state_arr));
 }
}
...

Figure 2. OAuth 2.0 JavaScript sample code with state management

Trusted clients management
Advanced Access Control stores trusted client information that is based on the decisions of a resource
owner on which clients to trust.

In an OAuth 2.0 flow, the resource owner is asked to provide consent on the scopes that are requested
by a client to access the protected resource. The resource owner can either grant permission or deny the
client from its access request.

The OAuth server or authorization server uses the trusted clients manager to manage information about
trusted clients.

Administrators can configure the behavior of the trusted clients manager in the API protection page. They
can configure whether a resource owner is prompted for consent in the Authorization code flow or the
Implicit grant flow.

The following configuration options are available:

• Never prompt a resource owner for consent - Resource owners are never prompted for consent and the
authorization decision defaults to allow access to the resource.

• Always prompt a resource owner for consent - Resource owners are always prompted for consent even
if the client was previously allowed to access the resource.

• Prompt the resource owner once and remember consent - Resource owners are prompted once for
consent and later allows access to the resource.

Note: For the Prompt once and remember configuration options, the trusted client manager verifies
whether the resource owner previously provided consent on the scopes that are requested by a client.

Chapter 10. OAuth 2.0 and OIDC support 133

Proof Key for Code Exchange support
You can configure support for Proof Key for Code Exchange for OAuth clients.

Proof Key for Code Exchange (PKCE) support is a capability (defined in RFC 7636) that adds security when
performing the authorization code flow on a mobile device. It addresses a possible security problem that
can occur when the following conditions are true:

• There is no client secret.
• The browser or operating system is being used to perform the authentication request.
• A native mobile application is consuming the redirect from the authentication request, and performing

an exchange of code for access tokens at the token endpoint.

PKCE support aims to mitigate the risk of a bad actor on the mobile device intercepting the redirect back
to native app, and maliciously using the authorization code and the returned access tokens. For a detailed
explanation of the scenario, see the Internet Engineering Task Force (IETF) Request for Comments (RFC)
7636: https://tools.ietf.org/html/rfc7636

PKCE requires the OAuth client to generate a random string and perform a hash (SHA256 + BASE64URL)
on this string. The initial string must be persisted for use at /token, and both the hash and the hash
method are presented at /authorize. The authorization server, upon receiving the hash and the method,
persists this value against the issued authorization code. When the authorization code is presented at /
token, along with the initially generated string, the hash method is applied to the presented string and
checked against the string presented at /authorize. If the two match, the request to /token is successful.
If they do not match, the request is rejected.

The processing flow is as follows:

1. Client generates a code_verifier, and computes code_challenge using
code_challenge_method.

2. Client makes request to /authorize.
3. Authorization server performs standard OAuth request validation for /authorize.
4. Authorization server checks for presence of code_challenge and code_challenge_method.
5. Authorization server stores code_challenge and code_challenge_method against authorization

code.
6. Authorization server returns authorization code response.
7. Client presents authorization code to /token including the additional code_verifier.
8. Authorization server performs standard OAuth request validation for /token.
9. Authorization server generates its own code_challenge, using the presented code_verifier,

and the stored code_challenge_method.
10. Authorization server compares its generated code_challenge, to the value which was presented in

the initial request to /authorize(and stored against the authorization code).
11. If the two match, then an access_token is issued. If the two do not, the request is rejected.

Note: The IETF specification contains a diagram of the above flow. See https://tools.ietf.org/html/
rfc7636#section-1.1.

To use the IBM Security Verify Access support for PKCE, you must configure the OAuth client to set the
requirePkce property to true. When this property of the OAuth client is set to true, the following
conditions apply:

• A new parameter is required in the request to /token.
code verifier

A cryptographic string of sufficient entropy such that an attacker cannot predict or guess its value,
as specified in section 4.1 of the RFC. This value is used with the code_challenge_method
presented in the /authorize request, to produce the value to check against the code_challenge,
which is also presented at /authorize.

134 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-1.1
https://tools.ietf.org/html/rfc7636#section-1.1

• Two new parameters are required in the request to /authorize.
code_challenge

The product of the code_verifier and the code_challenge_method. Must be the product of
the SHA256 + BASE64URL encode, as specified in section 4.2 of the RFC.

code_challenge_method

The method applied to the code_verifier as presented at /token, which is used to check the
value of code_challenge. The value of code_challenge_method must be S256, as specified in
section 4.2 of the RFC.

Reverse proxy configuration for OAuth and OIDC provider
You can run an automated configuration of a reverse proxy for OAuth and OIDC provider, and view a log of
the configuration steps. To remove the reverse proxy configuration, follow the instructions in this section.

Configuring a reverse proxy for OAuth and an OIDC Connect provider
Use a wizard to perform automated configuration of a reverse proxy appliance for OAuth and an OIDC
Connect provider.

Before you begin
The reverse proxy server that you want to use for your OAuth or OIDC Connect provider must already be
configured. See Configuring an instance.

Procedure
1. From the local management interface, select Web > Manage > Reverse Proxy.

A list of reverse proxy instances displays.
2. Select the reverse proxy instance name from the list.
3. Select Manage > OAuth and OIDC provider Configuration. A window opens where you can select

the OIDC Provider.
4. Select AAC and Federation Runtime based provider or ISVA OIDC Container based provider. A

windows opens where you provide configuration details.
5. For AAC and Federation Runtime based provider, Enter the configuration details.

The OAuth modes section lists supported modes. You can select more than one mode.

The modes are options that extend a basic OAuth configuration. A basic configuration sets up the
junction, loads the runtime certificate, and provides access to the API Protection endpoints: /token, /
userinfo, /introspect, /revoke, /metadata, and /jwks. The base configuration is sufficient if you are
doing only a resource or password credentials flow. In this case, you cannot do any API enforcement,
but you can get tokens issued. In this scenario, you do not need to select either of the OAuth modes.

If you want to use of the authorization code flow, or implicit flows, which go via a user agent, or if you
want to get a user session using the /session endpoint, then you must select Configure for browser
interaction. If you want this reverse proxy to protect resources with access tokens you must select
Configure for API protection. The two options are not mutually exclusive; you can select both.

Table 6. OAuth modes

Mode Description

Configure for browser interaction When configured for browser interaction, the /
authorize and /session endpoints are accessible.
Also, EAI authentication is enabled for /session.
This configuration option is required for the
authorize or implicit code flows.

Chapter 10. OAuth 2.0 and OIDC support 135

Table 6. OAuth modes (continued)

Mode Description

Configure for API Protection When this option is selected, an access
token can be presented to WebSEAL, and
an authenticated session retrieved. The use
of cookies is not required; the authorization
header is used as the session index. Selecting
this option configures oauth-auth and oauth-
cluster in the [oauth] stanza in the WebSEAL
configuration file.

Note: If you select Configure for API
protection and do not select Configure
for browser interaction, the configuration
parameter forms-auth is disabled.

Table 7. Reverse proxy instance

Parameter Description

Host name The host name or IP address of the runtime
server. This field is required.

Port The SSL port number of the runtime server. This
field is required.

User name The user name that is used to authenticate with
the runtime server. This field is required.

Password The password that is used to authenticate with
the runtime server. This field is required.

Junction The junction for the reverse proxy instance. The
default is /mga.

The Reuse Actions section indicates reuse of existing access control lists (ACLs) and certificates.

Table 8. Reuse configuration

Parameter Description

Reuse Certificates Select to reuse the SSL certificate if it was
already saved. If this check box is not selected,
the certificate is overwritten.

Reuse ACLs Select to reuse any existing ACLs with the same
name. If this check box is not selected, the ACLs
are replaced.

6. Click Finish.
7. When prompted, deploy the pending changes.
8. Restart the reverse proxy.
9. For ISVA OIDC Container based provider, Enter the following details

Table 9. Reverse proxy instance

Parameter Description

Host name The host name or IP address of the ISVA OIDC
provider server. This field is required.

136 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 9. Reverse proxy instance (continued)

Parameter Description

Port The SSL port number of the ISVA OIDC provider
server. This field is required. The default is 8436.

Junction The junction for the reverse proxy instance. The
default is /isvaop.

The Reuse Actions section indicates reuse of existing access control lists (ACLs) and certificates.

Table 10. Reuse configuration

Parameter Description

Reuse Certificates Select to reuse the SSL certificate if it was
already saved. If this check box is not selected,
the certificate is overwritten.

Reuse ACLs Select to reuse any existing ACLs with the same
name. If this check box is not selected, the ACLs
are replaced.

10. Click Finish.
11. When prompted, deploy the pending changes.
12. Restart the reverse proxy.

What to do next
You can examine a log file to view the results of the auto-configuration. See “Viewing a reverse proxy log
for an automated configuration” on page 137

Viewing a reverse proxy log for an automated configuration
You can view a log file to see the steps taken during the automated configuration of a reverse proxy,
such as changes to the reverse proxy configuration file and execution of Security Verify Access pdadmin
administration commands.

About this task
Use the LMI to view the log that was created when you ran the automated configuration of the reverse
proxy for one of the following uses:

• OAuth and OIDC Connect Provider
• Mobile Multi-Factor Authentication (MMFA)
• Federation

The log files typically show configuration of the junction, such as /mga, and creation of the required ACLs,
plus additional steps as required.

Procedure
1. Select Web > Reverse Proxy > Manage > Logging.
2. Select the log file you want to view.

The following log files are supported:

Chapter 10. OAuth 2.0 and OIDC support 137

Table 11. Auto-configuration log files

Log file Description

autoconfig__oauth.log Automated configuration of the reverse proxy
instance with AAC and Federation Runtime based
OAuth or an OIDC Connect provider.

autoconfig__mmfa.log Automated configuration of the reverse proxy
instance with MMFA, including configuration of
the junction and creation of the required ACLs.

autoconfig__federation.log Automated configuration of a federation on a
reverse proxy server, to set up access between
the federation and reverse proxy appliances.

autoconfig__oauth2verifyoidcprovider.
log

Automated configuration of the reverse proxy
instance with ISVA OIDC Conatiner based OAuth
or an OIDC Connect provider.

3. Click View.

The log file displays in a new window. You can take the following actions:

• View log output by scrolling through the display.
• Select Number of lines to view at one time.
• Select Starting from line to narrow the range of log file entries to view at one time.
• Click Reload to update the display after completion of another configuration.
• Click Export to save the log output to a file.

Example
To view example log file output, see “Example reverse proxy log for OAuth and OIDC configuration” on
page 138.

Example reverse proxy log for OAuth and OIDC configuration
The log file for the automated configuration of a reverse proxy instance lists the configuration actions
taken.

Sample output:

• Junction creation

Performing pdadmin cmd:
 server task default-webseald-server create -t ssl -h localhost -p 443
 -b ignore -c all -j -J inhead -k -r -e utf8_uri -f /mga
Created junction at /mga

• Reverse proxy configuration file changes

setting stanza value:
 [server] http-method-disabled-remote = TRACE,CONNECT
setting stanza value:
 [eai] eai-auth = https
setting stanza value:
 [eai] retain-eai-session = yes
setting stanza value:
 [eai] eai-redir-url-priority = yes
adding stanza value:
 [eai-trigger-urls] trigger = /mga/sps/oauth/oauth20/session*
adding stanza value:
 [eai-trigger-urls] trigger = /mga/sps/auth*
adding stanza value:
 [eai-trigger-urls] trigger = /mga/sps/authservice/authentication*
setting stanza value:
 [azn-decision-info] HTTP_HOST_HDR = header:host

138 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

setting stanza value:
 [azn-decision-info] HTTP_REQUEST_SCHEME = scheme
setting stanza value:
 [azn-decision-info] HTTP_REQUEST_METHOD = method
setting stanza value:
 [azn-decision-info] HTTP_REQUEST_URI = uri
setting stanza value:
 [azn-decision-info] HTTP_AZN_HDR = header:authorization
setting stanza value:
 [azn-decision-info] HTTP_CONTENT_TYPE_HDR = header:content-type
setting stanza value:
 [azn-decision-info] HTTP_TRANSFER_ENCODING_HDR = header:transfer-encoding
setting stanza value:
 [oauth] oauth-auth = https
setting stanza value:
 [oauth] default-fed-id = https://localhost/sps/oauth/oauth20
setting stanza value:
 [oauth] fed-id-param = FederationId
setting stanza value:
 [oauth] cluster-name = oauth-cluster
setting stanza value:
 [oauth] user-identity-attribute = username
setting stanza value:
 [tfim-cluster:oauth-cluster] handle-pool-size = 10
setting stanza value:
 [tfim-cluster:oauth-cluster] handle-idle-timeout = 240
setting stanza value:
 [tfim-cluster:oauth-cluster] timeout = 240

setting stanza value:
 [tfim-cluster:oauth-cluster] server = 9,
 https://localhost:443/TrustServerWS/SecurityTokenServiceWST13

setting stanza value:
 [tfim-cluster:oauth-cluster] basic-auth-user = easuser
setting stanza value:
 [tfim-cluster:oauth-cluster] basic-auth-passwd = ####
setting stanza value:
 [tfim-cluster:oauth-cluster] ssl-keyfile = /var/pdweb/shared/keytab/pdsrv.kdb
setting stanza value:
 [tfim-cluster:oauth-cluster] ssl-keyfile-stash = /var/pdweb/shared/keytab/pdsrv.sth
setting stanza value:
 [session] require-mpa = no
setting stanza value:
 [session] user-session-ids = yes
setting stanza value:
 [session-http-headers] Authorization = https

• Creating or modifying an ACL

Performing pdadmin cmd:
 acl create isam_mobile_anyauth
Performing pdadmin cmd:
 acl modify isam_mobile_anyauth description OAuth_Auto_Configuration
Performing pdadmin cmd:
 acl modify isam_mobile_anyauth set user sec_master TcmdbsvaBRrxl
Performing pdadmin cmd:
 acl modify isam_mobile_anyauth set group iv-admin TcmdbsvaBRrxl
Performing pdadmin cmd:
 acl modify isam_mobile_anyauth set group webseal-servers Tgmdbsrxl
Performing pdadmin cmd:
 acl modify isam_mobile_anyauth set any-other Tr
Performing pdadmin cmd:
 acl modify isam_mobile_anyauth set unauth T
Performing pdadmin cmd:
 acl create isam_mobile_nobody
Performing pdadmin cmd:
 acl modify isam_mobile_nobody description OAuth_Auto_Configuration
Performing pdadmin cmd:
 acl modify isam_mobile_nobody set user sec_master TcmdbsvaBRrxl
Performing pdadmin cmd:
 acl modify isam_mobile_nobody set group iv-admin TcmdbsvaBRrxl
Performing pdadmin cmd:
 acl modify isam_mobile_nobody set group webseal-servers Tgmdbsrxl
Performing pdadmin cmd:
 acl modify isam_mobile_nobody set any-other T

Chapter 10. OAuth 2.0 and OIDC support 139

Performing pdadmin cmd:
 acl modify isam_mobile_nobody set unauth T

• Attaching an ACL

Performing pdadmin cmd:
 acl attach /WebSEAL/isam-default/mga/sps/oauth/oauth20/session isam_mobile_unauth
Performing pdadmin cmd:
 acl attach /WebSEAL/isam-default/mga/sps/oauth/oauth20/token isam_mobile_unauth
Performing pdadmin cmd:
 acl attach /WebSEAL/isam-default/mga/sps/static isam_mobile_unauth
Performing pdadmin cmd:
 acl attach /WebSEAL/isam-default/mga/sps/wssoi isam_mobile_anyauth
Performing pdadmin cmd:
 acl attach /WebSEAL/isam-default/mga/sps/xauth isam_mobile_anyauth

Removing reverse proxy configuration for OAuth and OIDC provider
You must manually remove the configuration of OAuth and OIDC provider from a reverse proxy instance.

About this task
You can accomplish the manual steps by using the pdadmin command and by editing the WebSEAL
configuration file.

You can use the appliance Local Management Interface (LMI) to edit the WebSEAL configuration file.
On the Reverse Proxy management page, select the appropriate WebSEAL instance and click Manage >
Configuration > Edit Configuration File to open the Advanced Configuration File Editor. You can use this
editor to directly edit the WebSEAL configuration file.

For information on pdadmin, see pdadmin commands.

Procedure
1. Remove the following ACLS:

• isam_oauth_anyauth
• isam_oauth_unauth
• isam_oauth_nobody
• isam_oauth_rest

You can use the pdadmin command to remove ACLs. See acl detach and acl delete.
2. If your deployment has no further need for the junction, delete it.

Note: Ensure that the junction is not used for any function other than configuration of OAuth and OIDC
provider. If you are not certain about whether junction is used for other configurations, you can skip
this step.

The junction name is the value you specified when you created the junction. The default junction name
is /mga.

You can use the pdadmin command to delete junctions. See server task delete.
3. If OAuth was configured for API protection, disable oauth-auth in the [oauth] stanza.

To disable the property, edit the WebSEAL configuration file. See oauth-auth and [oauth] stanza.
4. If OAuth was configured for Browser flows:

a. Remove the trigger URI /<jct>/sps/oauth/oauth20/session

Note: In the URI, /<jct> refers to the WebSEAL junction that you configured. You assigned it a
unique name or accepted the default name of /mga.

b. If no other Verify Access services are configured, remove the following trigger URIs:

• /<jct>/sps/auth*
• /<jct>/sps/authservice/authentication

140 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

c. If all triggers are removed, disable eai-auth in the [eai] stanza.

To remove trigger URLs, edit the WebSEAL configuration file. See [eai-triggers-url] stanza and [eai]
stanza.

5. If OAuth was configured for API protection but OAuth was not configured for browser flows, re-enable
forms-auth in the [forms] stanza.

To modify the property, edit the WebSEAL configuration file. See [forms] stanza and forms-auth.

Configuring API protection
The API protection uses the OAuth 2.0 protocol. To configure the API protection, you must create a
definition and a client.

You must then attach the API protection definition to a resource.

Creating an API protection definition
Create API protection definitions to configure the settings that dictate the behavior of how resources are
accessed. The configuration settings protect the resources from unauthorized access.

Procedure
1. Log in to the local management interface.
2. Click either AAC > Policy > OpenID Connect and API Protection or Federation > Manage > OpenID

Connect and API Protection.

3. Click Definitions, and click .
4. In the Name field, type a unique name for the definition.

Note: The name must begin with an alphabetic character. Do not use control characters, leading and
trailing blanks, and the following special characters ~ ! @ # $ % ^ & * () + | ` = \ ; : " ' < > ? , [] { } /
anywhere in the name.

5. In the Description field, provide a brief description about the definition.
6. If you want to enforce an access policy, select the policy from the menu for the Access Policy field.

Note: The menu shows Access Policies that are currently defined. To use an access policy with
OpenID Connect and API Protection, you must define the policy prior to running the configuration
wizard. See Access policies.

7. Click Grant Types and select at least one grant type.

The grant type Authorization code is enabled by default. For information on grant types, see “OAuth
2.0 and OIDC workflows” on page 117.

8. Click Token Management.

Specify values for the token properties. For descriptions of each property, see “API Protection token
management properties” on page 142.

9. Click Trusted Clients and Consent and select when you want the user to be prompted to consent to
an authorization grant.

10. If you want to protect an OpenID Connect Provider, click OpenID Connect Provider and select
Enable OpenID Connect .

Specify OpenID Connect Provider settings as needed for your deployment. For descriptions of each
property, see “API Protection OpenID Connect Provider properties” on page 144

11. Click Save.

What to do next
• Register an API protection client.

Chapter 10. OAuth 2.0 and OIDC support 141

• Deploy the pending changes. See Chapter 15, “Deploying pending changes,” on page 227

Managing API protection definitions
An API protection definition is a set of configurations that define how resources are accessed.

About this task
You can add, modify, and delete definitions.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click OpenID Connect and API Protection.
4. Click Definitions.
5. Perform one or more of the following actions:

Add definitions
Click . See “Creating an API protection definition” on page 141 for details.

Modify definitions

a. Select a definition in the list of definitions.

b. Click .
c. Complete the properties for the definition.

Note:

You cannot modify the definition name and you can add new grant types. See “Creating an API
protection definition” on page 141 for details.

d. Click Save.

Delete definitions

a. Select a definition or press Ctrl and select multiple definitions in the definition list.

b. Click . Confirm the deletion. Click OK to continue or click Cancel.

Note: A definition cannot be deleted if there are clients associated with it or it is attached to a
resource.

6. Click Save.
7. When you add, modify or delete a definition, a message indicates that there are changes to deploy. If

you are finished with the changes, deploy them.

For more information, see Chapter 15, “Deploying pending changes,” on page 227.

API Protection token management properties
When you configure API Protection for OAuth and OpenID Connect, you must specify properties for token
management.

The local management interface (LMI) page OpenID Conect and API Protection has a section that
prompts for settings for token management. Refer to the following list of properties to determine the
appropriate value, for your deployment, for each property.

For configuration task instructions, see “Creating an API protection definition” on page 141.

142 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Access token lifetime (seconds)
Specifies the number of seconds an access token is valid. When the access token becomes invalid, the
client cannot use it to access the protected resource.
Default value: 3600 seconds.
Minimum value: 1 second.

Access token length
Specifies the number of characters in an access token.
Default value: 20 characters.
Minimum value: one character.
Maximum value: 500 characters.

Enforce single-use authorization grant
If enabled, all the authorization grant tokens are revoked after an access token is validated. If
enabled, resource requests that involve redirects fail because the access token is validated multiple
times.
Default value: disabled

Authorization code lifetime (seconds)
Specifies the number of seconds that an authorization code is valid.
This option applies only to an authorization code grant type. The authorization server generates an
authorization code and sends it to the client. The client uses the authorization code in exchange for an
access token.
Default value: 300 seconds.
Minimum value: 1 second.

Authorization code length
Specifies the number of characters in an authorization code.
Default value: 30 characters.
Minimum value: one character.
Maximum value: 500 characters.

Issue refresh token
Specifies whether a refresh token is sent to the client. A refresh token obtains a new pair of access
and refresh tokens. This option is only applicable to the Authorization code and Resource owner
password credentials grant types.

Maximum authorization grant lifetime (seconds)
Specifies the maximum number of seconds that the resource owner authorizes the client to access
the protected resource.
This option is available only if you enable the Issue refresh token option.
The value for this lifetime must be greater than the values specified for the authorization code and
access token lifetimes.
When this lifetime expires the associated grants will be deleted in the next cycle and the resource
owner must reauthorize the client to obtain an authorization grant to access the protected resource.
Default value: 604800 seconds.
Minimum value: 1 second.

Refresh token length
Specifies the number of characters in a refresh token. This option is available only if you enable the
Issue refresh token option.
Default value: 40 characters.
Minimum value: 1 characters.
Maximum value: 500 characters.

Chapter 10. OAuth 2.0 and OIDC support 143

Enforce single access token per authorization grant
If enabled, all previously granted access tokens are revoked after a new access token is generated
presenting the refresh token to the authorization server.
This option is available only if you enable the Issue refresh token option.
Default value: enabled

Enable multiple refresh tokens for fault tolerance

Specifies how refresh tokens are handled. When this option is enabled, and a refresh request is made,
the initially-used refresh token remains active (assuming it was initially active), even after a successful
refresh request is made and a new token pair (access token and refresh token) is returned. Only upon
the subsequent use of the new access token or new refresh token will the initially presented refresh
token be invalidated. If the initially used refresh token is presented again, the tokens issued on the
first refresh request (Pair 1) are revoked, and another token pair (access token and refresh token) is
issued. This new pair (Pair 2) is valid, and Pair 1 is invalid.

This option is available only if you enable the Issue refresh token option.
Default value: disabled

Enable PIN policy
Provides more protection during the exchange of a refresh token fro a new pair of access and refresh
tokens.
This option is available only if you enable the Issue refresh token option. If enabled, you must
configure the PIN length.

PIN Length
Specifies the number of characters in a PIN. This option is available only if you enable the Enable
PIN policy option. You can use the runtime.hashAlgorithm runtime parameter to configure the
algorithm that is used to hash the PIN before it is stored. For more information, see Advanced
configuration properties.
Default value: 4 characters.
Minimum value: 3 characters.
Maximum value: 12 characters.

Token character set
By default, a set of alphanumeric characters is displayed. You can specify the set of characters used
to generate tokens in the following methods:

• Manually enter characters
• Select from a pre-defined character set from the drop-down list
• Edit the characters in the field after selecting from a set from the drop-down list

The configured token character set is applicable for all token types. If this parameter is left blank, all
available alphanumeric characters are used to generate the token.
Maximum number for characters allowed: 200

API Protection OpenID Connect Provider properties
When you configure API Protection for OAuth and OpenID Connect, and you enable OpenID Connect , you
must specify properties for the OIDC Provider.

The local management interface (LMI) page OpenID Connect and API Protection has a section that
prompts for settings for OpenID Connect Provider. Refer to the following list of properties to determine
the appropriate value for each property.

For configuration task instructions, see “Creating an API protection definition” on page 141.

144 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Issuer Identifier
This entry identifies the issuing entity. It must be a valid URL with the protocol prefix https://. For
example, https://ibm.com or https://accounts.google.com. It must not include fragment
or query portions. The Issuer Identifier is defined by the OIDC specification. See http://openid.net/
specs/openid-connect-core-1_0.html#IssuerIdentifier

Point of Contact Prefix
The Point of Contact Prefix is used to correctly populate the URLs on the metadata page. It must
include the host, port, and path information of the reverse proxy junction to the runtime. For example:
https://isam.myidp.ibm.com:443/mga/ . Note that is not a field from the OIDC standard.

Metadata URI
A location where you can view your metadata. Metadata is useful to discover the capabilities of an OP.
The metadata includes all other URIs. This field is read-only.

id_token Lifetime
Time in seconds for which the id_token is valid. The value is the difference between the values in the
iat and exp claims of the issued JSON Web Token (JWT). You can use a pre-token mapping rule to
overload this value at runtime.

Default: 3600 seconds.

Signing Algorithm
The algorithm that is used to sign the JWT. This setting is the alg claim in the JWT. Use the menu to
select the appropriate value. You can use a pre-token mapping rule to overload this value at runtime.

Default: RS256.

Key Database for Signing
The Key database that is used to source the private key for signing the ES/RS signature algorithms.
You can use a pre-token mapping rule to overload this value at runtime.

Default: rt_profile_keys

Certificate Label for Signing
The label of the key in the selected keystore that is used as the private key for ES/RS signing. You can
use a pre-token mapping rule to overload this value at runtime.

Default: server

Encrypt ID token
Boolean value to indicate whether this JWT must be encrypted. Select the check box to encrypt the
token and configure encryption settings. You can use a pre-token mapping rule to overload this value
at runtime.
Key Agreement Algorithm

The encryption algorithm that is used for JWT key agreement. This setting is the alg claim in the
encrypted JWT. You can use a pre-token mapping rule to overload this value at runtime.

Default: RSA-OAEP-256

Encryption Algorithm
The encryption algorithm that is used for JWT payload encryption. This setting is the enc claim in
the encrypted JWT. You can use a pre-token mapping rule to overload this value.

Default: A128CBC-HS256

Attribute Mapping

You can use the Attribute Mapping section to define attributes that can be used to customize claims
from attribute sources. Attribute sources can be: Fixed, Credential, or LDAP.

When you select Enable OpenID Connect, the New and Delete icons are activated for attribute
mapping. To create, select New and enter Attribute Name. Select Attribute Source type.

To remove an existing Attribute Name, select the attribute and click Delete.

If you do not select Enable OpenID Connect, you cannot create new attribute mappings.

Chapter 10. OAuth 2.0 and OIDC support 145

http://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier
http://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier

Enable client registration
Check this check box to allow users to register dynamic clients.

Issue Client Secret
If dynamic clients are enabled, check this check box if you want them to be confidential clients.

PIN policy
Advanced Access Control extends OAuth 2.0 capabilities with a PIN policy.

The PIN policy provides the capability of protecting a refresh token with a PIN provided by the API
protection client. An administrator can configure the API protection definition to enable the PIN policy for
the grant types that issue a refresh token. The two grant types that issue a refresh token are Authorization
code and the Resource owner password credentials.

When enabled, the client is required to send a PIN as a parameter in the first access token request. The
parameter name is pin. The parameter value consists of digits of the length that is configured in the API
protection definition. The client must submit the same PIN on subsequent requests when exchanging a
refresh token for a new access token.

The PIN policy can be configured to use various hash algorithms to hash and store the PIN. Use the
runtime.hashAlgorithm configuration parameter to specify the hash algorithm. For more information
about configuring the hash algorithm, see Runtime properties in Advanced configuration properties

Registering an API protection client
Register OAuth API protection clients in the Clients panel. Clients are the entities against which OAuth
access and refresh tokens are granted at runtime.

About this task
API Protection clients now have a dynamic data field when they are configured. This allows storage of
arbitrary data against the client which can be accessed at runtime (for example, in the consent page or in
mapping rules).

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click OpenID Connect and API Protection.
4. Click Clients.

5. Click .
6. Specify the following information:

Client name
Specify a meaningful client identifier for each client registration. You can use this value to search
for client registrations.

API definition
Specifies the related Definition, which owns and defines the client. A Definition can own many
client registrations but a client registration can belong to only one Definition. When you create a
client, a list of available Definitions are available. When a client is created, this value cannot be
modified.

Confidential
Specify whether the client type is confidential. A confidential client type requires a client secret.
Enable this feature if you want the client to require a client secret.

Client secret
This field is enabled only if the client is indicated as confidential. Specify a client secret that is
used to authenticate an OAuth client at runtime. It is mandatory for all clients that belong to API

146 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

protection definitions where the client type is Confidential and the client credentials grant type
is enabled. Click Generate to have a client secret that is generated for you or specify your own
secret.

Redirect URI (Optional)
Click New to specify the redirect URI to use for the client. You can create multiple redirect URI
entries. Each URL must be unique.

Company name
Specify the name of the company for this client.

Company URL (Optional)
Specify the URL of the company website.

Contact name (Optional)
Specify a name of the contact person for this client.

Email address (Optional)
Specify the email address of the contact person for this client.

Telephone number (Optional)
Specify the telephone number of the contact person for this client.

Contact type (Optional)
Select the contact type from the list:

• Administrative
• Support
• Technical
• Billing
• Other

Other information (Optional)
Specify extra information about the client contact.

Require PKCE (RFC 7636)
Requires Proof Key for Code Exchange, which adds security when performing the authorization
code flow on a mobile device. See “Proof Key for Code Exchange support” on page 134.

JWKS endpoint

This endpoint allows retrieval for a client's public key when encryption is used.

JWT Encryption keystore
The database that is used in key agreement when using an asymmetric JWT encryption algorithm.
You can use a pre-token mapping rule to overload this value at runtime.

This field is enabled if OIDC is enabled for the selected API Definition.

JWT Encryption certificate
The label of the key in the keystore that is used in key agreement, when you use an asymmetric
JWT encryption algorithm. You can use a pre-token mapping rule to overload this value at runtime.

This field is enabled only if a valid encryption keystore is selected from the drop-down list for JWT
Encryption keystore.

7. Enter any dynamic data on the Extension Properties tab.
8. Click OK.

Chapter 10. OAuth 2.0 and OIDC support 147

Managing registered API protection clients
Manage registered OAuth API protection clients.

About this task
You can search and delete clients. You can search for API protection clients based on the following
values:

• Client name
• Client ID
• API protection definition

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click OpenID Connect and API Protection.
4. Click Clients.
5. Perform one or more of the following actions:

View and filter clients
You can filter for client name, client ID, and API protection definition.

Take any of the following actions to filter your view:

• Select the Details View to view client name, client ID, and API protection definition.

• Select the List View to view only the name of the client.
• Type a term, such as an client name, client ID, and API protection definition in the Filter field to

list clients that use that term. Any part of the values for client name, client ID, or API protection
definition that match is applied by the filter and is displayed in the search results. Click x to clear
the Filter field.

• Sort the client list by column with the up or down arrow on each column. For example, you can
view the list of clients that are sorted by the Clients column in ascending order by clicking the up
arrow.

Modify clients

Attention: Ensure that the modification does not affect a current policy or configuration. If
you modify a client that is in-use, the policy or configuration that uses the client might stop
working.

a. Select the client you want to modify.

b. Click
c. Complete the properties for the clients.
d. Click OK.

Delete clients

a. Select a client or press and hold the Ctrl key and select multiple clients to remove.

b. Click . Confirm the deletion. Click OK to continue or click Cancel.

When you delete a client:

• The client registration is removed from the database.
• All tokens issued against that client is removed.

148 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

6. When you add, modify or delete a client, a message indicates that there are changes to deploy. If you
are finished with the changes, deploy them.

For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Managing policy attachments
Attach policies or API protection definitions to resources so that the policies and definitions can be
enforced.

Before you begin
You must create policies, policy sets, or API protection definitions.

When you create policies, policy sets, or API protection definitions you cannot use them until you
publish them to resources. Once policies, policy sets, or API protection definitions are published, they
are enforced during the evaluation of access requests.

About this task
You can:

• Add a resource
• Add a policy or API protection definition attachment to a resource
• Remove a policy or API protection definition attachment from a resource
• Delete a resource
• Publish a policy or API protection definition attachment

When a deployment is fully configured, the Resources panel displays three levels of entries. The top-level
entry is the web container that contains the protected object space for a server instance. The second level
shows the resources in the protected object space. The third level lists the policies and API protection
definitions that are attached to each resource.

Tip: The user interface provides a quick filter feature for use on the top-level entry. Use the quick filter
to search for a specific top-level entry. Enter the first few characters of the web container, and the list
displays only the entries that contain the specified characters.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Access Control.
4. Click Resources.
5. Perform one or more of the following actions:

Add a resource

a. Click .

Note: When you add a resource for the first time, the system prompts you to enter the
user name, password, and domain for the Security Verify Access policy server. The entered
information is cached and used by default when you add a resource again. If you want to
change this domain, click Change Domain and then enter the new user name, password, and
domain information. This new information replaces the old cached values.

b. Select the resource type in the Type field.

• If you select the Reverse Proxy type:

i) In the Proxy Instance field, click the down arrow icon to display a list of proxy instances.
Select an entry.

Chapter 10. OAuth 2.0 and OIDC support 149

For example, the list of proxy instances is the WebSEAL protected object space that is
defined directly under /WebSEAL.

ii) Specify a resource by entering its name or browsing for it. When you browse, you can
expand the list of resources. The list hierarchy is based on the structure of the WebSEAL
protected object space.

– In some cases, not all resources are displayed because the WebSEAL protected object
space is a sparse tree. For example, you might see only the resource /myserver-jct/
benefits. You can select this resource and click OK to add it to the Protected Path.
You can then add /myserver-jct/benefits/medical.

– In some cases, you cannot view the object space for the web server junction.
For example, if the administrator did not install the IBM Security Verify Access
querycontents script on the application server, you cannot see the junction contents.
In these cases, you can enter the resource path manually.

• If you select the Application type:

i) Select an application ID from the list or click Add New to add a new application ID.
ii) Enter the resource ID.

c. Click Save.
d. Attach a policy to the resource.

Attach a policy or API protection definition to a resource

a. Select a resource node and click Attach.
b. In the Attach Policies panel, select Policies or Policy Sets or API Protection.
c. From the displayed list, select one or more policies or policy sets or API protection definitions.

Tip: You can type the name of the applicable policy or policy set or API protection definition in
the quick filter.

Notes:

• You can attach both individual policies, policy sets, or API protection definitions.
• You cannot attach policies or policy sets to a resource where that resource already has API

protection definitions attached.
• You cannot attach API protection definitions to a resource where that resource already has

policies and policy sets attached.
d. Click OK to save your changes.

Note: The policy or API protection definition remains inactive until you publish it.

Remove a policy or API protection definition attachment

a. To remove a policy or API protection definition attachment from a resource, select the policy
node and click .

b. When prompted, confirm the deletion.

Note: You must publish the change.

Delete a resource

a. To delete a resource and all attached policies or API protection definitions, select the resource
node and click .

b. When prompted, confirm the deletion.

When you delete a resource:

• You cannot delete the server node.
• You do not have to manually publish the change. The deletion is automatically published.

150 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Publish a policy or API protection definition

Select a resource in the resource hierarchy and click Publish. When the publication completes,
the status column for the resource indicates the status and time of the publication.

Note: Activation of the published policy or API protection definition could take up to a minute to
complete.

Modify Resource

Note: You can only use this function if policy or policy sets are attached to the given resource.

a. Select a resource node and click .
b. In the Modify Resource panel, you can modify the Policy Combining Algorithm. Choose the

preferred algorithm:

• Deny access if any attached policy returns deny

This algorithm means that if multiple policies or API protection definitions are attached to a
resource, and any one of those policies or API protection definitions returns Deny, then the
access request is denied.

• Permit access if any attached policy returns permit

This algorithm means that if multiple policies or API protection definitions are attached to a
resource, and any one of those policies or API protection definitions returns Permit, then the
access request is permitted.

Using oauthScope attributes in an access control policy
You can use the subject and resource oauthScope attributes as part of an access control decision for a
resource.

Before you begin
1. Create a reverse proxy instance.
2. Run the isamcfg tool. You must configure access control policies and API protection capabilities.
3. Determine the access control resources that your policies must be attached to. If the resources do not

exist, add them.

About this task
To use the OAuth attributes in an access control decision, you must attach the access control policy and
API protection definition in the proper locations in the protected object space.

Procedure
1. Create an access control policy. Specify the oauthScopeResource attribute, the
oauthScopeSubject attribute, or both, in one or more rules for this policy. See Creating an access
control policy.

2. Attach the access control policy to an object in the protected object space. See “Managing policy
attachments” on page 149.

3. Create an API protection definition. See “Creating an API protection definition” on page 141.
4. Register an API client that uses the API protection definition you created in step “3” on page 151. See

“Registering an API protection client” on page 146.
5. Attach the API protection definition to an object in the protected object space. See “Managing policy

attachments” on page 149.

Chapter 10. OAuth 2.0 and OIDC support 151

When you attach the definition to a resource, the resource must be at a level lower than where the
access control policy is attached in step “2” on page 151. The term lower means farther away from the
root of the protected object space.

For example, in the resource tree jct/dir1/dir2/protected_resource, you can attach the
access control policy to /jct. Then, attach the API protection definition to /jct/dir1.

6. Deploy the pending changes.

Results
The access decision for a resource at or below the API protection definition involves the oauthScope
attributes that were defined in the access control policy.

Uploading OAuth response files
Use the local management interface to upload your own custom OAuth response files.

Procedure
1. From the top menu, select Secure Reverse Proxy Settings > Manage > Reverse Proxy.
2. Select a reverse proxy.
3. Select Manage > Management Root.
4. Select the oauth folder.
5. Select Manage > Import.
6. Click Browse.
7. Browse to the file you want to import.
8. Click Open.
9. Click Import.

OAuth introspection
An Introspection URL implemented to the spec of RFC 7662 allows for information about an access token
to be returned. This allows OAuth clients to query a token to identify if the token exists and is valid.
Extensions to this endpoint have been made to also include some information about the token, beyond
whether the token is valid.

The introspection URL is enabled by default. To disable it, set the advanced configuration
oauth20.introspectEndpointEnabled to false.

A usual introspection response for a valid token includes the following values:

{
“active”:true,
“username”:”jessica”,
“client_id”:”yb98la1”,
“scope”:”email profile”,
“iat”: 1487744340,
“exp”: 1487747940
}

active
Signifies this token is valid.

scope
The scope of the access token.

username
The username of the user token was granted by.

client_id
The client this token was granted to.

152 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

iat
The UNIX timestamp for when this token was granted.

exp
The UNIX timestamp for when this token will expire.

A usual introspection response for an invalid token includes the following values:

{
"active":false
}

active
Signifies this token is invalid.

The RFC articulates that the introspection endpoint must be authenticated with client credentials. These
credentials can be provided as post parameters 'client_id' and 'client_secret', or they can be
provided as a Basic Authentication (BA) header. The authentication using BA can occur at the point of
contact (reverse proxy) or by the introspection endpoints itself (similar to the token endpoint). The client
may also authenticate using an access token issued to this client.

This client authentication is performed in the pre-token mapping rule (with the default rule). This out
of the box rule does not allow non-confidential clients to introspect tokens. However, by modification
of the rule, non-confidential clients may be able to make use of this endpoint. The RFC articulates
security concerns when allowing non-confidential clients to introspect tokens (DOS, crawling the possible
token space. See section 4. https://tools.ietf.org/html/rfc7662#section-4). A non-confidential client can
provide client credentials using BA or post parameters. When using BA, the credentials should present a
password of empty string ("").

The introspection endpoint can allow clients to introspect the tokens of each other. By default, this is not
allowed. However, a change to the POST token rule can be made to enable it. See the out of the box rule
for details.

URL:

https://<Reverse proxy host/port/junction> /sps/oauth/oauth20/introspect

HTTP Request Example:

POST /mga/sps/oauth/oauth20/introspect HTTP/1.1
 Host: server.oauth.com
 Accept: application/json
 Content-Type: application/x-www-form-urlencoded

 client_id=yb98la1&client_secret=4531959525657&token=2YotnFZFEjr1zCsicMWpAA

The introspection endpoint supports use of the 'token_type_hint' as per section 2.1 (https://
tools.ietf.org/html/rfc7662#section-2.1). This allows an optimization in the time of the token lookup.
This does not limit the breadth of the search for the token in the token cache. Any token type will still be
found even when its type is not the same as the hint.

For example:

POST /sps/oauth/oauth20/introspect HTTP/1.1
Content-Type: application/x-www-form-urlencoded

token=&client_id=aClient&client_secret=aSecret&token_type_hint=access_token

Valid values for token_type_hint are 'access_token' and 'refresh_token'.

If using custom tokens that are not stored in the token cache, the pre-mapping rule can be used to
inform the runtime that the token provided was valid. To do this, add a context attribute with the name
'active' and the type 'urn:ibm:names:ITFIM:oauth:rule:decision'. The response attribute

Chapter 10. OAuth 2.0 and OIDC support 153

https://tools.ietf.org/html/rfc7662#section-2.1
https://tools.ietf.org/html/rfc7662#section-2.1

type can also be used. If this parameter is provided, the runtime will do no further work, and the post-rule
will be invoked. For example:

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("active",
"urn:ibm:names:ITFIM:oauth:rule:decision", "true"));

OAuth revocation endpoint
You can use a revocation endpoint to ensure that tokens are revoked.

Security Verify Access supports use of an OAuth revocation endpoint. This endpoint enables clients to
inform an authorization server that a specified token is no longer used, and must be revoked. The support
is compliant with RFC 7009.

The revocation URL is enabled by default and cannot be disabled.

A typical revocation response returns a 200 response, with an empty body. You can modify a mapping rule
to add response attributes.

The RFC states that the revocation endpoint must be authenticated with client credentials. You can
provide these credentials as post parameters client_id and client_secret, or provide them as a Basic
Authentication (BA) header. The authentication that uses BA can occur at the point of contact (reverse
proxy) or by the revocation endpoint itself (similar to the OAuth token endpoint). The client can also
authenticate by using an access token that was issued to this client.

The RFC states that the revocation endpoint can revoke only tokens that were generated by the client that
is requesting the revocation.

URL

https://<Reverse proxy host/port/junction> /sps/oauth/oauth20/revoke

HTTP Request Example

POST /mga/sps/oauth/oauth20/revoke HTTP/1.1
 Host:
server.oauth.com
 Content-Type: application/x-www-form-
urlencoded
 client_id=yb98la1&client_secret=4531959525657&token=2YotnFZFEjr1zCsicMWpAA

token_type_hint
The revocation endpoint supports use of the token_type_hint. Use of the hint optimizes the lookup
time for the token. Use of the hint does not limit the breadth of the search for the token in the token
cache. Token types are found even if a token's type is not the same as the hint.

For example:

POST /sps/oauth/oauth20/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded

token=&client_id=aClient&client_secret=aSecret&token_type_hint=access_token

Valid values for token_type_hint are access_token and refresh_token.

154 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Mapping rule variables
Table 12. Mapping rule variable for OAuth revocation

Variable Description

only_allow_conf_client_revoke You can use the pre-mapping rule to specify
whether non-confidential clients can revoke
tokens. By default, only confidential clients can
revoke tokens.

To enable non-confidential clients to revoke
tokens, set this parameter to false.

Default:

var only_allow_conf_client_revoke = true;

OIDC Claims customization
You can customize the OIDC claims that contain information about the user and about the authentication
event.

The OIDC specification describes standards for creating and processing claims. OpenID defines a
standard set of basic profile Claims. You can use specific scope values to access pre-defined sets of
Claims. You can also request individual Claims by using the claims request parameter.

The specification outlines the following structure for defining and handling claims:

• There are about twenty standard claims, such as name, picture, gender, and so on.
• You can use the scope parameter to request Claims. There are well defined scopes, each of which

translates to a collection of standard claims such as profile, email, phone, and address.
• You can also request claims individually by using the claims request parameter.
• When an access token exists, claims are returned in UserInfo. When there is no access token, claims

are returned in ID Tokens.
• UserInfo is returned at the /userinfo endpoint. ID Tokens are returned at either the /authorize

or /token endpoints, depending on which OIDC flow is executed.
• There are additional request parameters that can affect the claims. Examples of these include
max_age, acr_values, and claims_locales.

OIDC does not perform authentication itself, but relies on an authentication module to authenticate the
user. This means that the OIDC protocol cannot provide claims values, because it has no knowledge of
what user information is available, and how to the data is stored. For example, perhaps only the user
name information is available, but is stored in LDAP as the attribute cn.

As a result, Security Verify Access supports the customization of claims values. For ID Tokens, you can
customize claims values through a pre-token mapping rule. For UserInfo, you can customize claims in a
post-mapping rule.

In Security Verify Access, when you create a new OIDC Definition, default pre-token and post-token
mapping rules are created. These mapping rules contain examples of how the claims can be resolved.

Note: To review the OIDC specification, see http://openid.net/specs/openid-connect-
core-1_0.html#Claims

UserInfo endpoint
The OIDC specification recommends the use of the UserInfo endpoint. The UserInfo endpoint is
useful, for example, when a Relying Party cannot parse a JWT Token to obtain information about the
authenticated user.

Chapter 10. OAuth 2.0 and OIDC support 155

http://openid.net/specs/openid-connect-core-1_0.html#Claims
http://openid.net/specs/openid-connect-core-1_0.html#Claims

Without the use of customization, the /userinfo endpoint contains only the field sub. This is the subject
identifier for the end-user at the issuer.

The specification mandates to output the claims as much as possible at the /userinfo endpoint, except
when an access token is not generated. Also, in some cases the ID Token is generated at both /authorize
and /token endpoint. The Security Verify Access will not impose any restriction of which claims must be
output to ID Token or User Info. Likewise, there are no restrictions that the same claims must be returned
at /authorize and /token. Based on the needs of your deployment, you can choose not to output some
claims in certain flows even though the claims are requested.

The /userinfo endpoint is protected by an access token. You can access it by an HTTP GET or POST. See
the following links:

• http://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest
• https://tools.ietf.org/html/rfc6750#section-2

An unauth ACL is attached for this endpoint.

Claims List
Many parameters can contribute to a claims list. For example, parameters specified by a scope are often
used to build a list. By parsing the claims parameter, you can also retrieve individual claims and determine
which claims are for UserInfo and which claims are for ID Tokens.

Security Verify Access builds a claims list and makes it available in the Security Token Service Universal
User (STSUU) as a list of voluntary and essential claims. This list is produced only for OIDC requests that
have scope openid against an OIDC-enabled provider.

The processing sequence is:

1. The scope parameter is processed first, since all claims requested through it are voluntary claims.
The specification defines only profile, address, email, and phone scopes as well-defined scopes. These
translate into a list of standard claims. However, if the scope contains other scopes that are not
well-defined, it is treated as an individual claim.

2. Next the claims parameter is processed. Either UserInfo or ID Token is processed, depending on the
endpoint.

Table 13. Claims types

Claim Type

Voluntary claims urn:ibm:names:ITFIM:oidc:claim:voluntary

Essential claims urn:ibm:names:ITFIM:oidc:claim:essential

For example, given a request with scope=“openid phone organization” and a claims parameter
that is the described in the following JavaScript Object Notation (JSON):

{
 "userinfo": {
 "given_name": {"essential": true},
 "email": {"essential": true},
 "email_verified": {"essential": true},
 "http://example.info/claims/groups": null
 },
 "id_token": {
 "nickname": null,
 "auth_time": {"essential": true},
 "acr": {"values": ["urn:mace:silver"] }
 }
}

156 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

http://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest
https://tools.ietf.org/html/rfc6750#section-2

At the /authorize or /token endpoint where the ID Token can be generated, the following is available in the
STSUU context:

<stsuuser:ContextAttributes>
 // from scope: phone and organization
<stsuuser:Attribute name=“organization" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 <stsuuser:Attribute name="phone_number"
type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 <stsuuser:Attribute name="phone_number_verified"
 type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 // from id_token claims parameter
 <stsuuser:Attribute name="nickname" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 <stsuuser:Attribute name="auth_time" type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
 <stsuuser:Attribute name="acr" type="urn:ibm:names:ITFIM:oidc:claim:voluntary">
 <stsuuser:Value>urn:mace:silver</stsuuser:Value>
 </stsuuser:Attribute>
</stsuuser:ContextAttributes>

At the /userinfo endpoint, the following is available in the STSUU context:

<stsuuser:ContextAttributes>
 // from scope: phone and organization
 <stsuuser:Attribute name=“organization"
type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 <stsuuser:Attribute name="phone_number"
type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 <stsuuser:Attribute name="phone_number_verified"
 type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
 // from userinfo claims parameter
 <stsuuser:Attribute name="given_name" type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
 <stsuuser:Attribute name="email" type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
 <stsuuser:Attribute name="email_verified"
 type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
 <stsuuser:Attribute name="http://example.info/claims/groups"
 type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
</stsuuser:ContextAttributes>

Retrieving Claim Values
You can use the function associate() and UserLookupHelp to retrieve claim values. Security Verify
Access allows you to also retrieve claim values by using attribute sources. The Federation support in
Security Verify Access includes management of attribute sources, in the LMI under Advanced Access
Control.

You can provide mappings between a specific attribute name and an attribute source, as part of
configuring an OIDC Definition. During runtime, this mapping is resolved and made available in the STSUU.

For example, assume the attribute sources in the following table are configured.

Table 14. Example configuration of Attribute Sources

Attribute Name Value Type

CredentialNickName AZN_CRED_PRINCIPAL_NAME Credential

FixedOrganization www.ibm.com Fixed

LDAPMail mail LDAP

Assume also that you have created the following attribute mapping in the OIDC Definition configuration.

Table 15. Attribute Mapping

Attribute Name Attribute Source

email LDAPMail

nickname CredentialNickName

organization FixedOrganization

Chapter 10. OAuth 2.0 and OIDC support 157

Then, during runtime, in the STSUU the following attributes can be found:

<stsuuser:AttributeList>
 <stsuuser:Attribute name=“nickname" type="urn:ibm:names:ITFIM:5.1:accessmanager">
 <stsuuser:Value>test1</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name=“organization" type="urn:ibm:names:ITFIM:5.1:accessmanager">
 <stsuuser:Value>www.ibm.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email" type="urn:ibm:names:ITFIM:5.1:accessmanager">
 <stsuuser:Value>test1@iswga.com</stsuuser:Value>
 </stsuuser:Attribute>
</stsuuser:AttributeList>

The resolution of attribute sources during runtime is dependent on the context. The context is the list of
attributes that are available in the STSUU at that moment. The following conditions apply:

• For fixed attribute source, there is no restriction on attribute source resolution.
• For a credential type attribute source, resolution occurs best at the /authorize endpoint. This is because

since the entire authentication information (and credential) is available at that time.
• For LDAP type attribute source, if you are using a macro for the search filter or baseDN, resolution also

depends on the context. The information might be available in STSUU, but in a different context it might
be available under a different name. This means it can be difficult to create one LDAP attribute source
that fits all contexts.

The common use of a macro is to retrieve information based on the username that is being
authenticated. Security Verify Access includes an attribute oidc_username which contains the
authenticated username in all contexts: whether at /authorize, /token or /userinfo endpoints. For
example, you can create a common LDAP Attribute Source, as shown in the following table.

Table 16. LDAP Attribute Source example

Type LDAP

Attribute Name LDAPMail

LDAP Attribute mail

Server Connection TestLDAP

Scope Subtree

Selector uid

Search filter: (uid={oidc_username})

Base DN: dc=iswga

Saving Values or Parameters
Security Verify Access enables you to save values or parameters that are related to the claims at the /
authorize endpoint.

For example, some request parameters can be specified at the /authorize endpoint, but the claims
might be produced at the /token or /userinfo endpoint. The claims need to be saved so that they can
be available at the /token or /userinfo endpoint. An example of this is the claims_locales request
parameter.

Another example is the existence of values, such as credential information, that are available at the /
authorize endpoint, but need to be output at the /token or /userinfo endpoint. An example of this is the
values that are used in the credential type attribute sources. You can save these values. This overcomes
the limitation of the attribute source such that for the credential-type attribute source, the context exists
only at the /authorize endpoint, and if the values are not saved, the context is not available at any other
endpoint.

158 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

You can do this by creating a context attribute in the STSUU
of the type urn:ibm:names:ITFIM:oidc:claim:parameter for parameter or
urn:ibm:names:ITFIM:oidc:claim:value for value.

The difference between these two types is that, during runtime, the claim value is put back into STSUU
Attribute List under type urn:ibm:names:ITFIM:5.1:accessmanager, but the claim parameter is put
in the STSUU context under type urn:ibm:names:ITFIM:oidc:claim:parameter.

Note that these saved values or parameters exist as long as the grant exists. When the grant is removed or
expires, the saved values and parameters are removed.

For example, we man modify the pre-token mapping rule and add the following code to save the
AZN_CRED_PRINCIPAL_NAME attribute.

var saveValue = stsuu.getAttributeContainer()
 .getAttributeValueByNameAndType("AZN_CRED_PRINCIPAL_NAME",
 "urn:ibm:names:ITFIM:5.1:accessmanager");
if (saveValue != null) {
 var attro = new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("AZN_CRED_PRINCIPAL_NAME",
 "urn:ibm:names:ITFIM:oidc:claim:value", saveValue);
 stsuu.getContextAttributes().setAttribute(attro);
}

By doing this, the CredentialNickName attribute source (as shown in the example earlier in this article)
can be resolved in the /token or /userinfo endpoint.

Customizing claims
Security Verify Access provides, in pre-token and post-token mapping rule, examples of how to customize
the claims.

For ID Tokens, customization is done in a pre-token mapping rule. You must enable the sample by
setting the customize_id_token variable to true. For UserInfo, customization is done in a post-token
mapping rule.

For the example, the algorithm used is the same. The first step is to retrieve the claim list. You might want
to process essential claims and voluntary claims separately.

To resolve claims, the produceClaim() method is called. If an expected value, as specified by the claim,
is found, use it. Next, try to find an attribute that has been resolved using Attribute Source mapping,
and has the same name as the claim. Next, if still there is no value, for essential claims, you can set
some value or optionally throw an STS exception. Note, however, that the OIDC specification does not
recommend throwing an error even if an essential claim cannot be fulfilled.

For the final step, if the claim value exists, it is put into the STSUU. The type must be set correctly, in order
to included as part of ID Token or UserInfo. For ID Token, the type must be urn:ibm:jwt:claim. For
UserInfo, the type must be urn:ibm:names:ITFIM:oauth:response:attribute.

Special parameter for UserInfo
You can customize UserInfo by using a special attribute. You can create an attribute in the STSUU Context,
with name userinfo and type urn:ibm:names:ITFIM:oauth:rule:userinfo, with the value as a
JSON string.

The purpose of this special parameter is to allow you to provide a complex value for UserInfo, in situations
where the limitations of the STSUU structure prevent support for the value. For example, the following
JSON defines an address that consists of two parts:

{"firstname":"John",
 "lastname":"Doe",
 "address":{
 "zipcode":34234
 "city":"Newark"
 }
}

Chapter 10. OAuth 2.0 and OIDC support 159

The JSON string provided in this parameter serves as the base JSON structure, and is added with other
customization attributes, if they exist, to the output of the /userinfo endpoint.

Another use of the special parameter is when you want to generate UserInfo in JWT format. By default,
the Security Verify Access implementation produces UserInfo in JSON format. If you need to produce
UserInfo in JWT format, there is an example in the post-mapping rule.

To use the example in the post-mapping rule, complete the following steps:

1. Create an STS chain that includes the modules in the table below.

Table 17. Chain modules for JWT format

Module Mode

Default STSUU Module Instance Validate

Default Jwt Module Issue

Default STSUU Module Instance Issue

For more information on creating STS templates and chains, see Managing trust chains.
2. In the post mapping-rule, set produce_jwt_userinfo to true:

var produce_jwt_userinfo = true;

Client authentication to /token through an incoming JSON Web
Token

Security Verify Access OIDC Providers support client authentication to /token through an incoming JSON
Web Token (JWT).

Some deployment scenarios, such as Open Banking, require the use of a signed assertion as a
method to replace client_id and client_secret. To view the implementer requirements for client
authentication, see https://www.openbanking.org.uk/read-write-apis/security-profile/id1-0-1/.

Security Verify Access OIDC Providers support client authentication to /token through an incoming JSON
Web Token (JWT). Security Verify Access support of client assertions satisfies RFC 7523. See https://
tools.ietf.org/html/rfc7523.

Note: Support for authentication to /token with a JWT is different from support for request JWTs that
are presented to /authorize. For /authorize, see “Passing parameters through JWT in a request
to /authorize” on page 161.

When an incoming client assertion is detected by the presence of the parameters
client_assertion_type (of a valid value) and client_assertion, the OAuth delegate invokes a
token exchange. This token exchange is to a well-known (predictable) set of issuer and appliesTo
values.

The JWT must contain the following claims:

iss
The issuer of the JWT. This value must be that of the security entity that created this JWT. Its
presence is validated, but explicit validation of the value must be completed in the STS chain.

sub
Subject Identifier. This value must be the client_id you want to authenticate.

aud
Intended audiences for the ID Token. It must be a value that represents this entity, such as the API
Protection definition name.

exp
Expiration time on or after which the JWT is not accepted for processing.

160 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://www.openbanking.org.uk/read-write-apis/security-profile/id1-0-1/
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7523

The parameter nbf, if present, is validated. This parameter is the "not before" claim that identifies the
time before which the JWT is not accepted for processing.

You can create a Secure Token Service (STS) chain with modules to handle client assertions through
incoming JWTs during authentication. To configure an STS chain that is compatible with incoming client
assertions, the chain must ensure:

1. No token type is set.
2. RequestType of Validate is accepted.

Examples of ISSUER and APPLIESTO fields that handle all presented client assertions are as follows:

ISSUER="REGEXP:(urn:ietf:params:oauth:client-assertion-type:jwt-bearer:.*)"
APPLIESTO=https://localhost/sps/oauth/oauth20

Note: In the example above, all clients match with this chain. (Note the .* value in the regexp for
the Issuer.) If a particular chain is needed, then use the issuer:urn:ietf:params:oauth:client-
assertion-type:jwt-bearer:myClient where myClient is the client_id of the interested client.

• The issuer is a combination of the assertion type plus the client identifier.
• The appliesto is the federation name. For Security Verify Access, the federation name is always:

https://localhost/sps/oauth/oauth20

The client configured secret and jwks_uris are included in the request to the STS through WS-Trust
claims. To view how the JWT module supports validation, see Validate mode.

After the JWT is validated, OAuth expects a Secure Token Service Universal User (STSUU) in return, as
follows:

• The sub claim is populated with the client_id of the incoming request.
• The aud field is checked against the configured issuer identifier of the API definition.

Note: The values of iss and aud must be validated. This validation can be done through the STS chain
configuration, or in a map module in the STS chain, or in the pre-token mapping rule. Validation within
the chain is easiest when the values of iss and aud are static.

All the claims in the JWT are mapped into the STSUU attribute list, with the type similar to
urn:ibm:oauth20:client:assertion.

To implement this set of features, you must configure an STS chain with the following modules:

• JWT module in Validate mode >
• An optional JavaScript mapping rule >
• STSUU module in Issue mode

Following is an example of code for retrieving the values:

var sub = stsuu.getAttributeContainer().getAttributeValueByName("sub");
var aud = stsuu.getAttributeContainer().getAttributeValueByName("aud");
var iss = stsuu.getAttributeContainer().getAttributeValueByName("iss");
IDMappingExtUtils.traceString("sub: " + sub + " aud: " + aud + " iss: " + iss);

Passing parameters through JWT in a request to /authorize
Security Verify Access OIDC Providers support passing request parameters by way of a JWT in a request
to /authorize.

The support satisfies the requirements in Section 6.1 of the OpenID Connect Core specification https://
openid.net/specs/openid-connect-core-1_0.html.

Deployments such as web banking applications require integration with strong authentication as offered
by a third party. This scenario requires that clients avoid providing claims directly in a query string. By

Chapter 10. OAuth 2.0 and OIDC support 161

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

sending the claims in a JSON Web Token (JWT), the client proves that it signed them with an established
secret. Security Verify Access supports this function by providing decryption of OIDC ID tokens that are
received with the authorization code grant flow from a third-party OpenID Provider. The received tokens
are signed (for example, by presenting a JWT that uses the JWS algorithm RS256) and encrypted (for
example, by use of the content encryption algorithm AES128CBC-HS256 and key agreement algorithm of
RSA-OEAP). See https://tools.ietf.org/html/rfc7518.

A request JWT can be used to provide incoming request parameters. The specification requires that the
OAuth request parameters must still contain client_id and response_type, but all other parameters,
such as redirect_uri, and scope, can be provided only in the request JWT. The client_id and
response_type can also be presented in the request JWT, but the values of each must match those that
are provided in the OAuth request parameters.

To configure an STS chain that is compatible with incoming JWT request parameters, the chain must meet
the same requirements as required for handling client assertions:

1. No token type is set.
2. RequestType of Validate is accepted.

Examples of ISSUER and APPLIESTO fields that handle all presented client assertions are as follows:

ISSUER="REGEXP:(urn:ibm:ITFIM:oauth20:client_request:.*)"
APPLIESTO=https://localhost/sps/oauth/oauth20

Note: In the example above, all clients match with this chain. (Note the .* value in the regexp for
the Issuer.) If a particular chain is needed, then use the issuer:urn:ietf:params:oauth:client-
assertion-type:jwt-bearer:myClient where myClient is the client_id of the interested client.

• The APPLIESTO is the federation ID.
• The ISSUER must be the string "urn:ibm:ITFIM:oauth20:client_request:", and the clientId

that is included in the request.

The claims are mapped into the request. Validation occurs on request_type and client_id, as
required by the specification:

• Validating JWT-based Requests

When the request authorization parameter is used, the JWT is passed to the auxiliary chain, and the
returned claims are mapped back into the request STSUU. The response type of the auxiliary chain must
be STSUU. If signature validation fails, the request is rejected.

• Request Parameter Assembly and Validation

The Authorization Server must assemble the set of Authorization Request parameters to be used from
the Request Object value and the OAuth 2.0 Authorization Request parameters (minus the request
parameters). If the same parameter exists both in the Request Object and the OAuth Authorization
Request parameters, the parameter in the Request Object is used. Using the assembled set of
Authorization Request parameters, the Authorization Server then validates the request in the normal
manner for the flow that is being used.

Mapping rules for OAuth and OIDC
Security Verify Access provides default mapping rules that you can use and customize for your OAuth or
OIDC deployment.

Managing OAuth 2.0 and OIDC mapping rules
Use the mapping rules to customize the methods for the OAuth 2.0 or OIDC flow.

About this task
The OAuth 2.0 and OIDC mapping rules are JavaScript code that run during the OAuth 2.0 or OIDC flow.
You can view, export, and replace OAuth or OIDC mapping rules.

162 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://tools.ietf.org/html/rfc7518

View the mapping rule if you want to see the content and structure of the mapping rule. Export the
mapping rule if you want to save a copy of the mapping rule. You can also edit this copy. Replace a
mapping rule if you want to use a new mapping rule.

Procedure
1. Log in to the local management interface.
2. Click AAC > Policy > OpenID Connect and API Protection or Federation > Manage > OpenID

Connect and API Protection.
3. Click Mapping Rules.
4. Perform one or more of the following actions:

View a mapping rule

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the mapping rule is displayed.
c. Click OK to close the panel.

Export a mapping rule

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:

Note: Use an existing mapping rule as the basis for the updated mapping rule.

a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or Browse and select a file.
d. Click OK to upload the mapping rule.

5. When you replace a mapping rule, the appliance displays a message that there are undeployed
changes. If you are finished with the changes, deploy them.

For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Related reference
“OAuth 2.0 and OIDC mapping rule methods” on page 163
You can use Java methods to customize the PreTokenGeneration and PostTokenGeneration
mapping rules.

OAuth 2.0 and OIDC mapping rule methods
You can use Java methods to customize the PreTokenGeneration and PostTokenGeneration
mapping rules.

The sample mapping rules are oauth_20_pre_mapping.js and oauth_20_post_mapping.js.

You can access the sample mapping rules from the LMI. Navigate to System > Secure Settings > File
Downloads. Continue to either of the following locations:

• access_control > examples > mapping rules
• federation > examples > mapping rules

The following limitations affect the attribute keys and values that are associated with the state_id by
using the OAuthMappingExtUtils class:

• Keys cannot be null or empty.
• Values cannot be null but can be empty.

Chapter 10. OAuth 2.0 and OIDC support 163

• Associated key-value pairs are read and write-allowed and not-sensitive.
• Some keys are reserved for system use and cannot be modified by this utility. For example, the keys and

values for the API PIN protection.

For more information, see the Javadoc. In the LMI, navigate to System > Secure Settings > File
Downloads. Continue to either access_control > doc or federation > doc.

See also “JavaScript Allowlist” on page 348.

OAuth and OIDC mapping rules files
In OAuth and OpenID Connect deployments, you can use mapping rules to customize your use of Security
Verify Access features.

Security Verify Access provides template mapping rules that you can use when configuring OAuth and
OpenID Connect deployments. For OIDC, the rules are automatically included when you create an OIDC
API Protection definition. One mapping rule is used pre-token generation. The other mapping rule is used
post-token generation.

Note: If you created API definitions in a prior release of Security Verify Access, and updated to Version
9.0.4, you have the option to enable OIDC. However, enabling OIDC and saving the definition does not
update the mapping rules. You can manually update the mapping rules by following the instructions in
“Updating mapping rules when enabling OIDC” on page 171.

Table 18. Mapping Rules

Mapping Rule Supported Actions

oauth_20_pre_mapping.js • Use a user registry for verification of the username and password
for the ROPC scenario. Optionally, force sourcing the ROPC password
validation config from ldap.conf.

• Show an example of the ROPC scenario using an external service for
verification of the username and password.

• Limit the number of tokens per user per client, and specify the
algorithm to use.

• Customize ID Token
• Specify whether to only allow confidential clients to introspect or

revoke tokens
• Discover the request_type and the grant type.
• Limit the number of grants per user per client.
• Enable a token lookup example.
• Enable custom tokens
• Enable assertion grants
• Calling additional STS chains

164 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 18. Mapping Rules (continued)

Mapping Rule Supported Actions

oauth_20_post_mapping.js • Associate attributes
• Deletetokens
• Makean HTTP(S) callout
• Update a token
• Register an Authenticator for MFA
• Enforce that clients are only introspecting their own tokens
• UserInfo Customization
• Produce JWT UserInfo
• Call additional STS chains
• Return additional attributes to the user via response attributes.

OAuth and OIDC mapping rules actions
You can modify mapping rules to perform actions that you need for your OAuth or OIDC deployment.

This topic provides details for some of the actions you can take to modify the mapping rules. For
information on more actions, see the comments in the code for each mapping rule.

Note that for certain grant types, some actions must be performed in the pre-token mapping rule.

See “Managing OAuth 2.0 and OIDC mapping rules” on page 162 for instructions on replacing a mapping
rule after you make the updates to the file.

Resource owner password credentials (ROPC) grant type flow

For the ROPC flow, the pre-token mapping rule is responsible for performing validation of the user
name and password. This validation can be performed in various ways. The pre-defined rule that is
included with the appliance provides the following examples:

• Use UserLookupHelper to validate a user name and password against a configured LDAP. You can
also use the java class PluginUtils but it is limited.

To configure the LDAP to be used, see “Configuring username and password authentication” on
page 50.

• Validate the user name and password through an HTTP callout. The mapping rule sends the user
name and password to a web service. As the format of the messages is not fixed, various services
(for example, REST, SOAP, SCIM) can be used for this purpose. Javadoc on the HTTP client and all
other exposed Java classes available in mapping rules can be downloaded from the appliance File
Downloads page under the path access_control > doc > ISAM-javadoc.zip.

JWT and SAML bearer grant type flow

For the JWT or SAML assertion bearer grant type flows, the pre-token mapping rule must perform the
following actions:

• Validate the assertion, including but not limited to:

– Validate the signature (if signed).
– Decrypt the assertion (if encrypted).
– Check the expiry and "not before" value of the assertion.
– Ensure that the issuer is a trusted party.

• Extract the subject from the assertion and set the USERNAME field of the STSUU.

Chapter 10. OAuth 2.0 and OIDC support 165

The USERNAME field of the STSUU can be set via a call, for example:

// username is a variable containing the subject of the assertion

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("username","urn:ibm:names:ITFIM:oauth:rule:decision", username));

The validation of the assertion can be performed in various ways:

– HTTP callout to a web service. Use the HTTP client to perform this.
– WS-Trust request to the Secure Token Service (STS).

- A chain must be configured to consume the assertion and return the required information.
- The STSClientHelper will be called to invoke the STS via HTTP. For more information about

this class, see the Javadoc that is embedded in the appliance.

Any attributes of the assertion can be extracted and associated to the OAuth grant to be used
later. For more information about associating attributes, see “OAuth 2.0 and OIDC mapping rule
methods” on page 163.

• The type of the username attribute added must be
"urn:ibm:names:ITFIM:oauth:rule:decision" to ensure that only a value populated from
the rule is used.

OAuth 2.0 token limits
You can define limits on the number of OAuth tokens per user per definition so that the high-volume
database does not go beyond capacity.

Security Verify Access for Mobile has a thread that runs at a specified interval defined by the advanced
configuration property, oauth20.tokenCache.cleanupWait. This property defines the amount of
time, in seconds, to wait before it performs another cleanup of expired grants and tokens in the OAuth
2.0 token cache.

Depending on the interval and use of OAuth grants and tokens, there is a possibility that the capacity
of the high-volume database can be reached before the cleanup process runs. If this happens, the
appliance can be negatively impacted.

To prevent issues such as this, the OAuth PreTokenGeneration mapping rule, by default, limits the
number of OAuth tokens per user per client definition. When a user requests an OAuth token, the
current number of tokens for that user and the specified client definition will be compared to the
maximum allowed. If the maximum is exceeded, an error message is returned to the user.

An additional algorithm implements least recently used (LRU) and, if the maximum is exceeded, the
least recently used token determined by the date last used for that user and client definition will be
removed from the high-volume database.

You can set the limit and algorithm to use, which are controlled by variables in the mapping rule file.
Two algorithms are implemented in this mapping rule:

• Strictly enforce the limit.
• When the limit is reached, remove the least recently used tokens for the user per client.

Update the OAuth PreTokenGeneration mapping rule, oauth_20_pre_mapping.js to modify the
algorithms. See the comments in the code for an explanation of the values you can modify.

See “Updating PreTokenGeneration to limit OAuth tokens” on page 6 so that any API protection
definitions you created in versions prior to 8.0.1.2 can take advantage of these limits.

Customizing OAuth tokens by updating the sample PreTokenGeneration mapping rule
You can customize the format of the tokens that are issued by your OAuth definition.

The OAuth tokens can be customized by modifying the sample PreTokenGeneration mapping
rule. Enable the PreTokenGeneration mapping rule on the appliance by setting the variable
enable_custom_tokens to true.

166 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

When custom token formats are used, the tokens must remain unique. Otherwise, users might
become authenticated with another user's credential. Thus, it is recommended that custom tokens
always contain a nonce of reasonable entropy.

To customize the authorization code, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:authorization_code". The provided value will be
used as the authorization code if an authorization code would have been issued in this request.

To customize the access token, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:access_token". The provided value will be used as
the access token if an access token would have been issued as part of this request.

To customize the refresh token, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:refresh_token". The provided value will be used
as the refresh token if a refresh token would have been issued as part of this request.

Returning additional attributes in responses

If you want to return additional attributes to an OAuth response, modify the pre or post token
mapping rule to add an attribute with the name and value of the desired response attribute, and
specify the well-known type urn:ibm:names:ITFIM:oauth:response:attribute. You can also
use the post token mapping rule to modify any response attributes which are already included.

Here is an example of adding a new response attribute in JavaScript.

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("myAdditionalAttribute" ,"urn:ibm:names:ITFIM:oauth:response:attribute", "myValue"));

If you want to return a multi-valued attribute, provide a Java array as the value. Here is an example of
constructing and returning a multi-valued response attribute.

 var javaArray = java.lang.reflect.Array.newInstance(java.lang.String, 1);
 javaArray[0] = 'myValue';
 stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
 ("myAdditionalAttribute" ,"urn:ibm:names:ITFIM:oauth:response:attribute", javaArray));

Here is an example of an access_token response using the same examples:

{
 "access_token": "afcddfegeedffdeeabb",
 "refresh_token": "cbbdegfcgcffgffdcbdeafadaccegaebeebeaagd",
 "scope": "scope1",
 "myAdditionalAttribute": "myValue",
 "token_type": "bearer",
 "expires_in": 3589
}

{
 "access_token": "gdbafbcgffcggfgeccb",
 "refresh_token": "dfgagecdgbeddeebbedcdacegdacccccfafabcee",
 "scope": "scope1",
 "myAdditionalAttribute": [
 "myValue",
 "mySecondValue"
],
 "token_type": "bearer",
 "expires_in": 3589
}

This action is commonly performed for the response types:

• authorize
• access_token
• introspect

Chapter 10. OAuth 2.0 and OIDC support 167

• userinfo
• revoke

Note: when used for revoke, JSON will be returned rather than a 200 with no body.

Customize ID Tokens
For OIDC deployments, the post-mapping rule oauth_20_pre_mapping.js provides examples for
how to customize ID tokens. When populating an ID token, the rule processes essential claims and
voluntary claims separately so that they are treated appropriately if they have no value. In the STSUU,
the attribute's name is the claim name and the attribute's value(s) are the expected value of the claim.
See the mapping rule for more information.

Customize UserInfo
For OIDC deployments, the post-mapping rule oauth_20_post_mapping.js provides examples for
how to customize Userinfo based on OIDC scope and claims request parameters. In the STSUU
context, the claims are listed in terms of essential and voluntary claims. When AttributeSources
are configured in the definition, they too are resolved and available in the STSUU. This is one way of
doing customization.

Produce JWT Userinfo
For OIDC deployments, the post-mapping rule oauth_20_post_mapping.js provides examples for
how to produce JWT UserInfo. In the STSUU context, the signing and encryption data (based on the
OP Definition) are available. To create JWT, you can call an STS Chain which has 2 modules: 1) Default
STSUU validation module, 2) Default JWT issuer module. You must create this chain, it is not supplied
by default. The chain passes the signature and encryption data and all the JWT claims. The JWT token
result then needs to be set back in the STSUU under specific name and type. See the mapping rule file
for more information.

Modifying JWT signing and encryption parameters in the pre-token mapping rule

This action applies only when OIDC is enabled.

When using OIDC, the JSON Web Token (JWT) configuration is sourced from the OAuth definition.
However, an administrator may want to write logic which at runtime augments how a JWT is formed.
For example, specifying a different certificate when signing JWTs for a specific client or specific type
of client. You can take this action within the pre-token mapping rule for the definition.

The JWT STS module is used to build the JWT that is returned in the OIDC flow. This module allows
a well-known set of claims to be provided at runtime. For documentation on those values, see Issue
mode.

When making use of the issue context attributes defined in the JWT STS module, the values
must be provided by using a different and specific attribute type. When calling the STS, the STS
Universal User (STSUU) that is provided is just for a JWT. For OIDC, the STSUU is an encapsulation
of the HTTP request. To provide a custom property for building a JWT, set a context attribute
with the name and attribute as described in the "Issue mode" link, but use the attribute type
urn:ibm:oidc10:jwt:create. If you want to set a JWT claim or header claim (not how the
actual JWT is formed), use the types urn:ibm:jwt:claim or urn:ibm:JWT:header:claim,
respectively.

Note: The Security Token Service Universal User (STSUU) document is an XML representation of a
request that passes through a trust module chain in the STS. The three elements in the STS Universal
User document are Principal, AttributeList, and RequestSecurityToken. For more information on the
role of the STSUU in identity mapping, see Security Token Service Universal User document.

The following example ensures that the JWT that is issued uses HS256 signing with the provided key.
This action overrides the configuration in the OAuth definition.

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute(
 "signing.alg", "urn:ibm:oidc10:jwt:create", "HS256"));
stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute(
 "signing.symmetricKey", "urn:ibm:oidc10:jwt:create", "myKey"));

168 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

The following code adds an extra header to the JWT (in this case, the cty field).

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("cty",
 "urn:ibm:JWT:header:claim", "JWT"));

The following code adds a static claim to the JWT claims.

stsuu.addAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("myClaim" ,
 "urn:ibm:jwt:claim", "claimValue"));

Here is a raw JWT produced with all 4 of the above examples enabled.

eyJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJub25jZSI6InNvbWVOb25jZTE0
NzUxIiwiaWF0IjoxNTA2NDkyNTAyLCJpc3MiOiJodHRwczovL3Rlc3REZWYuY29tI
iwic3ViIjoidGVzdHVzZXIiLCJleHAiOjE1MDY0OTYxMDIsIm15Q2xhaW0iOiJjbG
FpbVZhbHVlIiwiYXVkIjoibXl0ZXN0Q2xpZW50In0.ZJdBmJtVw_Ti3Qjnpi21HWl
Yk-asu72UnosYBZXeRn4

The decoded header:

{
 "cty": "JWT",
 "alg": "HS256"
}

The claims:

{
 "nonce": "someNonce14751",
 "iat": 1506492502,
 "iss": "https://testDef.com",
 "sub": "testuser",
 "exp": 1506496102,
 "myClaim": "claimValue",
 "aud": "mytestClient"
}

Retrieve Clients
You can retrieve the static and dynamic client data in the pre_token and post_token mapping rule, by
using the oauth_client variable.

For example:

//The oauth_client varible will be unavailable during dynamic client registration in the
pre_token mapping rule.

//Returns the client id of the client
var client_id = oauth_client.getClientId();
//Returns the client secret of the client
var client_secret = oauth_client.getClientSecret();
//Returns the extended data associated with the client
var extendedData = oauth_client.getExtendedData();

To customize the client_id and secret during a dynamic client registration flow, see “OIDC Dynamic
Clients- Custom Identifiers” on page 191.

Dynamic Client Registration Flow

During dynamic client registration, the client id and client secret are either generated or can
be customized.

A variable is available in the pre and post token mapping rule to access the registered client and its
attributes.

For example:

//Returns the client id of the dynamically registered client
var client_id = oauth_client.getClientId();
//Returns the client secret of the dynamically registered client
var client_secret = oauth_client.getClientSecret();

Chapter 10. OAuth 2.0 and OIDC support 169

//Returns the extended data associated with the dynamically registered client
var extendedData = oauth_client.getExtendedData();

Customizing OAuth tokens by updating the sample PreTokenGeneration
mapping rule

You can customize the format of the tokens that are issued by your OAuth definition.

The OAuth tokens can be customized by modifying the sample PreTokenGeneration mapping rule. Enable
the PreTokenGeneration mapping rule on the appliance by setting the variable enable_custom_tokens to
true.

When custom token formats are used, the tokens must remain unique. Otherwise, users might become
authenticated with another user's credential. Thus, it is recommended that custom tokens always contain
a nonce of reasonable entropy.

To customize the authorization code, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:authorization_code". The provided value will be
used as the authorization code if an authorization code would have been issued in this request.

To customize the access token, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:access_token". The provided value will be used as the
access token if an access token would have been issued as part of this request.

To customize the refresh token, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:refresh_token". The provided value will be used as
the refresh token if a refresh token would have been issued as part of this request.

To customize the device code, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:device_code". The provided value will be used as the
device_code in the device flow.

To customize the user code, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:user_code". The provided value will be used as the
user_code in the device flow. Customizing the user_code is particularly important, as the end user will be
required to key this into a user agent –potentially on a mobile device, where entering long strings can be
cumbersome. There is an out of the box example of this configured be default to make the format of the
user code xxxx-xxxx.

OpenID Connect mapping rules
Mapping rules allow users to customize the information that is propagated from an OpenID Connect
Provider or what is consumed by a Relying Party.

These mapping rules can either be JavaScript, which is invoked internally via the STS, or the mapping can
be performed externally via a HTTP request.

OpenID Connect Provider mapping rules
When you write mapping rules for a provider, the primary goal is to augment the claims that are included
in the ID token.

After mapping rule execution, all attributes in the STSUU will be added to the id_token as a claim, where
the attribute key is the key in the id_token, and the value is the value of the attribute. If there are several
attributes with the same key, then an array containing each attribute will be added to the claim. Some
context information is made available to the user when writing mapping rules; the context attributes of

170 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

the passed in STSUU will contain attributes with the type “urn:ibm:ITFIM:oidc:provider:context”, which
can be used to make decisions on what claims are added, or if any other actions are performed.

These context attributes include:

• The client ID of the client making the request.
• The federation name of the provider servicing the request.
• The redirect URI sent in the request.
• The response type of the request.
• The state parameter of the request.
• The user-consented scopes for the request.

OpenID Connect Relying Party mapping rules
When you write mapping rules for a Relying Party, the resulting STSUU is turned into a PAC that is used to
authenticate the user to a Reverse Proxy via EAI.

The attributes that are included in that PAC will be the attributes of the STSUU, and the principal will
be the first principal which was in the STSUU. When writing mapping rules for a Relying Party, the
values of the id_token will be made available as Attributes in the STSUU. Some additional context
is made available to the user via the STSUU's context attributes. These attributes will have the types
“urn:ibm:ITFIM:oidc:client:idtoken:param” and “urn:ibm:ITFIM:oidc:client:token:param”.

These context attributes include:

• All of the claims inside the id_token.
• The raw JWT.
• Any issued access or refresh tokens.
• All of the properties of the issued bearer token if an authorization code flow is used.
• All of the parameters issued in the response if an implicit flow is used.

Attribute sources
Both OpenID Connect Providers and Relying Parties can be configured to use an attribute source.

For an OpenID Connect Provider, this can be used instead of a mapping rule. However for an OpenID
Connect Relying Party a mapping rule must still be present, this mapping rule is required to construct the
principal used in the iv-cred.

For more information about attribute sources, see Managing attribute sources.

Updating mapping rules when enabling OIDC
You can update the default mapping rules for OIDC to enable and customize mapping actions.

About this task
Security Verify Access provides mapping rules for use with OAuth 2.0 and OIDC deployments. You can
access these files from the File Downloads section of the LMI. You can then update these files as
appropriate for your deployment.

For Version 9.0.4, Security Verify Access supports new OIDC request types, as described in the following
table.

Chapter 10. OAuth 2.0 and OIDC support 171

Table 19. New request types

Request type Associated endpoint Description

userinfo https://server.oauth.com/mga/sps/oauth/
oauth20/userinfo

See “OAuth 2.0
endpoints” on page
114 and “OIDC Claims
customization” on page
155

revoke https://server.oauth.com/mga/sps/oauth/
oauth20/revoke

See “OAuth 2.0
endpoints” on page 114
and “OAuth revocation
endpoint” on page 154

introspect https://server.oauth.com/mga/sps/oauth/
oauth20/introspect

Support for introspect
was added in Version
9.0.3.See “OAuth 2.0
endpoints” on page 114
and “OAuth introspection”
on page 152

Procedure
1. In the LMI, go to System > File Downloads
2. Expand either federation > examples > mapping rules or access_control > examples > mapping

rules
3. Select one or more of the following files and click Export.

• oauth_20_pre_mapping.js
• oauth_20_post_mapping.js

4. Edit the mapping rule as appropriate for your deployment.
5. Import the revised mapping rule into your OIDC API Protection definition.

a. Select either AAC > Policy > OpenID Connect and API Protection or Federation > Manage >
OpenID Connect and API Protection.

b. Select the Mapping Rules sub-menu.
c. Click Import to add a new mapping rule. Or, to use an edited mapping rule to replace an existing

mapping rule, highlight the existing mapping rule and click Replace.

Device flows verification_uri
The device flow requires the client be presented with a verification_uri.

The verification_uri value needs to be changed per deployment because the exact details of the
point of contact are not known by the authorization server and the response is written back in JSON not
HTML. In order to update the verification_uri shown in the response from device_authorize,
use the Post Token mapping rule and update the variable webseal_portion to be the new protocol,
hostname, port, and junction to user in the URI.

OAuth 2.0 template files
The OAuth process relies on HTML pages to interact with users, such as displaying errors or prompting
users to provide information. You can customize these pages through the OAuth template files.

For information about OAuth template files, see Template files.

172 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

OAuth 2.0 template page for consent to authorize
The authorization server uses this page to determine and store user consent information about which
OAuth clients are authorized to access the protected resource. This page also indicates scopes that the
OAuth client requests.

The Security Verify Access for Mobile provides an HTML page template called user_consent.html. The
macros in the template are specifically for an OAuth 2.0 flow.

Note: You can use a separate template for each API definition. To add a template for a specific
definition, create a directory with the same name as the definition under oauth20 and add the
user_consent.html template there.

Security Verify Access for Mobile stores the decisions made by the resource owner about which OAuth
clients to trust. The resource owner is not prompted every time the same OAuth client requests
authorization to access the protected resource.

The authorization request from the OAuth client shows a list of approved scopes, and a list of scopes to
be approved. These lists are shown in the consent page and can be of indeterminate length. The template
supports multiple copies of stanzas that are repeated once for each scope in either list.

This template file provides several replacement macros:
@OAUTH_AUTHORIZE_URI@

This macro is replaced with the URI for the authorization endpoint.
@OAUTH_CLIENT_COMPANY_NAME@

This macro is replaced with the display name of the client that is requesting access the protected
resource.

@CLIENT_ID@
This macro is replaced with the client_id parameter specified in the authorization request.

@REDIRECT_URI@
This macro is replaced with the redirect URI that the authorization server uses to send the
authorization code to. The value depends on the following items:

• Redirect URI that is entered during partner registration
• oauth_redirect parameter specified in the authorization request

@STATE@
This macro is replaced with the state parameter specified in the authorization request.

@RESPONSE_TYPE@
This macro is replaced with the response_type parameter specified in the authorization request.

@OAUTH_CLIENT_DATA_MACRO@
This macro is replaced with the client data in JSON format, which contains values that are entered at
configuration time such as:

• Company name
• Company URL
• Contact name
• Email address
• Telephone number
• Contact type
• Other information

This macro is also the dynamic data of the client. This includes any statistically configured client
values such as Company name, and any dynamic values, regardless of whether they are from a
dynamically registered client or from an extended client portion. For example, tos_uri

The fields are sanitized through a filter list. To populate or filter a specific value, change the advanced
configuration oauth20.clientDataToInclude.

Chapter 10. OAuth 2.0 and OIDC support 173

@USERNAME@
This macro is replaced with the Security Verify Access for Mobile user name.

@OAUTH_OTHER_PARAM_REPEAT@
A multi-valued macro that belongs inside a [RPT oauthOtherParamsRepeatable] repeatable
replacement list. The values show the list of extra parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPEAT@
A multi-valued macro that belongs inside a [RPT oauthOtherParamsRepeatable] repeatable
replacement list. The values show the list of extra parameter values.

@OAUTH_TOKEN_SCOPE_REPEAT@
A multi-valued macro that belongs either inside
[RPT oauthTokenScopePreapprovedRepeatable] or [RPT
oauthTokenScopeNewApprovalRepeatable] repeatable replacement lists. The values inside
the [RPT oauthTokenScopePreapprovedRepeatable] show the list of token scopes that
have been previously approved by the resource owner. Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable] show the list of token scopes that have not yet been
approved by the resource owner.

@CONSENT_FORM_VERIFIER@
This macro is replaced with a unique identifier for the consent_form_verifier parameter value.
The consent_form_verifier parameter value is automatically generated by the authorization
server. The parameter name and value must not be modified.

174 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>OAuth 2.0 - Consent to Authorize</title>
 <link rel="stylesheet" type="text/css" href="/sps/static/styles.css" />
 </head>
 <body>
 <div class="header">
 <div class="brandingLogo"></div>
 </div>
 <div class="content">
 <div class="contentHeader">
 <h1 class="pageTitle">OAuth 2.0 - Consent to Authorize</h1>
 <div class="instructions"></div>
 </div>

 <div class="pageContent">
 <form action="@OAUTH_AUTHORIZE_URI@" method="post">

 <p>The following site is requesting access to an OAuth 2.0 protected resource:</p>
 <div class="sectionTitle">
 <p>@OAUTH_CLIENT_COMPANY_NAME@</p>
 </div>

 <p>The client type is: @CLIENT_TYPE@</p>

 <p>The client provided the following OAuth 2.0 request parameters:</p>

 <ul style="margin-left: 20px">
 Client Id: @CLIENT_ID@
 Redirect URI: @REDIRECT_URI@
 State: @STATE@
 Response Type: @RESPONSE_TYPE@

 <p>By approving this request you will be providing delegated authorization
 on behalf of:</p>
 <p>@USERNAME@</p>

 <p>The client provided the following extra request parameters:</p>
 <!-- START NON-TRANSLATABLE -->
 <ul style="margin-left: 20px">
 [RPT oauthOtherParamsRepeatable]
 @OAUTH_OTHER_PARAM_REPEAT@=@OAUTH_OTHER_PARAM_VALUE_REPEAT@
 <input type="hidden" name="@OAUTH_OTHER_PARAM_REPEAT@"
 value="@OAUTH_OTHER_PARAM_VALUE_REPEAT@" />
 [ERPT oauthOtherParamsRepeatable]

 <!-- END NON-TRANSLATABLE -->

 <p>The client requested the following token scopes that have been previously approved:</p>
 <!-- START NON-TRANSLATABLE -->
 <ul style="margin-left: 20px">
 [RPT oauthTokenScopePreapprovedRepeatable]
 @OAUTH_TOKEN_SCOPE_REPEAT@
 <input type="hidden" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@" />
 [ERPT oauthTokenScopePreapprovedRepeatable]

 <!-- END NON-TRANSLATABLE -->

 <p>The client requested the following token scopes that have not yet been approved:</p>
 <!-- START NON-TRANSLATABLE -->
 [RPT oauthTokenScopeNewApprovalRepeatable]
 <input type="checkbox" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@" checked="checked"/>
 <label>@OAUTH_TOKEN_SCOPE_REPEAT@</label>

 [ERPT oauthTokenScopeNewApprovalRepeatable]
 <!-- END NON-TRANSLATABLE -->

 <p/>

 <p>Would you like to approve access to this scope?</p>

 <input type="hidden" name="consent_form_verifier" value="@CONSENT_FORM_VERIFIER@" />

 <!--
 The scope parameters can be:
 1. Requested as part of the redirect for authorization by the client
 by appending them to the authorize URL as query string parameters, and/or
 2. If not requested by the client, and you know what authorization options
 are valid for the protected resources being requested, you may
 also manually prompt for them in this page template as demonstrated
 by the following example scope's
 -->
 <!--
 <table>
 <tr>
 <td>Scopes to be authorized: </td>
 <td>Scope 1</td><td><input type="checkbox" name="scope" value="token_scope_1" /></td>
 <td>:: Scope 2</td><td><input type="checkbox" name="scope" value="token_scope_2" /></td>
 <td>:: Scope 3</td><td><input type="checkbox" name="scope" value="token_scope_3" /></td>
 </tr>
 </table>
 -->

 <table>
 <tr>
 <td>Permit </td>
 <td><input type="radio" name="trust_level" value="permit" checked /></td>
 </tr>
 <tr>
 <td>Deny </td>
 <td><input type="radio" name="trust_level" value="deny" /></td>
 </tr>
 </table>

 <div class="controls">
 <input class="submitButton" type="submit" name="submit" value="Submit" style="width: 80px" />
 </div>
 </form>
</div>
</div>
 </body>
</html>

Figure 3. Template for user_consent.html

Chapter 10. OAuth 2.0 and OIDC support 175

Error responses
An HTTP response indicates the type of error that has occurred when an action in an authorization
process fails. The error responses described here are only applicable to Policy Enforcement Point (PEP)
error responses.

For more information about OAuth 2.0 error responses for other endpoints, see the OAuth website: http://
www.oauth.net.

In some circumstances, the following HTTP error responses must be returned to the client:

• 400 Bad Request
• 401 Unauthorized
• 502 Bad Gateway

For the 401 response, an additional WWW-Authenticate header is added to the response in the
following format:

WWW-Authenticate: OAuth realm = <realm-name>

The HTML component of the responses is preinstalled from files that have been specified in the EAS
configuration.

For details on how to configure the response template files for OAuth EAS, see Configuring WebSEAL to
include OAuth decisions.

User self-administration tasks for OAuth
Administrators can configure OAuth to enable users to perform certain self-management tasks.

A common user task is to manage authorization grants. For example, users can view the attributes of an
authorization grant. A user can also enable an authorization grant.

Managing OAuth 2.0 authorization grants
You can view your authorization grants and the tokens and attributes of each authorization grant.

About this task
You can complete the following tasks:

• View a list of your OAuth 2.0 authorization grants.
• View the OAuth 2.0 tokens and attributes of an authorization grant.
• Remove an OAuth 2.0 authorization grant.
• Enable an OAuth 2.0 authorization grant.
• Disable an OAuth 2.0 authorization grant.

Procedure
Take one of the following actions:
View your OAuth 2.0 authorization grants and the tokens and attributes of each authorization grant

a. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

b. Click the ID from the table to view the tokens and attributes of that authorization grant.

Note: You can also use the following URL to go directly to the tokens and attributes
of a specific authorization grant: http://hostname/mga/sps/mga/user/mgmt/html/device/
grant_attributes.html?id=x.

176 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

http://www.oauth.net
http://www.oauth.net

The query string, id=x, indicates the authorization grant that you are trying to access. The x
represents the ID of the authorization grant.

Remove an OAuth 2.0 authorization grant

a. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

b. Click Remove next to the authorization grant that you want to remove.

Enable an OAuth 2.0 authorization grant

a. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

b. Select the Enabled box next to the authorization grant that you want to enable.

Disable an OAuth 2.0 authorization grant

a. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

b. Clear the Enabled box next to the authorization grant that you want to disable.

Note: Authorization grants can be enabled, disabled, or removed in the authorization grant attribute page
too.

APIs for managing OAuth 2.0 authorization grants
There are two API endpoints that are available to manage a user/s grants. These endpoints are useful for
building an SPA or custom USC.

The first endpoint allows listing all of a user's grants.
Issue a HTTP GET to: http://server.oauth.com/mga/sps/mga/user/mgmt/grant. The API
responds with:

{
 "grants": [
 {
 "id": "uuid8f63b7ee-0169-1c05-a78c-af253b6a2308",
 "isEnabled": true,
 "clientId": "client1",
 "tokens": [
 {
 "type": "authorization_grant",
 "subType": "refresh_token",
 "dateCreated": "2019-03-18T06:01:11Z",
 "lifetime": 604799,
 "lastUsed": "2019-03-18T06:01:11Z",
 "scope": "openid,email"
 }
],
 "attributes": [
 {
 "name": "attribute1",
 "readonly": false,
 "sensitive": false,
 "value": "123"
 },
 {
 "name": "attribute2",
 "readonly": false,
 "sensitive": false,
 "value": "456"
 }
],
 "clientName": "client1"
 },
 ...
],
 "username": "testuser"
}

Chapter 10. OAuth 2.0 and OIDC support 177

The second endpoint allows operations on a per grant basis. This endpoint requires the grant-id to be
known, the API documented above includes the grantId.

To use this endpoint, issue a HTTP GET to: http://server.oauth.com/mga/sps/mga/user/
mgmt/grant/{grantId}. The API responds with the grant:

{
 "id": "uuid8f63b7ee-0169-1c05-a78c-af253b6a2308",
 "isEnabled": true,
 "clientId": "client1",
 "tokens": [
 {
 "type": "authorization_grant",
 "subType": "refresh_token",
 "dateCreated": "2019-03-18T06:01:11Z",
 "lifetime": 604799,
 "lastUsed": "2019-03-18T06:01:11Z",
 "scope": "openid,email"
 }
],
 "attributes": [
 {
 "name": "attribute1",
 "readonly": false,
 "sensitive": false,
 "value": "123"
 },
 {
 "name": "attribute2",
 "readonly": false,
 "sensitive": false,
 "value": "456"
 }
],
 "clientName": "client1"
 }

This endpoint also supports a HTTP DELETE to remove a grant. Issue a HTTP delete to http://
server.oauth.com/mga/sps/mga/user/mgmt/grant/{grantId}.

The attributes can also be updated when they are not read-only. Issue a HTTP PUT to http://
server.oauth.com/mga/sps/mga/user/mgmt/grant/{grantId} , with the body:

{
 "isEnabled": true,
 "attributes": [
 {
 "name": "attribute1",
 "value": "newvalue1"
 },
 {
 "name": "attribute2",
 "value": "newvalue2"
 }
]
}

OAuth STS Interface for Authorization Enforcement Points
Use the WS-Trust interface to directly contact an OAuth Security Token Service (STS) trust chain in
Security Verify Access to validate a request for an OAuth protected resource. An OAuth enforcement
point intercepts requests for OAuth protected resources. The OAuth enforcement point also validates the
request with Security Verify Access, and passes the request through, if it is valid. If the request is not
valid, the enforcement point denies access to the protected resource.

OAuth STS overview
You can develop your own customized policy enforcement point to work with the Security Token Service
(STS) trust chain through the STS interface. Some examples of existing customized policy enforcement
points are WebSphere® Servlet Filter, Trust Association Interceptor (TAI), and a reverse proxy such as
WebSEAL. As Security Verify Access supports OAuth 2.0 federations, you can develop customized policy

178 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

enforcement points to work with OAuth 2.0 federations. The following diagram illustrates the relationship
between the OAuth STS trust chain and other OAuth components.

Figure 4. OAuth STS trust chain workflow

This section describes the process an OAuth enforcement point undertakes to transform an HTTP request
for an OAuth protected resource into a WS-Trust message.

The transformation makes it possible for the STS to validate the request. It also describes the possible
responses an enforcement point can receive from the STS and how to deal with them.

The following information about the policy decision point in Security Verify Access must be made
available to the enforcement point:

• The absolute URL of the Security Verify Access STS trust service endpoint. (For example: https://
isam.com/TrustServer/SecurityTokenService)

• The basic authentication user name and password for the Security Verify Access STS trust service (if
required).

• The ProviderID of the Security Verify Access federation the client belongs to, which is used as the
AppliesTo address for WS-Trust requests. Optionally, the enforcement point accepts a provider ID from
the OAuth client as a request parameter to serve more than one federation concurrently.

Authorization decision request
Configuration

For OAuth 2.0 requests, the enforcement point must know the Security Verify Access OAuth 2.0 issuer
address prefix (urn:ibm:ITFIM:oauth20:token:).

HTTP request

When an OAuth 2.0 client retrieves a protected resource with its access token, it constructs a request
similar to any of the following examples. Each of these three examples is logically the same request. All
that differs is the transmission mechanism (HTTP header, query string, post body) for sending the OAuth
2.0 bearer access token:

OAuth 2.0 Example 1 (Access token in authorization header)

POST /oauth/protectedresource.jsp
 Host: isam.com
 Authorization: Bearer YPxa78JggdW7hvcFRJph
 Content-Type: application/x-www-form-urlencoded

username=steve

OAuth 2.0 Example 2 (Access token in post body)

POST /oauth/protectedresource.jsp
 Host: isam.com
 Content-Type: application/x-www-form-urlencoded

username=steve&access_token=YPxa78JggdW7hvcFRJph

Chapter 10. OAuth 2.0 and OIDC support 179

OAuth 2.0 Example 3 (Access token in query string)

POST /oauth/protectedresource.jsp?access_token=YPxa78JggdW7hvcFRJph
 Host: isam.com
 Content-Type: application/x-www-form-urlencoded

username=steve

Authorization decision request

The OAuth 2.0 enforcement point is responsible for the following actions:

• Transform HTTP requests into a WS-Trust SOAP message.
• Send the WS-Trust SOAP message to the Security Verify Access STS for request validation.

The HTTP request is transformed into the following WS-Trust SOAP message:

OAuth 2.0 Token Validate Request (Request Security Token)

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <wst:RequestSecurityToken xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wst:RequestType xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate
 </wst:RequestType>
 <wst:Issuer xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004
 /08/addressing">
 urn:ibm:ITFIM:oauth20:token:bearer
 </wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004
 /09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap
 .org/ws/2004/08/addressing">
 <wsa:Address>https://localhost/sps/oauth/oauth20/</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
 <stsuuser:Principal/>
 <stsuuser:AttributeList/>
 <stsuuser:ContextAttributes>
 <stsuuser:Attribute name="access_token"
 type="urn:ibm:names:ITFIM:oauth:param">
 <stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="username"
 type="urn:ibm:names:ITFIM:oauth:body:param">
 <stsuuser:Value>steve</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="port"
 type="urn:ibm:names:ITFIM:oauth:request">
 <stsuuser:Value>9443</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="method"
 type="urn:ibm:names:ITFIM:oauth:request">
 <stsuuser:Value>POST</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="path"
 type="urn:ibm:names:ITFIM:oauth:request">
 <stsuuser:Value>/oauth/protectedresource.jsp</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="scheme"
 type="urn:ibm:names:ITFIM:oauth:request">
 <stsuuser:Value>https</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="host"
 type="urn:ibm:names:ITFIM:oauth:request">
 <stsuuser:Value>isam.com</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:ContextAttributes>
 </stsuuser:STSUniversalUser>
 </wst:Base>
 </wst:RequestSecurityToken>

180 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 </soapenv:Body>
</soapenv:Envelope>

The following attributes are defined by the WS-Trust specification. They are used by Security Verify
Access to identify the federation that is associated with this request and to identify the type of OAuth 2.0
access token being used.

• The Issuer address element (highlighted in bold) must be set to the Security Verify Access OAuth 2.0
issuer address prefix (urn:ibm:ITFIM:oauth20:token:). The token type must be appended at the
end and separated by a colon. Currently, the only token supported type is bearer, which means the
issuer address must be set to urn:ibm:ITFIM:oauth20:token:bearer.

• The AppliesTo address element (highlighted in italics) must match the Provider ID of the API Protection
Definition within Security Verify Access. The general form is https://localhost/sps/oauth/
oauth20/{id}.

The access_token attribute with type urn:ibm:names:ITFIM:oauth:param is mandatory in the WS-
Trust message sent to Security Verify Access. It must be appended to the ContextAttributes section of
the STSUniversalUser within the WS-Trust Request Security Token.

If access_token attribute is missing from the request from the OAuth 2.0 client, the enforcement point
does not validate the request with Security Verify Access STS. It can instantly return an HTTP 400 Bad
Request status code and optionally can include a description of the error in the body.

Note: If the access token is included in the authorization header in the Authorization: Bearer
<token> format, the token must still be added to the ContextAttributes section of the STSUU. The same
format must be used as if the access token was sent through a query string or post body.

The following attributes are not mandatory in the WS-Trust message that is sent to Security Verify Access
STS for OAuth 2.0. However, they might be useful to a custom mapping rule that is executed by Security
Verify Access.

It is recommended to append the following attributes to the ContextAttributes section of the
STSUniversalUser within the WS-Trust Request Security Token and set the attribute type to
urn:ibm:names:ITFIM:oauth:request.

• method - the HTTP method of the request (GET/POST)
• scheme - (http/https)
• host - host header from the request
• port - the port number on the host (only if it is a non-standard port. For example, not 80 if the method is

HTTP or not 443 if the method is HTTPS)
• path - the requested path

Append any additional parameters that the OAuth 2.0 enforcement point finds in the request, such
as query or post body parameters that are not of OAuth 2.0, to the Context Attribute section of the
STSUniversalUser within the WS-Trust Request Security Token. The type value is determined by the
following table.

In OAuth 2.0 requests, these parameters are not required. However, they might be useful to a custom
mapping rule that is executed by Security Verify Access. So it is recommended that you append them.

HTTP Parameter Location Attribute Type Value

URL Query String Parameters urn:ibm:names:ITFIM:oauth:query:param

HTTP Request Body Parameters urn:ibm:names:ITFIM:oauth:body:param

Post body parameters must be included only if the following conditions are met:

• The entity-body is single-part.
• The entity-body follows the encoding requirements of the "application/x-www-form-

urlencoded"content-type as defined by [W3C.REC-html40-19980424].

Chapter 10. OAuth 2.0 and OIDC support 181

• The HTTP request entity-header includes the "Content-Type" header field set to "application/x-www-
form-urlencoded".

Authorization decision response
The SOAP message response from Security Verify Access (regardless of OAuth version) echoes all the
context attributes sent in the original request and some extra response context attributes.

OAuth Token Validate Response (RSTR)

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <wst:RequestSecurityTokenResponse wsu:
 Id="uuid56a54e7c-012f-1207-9133-c24cad886d75"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401
 -wss-wssecurity-utility-1.0.xsd">
 <wsp:AppliesTo xmlns:wsa="http://schemas.xmlsoap.org/ws/2004
 /08/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>https://localhost/sps/oauth/oauth20/</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:RequestedSecurityToken>
 <stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names
 :ITFIM:1.0:stsuuser">
 <stsuuser:Principal/>
 <stsuuser:AttributeList/>
 <stsuuser:ContextAttributes>
 <stsuuser:Attribute name="authorized"
 type="urn:ibm:names:ITFIM:oauth:response:decision">
 <stsuuser:Value>TRUE</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="expires" type="urn:ibm
 :names:ITFIM:oauth:response:decision">
 <stsuuser:Value>2011-04-22T00:52:18Z</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="scope" type="urn:ibm
 :names:ITFIM:oauth:response:attribute">
 <stsuuser:Value>email</stsuuser:Value>
 <stsuuser:Value>first</stsuuser:Value>
 <stsuuser:Value>last</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="username" type="urn:ibm
 :names:ITFIM:oauth:response:attribute">
 <stsuuser:Value>wasadmin</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="username_is_self"
 type="urn:ibm:names:ITFIM:oauth:response:attribute">
 <stsuuser:Value>FALSE</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="oauth_token" type="urn:ibm
 :names:ITFIM:oauth:response:attribute">
 <stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="recovered_state" type="urn:ibm
 :names:ITFIM:oauth:response:attribute">
 <stsuuser:Value>State storage time was:
 2011-04-15T00:52:18Z</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="state_id" type="urn:ibm
 :names:ITFIM:oauth:state">
 <stsuuser:Value>2cJsZ3QhXV5rDVZHNePp</stsuuser:Value>
 </
stsuuser:Attribute>
 </stsuuser:ContextAttributes>
 <stsuuser:AdditionalAttributeStatement id=""/>
 </stsuuser:STSUniversalUser>
 </wst:RequestedSecurityToken>
 <wst:Status>
 <wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status

182 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 /valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </soapenv:Body>
</soapenv:Envelope>

The following context attributes returned to the enforcement point by Security
Verify Access relate to the authorization decision. It also has the attribute type
urn:ibm:names:ITFIM:oauth:response:decision highlighted in italics in the previous RSTR
example. It is up to the enforcement point to decide whether to down-stream these attributes to the
OAuth protected resource.

These attributes are primarily for the use of the enforcement point itself to determine the authorization
status.

Context attributes Description

authorized The value is set to TRUE if the OAuth request is valid and authorized; FALSE if
otherwise.

expires The UTC time when the access token that is used in the request is no longer
valid.

The following context attributes returned to the enforcement point by Security Verify Access must be
down-streamed from the enforcement point to the OAuth protected resource. They might be appended
to the original HTTP request in any way deemed suitable by the enforcement point and the protected
resource. This way, the protected resource can retrieve them (for example, as additional HTTP headers).

These context attributes have the attribute type
urn:ibm:names:ITFIM:oauth:response:attribute (highlighted in bold in the previous RSTR
example).

Custom mapping rules that are executed after the OAuth trust chain might also append attributes with
this type. Therefore, any attribute with this type must be down-streamed to the requested protected
resource.

Context attributes Description

access_token The OAuth access token that is used in the protected resource request.

client_type The type of client that this token was issued to, can be either public or
confidential. Public clients are clients that do not have client credentials and
therefore cannot authenticate to the authorization server.

oauth_token_client_id The unique identifier of the client to which the current access token was
issued.

scope A list of strings that represents the resource scope that is authorized by the
user at the OAuth resource owner authorization step. The OAuth protected
resource can use this attribute to determine which resources to return in the
response. This attribute is only present for OAuth flows that include a user
authorization step.

username The name of the user who authorized the OAuth token to access their
protected resources on their behalf. With OAuth flows that do not involve
a separate resource owner, this value is the client identifier.

Additional attributes with the type urn:ibm:names:ITFIM:oauth:response:attribute are
sometimes appended by a custom mapping rule, such is the case with recovered_state and
username_is_self in the example.

The state_id context attribute returned to the enforcement point by Security Verify Access is used
by a custom mapping rule that is executed after the OAuth trust chain. It has the attribute type

Chapter 10. OAuth 2.0 and OIDC support 183

urn:ibm:names:ITFIM:oauth:state (highlighted with an underline) and can be ignored by the
enforcement point.

The state_id attribute is a unique identifier for the current OAuth token that is used to store state
information.

If the state_id attribute is required by the OAuth protected resource, a custom mapping
rule can be implemented to make a copy of this attribute. The type can be changed to
urn:ibm:names:ITFIM:oauth:response:attribute from the custom mapping rule to ensure that
it is down-streamed to the resource.

Error responses
You can customize the amount of OAuth request validation that the enforcement point performs. Any
validation it performs is repeated by Security Verify Access. Doing some validation before sending an
authorization request to Security Verify Access might improve performance. The following validation must
be performed by the enforcement point before sending a request to Security Verify Access.

• Validate that some OAuth data is present. If not, return an HTTP 401 Unauthorized status code.
• Validate that none of the required OAuth parameters are missing. If any of them are not present in the

request, return an HTTP 400 Bad Request status code.
• Validate that none of the required OAuth parameters occur more than once in the request. They must

also occur only in the one component of the request; for example, the query string or the authorization
header. If the validation fails, return an HTTP 400 Bad Request status code.

The enforcement point must return an HTTP 401 Unauthorized status code to the OAuth client if the
following scenario occurs:

• The enforcement point receives a SOAP message with an authorized context attribute that has a value
of FALSE.

The enforcement point must return an HTTP 503 Service Unavailable status code to the OAuth client if
the following scenarios occur:

• Security Verify Access encounters an error.
• Security Verify Access does not return a constructed SOAP message or the SOAP message does not

contain an authorized context attribute.

The enforcement point might also optionally return a WWW-Authenticate HTTP header to indicate its
support for OAuth.

Flow chart
The following chart shows the expected workflow of an OAuth authorization enforcement point.

184 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Figure 5. OAuth authorization enforcement point workflow

API Protection form post response mode
With the form post response mode, a client can make an OAuth authorization request and receive a
self-posting form rather than a 302 response.

For more information about the form post response mode, see https://openid.net/specs/oauth-v2-form-
post-response-mode-1_0.html.

The form post template page contains a form that is populated with the action URI as the redirect URI
presented on the authorization request. There is also a repeating macro inside the form, containing name
and value macros.

Macros:

@ACTION@

The validated redirect URI presented in the authorization request.

Chapter 10. OAuth 2.0 and OIDC support 185

https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

Repeating macros:

The following macros must be used inside the repeating macro block 'oauth_form_post'. For
example:

[RPT oauth_form_post]
<input type="hidden" name="@OAUTH_HIDDEN_NAME@" value="@OAUTH_HIDDEN_VALUE@" />
[ERPT oauth_form_post]

@OAUTH_HIDDEN_NAME@

Parameter name of the form post body. Default values include (depending on response_type) :

scope, state, expires_in, access_token, token_type, code

@OAUTH_HIDDEN_VALUE@
Parameter value in the form post body. This value corresponds to the @OAUTH_HIDDEN_NAME@ macro
value.

Access policy for OAuth or OIDC
Access policy is used to enable advanced authentication scenarios when performing an OAuth flow.

For details on access policy, see Access policies.

When using access policy for OAuth or OIDC, the consent decision can be made by the access policy.

Making an OAuth or OIDC consent decision using access policy
You can use an access policy to prompt the user to enter further information via a web page or redirect
the user to another website. This logic could be used to perform the consent step when advanced logic
beyond "prompt once", "always prompt", or "never prompt" is required.

This advanced logic is undefined. But it is assumed that as a result of it, the author of the policy will be
able to decide whether the user has consented, and if they have consented, which scopes the user has
granted the client.

The following snippet can be used to set the list of scopes consented:

// Get the protocol Context:
var pctx = context.getProtocolContext();
// Construct our array of scopes
var scopes = java.lang.reflect.Array.newInstance(java.lang.String,2);
// Set the values
scopes[0] = "scope1";
scopes[1] = "scope2";
// Add this to the context
pctx.setConsentDecision(scopes);

If consent has been performed but no scope was granted, then the follow snippet can be used:

// Get the protocol Context:
var pctx = context.getProtocolContext();
var scopes = java.lang.reflect.Array.newInstance(java.lang.String,1);
scopes[0] = "";
// Add this to the context
pctx.setConsentDecision(scopes);

OIDC Dynamic Clients
OpenID Connect (OIDC) publishes a specification that allows registration of a client to an OpenID Connect
Provider.

This enables someone to onboard their application to an OpenID Connect provider through a standard
well-formed API. See the specification https://openid.net/specs/openid-connect-registration-1_0.html.

186 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://openid.net/specs/openid-connect-registration-1_0.html

The primary information that an application administrator is required to provide is the redirect URI that
the application uses when requesting an identity.

To use dynamic client registration, you must be using an OIDC-enabled definition and have the option
Enable Client Registration set to true. See “Creating an API protection definition” on page 141.

OIDC Dynamic Clients- Authentication and deployment
There are considerations to take when you are deploying a definition that allows the registration of clients
through a public API.

Consider the following factors:
Do you require authentication to register a client?

If you do not require authentication for when a client is registered, there is no way of identifying who
owns a client application.

CAUTION: This is a higher risk deployment pattern than if you require authentication.

You can control the access to the registration endpoint with an Access Control List (ACL). The reverse
proxy OAuth configuration API then configures the ACLs with the Require authentication to register
a client option. Group based requirements might also be added to ensure that only administrators
or trusted users can register clients. The authenticated users credential information is available in
the STSUniversalUser attribute list during the registration. This information can be associated with
the registered client for use during the consent step, informing the end user who the application
administrator is.

What consent challenges are sent to the resource owner?
Since dynamic clients are inherently less trusted than an administrator-registered client, the
emphasis on the users consent in the delegated authorization is increased. When and how consent
might be performed depends on who is able to register a client. Dynamic client parameters such as
client_uri are available on the consent page as a macro. you can use this parameter and other
values (For example, tos_uri, log_uri, policy_uri) to allow the user to identify, discover, and
verify who a client is before granting them access.

Will you issue a client secret?
A client secret allows access to the client centric API endpoints such as /token and /introspect,
as well as allows the client to perform HMAC signing of JWTs. Without a client secret, an authorization
code flow cannot be performed. When the configuration property issue client secret is
enabled, a client secret is issued when the registration is made by an authenticated party.

OIDC Dynamic Clients- Register a client
To register a client, issue a HTTP POST to the Client Registration Endpoint.

See “OAuth 2.0 endpoints” on page 114.

Any values which are posted in the JSON body are stored such that both standard values and custom
values can be kept. These values are available in mapping rules and in a macro on the consent page.

Previously the status code for a successful registration is 200, but the specification mandates a 201.
Currently, the dynamic client registration returns a 201 status code for a successful registration to ensure
compliance with specifications. The following example is an example request to register a client:

POST_DATA='{"redirect_uris": ["https://app.com"],
 "tos_uri":"https://app.com/tos",
 "company_name":"Applications Inc"}'

curl https://myisam.com/mga/sps/oauth/oauth20/register/mydefinition-d "$POST_DATA" -H "Accept:
application/json" -H "Authorization: Bearer myAccessToken" -H "Content-type: application/json"

HTTP/1.1 201 OK
Content-Type: application/json

{

Chapter 10. OAuth 2.0 and OIDC support 187

"client_secret_expires_at": 0,
"owner_username": "testuser",
"company_name": "Applications Inc",
"registration_client_uri": "https://myisam.com/mga/sps/oauth/oauth20/register/testDef?
client_id=myClient",
"client_secret": "mySecret",
"tos_uri": "https://app.com/tos",
"client_id_issued_at": 1522139359,
"redirect_uris": "https://app.com",
"registration_access_token": "myClientAccessToken",
"client_id": "myClientId"
}

An HTTP transformation rule can be used to return a 200 instead to retain the old behavior. See Dynamic
client registration.

In IBM Security Verify Access version 10.0.4, to register a client, issue a HTTP POST to the Client
Registration Endpoint with a signed JSON Web Token as the input. This is to support Dynamic Client
Specification for UK Open Banking and other specification that requires it.

The following demonstrates how to register a client by issuing a HTTP POST to the Client
Registration Endpoint with a signed JSON Web Token as the input:

POST_DATA=
eyJhbGciOiJQUzI1NiIsImtpZCI6Im9ZY1puQmpMQlR5TXhwUHJiMUNQVW91bDJhQWdrRV8zTnJyOG15bXN3Q1UiLC
J0eXAiOiJKV1QifQ.eyJhcHBsaWNhdGlvbl90eXBlIjoid2ViIiwiYXVkIjoiSUJNIiwiZXhwIjoxNjQ0Mzk4NzYwLC
JncmFudF90eXBlcyI6WyJhdXRob3JpemF0aW9uX2NvZGUiLCJjbGllbnRfY3JlZGVudGlhbHMiXSwiaWF0IjoxNjQ0Mz
k1MTYwLCJpZF90b2tlbl9zaWduZWRfcmVzcG9uc2VfYWxnIjoiUFMyNTYiLCJpc3MiOiI2NWQxZjI3Yy00YWVhLTQ1ND
ktOWMyMS02MGU0OTVhN2E4NmYiLCJqdGkiOiI5MGFmYmNhOC00Y2UyLTQ4MDYtOGJlMS02MmIzZTdkNDFiMDkiLCJyZW
RpcmVjdF91cmlzIjpbImh0dHBzOi8vd3d3Lm15c3AuaWJtLmNvbS9pc2FtL3Nwcy9vaWRjL3JwL2lzYW1ycC9raWNrb2Z
mL3BhcnRuZXIiXSwicmVxdWVzdF9vYmplY3Rfc2lnbmluZ19hbGciOiJQUzI1NiIsInJlc3BvbnNlX3R5cGVzIjpbImNv
ZGUiLCJjb2RlIGlkX3Rva2VuIl0sInNjb3BlIjoiYWNjb3VudHMgb3BlbmlkIiwic29mdHdhcmVfc3RhdGVtZW50IjoiZ
XlKcmFXUWlPaUp2V1dOYWJrSnFURUpVZVUxNGNGQnlZakZEVUZWdmRXd3lZVUZuYTBWZk0wNXljamh0ZVcxemQwTlZJaX
dpWVd4bklqb2lVRk15TlRZaWZRLmV5SnpiMlowZDJGeVpWOWxiblpwY205dWJXVnVkQ0k2SW5CeWIyUjFZM1JwYjI0aUx
DSmhkV1FpT2lKMFpYTjBZWFZrSWl3aWMyOW1kSGRoY21WZmFXUWlPaUkyTldReFpqSTNZeTAwWVdWaExUUTFORGt0T1dN
eU1TMDJNR1UwT1RWaE4yRTRObVlpTENKemIyWjBkMkZ5WlY5dGIyUmxJam9pYkdsMlpTSXNJbTl5WjE5cFpDSTZJbUUxTT
JFMlpqazNMV1V3TjJNdE5ESTBNQzFoTURSbUxXRXdZV1kyT1RZek1XUTVaaUlzSW5OdlpuUjNZWEpsWDJwM2EzTmZaVzVr
Y0c5cGJuUWlPaUpvZEhSd2N6b3ZMekU1TWk0eE5qZ3VOREl1TWpBekwzTndjeTlxZDJ0eklpd2ljMjltZEhkaGNtVmZjbV
ZrYVhKbFkzUmZkWEpwY3lJNklsdGNJbWgwZEhCek9pOHZkM2QzTG0xNWMzQXVhV0p0TG1OdmJTOXBjMkZ0TDNOd2N5OXZhV
1JqTDNKd0wybHpZVzF5Y0M5cmFXTnJiMlptTDNCaGNuUnVaWEpjSWl4Y0ltaDBkSEJ6T2k4dmQzZDNMbTE1YzNBdWFXS
nRMbU52YlM5cGMyRnRMM053Y3k5dmFXUmpMM0p3TDJsellXMXljQzlyYVdOcmIyWm1MM0JoY25SdVpYSXlYQ0pkSW
l3aWMyOW1kSGRoY21WZlkyeHBaVzUwWDI1aGJXVWlPaUpQY0dWdVFtRnVhMmx1WnlCRGJHbGxiblF4SUU1aGJXVWlM
Q0pwYzNNaU9pSlBjR1Z1UW1GdWEybHVaeUJVWlhOME1TSXNJbk52Wm5SM1lYSmxYMk5zYVdWdWRGOXBaQ0k2SWs5d1pX
NUNZVzVyYVc1bklFTnNhV1Z1ZERFaUxDSmxlSEFpT2pFMk5ETTROamt6TnpNc0ltcDBhU0k2SW1SclRrRlpaMFJWV0ZJ
aUxDSnBZWFFpT2pFMk5ETTROamczTnpNc0ltNWlaaUk2TVRZME16ZzJPRGd6TTMwLk1Jc1RlS2R3RWZreVJKR2JORDMx
aDU3U1Y4WWxyZF9JNGlodExHaVllUi1pSjhPRVZ3VHRsQ1NkNC1FQUZMd0NBVkt1TjVQb2o3ampYWTlONEVIWVFSYnlM
V2Qtekd1V0tnNC14Rm81YVdvUmpGb3UtUzF4aGlOcTdkRndLaTM3Z09jcUthS3ZsMkgxZFlrVnlydmdBX2o0akxXWGdK
MUJSWU1NWEt3WlZrX1JfWUFOUkhvNVNRcFdVeXhwcGRTbHhJY2NqNUhSNkZKSmZjNDlXc0N0U1RqbGVPRU90ZWxJeWNF
TzFzSVhNNFYwdnF0UmdBcFUxSnBWZ1EzbUh0eEVzLWtIdmpJNUQyeUJYcElwU2lyRjJjWmR3SWtDWld1OXN4elhJMGJw
alhIWDNwd2FnQ3A5UjBpOWV1dDJ3a0RKdjlGNWJENVRlNHFPMUs1ZWVPMHRFQSIsInRsc19jbGllbnRfYXV0aF9zdWJq
ZWN0X2RuIjoiNjVkMWYyN2MtNGFlYS00NTQ5LTljMjEtNjBlNDk1YTdhODZmIiwidG9rZW5fZW5kcG9pbnRfYXV0aF9tZX
Rob2QiOiJ0bHNfY2xpZW50X2F1dGgifQ.KTg6vNIERJoLRnDtrmGjF_Fri8diVN7hMfwSntdhbWatcFzUgyTB3GsyadisH
5g3MVagTRplFC83nDNoFbGIj5HFYGddhsQdcveGQ0SWN__GYJHPEOt4p8XdemGQlf9KheNF_eRNM-qI3VBEnvGBPOaWlXVB
FpIYQ-1XMQF-xzvGlglPCnGDVC2gbEO6k9zzl1f-5U78mDPVP4A_s4GWwabXIB-Wp0Jq2Y0jipyJtGci2E35dK_vTaaf7ZS
qM0rQZuH4EbXdqDmHPuuW4AMFc-ZyUXlF8JXggn33poObWZMa_fFkid7Suk7-fV_8hqhDVK6msEfE5x-vRE6AF5CBBw

curl https://myisam.com/mga/sps/oauth/oauth20/register/mydefinition-d "$POST_DATA" -H "Accept:
application/json" -H "Authorization: Bearer myAccessToken" -H "Content-type: application/jose"

{
 "application_type": "web",
 "aud": "IBM",
 "exp": 1644398760,
 "grant_types": [
 "authorization_code",
 "client_credentials"
],
 "iat": 1644395160,
 "id_token_signed_response_alg": "PS256",
 "iss": "65d1f27c-4aea-4549-9c21-60e495a7a86f",
 "jti": "90afbca8-4ce2-4806-8be1-62b3e7d41b09",
 "redirect_uris": [
 "https://www.mysp.ibm.com/isam/sps/oidc/rp/isamrp/kickoff/partner"
],
 "request_object_signing_alg": "PS256",
 "response_types": [
 "code",
 "code id_token"

188 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

],
 "scope": "accounts openid",
 "software_statement": "eyJraWQiOiJvWWNabkJqTEJUeU14cFByYjFDUFVvdWwyYUFna0VfM05ycjhteW1
 zd0NVIiwiYWxnIjoiUFMyNTYifQ.eyJzb2Z0d2FyZV9lbnZpcm9ubWVudCI6InBy
 b2R1Y3Rpb24iLCJhdWQiOiJ0ZXN0YXVkIiwic29mdHdhcmVfaWQiOiI2NWQxZjI3
 Yy00YWVhLTQ1NDktOWMyMS02MGU0OTVhN2E4NmYiLCJzb2Z0d2FyZV9tb2RlIjoib
 Gl2ZSIsIm9yZ19pZCI6ImE1M2E2Zjk3LWUwN2MtNDI0MC1hMDRmLWEwYWY2OTYzMW
 Q5ZiIsInNvZnR3YXJlX2p3a3NfZW5kcG9pbnQiOiJodHRwczovLzE5Mi4xNjguNDIu
 MjAzL3Nwcy9qd2tzIiwic29mdHdhcmVfcmVkaXJlY3RfdXJpcyI6IltcImh0dHBzOi8
 vd3d3Lm15c3AuaWJtLmNvbS9pc2FtL3Nwcy9vaWRjL3JwL2lzYW1ycC9raWNrb2ZmL3B
 hcnRuZXJcIixcImh0dHBzOi8vd3d3Lm15c3AuaWJtLmNvbS9pc2FtL3Nwcy9vaWRjL3Jw

L2lzYW1ycC9raWNrb2ZmL3BhcnRuZXIyXCJdIiwic29mdHdhcmVfY2xpZW50X25hbWUiOiJP
 cGVuQmFua2luZyBDbGllbnQxIE5hbWUiLCJpc3MiOiJPcGVuQmFua2luZyBUZXN0MSIsI

nNvZnR3YXJlX2NsaWVudF9pZCI6Ik9wZW5CYW5raW5nIENsaWVudDEiLCJleHAiOjE2NDM4NjkzNzMsImp

0aSI6ImRrTkFZZ0RVWFIiLCJpYXQiOjE2NDM4Njg3NzMsIm5iZiI6MTY0Mzg2ODgzM30.MIsTeKdwEfk
 yRJGbND31h57SV8Ylrd_I4ihtLGiYeR-iJ8OEVwTtlCSd4-
EAFLwCAVKuN5Poj7jjXY9N4EHYQRbyLWd-
 zGuWKg4-xFo5aWoRjFou-
S1xhiNq7dFwKi37gOcqKaKvl2H1dYkVyrvgA_j4jLWXgJ1BRYMMXKwZVk_R_YA

NRHo5SQpWUyxppdSlxIccj5HR6FJJfc49WsCtSTjleOEOtelIycEO1sIXM4V0vqtRgApU1JpVgQ3mHtxEs-

kHvjI5D2yBXpIpSirF2cZdwIkCZWu9sxzXI0bpjXHX3pwagCp9R0i9eut2wkDJv9F5bD5Te4qO1K5eeO0tEA",
 "tls_client_auth_subject_dn": "65d1f27c-4aea-4549-9c21-60e495a7a86f",
 "token_endpoint_auth_method": "tls_client_auth"
}

The signed JSON Web Token is handled by exposing an OOTB STS chain called OIDC_DCR Request
JOSE. The issuer is validate/dcr/issuer and it applies to Validate/dcr/appliesto. The default
mapping rule is DCR_ValidateJWT_RequestJWT.js.

The software_statement in the request represents a signed JSON Web Token that asserts metadata
values about the client software. The signature of the request is validated against the jwks information in
the software_statement. The following is an example of the software_statement:

{
 "software_environment": "production",
 "aud": "testaud",
 "software_id": "65d1f27c-4aea-4549-9c21-60e495a7a86f",
 "software_mode": "live",
 "org_id": "a53a6f97-e07c-4240-a04f-a0af69631d9f",
 "software_jwks_endpoint": "https://softare_company1/jwks",
 "software_redirect_uris": "[\"https://www.mysp.ibm.com/isam/sps/oidc/rp/isamrp/kickoff/
partner\",\"https://www.mysp.ibm.com/isam/sps/oidc/rp/isamrp/kickoff/partner2\"]",
 "software_client_name": "OpenBanking Client1 Name",
 "iss": "OpenBanking Test1",
 "software_client_id": "OpenBanking Client1",
 "exp": 1643869373,
 "jti": "dkNAYgDUXR",
 "iat": 1643868773,
 "nbf": 1643868833
}

The validation of the software_statement is done by using another OOTB STS chain
called OIDC_SSA_JWT_STSChain. The issuer is validate/ssa/issuer and it applies to
validate/ssa/appliesto. The STS chain exposes a mapping module to facilitate validation of the
software_statement for region-specific information.

The default STS mapping rule is called DCR_ValidateSSA_SSAJWT.js.

The signature of the software_statement is validated and in the mapping rule, the signature algorithm,
expiry, and certificate-related information are validated.

The following example demonstrates the registration response upon successful registration of the client:

{
"software_mode": "live",
"software_redirect_uris": "[\"https://www.mysp.ibm.com/isam/sps/oidc/rp/isamrp/kickoff/
partner\",\"https://www.mysp.ibm.com/isam/sps/oidc/rp/isamrp/kickoff/partner2\"]",
"application_type": "web",
"software_client_name": "OpenBanking Client1 Name",
"owner_username": "__$mtls$__",
"iss": "65d1f27c4aea45499c21",

Chapter 10. OAuth 2.0 and OIDC support 189

"tls_client_auth_subject_dn": "CN=www.myidp.ibm.com",
"registration_client_uri": "https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/
OIDCDefinition/bx9XOis7F12VUJbjQ8Ft",
"registration_access_token": "Sf6omEzVHJP9Kqg0r1jptffE5SHzRPfL",
"token_endpoint_auth_method": "tls_client_auth",
"client_id": "bx9XOis7F12VUJbjQ8Ft",
"software_statement":
"eyJraWQiOiJvWWNabkJqTEJUeU14cFByYjFDUFVvdWwyYUFna0VfM05ycjhteW1zd0NVIiwiYWx

nIjoiUFMyNTYifQ.eyJzb2Z0d2FyZV9lbnZpcm9ubWVudCI6InByb2R1Y3Rpb24iLCJhdWQiOiJ0

ZXN0YXVkIiwic29mdHdhcmVfaWQiOiI2NWQxZjI3YzRhZWE0NTQ5OWMyMSIsInNvZnR3YXJlX21vZ

GUiOiJsaXZlIiwib3JnX2lkIjoiYTUzYTZmOTctZTA3Yy00MjQwLWEwNGYtYTBhZjY5NjMxZDlmIiw

ic29mdHdhcmVfandrc19lbmRwb2ludCI6Imh0dHBzOi8vOS4xMjcuMTMuMzMvc3BzL2p3a3MiLCJzb2Z0

d2FyZV9yZWRpcmVjdF91cmlzIjoiW1wiaHR0cHM6Ly93d3cubXlzcC5pYm0uY29tL2lzYW0vc3BzL29pZGM

vcnAvaXNhbXJwL2tpY2tvZmYvcGFydG5lclwiLFwiaHR0cHM6Ly93d3cubXlzcC5pYm0uY29tL2lzYW0vc3Bz

L29pZGMvcnAvaXNhbXJwL2tpY2tvZmYvcGFydG5lcjJcIl0iLCJzb2Z0d2FyZV9jbGllbnRfbmFtZSI6Ik9

wZW5CYW5raW5nIENsaWVudDEgTmFtZSIsImlzcyI6IjY1ZDFmMjdjNGFlYTQ1NDk5YzIxIiwic29md

HdhcmVfY2xpZW50X2lkIjoiT3BlbkJhbmtpbmcgQ2xpZW50MSJ9.lRuFpHfg8SWaNcK6SMyRBrxul2an3ead2
 jcVxyy3QAyEIZL8qWYuC-HiyCjlmMXRU-DMW_WaQdl6SUDTEzPM57h-
djWsyRRlbA0FgoEf4-8eKEo1lclIDy57n

Ck92zmPmBsdDg4pnfCRbd8SEmRp3EMpWjugW3jgBfBBNZ0jKdWLao3km5B9dHF2ErzCghem3Y2w6sgAQIIW2yhCbtk-

33jDuhKoXFRQuvMobmRg4aZYzgSzhQiyMVJY3FjqpZzp6soyb_pRGZ8vyeoloNMSYl45hzMGOt5BL6UZOrApAXJ
 Qosqxbo41px1ZsPkXNwEo0eyRfX2OQEZx122rqqTgoQ",
"software_id": "65d1f27c4aea45499c21",
"scope": "accounts openid",
"software_environment": "production",
"client_id_issued_at": 1647835807,
"exp": 1647839407,
"iat": 1647835807,
"jti": "8373d3c0-4d64-44e2-85c8-73b5f656fa74",
"id_token_signed_response_alg": "PS256",
"grant_types": [
"authorization_code",
"client_credentials"
],
"software_client_id": "OpenBanking Client1",
"redirect_uris": [
"https://www.mysp.ibm.com/isam/sps/oidc/rp/isamrp/kickoff/partner"
],
"software_jwks_endpoint": "https://company.com/jwks",
"aud": "testaud",
"org_id": "a53a6f97-e07c-4240-a04f-a0af69631d9f",
"request_object_signing_alg": "PS256",
"response_types": [
"code",
"code id_token"
]
}

If the FAPI compliant flag for the registered client is enabled, the format of the
registration_client_uri response is modified.

This is achieved by using a mapping rule modification in the post_token mapping rule. For example:

var registration_client_uri =
stsuu.getContextAttributes().getAttributeValueByNameAndType("registration_client_uri","urn:ibm:names:I
TFIM:oauth:response:attribute");

var client_id =
stsuu.getContextAttributes().getAttributeValueByNameAndType("client_id","urn:ibm:names:ITFIM:oauth:response:attribute");

IDMappingExtUtils.traceString("Original registration_client_uri : "+registration_client_uri);

if(request_type == "client_register"){

if(registration_client_uri != null && client_id != null){

stsuu.getContextAttributes().removeAttributeByNameAndType("registration_client_uri","urn:ibm:names:ITF
IM:oauth:response:attribute");

var new_registration_uri = registration_client_uri.split("\\?")[0] + "/" + client_id;

IDMappingExtUtils.traceString("New registration_client_uri : "+new_registration_uri);

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("registration_client_uri","urn:ibm:names:ITFIM
:oauth:response:attribute",new_registration_uri));

190 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

}
}

OIDC Dynamic Clients- Retrieve a dynamic client
When a client is registered, a registration_client_uri is returned in the payload.

This endpoint can be used to perform the following actions:

• Retrieve the registered clients definition
• Delete the client

Note: You must authenticate as either the client, or the user who was authenticated at the time of client
registration in order to view or delete the client.

To view the client, issue an HTTP GET request and include the client_id parameter. For example:

$ curl https://myisam.com/mga/sps/oauth/oauth20/register/mydefinition?client_id=myClient -H
Accept:application/json -H "Authorization: Bearer myClientAccessToken"
HTTP/1.1 200 OK
Content-Type: application/json

{
"client_secret_expires_at": 0,
"owner_username": "testuser",
"company_name": "Application Inc",
"registration_client_uri": "https://myisam.com/mga/sps/oauth/oauth20/
register/myDefinition?client_id=myClient",
"client_secret": "hunter2",
"tos_uri": "https://app.com/tos",
"client_id_issued_at": 1522137286,
"redirect_uris": "https://app.com",
"client_id": "myClient"}

Update the HTTP-transformation configuration stanza to accept requests from the dynamic client with the
format, https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/OIDCDefinition/
{clientId}. See OIDC Dynamic Client - Updating URL format.

OIDC Dynamic Clients- Custom Identifiers
You can customize the value of the client_id, client_secret and registration_access_token
issued to the application.

There is an example of this in the out-of-the-box PreToken mapping rule. Look for the variable
custom_client_id_secret.

If a custom client_secret is set then it is issued, regardless of whether it is enabled in the definition
configuration and whether or not the request is made by an authenticated party

To customize the registration_access_token, see “Customizing OAuth tokens by updating the sample
PreTokenGeneration mapping rule” on page 170.

API Protection clients now have a dynamic data field when they are configured. This allows storage of
arbitrary data against the client which can be accessed at runtime (For example, from the consent page
and in mapping rules).

OIDC Dynamic Clients- Update a client
To update a client, issue a HTTP PUT to the clients management endpoint.

About this task
When you are updating a dynamic client, the client must authenticate as the OAuth client or the owner
of the OAuth client. The following attributes in the payload are ignored when you are updating a dynamic
client:

• client_id

Chapter 10. OAuth 2.0 and OIDC support 191

• owner_username
• registration_access_token

Any user or administrator provided values in the client metadata that are not presented in the update
request is removed from the client metadata.

If the client has a secret, the client_secret must be presented and match the current secret.

When an update occurs, a new client secret and registration_access_token are issued to the
client.

Example of updating a dynamic client:

$ curl https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/testDef?
client_id=VWM3W8zxlagRrgsnmFGd -H "Accept:application/json" -H "content-type: application/json"
-d
'{

 "client_id": "VWM3W8zxlagRrgsnmFGd",
 "client_secret":"as9r83nfo312o",
 "client_name": "A dynamic client",
 "grant_types": [
 "authorization_code"
],
 "redirect_uris": [
 "https://myapp.com"
], "new_property": "new_value",
 "company_name": "ORG"
}' -X PUT -H "Authorization: Bearer registrationAccessToken"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "registration_client_uri": "https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/testDef?
client_id=VWM3W8zxlagRrgsnmFGd",
 "registration_access_token": "newRegistrationAccessToken",
 "client_id": "VWM3W8zxlagRrgsnmFGd",
 "client_id_issued_at": 1537328443,
 "client_name": "A dynamic client",
 "client_secret": "newClientSecret",
 "grant_types": [
 "authorization_code"
],
 "redirect_uris": [
 "https://myapp.com"
],
 "new_property": "new_value",
 "company_name": "ORG"
}

Update the HTTP-transformation configuration stanza to accept requests from the dynamic client with the
format, https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/OIDCDefinition/
{clientId}. See OIDC Dynamic Client - Updating URL format.

OIDC Dynamic Clients- Delete a client
To delete a dynamic client, issue a HTTP DELETE to the client management endpoint.

About this task
OAuth dynamic clients can only be deleted by themselves or their owner.

For example,

$ curl -k myisam.com/mga/sps/oauth/oauth20/register/mydefinition?
client_id=myClient -H Accept:application/json -H 'Authorization:
Bearer registrationAccessTokenValue' -X DELETE
HTTP/1.1 204 OK

192 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

The default response is a 204. Response attributes can be added in the post-mapping rule. If they are
added the status code is 200 and the JSON payload.

Dynamic clients can also be managed from the LMI. See the web services documentation on how to do so.
See REST API documentation.

Update the HTTP-transformation configuration stanza to accept requests from the dynamic client with the
format, https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/OIDCDefinition/
{clientId}. See OIDC Dynamic Client - Updating URL format.

OIDC Dynamic Clients – Migrating client
If a dynamic client needs to be used in a cluster-less architecture it needs to be migrated.

To understand the cluster-less architecture, see Federation Specific Configuration.

Note: This step must be performed only if the appliance is being upgraded from an older version of IBM
Security Verify Access. Fresh installation works without modifications.

Migrating a Single Dynamic Client
The following example is a request to migrate a specific dynamic client called myClient.

The input required for this is definitionName and the definitionId of the API definition. This can be
retrieved from the LMI.

POST_DATA='{"definitionName":"myDefinition","definitionId": 1}'

curl https://myisam.com/iam/access/v8/dynamic_client_migration/myClient -d "$POST_DATA" -H
"Accept:
application/json" -H "Authorization: Basic lmilogincredentials" -H "Content-type: application/
json"

HTTP/1.1 204 OK

Migrating all Dynamic Clients that belong to an API Protection Definition
The following example is a request to migrate all dynamic client that belong to a specific API Protection
Definition in this case myDefinition.

The input required for this is definitionName and the definitionId of the API definition. This can be
retrieved from the Local Management Interface.

POST_DATA='{"definitionName":"myDefinition","definitionId": 1}'

curl https://myisam.com/iam/access/v8/dynamic_client_migration -d "$POST_DATA" -H "Accept:
application/json" -H "Authorization: Basic lmilogincredentials" -H "Content-type: application/
json"

HTTP/1.1 200 OK
Content-Type: application/json

{"totalSuccess":100,"totalFailed":0,"totalUpdated":100}

OIDC Dynamic Client - Updating URL format
In the Open Banking Standard (UK) specification Dynamic Client Registration, the URL format to access
clients is in this format, https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/
OIDCDefinition/{client_id}. Use this URL format to access clients.

To view, update, and delete the client, issue an HTTP request with client_id in the URL. For example:
https://www.myidp.ibm.com/mga/sps/oauth/oauth20/register/OIDCDefinition/abc123,
where abc123 is the client_id

Use the following HTTP transformation to update the URL format:

Chapter 10. OAuth 2.0 and OIDC support 193

https://www.ibm.com/support/knowledgecenter/SSPREK_9.0.6/com.ibm.isam.doc/develop/rapi/index.html

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:strip-space elements="*" />

 <xsl:template match="/">
 <HTTPRequestChange>
 <xsl:apply-templates />
 </HTTPRequestChange>
 </xsl:template>
 <!--
OIDC Conformance-Example 1.7
Replacing the URI '/mga/sps/oauth/oauth20/register/OIDCDefinition/*' with
'/mga/sps/oauth/oauth20/metadata/OIDCDefinition?client_id=*'
-->
 <xsl:template match="//HTTPRequest/RequestLine/URI">
 <xsl:variable name="output">
 <xsl:call-template name="string-replace-all">
 <xsl:with-param name="text" select="node()" />
 <xsl:with-param name="replace" select="'/mga/sps/oauth/oauth20/register/
OIDCDefinition/'" />
 <xsl:with-param name="by" select="'/mga/sps/oauth/oauth20/register/OIDCDefinition?
client_id='" />
 </xsl:call-template>
 </xsl:variable>
 <URI>
 <xsl:value-of select="$output" />
 </URI>
 </xsl:template>
 <xsl:template match="//HTTPRequest/Scheme">
 <!-- Is the request http or https -->
 </xsl:template>
 <xsl:template name="string-replace-all">
 <xsl:param name="text" />
 <xsl:param name="replace" />
 <xsl:param name="by" />
 <xsl:choose>
 <xsl:when test="contains($text, $replace)">
 <xsl:value-of select="substring-before($text,$replace)" />
 <xsl:value-of select="$by" />
 <xsl:call-template name="string-replace-all">
 <xsl:with-param name="text" select="substring-after($text,$replace)" />
 <xsl:with-param name="replace" select="$replace" />
 <xsl:with-param name="by" select="$by" />
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$text" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Update the following configurations in the [http-transformations] configuration stanza:

[http-transformations]
DynamicClientRUD = DynamicClientRUD

[http-transformations:DynamicClientRUD]
request-match = request:GET /mga/sps/oauth/oauth20/register/OIDCDefinition/*
request-match = request:DELETE /mga/sps/oauth/oauth20/register/OIDCDefinition/*
request-match = request:PUT /mga/sps/oauth/oauth20/register/OIDCDefinition/*

194 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 11. Mobile Multi-Factor Authentication
The IBM Security Verify Access Advanced Access Control component supports authenticator applications.
Such support is built around the OAuth 2.0 protocol.

Authenticator applications are mobile-based applications that enable users to authenticate with minimal
reliance on passwords. Mobile devices and biometric characteristics are used to support authentication
and reduce the threat of unauthorized access to sensitive resources.

The IBM Verify application, which is available for download in major mobile application stores, is natively
supported by the Advanced Access Control component. The authenticator application is built on the
Mobile Access SDK, which is available for download from the IBM Security App Exchange website. The
Mobile Access SDK can also be used to create custom applications.

For instructions on configuring and using the IBM Verify application, see the IBM Verify User Guide.

The authenticators framework can be integrated with context-based access and authentication policies.
Security Verify Access provides several pre-defined authentication policies to enable combinations of
mobile and biometric mechanisms.

The authenticator application registration is built around an OAuth grant that is issued to the mobile
device. The grant is used to identify the authenticator in future requests.

Authenticator registration
The IBM Verify application uses the OAuth authorization grant flow to perform registration, which is
launched by the user in a browser.

A button to initiate the registration flow is available in the device_selection.html page, which is an
example page that demonstrates how the registration might be initiated. This page is available from the
appliance File Downloads area at the path access_control/pages/C/mga/user/mgmt/device/
device_selection.html.

When the button is clicked, it calls the OAuth authorize endpoint to obtain an authorization code. The
user is then presented with a QR code that can be scanned by the IBM Verify application to complete
registration. The following steps illustrate a typical authenticator registration flow.

1. The user downloads and installs the IBM Verify application.
2. The user logs in to the Security Verify Access User Self Care (USC) with a desktop browser and clicks a

button on the page that is presented by USC to initiate the registration flow.
3. The browser starts the OAuth authorization code flow.
4. Security Verify Access responds with a QR code.
5. The user scans the QR code with the IBM Verify application.
6. The IBM Verify application completes the registration automatically.

The Security Verify Access SDK supports registration without the need for browser initiation in custom
applications and also supports the OAuth ROPC flow.

Authentication registration is completed when an OAuth flow is completed with the scope set to
"mmfaAuthn". Other attributes that can be included and saved via the OAuth mapping rule are:

• Push token ID
• Application ID
• Device Name
• Device Type
• OS Version
• Fingerprint support included

https://exchange.xforce.ibmcloud.com/hub/IdentityandAccess
http://www-01.ibm.com/support/docview.wss?uid=swg27048979

• Front camera support included
• Tenant ID

Authentication method enrollment
After an authenticator is registered, the user is prompted to enroll authentication methods.

Supported authentication methods include fingerprint and simple user presence.

Enrollment is performed through the System for Cross-Domain Identity Management (SCIM) API. For
more information, see SCIM Configuration.

Configuring Mobile Multi-Factor Authentication
Follow these steps to configure Mobile Muli-Factor Authentication.

Before you begin
The following pre-requisites must be met:

• The IBM Security Verify Access Platform and Advanced Access Control Module are activated.
• The runtime component and a reverse proxy instance are configured.
• Basic User support is enabled on the local LDAP.
• Transparent path junction to /scim on localhost is configured.

– BA with easuser enabled
– isam_mobile_rest ACL attached to /scim (ACL won't exist until step 2)

• Username Password Mechanism is configured.
• Server connection to local LDAP is set up.
• SCIM is configured with local LDAP server connection dc=iswga suffix.

Procedure
1. Create an API Protection definition and client with:

• Authorization code and ROPC enabled
• Redirect URI: https://<webseal_hostname>:<port>/mga/sps/mmfa/user/mgmt/html/
mmfa/qr_code.html?client_id=<client_ID>

Note:

The redirect URI is essential so that when a user clicks the Register Authenticator button in the USC
UI, the user is correctly redirected to the QR Code page.

2. Run the Reverse Proxy MMFA Config API.

This step configures the /mga junction and creates the required ACLs.

curl -ki -H 'Accept: application/json' -H
'Content-type:application/json' --user 'admin:XXXX' -X POST https://
192.168.124.130/wga/reverseproxy/default/mmfa_config -d
'{"lmi":{"hostname":"192.168.124.130", "port":443, "username":"admin",
"password":"XXXX"}, "runtime":{"hostname":"localhost", "port":443,
"username":"easuser", "password":"XXXX"}, "reuse_certs":false,
"reuse_acls":false, "reuse_pops":false}’

3. Run the AAC MMFA Config API.

This step configures the reverse proxy details into a location where the AAC code can access it.

curl -ki -H 'Accept: application/json' -H
'Content-type: application/json' --user 'admin:XXXX' -X POST

196 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://192.168.124.130/iam/access/v8/mmfa-config -d
'{"client_id":"AuthenticatorClient",
"hostname":"192.168.124.140",
"port":443, "junction":"/mga"}'

Configuring a Mobile Multi-Factor Authentication (MMFA)
Authenticator Mechanism

This authentication mechanism can be used to initiate and correlate results for a range of mobile multi-
factor authentication techniques.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click MMFA Authenticator.

6. Click .
7. Click the Properties tab.

a) Select the property that you want to configure.

b) Click .
c) Enter the value for that property.
d) Click OK.

8. Take note of the following property for the mechanism:
Signing Attributes

This property defines a comma separated list of context attributes that is added to a new JSON
value attribute that is passed as a new pending attribute to the target mobile device. If supported
by the device, this JSON value is used to extract the various messages that is displayed to the end
user. The MMFA server also uses this JSON value during signature validation.

Note:

• The value that is set here can be overridden when the signAttributeList property is set in a
specific MMFA authentication policy. See Authentication Policy Parameters and Credentials

• The supported SigningAttributelist values are only contextMessage and pushMessage.
9. Click Save.

What to do next
When you configure the mechanism, a message indicates that the changes are not deployed. Deploy the
changes when you are finished. See Deploying Pending Changes.

MMFA mapping rule methods
Customize the OAuth PreTokenGeneration and PostTokenGeneration mapping rules by using these
methods.

Sample mapping rules are available from System > Secure Settings > File Downloads under the
access_control > examples > mapping rules directory.

The following limitations affect the attribute keys and values that are associated with the state_id by
using the MMFAMappingExtUtils class:

• Keys cannot be null or empty.

Chapter 11. Mobile Multi-Factor Authentication 197

• Values can only be null or empty when specified.
• Associated key-value pairs are read-only and not case sensitive.
• The push token is read-only and case sensitive.

registerAuthenticator

public static String registerAuthenticator(
 String stateId
)

This method performs the final steps of registering an authenticator. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

These responses come from the runtime after registration.

• The new authenticator's ID if successful.
• Null if not successful.

savePushToken

public static boolean savePushToken(
 String stateId,
 String pushToken,
 String applicationID
)

This method saves the push token and application ID with the authorization grant state ID. Use the
following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

pushToken

The push token the authenticator application has received from its push notification service
provider. This parameter cannot be null or empty.

applicationID

The application ID of the authenticator application. This parameter can be null or empty.

These responses come from the runtime.

• True if successful.
• False if not successful.

savePushToken

public static boolean savePushToken(
 String stateId,
 String pushToken
)

This method saves the push token and application ID with the authorization grant state ID. Use the
following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

198 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

pushToken

The push token the authenticator application has received from its push notification service
provider. This parameter cannot be null or empty.

These responses come from the runtime.

• True if successful.
• False if not successful.

saveDeviceAttributes

public static boolean saveDeviceAttributes(
 String stateId,
 String deviceName,
 String deviceType,
 String osVersion,
 String fingerprintSupport,
 String frontCameraSupport,
 String tenantId
)

This method saves various device attributes with the authorization grant state ID. Use the following
parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

deviceName

The name of the device the authenticator is installed on. This parameter can be null or empty. If
empty, the value is cleared.

deviceType

The type of the device the authenticator is installed on. This parameter can be null or empty. If
empty, the value is cleared.

osVersion

The OS version of the device the authenticator is installed on. This parameter can be null or empty.
If empty, the value is cleared.

fingerprintSupport

The type of fingerprint sensor that is supported by the device. This parameter can be null or
empty. If empty, the value is cleared.

frontCameraSupport

flag that indicates if the device has a front facing camera. This parameter can be null or empty. If
empty, the value is cleared.

tenantId

The tenant ID for this registration, if the authenticator application is multi-tenant. This parameter
can be null or empty. If empty, the value is cleared.

These responses come from the runtime.

• True if successful.
• False if not successful.

Chapter 11. Mobile Multi-Factor Authentication 199

200 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 12. FIDO and WebAuthn Support
The IBM Security Verify Access Advanced Access Control component provides support for FIDO and
WebAuthn.

FIDO2 Server Endpoints
Endpoints provide FIDO2 clients the ability to communicate with the FIDO2 server.

Table 20. FIDO2 Server Endpoints

Endpoint Name Description Example

Credential Creation Options The attestation options request is the first step
of registration. The options returned by the
server are intended to be used with WebAuthn’s
navigator.credentials.create().

https://
server.com/mga/sps/
fido2/<relying_party>/
attestation/options

Authenticator Attestation
Response

The attestation result request is the
second step of registration. The result
of the navigator.credentials.create()
request is sent to the server, which validates
the challenges, origins, signatures, and the
rest of the request. If validation passes, the
registration is saved.

https://
server.com/mga/sps/
fido2/<relying_party>/
attestation/result

Credential Get Options The assertion options request is the first step
of authentication. The options returned by the
server are intended to be used with WebAuthn’s
navigator.credentials.get().

https://
server.com/mga/sps/fido2/
<relying_party>/assertion/
options

Authenticator Assertion
Response

The assertion result request is the second
step of authentication. The result of the
navigator.credentials.get() request
is sent to the server, which validates
the assertion. If validation passes, the
authentication was successful

https://
server.com/mga/sps/fido2/
<relying_party>/assertion/
result

Concepts
The FIDO alliance is an open industry association that produces authentication standards and
certifications for password-less scenarios.

There are currently three sets of specifications that have been published:

• FIDO Universal Second Factor (FIDO U2F). See “Configuring a FIDO Universal 2nd Factor authentication
mechanism” on page 69.

• FIDO Universal Authentication Framework (FIDO UAF)
• FIDO2

The FIDO2 specification includes the W3C’s Web Authentication (WebAuthn) specification and FIDO
Client to Authenticator Protocol (CTAP). The WebAuthn specification defines the interactions between a
Client and a Relying Party, whereas the CTAP protocol is between an Authenticator and a Client.

The Relying Party is the service that is requesting authentication.

A Client is a web browser or operating system.

An Authenticator can be a device or program that performs cryptographic operations to provide
verification for a user.

https://fidoalliance.org
https://www.w3.org/TR/webauthn

WebAuthn Ceremonies
The WebAuthn spec defines two ceremonies that are performed between the user, authenticator, client
and relying party: Registration and Authentication

Registration Ceremony
The registration ceremony consists of up of five steps:

1. When registration is requested, the Relying Party provides a challenge and other information to the
Client.

2. The Client sends the information from step 1 along with extra client data to the Authenticator.
3. The Authenticator generates a public key, optionally performs user presence or verification, and

produces an attestation statement based on the given challenge.
4. The public key and attestation statement sent back to the Client.
5. The Client sends the information to the Relying Party, which validates the attestation statement

against the original challenge, and if successful, saves the public key to the user’s account.

Authentication Ceremony
The authentication ceremony consists of five steps:

1. When authentication is requested, the Relying Party provides a challenge to the Client.
2. The Client sends the information from step 1 along with extra client data to the Authenticator.
3. The Authenticator generates an assertion signature using the stored private key and optionally

performs user presence or verification.
4. The assertion signature and extra authenticator data is sent back to the Client.

202 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

5. The Client sends the information to the Relying Party, which validates the assertion signature against
the original challenge, and if successful, marks the user as authenticated.

Attestation
Attestation is a step within the registration flow that allows a relying party to establish whether an
authenticator is authentic and can be trusted.

This is achieved through the attestation statement sent by the authenticator back through to the relying
party. The attestation statement contains a signature which is the combination of the credential public
key and the provided challenge, and optionally a certificate which contains the attestation public key.

There are several types of attestations which indicate how the signature was generated:
Basic Attestation

The attestation key pair is specific to the authenticator model, and authenticators of the same model
may share the same key pair.

Self Attestation
The authenticator may not have an attestation key pair, so the credential private key is used.

Attestation CA
The authenticator can generate multiple attestation key pairs from an Attestation CA, a trusted third
party.

Elliptic Curve based Direct Anonymous Attestation (ECDAA)
The authenticator receives direct anonymous attestation (DAA) credentials from a single DAA-Issuer.
The DAA credentials are used with blinding to sign the attested credential data.

Anonymization CA
The attestation key pair is generated externally to the authenticator by a trusted third party to
preserve privacy.

No attestation statement (None)
No attestation information is made available.

During registration the relying party can indicate a preference regarding how the attestation statement is
generated.

There are attestation statement formats which indicate the syntax of the statement:
Packed Attestation Statement Format

Attestation Type supported: Basic, Self, AttCA

This is a WebAuthn optimized attestation format. Packed attestation statement format uses a very
compact but still extensible encoding method.

TPM Attestation Statement Format
Attestation Types supported: AttCA

The TPM statement format is for authenticators that use a Trusted Platform Module as their
cryptographic engine.

Android Key Attestation Statement Format
Attestation Types Supported: Basic

This attestation statement format is for when the authenticator is provided by the Android platform,
version “N” and later. In this case the attestation statement is produced by a component in a
secure operating environment, but the authenticator data for the attestation is produced outside this
environment.

Android SafetyNet Attestation Statement Format
Attestation Types Supported: Basic

This attestation statement format is for when the authenticator is provided by certain Android
platforms and is based on the SafetyNet API. With this statement format the authenticator data is
completely controlled by the Android application which invokes the SafetyNet API.

Chapter 12. FIDO and WebAuthn Support 203

FIDO U2F Attestation Statement Format
Attestation Types Supported: Basic, AttCA

This attestation statement format is user with FIDO U2F authenticators using formats defined in the
FIDO U2F specification.

Apple Platform Attestation Statement Format
Attestation Types Supported: AnonCA

Used exclusively by Apple for Apple devices that support WebAuthn with a platform authenticator.

None Attestation Statement Format
Attestation Types Supported: None

Used to replace any authenticator-provided attestation statement when a Relying Party indicates it
does not require attestation information.

Public Key Algorithms
The list of preferred algorithms is provided to an authenticator when you are creating a credential, and an
authenticator makes a best-effort to create the most preferred credential that it can.

There are several cryptographic algorithms for which a Relying Party might specify a preference.

The following algorithms are currently supported in IBM Security Verify Access:

Description COSE Identifier

SHA256 with ECDSA -7

SHA384 with ECDSA -35

SHA512 with ECDSA -36

SHA1 with RSA -65535

SHA256 with RSA -257

SHA384 with RSA -258

SHA512 with RSA -259

Metadata
Vendor metadata files contain characteristics of authenticators as a metadata statement by using a
specific syntax.

FIDO2 metadata statement files describe one or more authenticators such that they can be used by the
relying parties to validate authenticator attestation and prove the genuineness of the device model.

IBM Security Verify Access provides two methods by which metadata can be provided to the relying party
engine.
Static Upload

One or more metadata files are uploaded to Verify Access and can be applied to a relying party.
Metadata Services

The locations and connection details of external FIDO metadata services are configured. This provides
a dynamic method to download an up-to-date metadata statement. One or more of these can be
applied to the relying party.

Each of these is an optional configuration parameter when creating a relying party and they can also be
provided together to act in a complimentary manner. If both are provided and contain common data, there
is a configuration property (preferMdsOverStatic) that will define whether to use the static content or
the dynamic metadata service content.

The order in which multiple metadata services is also important. If common data is provided by multiple
metadata services, the data that is contained in the higher priority service is used first.

204 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Static metadata
Vendor metadata files contain characteristics of authenticators as a metadata statement by using a
specific syntax.

The following formats and their corresponding syntax are supported:
FIDO metadata statement

This metadata statement is JSON and follows the format as outlined by the FIDO Alliance.
Yubico metadata

Yubico have established their own metadata format (file extension .yubico).
PEM Certificate

PEM certificates (file extension .pem) do not provide any of the user experience advantages that other
metadata statements do. However, they can be used to verify an attestation statement.

Upon registration, a device provides the server with its attestation certificate during the attestation
ceremony. This certificate can be (optionally with metadata enforcement) used to verify the
authenticity of the device against a metadata file.

Metadata Services
A metadata service (MDS) is a centralized repository of the metadata statement that is used by the relying
parties to validate authenticator attestation and prove the genuineness of the device model.

It provides a method to ensure the metadata statement that is used by the relying parties is up to date
and is not expired.

Multiple different metadata services can be configured and used together (along with static files) by the
relying party.

Verify Access internally uses the HTTPClientV2 class to make the connection and retrieve the metadata
from the MDS. Some of the configuration of the client can be set when you are creating the metadata
service. See Adding a new metadata service. The HTTPClientV2 advanced configuration is used for other
entries and for entries that are not overridden. See Advanced configuration properties.

Note: The metadata blob that is returned by the metadata service requires a certificate to
verify the signature. This certificate must be loaded into the truststore that is configured for
the metadata service. For example, to use the fidoalliance metadata service, the certificate from
valid.r3.roots.globalsign.com must be loaded into the truststore.

The following MDS-specific configuration properties can be set:
URL

The location for the metadata service where the metadata can be downloaded.
Retry Interval

If the downloaded metadata has expired, the relying party attestation validation attempts to
download a new version from the metadata service. If the attempt fails, the download does not retry
until the retry interval is reached. For example, if a relying party is making many validation calls, rather
than each of these attempting to retrieve a new metadata statement the download does not occur
again until the retry interval is passed.

Prefer metadata service over static metadata
If metadata exists for the same device in both the static metadata and dynamic metadata service,
this determines whether the static file entry (false) or the metadata service entry (true) is used. If the
same entry exists multiple times in either the static files or the dynamic metadata, the first entry that
is found is used.

Registration
There are several user self care REST services available for managing FIDO2/WebAuthn registered
authenticators.

Note: The user must authenticate to use the REST services capability.

Chapter 12. FIDO and WebAuthn Support 205

https://mds.fidoalliance.org

REST services usage scenarios
Note: None of the REST services below require a JSON payload in the request.

Method URL Response Response
type

GET https://hostname/mga/sps/fido2/
registrations [

 {"credentialId":credentialId,
"rpId":rpId,
 "username":username,
"version": 1 or 2,
"present":true or false,
"verified":true or false,
"usageCount":usageCount,
"nickname":nickname,
"lastUsed":dateLastUsed,
"created":dateCreated,
"enabled": true or false,
 "metadata":{
 "description":
descriptionFromMetadata,
 "icon": icon,
 "backupEligibility": true or false,
 "backupState": true or false
 }
]

If the request completes successfully, the
HTTP response code is 200.

If the request does not complete
successfully, the HTTP response is 500.

application/
json

GET https://hostname/mga/sps/fido2/
registrations/{credentialId} {

 "credentialId":credentialId,
 "rpId":rpId,
 "username":username,
 "version":1 or 2,
 "present":true or false,
 "verified":true or false,
 "usageCount":usageCount,
 "nickname":nickname,
 "lastUsed":dateLastUsed,
 "created":dateCreated,
 "enabled": true or false,
 "metadata":{
 "description":
descriptionFromMetadata,
 "icon": icon,
 "backupEligibility": true or false,
 "backupState": true or false
 }

If the request completes successfully, the
HTTP response code is 200.

If the request does not complete
successfully, the HTTP response is 500.

application/
json

DELETE https://hostname/mga/sps/fido2/
registrations/{credentialId}

If the request completes successfully, the
HTTP response code is 204.

If the request does not complete
successfully, the HTTP response is 500.

application/
json

206 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

U2F Migration
The WebAuthn specification includes backwards compatibility support for FIDO U2F.

To allow previously registered U2F tokens to authenticate with the FIDO2/WebAuthn mechanisms and
delegates, the U2F registration data must be migrated.

Note: Not all WebAuthn scenarios are supported as FIDO U2F authenticators are unable to store a user
handle.

IBM Security Verify Access offers two ways to migrate data by using the U2F Migration section of the
FIDO2 Configuration screen. Select AAC > Manage > FIDO2 Configuration > U2F Migration.

Manual migration in batches
In this section, the number of unmigrated U2F registrations is displayed. An IBM Security Verify
Access administrator can choose the batch size, and whether to migrate a single batch or all batches
that are available.

Auto-migration on use
U2F registrations will be migrated when WebAuthn authentication is attempted.

When auto-migration is enabled and a WebAuthn authentication flow is attempted, the server checks
if a user has any WebAuthn registrations. If a user does not have WebAuthn registrations, the server
checks if a user has any U2F registrations, and migrates any that it finds.

The server then resumes the authentication flow.

New U2F Registrations
IBM Security Verify Access decides which HVDB table is used to store new U2F token registrations based
on a number of factors. This applies only to new U2F tokens that are added by the FIDO Universal 2nd
Factor mechanism.

Firstly, the mechanism checks if the registration JSON request includes a parameter called legacyMode.
If the parameter is present and set to true, the new registration is stored in the U2F table.

If legacyMode is not set to true, the mechanism then checks if Auto-migration on use is enabled for
U2F Migration. If enabled, the new registration is stored in the FIDO table.

Finally, if neither legacyMode or Auto-migration on use are set to true, the mechanism checks for
existing registrations in the two tables. New registrations are stored in the U2F table if tokens already
exist in the U2F table and there are no registrations in the FIDO table. Otherwise all new U2F registrations
are automatically stored in the FIDO table.

Chapter 12. FIDO and WebAuthn Support 207

This enables an administrator to have complete control over which table is used to store new
registrations, while also allowing existing systems that use U2F to continue as they were.

Note: If a U2F registration exists in the U2F table, it can only be used for authentication with the FIDO
Universal 2nd Factor mechanism. If the U2F registration has been migrated to the FIDO table, or was
stored in the FIDO table on creation because of the logic above, it can be used for authentication in both
the FIDO Universal 2nd Factor mechanism and the FIDO2 WebAuthn Authenticator mechanism.

FIDO2 Configuration
This topic provides the description of the parameters each option sets.

Create a FIDO2 Relying Party
When you are creating a FIDO2 Relying Party there are two distinct configuration modes, each resulting in
a FIDO2 Relying Party being configured and functional.

FIDO2 Relying Party Configuration is accessed through AAC > Manage > FIDO2 Configuration.

Simple Configuration
Creating a FIDO2 Relying Party using the Simple Configuration results in a relying party with most out of
the box configuration defaults selected.

Values need to be specified for the following parameters
Name

this is the display name for the FIDO2 Relying Party.
Relying Party ID

The Relying Party ID is a valid domain string that identifies the WebAuthn Relying Party. When an
authenticator is registered to a Relying Party, that registration is only valid for authenticating to that
Relying Party. An example Relying Party ID is “example.com”.

The following Relying Party ID examples are invalid:

208 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

https://example.com
Protocol is not included in the Relying Party ID

example.com/example_path
Path is not included in the Relying Party ID

Advanced Configuration
Creating a FIDO2 Relying Party by using the Advanced Configuration results in a fully customized relying
party using the options specified.

Values need to be specified for the following parameters:
Name

this is the display name for the FIDO2 Relying Party.
Relying Party ID

The Relying Party ID is a valid domain string that identifies the WebAuthn Relying Party. When an
authenticator is registered to a Relying Party, that registration is only valid for authenticating to that
Relying Party. An example Relying Party ID is “example.com”.

The following Relying Party ID examples are invalid:

• https://example.com- protocol is not included in the Relying Party ID
• example.com/example_path- path is not included in the Relying Party ID

Administrative Group
Requests made to the FIDO2 server attestation and assertion endpoints usually contain username
information in the message payload. Verify Access enforces that this message payload user
information matches the authenticated session user (for example, currently logged in user via Verify
Access session cookie) UNLESS the currently authenticated Verify Access user is a member of this
administrative group. Membership of this administrative group is intended for application service
identities acting on behalf of users they have authenticated locally.

WebAuthn Specification Enforcement
The WebAuthn Specification enforces user presence as a requirement during attestation and
assertion.

FIDO Attestation and Assertion Timeout
The timeout (in seconds) that is applied to FIDO attestation and assertion requests.

Attestation Types
See “Attestation” on page 203.

Attestation Statement Format
See “Attestation” on page 203.

Public Key Algorithms
See “Public Key Algorithms” on page 204.

Android SafetyNet Options
When Android SafetyNet is selected in Attestation Statement Formats, there are several options to
specify values for.

Attestation Max Age
The maximum age in milliseconds of an attestation that is using the Android SafetyNet Statement
Format.

Clock Skew
The amount of allowed variance in milliseconds when validating an attestation statement on the
appliance.

Metadata
See “Attestation” on page 203.

More than one Metadata file and/or Metadata service can be selected for this FIDO2 Relying Party.
The selections are used together by the relying party during attestation validation.

Chapter 12. FIDO and WebAuthn Support 209

If metadata exists for the same device in both the static metadata and dynamic metadata service,
the prefer metadata service over static metadata configuration flag determines whether the static file
entry (false) or the metadata service entry (true) is used. If the same entry exists multiple times in
either the static files or the dynamic metadata, the first entry found is used.

Static Metadata
The following formats are valid FIDO2 Metadata file formats:

• FIDO MDS document (.json file extension)
• Yubico Metadata (.yubico file extension)
• PEM Certificate (.pem file extension)

Metadata Services
If required, select one or more metadata services for the relying party. The selected metadata
services can be ordered by priority by moving the selection up or down in the grid. If the same
entry exists in the metadata provided by multiple metadata services, the higher priority selection
will be used first. Metadata services can be added by clicking the Add button or configured from the
Metadata page. See Metadata Services.

Metadata Enforcement
When Metadata Enforcement is enabled for a FIDO2 Relying Party, the authenticator metadata is
validated against the set of Metadata files enabled for this Relying Party, and the registration fails if
this validation fails.

When Metadata Enforcement is disabled for a FIDO2 Relying Party, the authenticator metadata is still
validated, however if this validation fails, the registration could still be allowed to succeed.

Metadata Service Refresh Period
When a metadata service is set for this relying party, the refresh period (in seconds) determines the
interval that the downloaded metadata is checked for expiration and updated if required. A value of
-1 disables automatic updates from the metadata service. If automatic updates are disabled and the
metadata download fails, it is not attempted again until the runtime server is restarted or reloaded.

Mediator Mapping Rules
See “FIDO2 Mediation” on page 210.

Leaving the selection as None disables FIDO2 Mediation from occurring on this FIDO2 Relying Party.

Origins
Specifies a list of permitted origin URI’s . A FIDO message from a client must contain an origin from
this list for the message to be validated. Typically, the origin is the domain name of the website
performing FIDO authentication by using https://schema, with the optional addition of a port
number.

For more information on FIDO2 Metadata and FIDO2 Mediation, see “Concepts” on page 201 and “FIDO2
Mediation” on page 210.

FIDO2 Mediation
When you are deploying FIDO2/WebAuthn it might be necessary to implement specific business controls
during authentication and registration ceremonies. FIDO2 Mediators can be used to add this extra
validation, as well as insert additional data into the server responses.

Mediators take the form of a JavaScript mapping rule which runs in four places
1. As part of the initiation of a registration attempt (a call to the attestation options endpoint).
2. As part of a completion of a registration attempt after all FIDO2 and WebAuthn checks have passed,

but before the registration is considered validated (a call to attestation result).
3. As part of the initiation of an authentication attempt (a call to the assertion options endpoint).
4. As part of the completion of an authentication attempt (a call to the assertion result endpoint).

210 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Mediation also occurs as part of an authentication service flow by using FIDO2/WebAuthn as an
authentication mechanism.

The capabilities of mediation are as follows:
1. During any mediation, FIDO2 processing can be halted with a custom message and status. To do this,

populate the error field:

error.put("status", "authenticator_denied");
error.put("message", "An administrator has disabled your authenticator type from being
used");

2. During mediation of an attestation options request, modified options can be returned to client. Update
attestation options with:

attestation_options.put("mediated_attribute", {"test":true});

3. During mediation of an attestation result request, additional variables can be saved in the “attributes”
parameter of the new registration. Add to the “attributes” parameter with:

attributes.put("exampleAttribute", "exampleValue");

Note: Only String attributes can be stored with the registration.

These attributes can be accessed later in authentication mediation flows as the registration data,
including these attributes, is made available as part of the mediator's context variables.

4. During mediation of an assertion option request, modified options can be returned to client. Update
assertion options with:

assertion_options.put(“example_attribute”, “example_value”);

5. During mediation of an attestation result or assertion result call, additional values can be returned to
the client:

responseData.put("did_user_verify", context.requestData.registration.userVerified);

The response is returned to the client to let it act based on the authenticator and its registration. For
example, this could be used to return the model name of the authenticator.

6. During mediation of an attestation result or assertion result call, additional identity data can be
returned which can be added to the users session:

credentialData.put("authenticator_friendly_name", context.requestData.registration.friendlyName);
credentialData.put("credentialList", ["list", "of", "credentials"]);

Credential data returned indicates the users identity. Credential data is returned to the relying party in
an API call to /attestation/result or /assertion/result, or when the authentication service
is used to perform the assertion result, credentialData attributes are added to the user's Verify Access
credential. Only String and Lists of strings should be used.

The mediator context
The context variable available in mediation contains several essential pieces of information about the
request.

1. context.requestType- Identifies which one of the following mediation is occurring:

• attestation_options
• attestation_result
• assertion_options
• assertion_result

2. If enabled, HTTP request context (such as headers) are made available under:

Chapter 12. FIDO and WebAuthn Support 211

• context.requestData.headers
• context.requestData.cookies

Note: HTTP context is not enabled by default, enable the advanced configuration entry
sps.httpRequestClaims to include headers and cookies in the context. See “Advanced
configuration properties” on page 239.

3. context.requestData.options- In the case of an assertion options or attestation options
request, the context.requestData.options property contains the properties to be returned
to the browser. In the case of an assertion result or attestation result request, the
context.requestData.options property indicates the options which were provided to the client
as part of this FIDO2/WebAuthn ceremony.

4. context.requestData.registration - The registration that is used (in the case of an assertion
result), or the registration about to be saved (in the case of an attestation result).

5. context.rawRequestData.clientDataJSON - In the case of an attestation result or assertion
result request, the context.rawRequestData.clientDataJSON property contains the original
request value for this parameter in its encoded format.

6. context.rawRequestData.attestationObject - In the case of an attestation result request, the
context.rawRequestData.attestationObject property contains the original request value for
this parameter in its encoded format.

7. context.rawRequestData.authenticatorData - In the case of an assertion result request, the
context.rawRequestData.authenticatorData property contains the original request value for
this parameter in its encoded format.

Other FIDO2 values such as the attestationStatement, authData, and clientData are also be
available under context.requestData. The context object is native JavaScript, and can be accessed as
an associative array.

When developing mediators the following line can be used to print the entire context variable:

IDMappingExtUtils.traceString(JSON.stringify(context));

Note: Ensure com.tivoli.am.fim.trustserver.sts.utilities.*=ALL trace is enabled.

Complete list of variables available in the mediator context
1. stsuu- The users current identity. Read only.
2. context- All of the context data. Read only. Native JSON.
3. responseData- Java HashMap, writable. Available only in attestation result and assertion result

requests. Responses are returned to the client.
4. credentialData- Java HashMap, writable. Available only in attestation result and assertion result

requests. Values are returned to the client in the same manner as responseData attributes, however, in
the case of the authentication mechanism being used, it is the client and the credentialData attributes
will be added to the user's credential directly.

5. attributes- Java HashMap, writable. Values are stored in the registration. Only available in
attestation result requests. On assertion result mediation, attribute values are available in the variable
requestData.registration.attributes.

6. attestation_options- Java HashMap, writable. Only available in attestation options requests.
MapIs a copy of the options requested by a user. If any of the options in this map are modified the
resulting options returned to the caller are updated accordingly.

7. assertation_options- Java HashMap, writable. Only available in assertion options requests. MapIs
a copy of the options requested by a user. If any of the options in this map are modified the resulting
options returned to the caller are updated accordingly.

8. error- Java HashMap, writable, Available in all options or results requests. If the message and
status keys are populated they are returned to the caller as an error.

212 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

The traditional Verify Access Java helpers area available in the mediator context, such as
UserLookupHelper, LocalSTSClient, IDMappingExtUtils, and OAuthMappingExtUtils.

FIDO Client Manager
A FIDO2 Client Manager is added to the default variables that are available in an InfoMap authentication
mechanism. The FIDO2 Client manager allows administrators to make FIDO2 attestation and assertion
requests without using a HTTP client.

Creating LocalFIDOClient
The context variable fido2ClientManager has a single public method getClient(String) which
takes the rpId of the desired Relying Party as a string argument. It returns a client which can be used to
make attestation and assertion requests to the corresponding relying party.

Local FIDO Client
An instance of the LocalFIDOClient class is returned by a fido2ClientManger.getClient("rp.id")
and has several methods available.
client.attestationOptions(String options)

• Request an attestation challenge
• If no attestation options are provided, the client will fall back to the Relying Party's default values
• A timeout value for this specific request can be set in the attestation options JSON string.

client.attestatonResult(String attestation)

• Validate an attestation response after calling attestationOptions
• Returns a status of ok for successful attestations or failed for error cases

client.assertionOptions(String options)

• Request an assertion challenge
• If no assertion options are provided, the client will fall back to Relying Party's default values
• A timeout value for this specific request can be set in the assertion options JSON string.

client.assertionResult(String assertion)

• Validate an assertion response after calling assertionOptions
• Returns a status of ok for successful assertions or failed for error cases

Each method above takes a JSON String (JSON.stringify in JavaScript) and returns a JSON String
(which can be parsed using JSON.parse in JavaScript). InfoMap users are required to check the returned
status field to check if requests were successful.

LocalFIDOClient.getRPconfigId(String rpId)

• A static method that can be used to fetch the configuration ID of the Relying Party (RP) with the
given Relying Party ID (rpId)

• The configuration ID is required to invoke the FIDO server endpoints

Using the Local FIDO Client
To use the client, call one of the four available methods (attestationOptions, attestationResult,
assertionOptions, assertionResult) and populate a template page with values returned from the
Relying Party.

An example InfoMap rule can be found in access_control/examples/mapping_rules directory of
the file downloads section of an ISAM appliance.

Chapter 12. FIDO and WebAuthn Support 213

Authentication Service Mechanism
The WebAuthn authentication ceremony (“WebAuthn Ceremonies” on page 202) is integrated to the
Authentication Service by using an authentication mechanism.

This provides out of the box template pages for the authentication flow, and the ability to be integrated
into Context Based Access Policies.

Both step up authentication and username-less authentication are supported by WebAuthn. However
username-less is highly dependent on the authenticator and browser being used.

Prerequisites
Before the FIDO2/WebAuthn Authentication Mechanism can be configured, a relying party must be
defined. See “FIDO2 Configuration” on page 208.

WebAuthn includes support for authentication with existing U2F registrations. Before U2F registrations
can be used with the FIDO2/WebAuthn authentication mechanism, the registration data must be
migrated. See “U2F Migration” on page 207.

Request Flow
When the FIDO2/WebAuthn mechanism is triggered, IBM Security Verify Access returns a pending page
to the user. This allows IBM Security Verify Access to provide the options required to trigger the browser
to prompt the user for their authenticator. Once the user completes the required user presence and
optional user verification steps, the browser sends the assertion result back to IBM Security Verify Access
with the following request:

POST /mga/sps/authsvc
{
 "StateId":"...",
 "operation": "verify",
 "id": "LFdoCFJTyB82ZzSJUHc-
c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqmDvruha6ywA",
 "rawId": "LFdoCFJTyB82ZzSJUHc-
c72yraRc_1mPvGX8ToE8su39xX26Jcqd31LUkKOS36FIAWgWl6itMKqmDvruha6ywA",
 "authenticatorData": "SZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2MBAAAAAA",
 "signature": "MEYCIQCv7EqsBRtf2E4o_BjzZfBwNpP8fLjd5y6TUOLWt5l9DQIhANiYig9newAJZYTzG1i5lwP-
YQk9uXFnnDaHnr2yCKXL",
 "userHandle": "",
 "clientDataJSON":
"eyJjaGFsbGVuZ2UiOiJ4ZGowQ0JmWDY5MnFzQVRweTBrTmM4NTMzSmR2ZExVcHFZUDh3RFRYX1pFIiwiY2xpZW50RXh0ZW5
zaW9uc
yI6e30sImhhc2hBbGdvcml0aG0iOiJTSEEtMjU2Iiwib3JpZ2luIjoiaHR0cDovL2xvY2FsaG9zdDozMDAwIiwidHlwZSI6I
ndlYmF1dGhuLmdldCJ9",
 "type": "public-key"
}

IBM Security Verify Access validates the assertion result and either allows the user to continue as
expected, or returns an error.

Note: Unlike the FIDO2 Server Endpoints, the relying party ID is not consumed from the address path, but
instead is obtained from mechanism or policy level configuration.

Manage Metadata Services
This section contains information on adding and modifying metadata services.

Adding a metadata service
Add a metadata service.

Procedure
1. Log in to the local management interface.

214 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

2. Click AAC > FIDO2 Configuration > Metadata.
3. Under Metadata Services, click Add.
4. Configure the metadata service with the following properties:

URL
The URL used to connect to the metadata service.

JWS Truststore

The name of the truststore used to verify the signature of the metadata blob that is downloaded
from the metadata service. If not specified the truststore that is configured in the Truststore
property is used.

Truststore
The name of the truststore to use. If not specified and an HTTPS connection is specified, the
truststore that is configured in the HTTPClientV2 advanced configuration is used. See Advanced
configuration properties.

The truststore that is specified has the following purposes:

a. The truststore is used to set up the SSL connection with the metadata service.
b. If the JWS Truststore is not set, the truststore must contain the certificate that is used to verify

the signature of the metadata blob that is downloaded from the metadata service.

Protocol
The SSL protocol to use for the HTTP connection. Valid values are TLS, TLSv1, TLSv1.1,
and TLSv1.2. If not specified, the protocol that is configured in the HTTPClientV2 advanced
configuration is used. See Advanced configuration properties.

Timeout
Specifies the request timeout (seconds). A value of 0 results in no timeout. If not specified,
the connect timeout that is configured in the HTTPClientV2 advanced configuration is used. See
Advanced configuration properties.

Show advanced request options
Click Next or select the Request Overrides tab to reveal more optional configuration items.
Username

Specifies the basic authentication username. If not specified, basic authentication is not used.
If the username is specified, provide the password.

Password
Specifies the basic authentication password. If not specified, basic authentication is not used.
If the password is specified, provide the username.

Keystore
Specifies the client keystore. If not specified, client certificate authentication is not used. If the
keystore is specified, provide the certificate.

Certificate
Specifies the client key alias. If not specified, client certificate authentication is not used. If the
certificate is specified, provide the keystore.

Proxy
The URL of the proxy server that is used to connect to the metadata service (including the
protocol).

HTTP Request Headers
Click Add to add HTTP headers to the HTTP request.

5. Click OK to save the configuration.

Chapter 12. FIDO and WebAuthn Support 215

Modifying a metadata service
Modify a metadata service.

Procedure
1. Log in to the local management interface.
2. Click AAC > FIDO2 Configuration > Metadata.

Under Metadata Services is a list of existing metadata services.
3. Select the metadata service to modify.
4. Click Edit.
5. Modify the configuration properties:

URL
The URL used to connect to the metadata service.

JWS Truststore
The name of the truststore used to verify the signature of the metadata blob that is downloaded
from the metadata service. If not specified the truststore that is configured in the Truststore
property is used.

Truststore
The name of the trust store to use. If not specified and an HTTPS connection is specified, the
truststore that is configured in the HTTPClientV2 advanced configuration is used. See Advanced
configuration properties.

The truststore that is specified has the following purposes:

a. The truststore is used to set up the SSL connection with the metadata service.
b. If the JWS Truststore is not set, the truststore must contain the certificate that is used to verify

the signature of the metadata blob that is downloaded from the metadata service.

Protocol
The SSL protocol to use for the HTTP connection. Valid values are TLS, TLSv1, TLSv1.1,
and TLSv1.2. If not specified, the protocol that is configured in the HTTPClientV2 advanced
configuration is used. See Advanced configuration properties.

Timeout
Specifies the request timeout (seconds). A value of 0 results in no timeout. If not specified,
the connect timeout that is configured in the HTTPClientV2 advanced configuration is used. See
Advanced configuration properties.

Show advanced request options
Click Next or select the Request Overrides tab to reveal more optional configuration items.
Username

Specifies the basic authentication username. If not specified, basic authentication is not used.
If the username is specified, provide the password.

Password
Specifies the basic authentication password. If not specified, basic authentication is not used.
If the password is specified, provide the username.

Keystore
Specifies the client keystore. If not specified, client certificate authentication is not used. If the
keystore is specified, provide the certificate.

Certificate
Specifies the client key alias. If not specified, client certificate authentication is not used. If the
certificate is specified, provide the keystore.

Proxy
The URL of the proxy server that is used to connect to the metadata service (including the
protocol).

216 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

HTTP Request Headers
Click Add to add HTTP headers to the HTTP request.

6. Click Save to save the configuration.

Deleting a metadata service
Delete a metadata service.

Procedure
1. Log in to the local management interface.
2. Click AAC > FIDO2 Configuration > Metadata.

Under Metadata Services is a list of existing metadata services.
3. Select the metadata service to delete.
4. Click Delete.

Limitations
Registration of authenticators with the SCIM API is not supported.

Registrations can only be performed by using the attestation endpoint or a registration mechanism. See
“FIDO2 Server Endpoints” on page 201.

FIDO2 auditing is not supported by the previous version of IBM Security Verify Access.

Chapter 12. FIDO and WebAuthn Support 217

218 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 13. Access control policies
An access control policy is a set of conditions that, after they have been evaluated, determine access
decisions.

Defining a custom application for policy attachments
There are two types of Access Control Resources, Reverse Proxy or Application.

A Reverse Proxy resource defines a server instance with a protected object space, and a specific resource
in that protected object space. An application resource describes an application server and resource that
you would like to protect that is not in a Reverse Proxy object space.

Ensure that the application ID is unique. The application ID is case-sensitive; for example
"ClaimApplication" and "claimapplication" are considered to be unique names.

Note: Avoid control characters, leading and trailing blanks, and special characters such as ! @ # $ % ^ & *
[] ; , < >

Application IDs and resources are used as either URL paths or URI scheme names and therefore must
consist of a sequence of any combination of lowercase letters, numbers, or any of the following special
characters: plus ("+"), period ("."), or hyphen ("-").

If a URL path is used, the ID must begin with a forward slash ("/"). If a URI scheme name is used, the ID
must being with a lowercase letter.

For an application resource with an Application ID /myapp and Resource ID /myresource, the
corresponding XACML JSON would be:

{
 "Request": {
 "Action": {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
 "DataType": "string", "Value": "GET"
 }
]
 },
 "Resource": {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "DataType": "string", "Value": "/myresource"
 }
]
 },
 "Environment": {
 "Attribute": [
 {
 "AttributeId": "ApplicationId", "DataType": "string", "Value":
 "/myapp", "Issuer": "http://security.tivoli.ibm.com/policy/distribution",
 }
]
 }
 }
}

Invoking the RTSS XACML engine
The RTSS XACML engine can be invoked directly to retrieve policy decisions.

Both Reverse Proxy or Application resources can be used in an RTSS request. A JSON endpoint that
roughly adheres to the XACML JSON specification can be accessed via:

https://{runtime_hostname}/rtss/rest/authz/json

To determine which policy to evaluate, the engine will lookup configured policy attachments via a
policy key. The key corresponds to the concatenation of the resource server and resourceUri. For
example,a policy attachment with server isam.ibm.com-default and resourceURI /protected
will be referenced by the key isam.ibm.com-default/protected. This key is required when sending
the JSON request.

The engine will attempt to find the policy key via the Request.Environment attributes ContextId or
ApplicationId, and if neither are set then the Request.Resource resource-id attribute will be
used.

ContextId JSON example
The ContextId attribute must contain the full policy key, that is the server and the resourceUri.

For a reverse proxy resource with the server isam.ibm.com-default and resourceUri /
protected, the corresponding XACML JSON request would be:

{
 "Request": {
 "Action": {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
 "DataType": "string", "Value": "GET"
 }
]
 },
 "Resource": {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "DataType": "string", "Value": "/protected"
 }
]
 },
 "Environment": {
 "Attribute": [
 {
 "AttributeId": "ContextId", "DataType": "string", "Value":
 "/WebSEAL/isam.ibm.com-default/protected", "Issuer":
 "http://security.tivoli.ibm.com/policy/distribution",
 }
]
 }
 }
}

If the policy attached to isam.ibm.com-default/protected results in a Permit decision, the XACML JSON
response would be:

{
 "Response": [
 {
 "Status": {
 "StatusCode": {
 "Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
 }
 },
 "Decision":"Permit"
 }
]
}

220 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

ApplicationId JSON example
The ApplicationId attribute must only contain the server part of the full policy key. The resourceUri
is then retrieved from the Request.Resource resource-id attribute and concatenated on the
ApplicationId.

For an application resource with an Application ID /myapp and two resources, /myresource1
and /myresource2, two policy keys would be generated, /myapp/myresource1 and /myapp/
myresource2.

This allows two separate policies to be evaluated within the one JSON request.

The corresponding XACML JSON would be:

{
 "Request": {
 "Action": {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
 "DataType": "string", "Value": "GET"
 }
]
 },
 "Resource": [
 {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "DataType": "string", "Value": "/myresource1"
 }
]
 },
 {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "DataType": "string", "Value": "/myresource2"
 }
]
 }
],
 "Environment": {
 "Attribute": [
 {
 "AttributeId": "ApplicationId", "DataType": "string",
 "Value": "/myapp", "Issuer":
 "http://security.tivoli.ibm.com/policy/distribution",
 }
]
 }
 }
}

If the policy attached to /myapp/myresouce1 results in a Permit decision and the policy attached to /
myapp/myresouce2 results in a Deny decision, the XACML JSON response would be:

{
 "Response": [
 {
 "Status": {
 "StatusCode": {
 "Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
 }
 },
 "Attribute": [
 {
 "AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "Value":"\/myresource1"
 }
],
 "Decision":"Permit"
 },
 {
 "Status": {
 "StatusCode": {

Chapter 13. Access control policies 221

 "Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
 }
 },
 "Attribute": [
 {
 "AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "Value":"\/myresource2"
 }
],
 "Decision":"Deny"
 }
]
}

resource-id JSON example
When neither the ContextId or ApplicationId attributes are set, the Request.Resource
resource-id attribute is used as the policy key.

This allows two separate policies to be evaluated within the one JSON request.

The corresponding XACML JSON would be:

{
 "Request": {
 "Action": {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
 "DataType": "string", "Value": "GET"
 }
]
 },
 "Resource": [
 {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "DataType": "string", "Value": "/WebSEAL/isam.ibm.com-default/
protected"
 }
]
 },
 {
 "Attribute": [
 {
 "AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "DataType": "string", "Value": "/myapp/myresource1"
 }
]
 }
],
 "Environment": {
 "Attribute": [
]
 }
 }
}

If the policy attached to isam.ibm.com-default/protected results in a Permit with Obligation
decision and the policy attached to /myapp/myresouce1 results in a NotApplicable decision, the
XACML JSON response would be:

{
 "Response": [
 {
 "Status": {
 "StatusCode": {
 "Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
 }
 },
 "Obligations": [
 {
 "Id":"ObligationId"
 }
],

222 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 "Attribute": [
 {
 "AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "Value":"/WebSEAL/isam.ibm.com-default/protected"
 }
],
 "Decision":"Permit"
 },
 {
 "Status": {
 "StatusCode": {
 "Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
 }
 },
 "Attribute": [
 {
 "AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "Value":"\/myapp\/myresource1"
 }
],
 "Decision":"NotApplicable"
 }
]
}

Chapter 13. Access control policies 223

224 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 14. Defining a custom domain for policy
attachments

The administrator can specify a custom domain to separate metadata in a registry. For example, your
company might possess metadata that belongs to several companies, and it is a security demand that the
data does not overlap.

About this task
The policy attachment credential automatically selects the default management domain in all supported
versions of IBM Tivoli® Access Manager when you integrate it with the IBM Security Verify Access local
management interface. You must choose one domain to use for policy attachments.

Procedure
1. Log in to the local management interface.
2. Specify the Tivoli Access Manager administrator credentials when you create a new reverse proxy

instance:

a. Select Web > Manage > Reverse Proxy> New.
b. Select the IBM Security Verify Access tab.
c. Specify the following administrator credentials. These credentials must be the same as the ones

that you use to attach a policy to a domain other than the default.

• Administrator Name
• Administrator Password
• Domain

Note: You can choose to specify a custom secure domain in the IBM Security Verify Access tab.
However, if you choose not to specify a domain, the domain field defers to the default.

3. Select AAC >Policy> Access Control > Resources.

4. Click .
5. Enter the information that you specified in “2.c” on page 225 at Policy Server Login.

What to do next
You can reset the credentials that you just defined with the setCredential parameter under the
following conditions:

• You upgrade to IBM Security Verify Access, version 8.0.0.4 or later.
• You want to manage a domain name other than the default.

Before you reset the setCredential parameter, remove all current resources and their corresponding
policy attachments. For more information about this command, go to the REST API documentation and
select Policy Attachments > Resources > Authenticate with Security Verify Access.

226 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 15. Deploying pending changes
Some configuration and administration changes require an extra deployment step.

About this task
When you use the graphical user interface on the appliance to specify changes, some configuration and
administration tasks take effect immediately. Other tasks require a deployment step to take effect. For
these tasks, the appliance gives you a choice of deploying immediately or deploying later. When you must
make multiple changes, you can wait until all changes are complete, and then deploy all of them at one
time.

When a deployment step is required, the user interface presents a message that says that there is an
undeployed change. The number of pending changes is displayed in the message, and increments for
each change you make.

Note: If any of the changes require the runtime server to be restarted, the restart occurs automatically
when you select Deploy. The runtime server will then be unavailable for a period of time until the restart
completes.

Procedure
1. When you finish making configuration changes, select Click here to review the changes or apply

them to the system.

The Deploy Pending Changes window is displayed.
2. Select one of the following options:

Option Description

Cancel Do not deploy the changes now.

Retain the undeployed configuration changes. The appliance user interface returns to the
previous panel.

Roll Back Abandon configuration changes.

A message is displayed, stating that the pending changes were reverted. The appliance
user interface returns to the previous panel.

Deploy Deploy all configuration changes.

When you select Deploy, a system message is displayed, stating that the changes were
deployed.

If any of the changes require the runtime server to be restarted, the restart occurs
automatically when you select Deploy. The runtime server will then be unavailable for a
period of time until the restart completes.

228 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 16. Options for handling session failover
events

Advanced Access Control offers several solutions to the challenge of providing sharing of session state
across multiple servers in a clustered environment.

The following sections describe the options available for handling failover events in clustered
environments:

• No handling of failover events
• The Distributed Session Cache

Option 1: No handling of failover events
Failover events are rare when WebSEAL or Web Reverse Proxy instance is configured to maintain session
affinity in a stateful junction to Advanced Access Control.

This scenario is applicable in the case of using the isamcfg tool to configure the junction.

When failover events do occur, session state is lost and clients might be required to restart their current
transaction.

This option is configured by default. However, there is a risk of a poor user experience when:

• The server containing Advanced Access Control becomes unavailable
• The WebSEAL or Web Reverse Proxy cannot maintain session affinity

Option 2: The distributed session cache
The distributed session cache (DSC) can be used for session storage by all Security Verify Access
appliances in a cluster.

When a fail over event occurs, Security Verify Access appliance retrieves the session data of the user from
the DSC. It therefore maintains the existing session state.

Within Security Verify Access, the DSC is part of the cluster configuration. For more information about
turning on or turning off this feature, see the Distributed Session Cache section in Advanced configuration
properties and Managing Distributed Session Cache.

230 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 17. Branching Authentication Policies
The ability to complete different mechanisms based on custom conditions is necessary to complete
complex scenarios. With the addition of decisions and branches in AAC Authentication Policies, it is now
easier to implement these scenarios.

To add a branching workflow to a policy, a Decision can be added to the policy workflow steps. The
Decision contains references to:

• A mapping rule
• An optional template page
• A list of branches

When a Decision is reached in the runtime policy flow, the following occurs:

• The decision mapping rule is run.
• If the mapping rule returns false, a template page is returned to the user for input.
• If the mapping rule returns true, the state is checked for a decision and the corresponding branch is

entered.

Once each step in the branch has been completed, the policy completes or continues to the next common
step.

A Decision can contain one or more branches and each branch can contain one or more steps.

The template page configuration is optional to enable scenarios where the decision should not be
presented to the end user, but instead based off data available to the mapping rule.

There are no limitations on the number of decisions in a policy, or whether they can be proceeded or
followed by normal steps. The only limitation is that a decision cannot be nested within another decision.

Scenarios
Various scenarios are provided as examples that are ready for immediate use. Policies for these scenarios
can be configured by using a Wizard on the new Scenarios screen. It is available at AAC > Authentication
> Scenarios.

Five potential scenarios can be configured. The wizard prompts for the information that is needed to
generate each policy.

Generic Decision Policy
Prompts the user to choose from a generic list of branches based on the branch name.

Example Branching_Generic mapping rule includes:

BranchingHelper.js
state.put("decision", branch);

Note: Overwrites @BRANCHES@ macro

Second Factor Authentication Policy
Prompts the user to choose a second factor method to complete. The list of available second factor
methods is based on their enrollments.

Example Branching_SecondFactor mapping rule includes:

BranchingHelper.js
state.put("decision", branch);

Username-less Login Policy
Prompts the user to complete QR Code Login by initially sending them to the QR Code branch with no
input. On the QR Code Login page, the user can choose to perform FIDO2/WebAuthn username-less
or standard username and password authentication instead.

Example Branching_Usernameless mapping rule includes:

BranchingHelper.js
state.put("decision", branch);
state.get("wasReset");
state.put("operation", "verify");

MMFA with TOTP Fallback Policy
Similar to Username-less, the user is not offered a choice and is initially prompted to complete
Mobile Multi-Factor authentication. While on the MMFA pending page, the user can choose to perform
TOTP authentication instead. This policy supports the scenario where a user might not have internet
connectivity on their device.

Example Branching_MMFAWithTOTP mapping rule includes:

BranchingHelper.js
state.put("decision", branch);
state.get("wasReset");

FIDO2 PAIR Policy

The pattern that is configured by this scenario is the solicited enrollment and then productive use of
the FIDO2 capable UVPA (User Verifying Platform Authenticator) in browser-based scenarios. Similar
to Username-less, the user is not initially offered a choice and is prompted to complete a traditional
username and password authentication. After authentication, the policy detects whether the browser
and device in use can enroll the UVPA. For example, TouchID or Windows Hello. If UVPA is available
on the device, the user is prompted to perform FIDO2 registration. On subsequent authentication
flows the policy detects that the user previously enrolled through this policy, and offer to authenticate
them with FIDO2 in place of username and password authentication.

Example FIDO2PAIR_Authn_Decision and FIDO2PAIR_Reg_Decision mapping rules include:

BranchingHelper.js
state.put("skipDecision","true");
state.put("decision",branch);

Identifier First Authentication (IFA) Policy

This scenario initially prompts the user only for their username. The decision mapping rule then
examines the authentication methods set by the administrator in the scenario wizard, and the
methods that the user has enrolled, to display a choice to the user. If enrolled, the user can
choose between FIDO2/WebAuthn authentication, MMFA authentication, or standard username/
password authentication. Alternatively, the username can be checked against a regular expression
and redirected to a configured URL.

After successful authentication, attributes of the registration used to perform authentication are
added to the user’s credential by the IFA Credential Complete InfoMap mechanism.

If configured, the user can then be prompted to complete the registration step of the FIDO2 PAIR
policy. The IFA_Prep_FIDO2_PAIR mapping rule contains the logic that determines if the user is
prompted. The registration prompt will only trigger if the following conditions are met:

1. The user did not complete FIDO2/WebAuthn authentication with a platform authenticator
2. The user has not previously chosen to always skip FIDO2 PAIR
3. The user has not previously completed FIDO2 PAIR in the current browser
4. The browser has reported that there is a user-verifying platform authenticator available

232 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Example Branching_IdentiferFirstAuth mapping rule includes:

BranchingHelper.js
state.put("skipDecision", "true");
state.put("decision", branch);

Decision
The underlying implementation of the Decision is achieved through an Authentication Mechanism that is
similar to the InfoMap mechanism, Decision JavaScript.

However the mapping rule and template configuration is not associated with the mechanism, but rather at
the policy level. Another differentiator is that the Decision JavaScript mechanism cannot be added as a
Step in the policy workflow.

In the policy workflow configuration screen, the Mapping Rule field is a drop-down that is populated
with mapping rules in the new category Decision. Several out-of-the-box mapping rules exist in the new
category.

Completing a Decision
To complete a decision, set the decision attribute in the mapping rule state variable to the name of
the branch that has been chosen.

state.put("decision", "BranchName");

Example:

A decision has been configured with one branch named TOTP Branch which contains one step TOTP
One-time Password.

Mapping rule:

importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingE
xtUtils);
importPackage(Packages.com.ibm.security.access.user);
importMappingRule("BranchingHelper");
// checkLogin and getLocale are methods from BranchingHelper

var username = checkLogin();
var totpEnrolled = MechanismRegistrationHelper.isTotpEnrolled(username,
getLocale());
if(totpEnrolled) {
 // TOTP is enrolled, set the decision to the
 // TOTP branch name
 state.put("decision", "TOTP Branch");
} else {
 // Since we have decided this is optional step up,
 // set skip decision
 state.put("skipDecision", "true");
}
result = true;
success.setValue(result);

Note: A decision can be skipped entirely with the “skipDecision” state variable. This action should
always be server controlled, and never based off user input. The policy continues as if the decision
was completed successfully.

Returning to the Decision
The policy flow can be returned to the Decision if “Allow return to decision” is configured on the
policy. This enables backward progression through the policy based off user input. To trigger the
return during runtime policy flow, use the operation returnToDecision.

POST/PUT
{"operation": "returnToDecision"
}

This operation only takes effect if “Allow return to decision” is true, and the currently running
mechanism is in a branch.

Chapter 17. Branching Authentication Policies 233

If all the steps within a branch have been completed, the decision is considered to be completed and
the policy flow can not return to the decision point.

The mapping rule state variable wasReset is populated after returnToDecision is performed. The
variable can be fetched with state.get("wasReset").

Example:

A decision was configured with two branches, FIDO2 Branch and Username Password Branch. The
FIDO2 Branch contains one step, FIDO2 WebAuthn Authenticator. The Username Password branch
contains one step, Username Password.

Mapping Rule:

importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingE
xtUtils);
importPackage(Packages.com.ibm.security.access.user);

// Has the flow returned to this decision from a branch?
var decisionWasReturned = state.get("wasReset");
if(decisionWasReturned) {
 // User has chosen to fallback to
 // username/password
 state.put("decision", "Username Password Branch");
} else {
 // Make user try FIDO2 first
 state.put("decision", "FIDO2 Branch");
}
result = true;
success.setValue(result);

HTML page:

...

<form id="operationForm" method="POST" action="@ACTION@">
 <input type="hidden" name="operation"
value="returnToDecision">
</form>

...

Branches
The layout of the branches is made available at runtime in the following format:

[{
 "name": "TOTP Branch",
 "steps": [
 {
 "id": "step1",
 "mechanism":
"urn:ibm:security:authentication:asf:mechanism:totp"
 }
]
},
{
 "name": "MMFA Branch with EULA",
 "steps": [
 {
 "id": "step1",
 "mechanism":
"urn:ibm:security:authentication:asf:mechanism:mmfa"
 },
 {
 "id": "step2",
 "mechanism":
"urn:ibm:security:authentication:asf:mechanism:eula"
 }
]
}]

Two macros are populated with this data: @BRANCHES@ and [RPT branches]:

234 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

@BRANCHES@
Populated with the Stringified JSON representation of the branches

[RPT branches]
Populated with the multi-valued macro map representation

The Stringified representation should be used in HTML templates and mapping rules.
HTML template usage

var branchesMacro ="@BRANCHES@";
Mapping rule usage

macros.get("@BRANCHES@");

The multi-valued macro map representation should be used in JSON templates.

Structured JSON template usage:

"branches": [
 [RPT branches]
 {
 "name": "@BRANCH_NAME@",
 "steps": [
 [RPT steps]
 {
 "id": "@STEP_ID@",
 "mechanism": "@STEP_URI@"
 }
 [ERPT steps]
]
 }
 [ERPT branches]
]

Compact JSON template page:

"branches": [[RPT branches] {"name": "@BRANCH_NAME@",
"steps": [[RPT steps] {"id": "@STEP_ID@", "mechanism":
"@STEP_URI@"} [ERPT steps]] } [ERPT branches]]

Note: The steps macro [RPT steps] is also populated for use by [RPT branches].

RPT and ERPT denote the start and end of the object that is repeated. The surrounding square brackets
should not be confused with these tags, as they are the JSON syntax for the arrays.

Steps
The steps within a branch can be any of the available authentication mechanisms.
Macros

While a step is running within a branch, the following macros are universally available:
@IN_BRANCH@

The name of the currently running branch.
@RETURN_ENABLED@

A flag indicating whether “Allow return to decision” is enabled on the decision.
Operation Skipping

When most authentication mechanisms are started, the mechanism first performs initialization before
returning to the user for input. The input is then returned to the mechanism for processing with the
operation field set to verify.

In the decision mapping rule, the operation of the first step in the chosen branch can be overwritten in
the state variable.

state.put("operation": "verify");

Chapter 17. Branching Authentication Policies 235

This is useful for the case where the decision is intelligent enough to have already collected the
information that the mechanism requires. The out-of-the-box Username-less Login Policy makes use
of this functionality.

When the user is prompted to complete QR Login, they can choose to perform Username Password
Authentication instead. The QR Login page is able to collect the username and password input
from the user before returning to the authentication service, and to the decision mapping rule. The
decision mapping rule then sets operation to verify to indicate to the first mechanism in the
branch (Username Password) that it should attempt the verification step after initialization, instead of
returning to the user for input.

Note: Overriding the operation may result in different outcomes based on the specific mechanism that
is being run.

236 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 18. Global settings
You can use the LMI to access an administrative menu to configure global settings that are used by both
Federation and Advanced Access Control.

The Local Management Interface (LMI) has a user interface page for administering each major feature in
IBM Security Verify Access. Since some features are used by multiple licensing levels for the product, the
administration page for these features can be accessed through multiple user interface menu paths.

You can use either of the following LMI menus to access the global settings:

• AAC > Global Settings
• Federation > Global Settings

You can use the global settings menus to configure the following features:

• Advanced Configuration

Some of the advanced configuration properties are common to Advanced Access Control and
Federation. Others are specific to one of the licensing levels.

• User Registry

Use these settings to administer users and group memberships for the user registry that is used by the
runtime applications. Management tasks are common to Advanced Access Control and Federation.

• Runtime Parameters

You can use the Runtime Parameters menu to view runtime status, tune runtime parameters, and set
tracing on the runtime. These functions are common to Advanced Access Control and to Federation.

In addition, the runtime tracing feature can be set in the LMI through Monitor > Logs > Runtime Tracing
> ..

The topic for Runtime Parameters is also included in the appliance troubleshooting section of the IBM
Knowledge Center. See Tuning runtime application parameters and tracing specifications

• Template Files

Template files are HTML pages that are presented to your users. You can customize the content of the
pages for your deployment by setting supported macros, or by adding JavaScript scripting. Template
pages are used in multiple scenarios.

– Customizing the authentication process, such as error messages
– Specifying settings for the supported authentication mechanisms
– Customizing error messages for authentication attempts
– Obtaining consent for registering devices
– Specifying authorization parameters for OAuth 2.0
– Configuring user self-care tasks

• Mapping Rules

Mapping rules are JavaScript code that runs during the authentication flow for Advanced Access Control
and Federation. Mapping rules can be used for multiple purposes. For Advanced Access Control, you
can modify rules for the Authentication Service, OTP, and OAuth 2.0. For Federation, you can modify
mapping rules to manage identities for OIDC and SAML 2.0.

• Distributed Session Cache

The Distributed Session Cache is supplied by the Web Reverse Proxy and is used with all activation
levels. The management windows in the LMI can also be accessed through Web > Manage >
Distributed Session Cache.

For an overview of the Distributed Session Cache, and a review of advanced configuration options, see:
Distributed Session Cache.

• Server Connections

Advanced Access Control and Federations both use the IBM Security Verify Access appliance to connect
to external data sources. For Advanced Access Control, you can use the server connections menus to
configure LDAP or database server connections so that you can set up policy information points. For
Federation, you can configure an LDAP server as an attribute source for attribute mapping.

• Point of Contact

IBM Security Verify Access provides servers, such as WebSEAL, that function as point of contact servers
for handling external requests for authentication and authorization. You can configure a point of contact
profile to specify the information that is needed for the runtime to communicate with a specific point of
contact server. Security Verify Access provides three Point of Contact profiles that are ready for use. You
can specify callback parameters and values for these profiles.

• Access Policies

You can use access policies to perform step-up and re-authentication during a single sign-on flow based
on contextual information. Access policies can be enforced at a federation or at API Protection for
OAuth and OpenID Connect.

Note: The LMI mega-menu for the Web licensing level also presents a set of tasks under a Global
Settings heading. These tasks are different from the tasks under the Global Settings menu for AAC and
Federation. The Web > Global Settings LMI menus are not used with AAC and Federation .

Managing advanced configuration
Adjust configuration settings in supported configuration files.

About this task
The advanced configuration includes both properties and files. The properties configuration panel
displays a table of configuration settings. Some can be modified and some are read-only. Each setting
is displayed as a row in the table. The name of the setting is listed in the key column. The current value of
the key is listed in the value column. You can locate a setting by using one of the following methods:

• Scroll through the list until you see the setting.

By default, all configuration settings are included in the list.
• Filter the list by entering a string in the Filter field.

When you enter a string, the list is modified to show only the settings that contain the specified string.
• Filter the list by selecting a category from the Filter by Category menu.

For descriptions of the categories and properties, see “Advanced configuration properties” on page 239.

Procedure
1. Select the menu entry for your licensing level:

• If using an Advanced Access Control license, select AAC > Global Settings > Advanced
Configuration.

• If using a Federation license, select Federation > Global Settings > Advanced Configuration

2. To edit a property key, select the edit icon for the key.

Note: You cannot edit keys that are marked with the read-only icon: .

When you choose to edit a key, a new window displays the name of the key and the current value.

a) Edit the value of your deployment.

238 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

b) Click OK.
3. To manage an advanced configuration file click the Files link in the page header and click the required

file in the table.

a) To edit the file click the Edit button to make the required changes. Click Save.
b) To replace the existing file click the Import button in the Manage drop down, select the new file in

the dialog and click Import.
c) To export the existing file click the Export button in the Manage drop down.

4. Click OK.
5. Deploy the changes.

Advanced configuration properties
Modify the advanced configurations for Advanced Access Control or Federation to meet the requirements
of your organization.

Category filter
The category filter displays names of grouping of configuration settings. The groupings correspond to
functional areas. When you select a category, the user interface displays only the settings for the
category.

Table 21. Filter by Category

Category Displays values for:

All All keys

poc.websealAuth “WebSEAL Authenticate Callback” on page 240

poc.websealSignout “WebSEAL Signout Callback” on page 240

poc.otpAuth “One-time password Authenticate Callback” on page 241

poc.authPolicy “Authentication-Policy Callback” on page 241

sps.httpRequestClaims “SPS HTTP request claims” on page 241

distributedMap “Distributed shared data storage” on page 242

userBehavior “Attribute matcher properties” on page 242

ipReputation “IP reputation PIP properties” on page 243

attributeCollection “Attribute collector properties” on page 243

deviceRegistration “Device registration properties” on page 244

runtime “Runtime properties” on page 245

sps.page “SPS page” on page 247

sps “Single sign-on protocol service” on page 246

riskEngine “Risk engine properties” on page 248

sps.authService “Authentication service properties” on page 249

authsvc.stateMgmt “Authentication service session store properties” on page 250

session “Session” on page 251

distributedSessionCache “Distributed session cache” on page 251

otp.retry “TOTP and HOTP retry properties” on page 252

Chapter 18. Global settings 239

Table 21. Filter by Category (continued)

Category Displays values for:

otp “OTP properties” on page 253

oauth20 “OAuth20” on page 253

util.httpClient “HTTP client” on page 256

util.httpClient v2 “HTTP Client version 2” on page 257

demo “Demo” on page 262

knowledge.questions “Knowledge questions properties” on page 262

kess “Key encryption and signing service (KESS)” on page 262

jwks “JSON Web Key” on page 264

pip “Policy information point (PIP)” on page 264

sts “Security token service (STS)” on page 264

mmfa Mobile Multi-Factor Authentication (MMFA)

wsfed “WS-Federation” on page 267

saml20 “SAML 2.0” on page 268

demo “Demo” on page 262

saml11 “SAML 1.1” on page 267

oidc “OIDC” on page 269

js “Rhino Javascript Engine” on page 269

basicLdapUser “Basic LDAP User” on page 270

consentDeviceRegistration “Consent Device Registration” on page 270

fido2 “FIDO2” on page 270

httpSession “HTTP Session” on page 270

infomap “Info Map” on page 271

poc.webseal.poc “WebSEAL POC” on page 271

username “Username” on page 271

WebSEAL Authenticate Callback
poc.websealAuth.authLevel

The authentication level of the callback.
Data type: Integer
Example: 1

WebSEAL Signout Callback
poc.websealSignout.terminate

When forceauth=true is specified, poc.websealSignout.terminate determines which
mechanism is used to force an authentication interaction in WebSEAL. A value of true (default)
means use eai-server-task terminate session which will logout of WebSEAL. User will be
prompted to login. The original WebSEAL session is destroyed (including any managed cookies).

240 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

A value of false means use eai-server-task force-reauthenticate session which will result
in user being prompted to re-authenticate to WebSEAL. The original WebSEAL session including
managed cookies are preserved on re-authentication.

Data type: Boolean
Example: true

One-time password Authenticate Callback
poc.otp.authLevel

The authentication level of the callback.
Data type: Integer
Example: 2

poc.otp.backwardCompatibilityEnabled
Indicates whether the one-time password authentication mechanism should run in backward
compatibility mode. The default value is false if it is a new installation. The default value is true if
the installation is an upgrade.
Data type: Boolean
Example: true

Authentication-Policy Callback
poc.authPolicy.allowRequestOverride

Whether the authentication level, the authentication mode, and the authentication type of the
callback can be overwritten by query string parameters.
Data type: Boolean
Example: true

poc.authPolicy.authLevel
The authentication level of the callback.
Data type: Integer
Example: 1

poc.authPolicy.authType
The authentication type of the callback.
Data type: String
Example: COMPLEMENTARY, HIERARCHICAL

SPS HTTP request claims
sps.httpRequestClaims.enabled

Whether HTTP request information is sent to STS as HTTPRequestClaims. This flag additionally
makes HTTP Request attributes (Headers, Cookies and Parameters) available to administrators in
OIDC, OAuth, and SAML (see “HTTP Claims in OIDC, OAuth and SAML JavaScript Mapping Rules”
on page 368), Authsvc and InfoMap (see “HTTP Claims in Authsvc and InfoMap JavaScript Mapping
Rules” on page 369) and FIDO2 (see “HTTP Claims in FIDO2 Mediator JavaScript Mapping Rules” on
page 369) JavaScript Mapping rules.
Data type: Boolean
Example:false

sps.httpRequestClaims.filterSpec
The filter that specifies the HTTP request information that is sent to STS as HTTPRequestClaims.
Data type: String
Example: cookies=*:headers=*

Chapter 18. Global settings 241

Distributed shared data storage
distributedMap.cleanupWait

The amount of time, in milliseconds, to wait before it performs another cleanup against the distributed
map.

Distributed map clean up can be disabled by setting the cleanupWait to 0.

Data type: Integer
Example: 10000

distributedMap.defaultTTL
The amount of time, in seconds, that the entries in the distributed map must live when no lifetime is
specified for an entry.
Data type: Integer
Example: 3600

distributedMap.getRetryDelay
The amount of time, in milliseconds, to wait before it performs another retrieval against the
distributed map. The default is 0.
Data type: Integer
Example: 500

distributedMap.getRetryLimit
The number of retrievals that is done against the distributed map before it returns that the retrieved
data is not in the distributed map. The default is 0.
Data type: Integer
Example: 10

distributedMap.store
Specifies storage location for distributed shared data.

• Redis: stores the DMAP instance into Redis.
• HVDB: stores the DMAP instance into the HVDB.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

Allowed Values: Redis, HVDB

Example: Redis

distributedMap.redisServerConnectionName
Specifies the Redis server connection to use for the runtime.

This parameter must be specified when the distributedMap.store is set to Redis. See
“distributedMap.store” on page 242.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

Attribute matcher properties
userBehavior.minimumUsageHistoryRequired

Minimum usage data records required for any usage data analysis; used by LoginTimeMatcher.
Data type: Integer
Example: 8

242 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

userBehavior.ipAddressRequestAttribute
The XACML request attribute to read from the IP address.
Data type: String
Example: urn:ibm:security:subject:ipAddress

IP reputation PIP properties
ip.reputation.ipAddressAdverseReputationThreshold

The value that an IP classification score must be at or above for an IP address to be considered as
that classification.
Data type: Integer
Example:50

ipReputation.dbConnectionTimeout
Indicates the number of seconds that the IP reputation policy information point (PIP) waits for a
connection to the IP reputation database. The ipReputation.dbConnectionTimeout property
defaults to 120.
Data type: Integer
Example: 60

Attribute collector properties
attributeCollection.cookieName

Correlation ID used by the attribute collector.
Data type: String
Example: ac.uuid

attributeCollection.requestServer
Request server for attribute collector. A list of the allowable hosts where the ajaxRequest can be sent
from.
Data type: String List
Example: https://rbademo.example.com,https://rbaemo2.example.com

attributeCollection.serviceLocation
Location of the attribute collector.
Data type: String List
Example: http://rbademo.example.com/mga

attributeCollection.sessionTimeout
Number of seconds in which sessions stored in context-based access will automatically expire, unless
updated. If any attribute in the session is updated, the session expiry is extended by the specified
number of seconds configured in this property. The default is 1800 seconds.
Data type: Integer
Example: 1800 seconds

attributeCollection.enableGetAttributes
Enables the REST GET method to return attributes.
Data type: Boolean
Example: false

attributeCollection.getAttributesAllowedClients
A comma-separated list of clients that are allowed to access the ACS REST GET method.

If this property is not set and attributeCollection.enableGetAttributes is
set to true, anyone can access the GET method. If this property is set but
attributeCollection.enableGetAttributes is set to false, this property is ignored.

Chapter 18. Global settings 243

Data type: String List
Example: hostname1, hostname2

attributeCollection.hashAlgorithm
The algorithm that is used to create the hash.
Data type: String
Example: SHA256

attributeCollection.attributesHashEnabled
A comma-separated list of attribute URI values configured for hashing.

Attention: Do not hash the following attributes:

• ipAddress
• geoLocation
• accessTime

Data type: String List
Example:

urn:ibm:security:environment:http:userAgent,
urn:ibm:security:environment:deviceFonts,
urn:ibm:security:environment:browserPlugins

attributeCollection.authenticationContextAttributes
A comma-separated list of attribute names to collect during an authentication service obligation. The
maximum number of characters for this property is 200.
Data type: String List
Example: authenticationLevel, http:host

attributeCollection.hashedAuthenticationContextAttributes

A comma-separated list of attribute names to collect during an authentication service obligation. The
attribute values that are collected are hashes of the real value. The maximum number of characters
for this property is 200.

Data type: String List
Example: authenticationLevel, http:host

Device registration properties
deviceRegistration.allowIncompleteFingerprints

Specifies to allow the device registration obligation to store fingerprints where all the fingerprint
attributes are not available on the session information.
Data type: Boolean
Example: false

deviceRegistration.checkForExpiredDevices
Determines whether registered devices are inactive or expired. If the
deviceRegistration.checkForExpiredDevices property is set to true, the
risk engine checks whether a device is inactive or expired. The
deviceRegistration.checkForExpiredDevices property defaults to false, which means
that users can use any of the devices that are registered.
Date type: Boolean
Example: true

deviceRegistration.cleanupThread.batchSize
Specifies if batch delete is enabled for expired devices and how many records are deleted per batch.
If the value is defined as 0 or is blank, batch delete is not enabled and all expired devices are deleted
using one SLQ delete statement.

244 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

If the value is defined as an integer greater than 0, batch delete is enabled. The number that you
specify determines how many records are deleted in each batch. The batch delete continues until all
of the expired devices are deleted. The batch process is useful for deleting a large quantity of expired
devices.
Data type: Integer
Example: 1000 (Batch delete is enabled, with a batch size of 1000 records.)

deviceRegistration.deviceMatchThreshold
The risk score threshold where an existing fingerprint is considered to match the incoming device
fingerprint.
Data type: Integer
Example: 20

deviceRegistration.inactiveExpirationTime
Specifies the number of days that a device must be inactive for it to expire. The
deviceRegistration.inactiveExpirationTime property defaults to 90.
Date type: Integer
Example: 100

deviceRegistration.maxRegisteredDevices
Maximum device fingerprint count. The default is 10. Valid values are 1 to 100.
Data type: Integer
Example: 10

deviceRegistration.maxUsageDataPerUser
Maximum number of historical usage attribute records stored per user. The default is 200. Valid
values are 1 to 5000.
Data type: Integer
Example: 1000

deviceRegistration.permitOnIncompleteFingerprints
Specifies to permit access to the resource if the fingerprint collected by the device registration
obligation does not include all fingerprint attributes.
Data type: Boolean
Example: false

Runtime properties
runtime.dbLoggingEnabled

Enables fine-grained logging for database SQL statements.
Data type: Boolean
Example: false

runtime.hashAlgorithm
The algorithm that is used for hashing. The supported algorithms are:

• SHA-1
• SHA-256
• SHA-384
• SHA-512

The runtime.hashAlgorithm property defaults to SHA-256.

Data type: String
Example: SHA-256

Chapter 18. Global settings 245

runtime.verificationHashAlgorithms
Defines the hashing algorithms that are used to verify a hashed value. The value is typically a comma
separated list of hashing algorithms.
Data type: String
Example: SHA-256, SHA-1

Single sign-on protocol service
sps.setCookiesAsSecure

Determine whether to flag the cookies set by Security Verify Access as secure.

The default value is false.

Data type: Boolean
Example: false

sps.targetURLWhitelist

Specifies a list of allowed target URLs for SAML 2.0 and OpenID Connect. Use this property to prevent
an attacker from redirecting the user to malicious target URLs.

The value of this advanced configuration property is a comma-separated string, where each string is a
target URL in the form of a regular expression. The regular expression must not contain commas, and
spaces between regular expressions are ignored.

• For SAML 2.0 SSO flows, you can specify a Target URL when you configure the initial URL in flows
that are initiated by either the Identity Provider or the Service Provider. For more information, see
SAML 2.0 profile initial URLs.

• For Open ID Connect flows, you can specify a Target URL when you configure the initial URL
for Relying Party initiated single sign-on. For more information, see Relying Party SSO initiation
endpoint.

The default value is “^\/[^\s]*$” (only allow target URLs in the same domain).

Data type String

Example

(http|https)://www.app.ibm.com/.*, (http|https)://www.myidp.ibm.com/.*

sps.authsvcTargetURLAllowlist

Specifies a list of allowed target URLs for the authentication service. Use this property to prevent an
attacker from redirecting the user to malicious target URLs.

The value of this advanced configuration property is a comma-separated string. Each string
represents a target URL in the form of a regular expression. Regular expressions that contain commas
and spaces between them are ignored.

• For the authentication service, you can specify a Target URL when you configure the authentication
service trigger URL. For more information, see “Configuring authentication” on page 34.

The default value is “^\/[^\s]*$” (only allow target URLs in the same domain).

Data type String

Example

(http|https)://www.app.ibm.com/.*, (http|https)://www.myidp.ibm.com/.*

sps.illegalUrlSubstrings
A comma-separated list of strings, the single sign-on service stops processing the request if the
request URL query parameters contain any of the strings.

246 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

The default value is "".

Data type: String

Example:

"<script"

sps.doNotSendXFrameOptionsHeader
Specifies whether an X-Frame-Options header with value SAMEORIGIN must be returned from the
SPS endpoints for browser based flows. When this property is set to true, no X-Frame-Options
header is sent.

Note: The sps.doNotSendXFrameOptionsHeader property defaults to false.

Data type: Boolean

Example: False

sps.adminGroup
Specifies the name of the admin group that a user must be a member of to view the runtime state
page.

The default value is "" meaning that no users have access to the page.

Data type: String

Example: adminGroup

SPS page
sps.page.htmlEscapedMacros

A comma-separated list of macros that is HTML-escaped when it is rendered in pages that are sent to
the browser.
Data type: String
Example:

@REQ_ADDR@,
@DETAIL@,
@EXCEPTION_STACK@,
@EXCEPTION_MSG@,
@OTP_METHOD_ID@,
@OTP_METHOD_LABEL@,
@OTP_HINT@,
@ERROR_MESSAGE@,
@MAPPING_RULE_DATA@

sps.page.exceptionMacros
A comma-separated list of classname:macro pairs. Classname is the fully qualified name of the
exception class. Macro is the name of the macro to which the class maps.
Data type: String
Example:

com.tivoli.am.fim.otp.deliveries.OTPDeliveryException:@OTP_DELIVERY_EXCEPTION@,
com.tivoli.am.fim.otp.providers.OTPProviderException:@OTP_PROVIDER_EXCEPTION@

sps.page.notEscapedMacros
A comma-separated list of macros that are not HTML-escaped when they are rendered in pages
that are sent to the browser. Macros that do not appear in this list or the Macros in the
htmlEscapedMacros list are HTML-escaped.

Data type: String

Example:

@COOKIE_NAME@,

Chapter 18. Global settings 247

@SERVER_NAME@,
@JUNCTION@

sps.page.hiddenMacros
A comma-separated list of macros that are not rendered in the pages that are sent to the browser. The
default value is @EXCEPTION_STACK@,@EXCEPTION_MSG@.

Data type: String

Example: @EXCEPTION_STACK@,@EXCEPTION_MSG@

sps.page.allowedLocales
A comma separated list of locales, which are allowed to be returned when you are requesting a page
or message. Each locale listed must be a valid locale identifier. For example, en, ja_JP, pt_BR, es, de.

The default value is all.

Data type: String

Example: en, de_DE, pt_BR, ja

sps.page.defaultLocale
The default locale to return if the requested locale identifier is not in the
sps.page.allowedLocales list. This value must have a corresponding entry in the
sps.page.allowedLocales list to be valid.

The default value is en.

Data type: String

Example: en

sps.page.strictLocaleMatching
A flag that controls whether the locale matching algorithm should be strict for matching the requested
locale to the available template files/messages, as well as the allowed locales list.

When set to true, both the base language code (for example, en, pt) and the region code (for
example, US, BR) must exactly match.

When set to false, an exact match of base language and region code is preferred, but if no exact
match is found, an approximate match of only the base language code is accepted.

The default value is false.

Data type: Boolean

Example: false

sps.page.junctionMacro
Specifies the junction name used by the Advanced Access Control runtime.

The default value is /mga.

Data type: String

Example: /jct/mga, /mga

Risk engine properties
riskEngine.reportsEnabled

Enables the generation of risk calculation reports.
Data type: Boolean
Example: false

riskEngine.reportsMaxStored
Specifies the maximum number of reports to store.
Data type: Integer
Example: 5

248 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

riskEngine.useRoundingMethod
Specifies whether the generated risk percentage is rounded to the nearest whole number.
Default value: false
Data type: Boolean
Example: true

Authentication service properties
sps.authService.reauthenticationEnabled

Specifies that the authentication service performs authentication even if the user already has an
authenticated session at the required authentication level.
Data type: Boolean
Example: true

sps.authService.policyKickoffMethod
Specifies whether the URLs /sps/authsvc and /sps/apiauthsvc can be invoked with the
policyId query string parameter.

If set to query, the authentication service endpoints continue to accept policyId as a query or post
parameter.

If set to path, authentication service endpoints are changed to:

• /sps/apiauthsvc/policy/<shortPolicyId>
• /sps/authsvc/policy/<shortPolicyId>

Where <shortPolicyId> is the value that comes after the prefix
urn:ibm:security:authentication:asf:

When set to both, either the path or query parameter can be used to initiate an authentication
service flow.

By default, the value is set to path.

sps.authService.stateIdSource.authsvc
Specifies whether the URL /sps/authsvc can be invoked with the StateId query string parameter.

If set to Body and Query, the authentication service endpoint continues to accept StateId as a query
or body parameter.

If set to Body Only, the authentication service endpoint only accepts the StateId as a body parameter
(POST or PUT).

Data type: String

Default: Body and Query

Example: Body only

sps.authService.stateIdSource.apiauthsvc
Specifies whether the URL /sps/apiauthsvc can be invoked with the StateId query string
parameter.

If set to Body and Query, the API authentication service endpoint continues to accept StateId as a
query or body parameter.

If set to Body Only, the API authentication service endpoint only accepts the StateId as a body
parameter (POST or PUT).

Data type: String

Default: Body and Query

Example: Body Only

Chapter 18. Global settings 249

sps.authService.password.pwdFailCountLDAPAttribute
Specify the LDAP attribute which is used to store the number of failed login attempts using the
password attribute. If null and login failure persistent is enabled, the default secPwdFailures
attribute is used.

Example: secPwdFailures

Default: null

sps.authService.password.lastLoginLDAPAttribute
Specify a LDAP attribute which is used to store the last successful login using the password attribute.
If null the and password last use is enabled, the default secPwdLastUsed attribute is used.

Example: secPwdLastUsed

Default: null

sps.authService.reCAPTCHA.serviceLocation
Specifies the URL for the external reCAPTCHA service.

Default: https://www.google.com/recaptcha/api/siteverify

Data type: URL

Example: https://www.google.com/recaptcha/api/siteverify

Authentication service session store properties
authsvc.stateMgmt.cookieless

Enables the server side storage of session data for the authentication service. If enabled, this removes
the need for the JSESSIONID cookie.

Data type: Boolean

Example: true

Default value: true

authsvc.stateMgmt.store
Specifies the storage type that is used by the Authentication service to cache user session data. The
authentication service can be supported by the DSC, the DMap, or stored in Memory.

Note: For clustered environments, storage in Memory does not replicate between nodes.

Data type: String

Example: Memory

Default value: DMap

authsvc.stateMgmt.lifetime
Length of time in seconds that a session is cached for. Once this time period is exceeded, the user’s
session is removed from the session store. If this value is less than 0, the default lifetime of 3600
seconds (1 hour) is enforced for Memory, and 600 seconds (10 minutes) is enforced for DMap. This
configuration option applies only to session stores supported by the DMap or Memory.

Data type: Integer

Example: 60 (1 minute)

Default value: 3600

authsvc.stateMgmt.memory.maxSessions
Maximum number of user sessions to be cached at any point in time. If the number of sessions in the
store exceeds this value, the oldest session is invalidated. This configuration option only applies to the
Memory session store.

Data type: Integer

Example: 10000

250 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Default value: 1000

authsvc.stateMgmt.memory.cleanupWait
Frequency (in seconds) that expired or excess sessions are removed from the session store. Setting
this entry to -1 disables the cleanup thread. This configuration option only applies to the Memory
session store.

Data type: Integer

Example: 30

Default value: 120

authsvc.stateMgmt.memory.cleanupThread.batchSize
Maximum number of expired sessions which are removed in a single cleanup operation. If the value
is defined as 0 or is blank, batch delete is not enabled. All expired sessions are deleted by using one
SQL delete statement. If the value is defined as an integer greater than 0, batch delete is enabled.
The number that you specify determines how many sessions are deleted in each batch. The batch
delete continues until all of the expired sessions are deleted. This configuration option only applies to
sessions that are stored in Memory.

Data type: Integer

Example: 1000

Default value: 0

Session
session.dbCleanupInterval

Specifies the interval, in seconds, that the database cleanup thread runs to remove expired data in
the runtime database. The default is 86400. The minimum value for this property is 3600. For more
information, see Runtime database tuning parameters

Session database clean up can be disabled by setting the dbCleanupInterval to 0. This is not
overridden by the minimum value.

Data type: Integer
Example: 90000

session.store
Specifies the user session store.

Note: This configuration is dependent on distributedSessionCache.enabled.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

Allowed values: unset, In-Memory, DSC, DMap

Example: unset

Distributed session cache
distributedSessionCache.localCacheSize

The number of sessions to be stored on the client as a local cache. A value of 0 or less means that
any number of sessions can be cached by the client. A low number requires more connections to the
distributed session cache if there are many active sessions. A high number runs the risk of running out
of memory if many sessions are locally cached. All sessions are still stored on the distributed session
cache when it is enabled.
Data type: Integer
Example: 4096

Chapter 18. Global settings 251

distributedSessionCache.externalServers

A list of locations of the distributed session cache servers in weighted order.

Syntax:

<primary_address>:<port>[:<ssl>];<secondary_address>:<port>[:<ssl>],...

<address>

The IP address of the distributed session cache server. For example, 10.150.21.80.

<port>

The port for the distributed session cache. For example, 2126.

<ssl>

Whether SSL communication with the distributed session cache is required. The default value is
false.

Data type: String

Example:

10.150.21.80:2126:true;10.150.21.81:2126:false,10.150.21.82:2126

distributedSessionCache.localCacheEnabled
A switch that dictates whether a local cache of distributed sessions is maintained. If this setting is
disabled a higher load is placed on the distributed session cache server. The local cache should only
be enabled if all requests from the same client is guaranteed to be sent to the same runtime server
(otherwise known as stickiness). Session inconsistencies might occur if the local cache is enabled and
stickiness is not maintained. All sessions are still stored in the distributed session cache when it is
enabled.

Data type: Boolean

Example: False

distributedSessionCache.enabled

Note: This is a legacy configuration. It is recommended that this configuration be set to false and
use session.store instead.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

A switch that dictates if the distributed session cache is used for session failover. If this setting is not
enabled, the distributed session cache server still runs as a service, but the client does not use it.

Data type: Boolean

Example: false

TOTP and HOTP retry properties
otp.retry.enabled

Whether the retry protection is enabled.
Data type: Boolean
Example: true

otp.retry.maxNumberOfAttempts
The maximum number of strikes the users can have before they are prevented from logging in.
Data type: Integer

252 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Example: 5
otp.retry.otpRetryTimeout

The number in seconds a strike lasts.
Data type: Integer
Example: 600

OTP properties
otp.usc.legacyBehavior

OTP secret keys are available from the REST API and USC pages at:

REST services for OTP secret keys

https://<WebSEAL host>:<port>/<junction name>/sps/mga/user/mgmt/otp/
{otpType}

Managing OTP secret keys

https://<WebSEAL host>:<port>/<junction name>/sps/mga/user/mgmt/html/otp/
otp.html

This configuration controls whether these earlier APIs and pages are enabled. If set to false, a
deactivated message is returned when the REST API or USC pages are accessed.

The MMFA discovery payload also dynamically removes the TOTP and HOTP mechanism URIs
from the discovery mechanisms if otp.usc.legacyBehavior is set to false. See Discovery
mechanisms.

Data type: Boolean

Example: false

OAuth20
oauth20.clientDataToInclude

Specifies the OAuth client information to be returned as JSON data. This property is a comma-
separated list of the JSON Keys. Valid values are:

contact_type
email_address
contact_person
company_name
company_url
phone_number
other_info

You can specify one or more of these keys for this property.

Note: The oauth20.clientDataToInclude property defaults to contact_type,
email_address, contact_person, company_name, company_url, phone_number,
other_info.

Data type: String
Example: contact_type, email_address, company_name

oauth20.doNotSendXFrameOptionsHeader
Specifies whether an X-Frame-Options header with value SAMEORIGIN must be returned from the
OAuth 2.0 endpoints. When set to true, no X-Frame-Options header is sent.

Note: The oauth20.doNotSendXFrameOptionsHeader property defaults to false.

Data type: Boolean
Example: false

Chapter 18. Global settings 253

oauth20.hashedTokenStorageEnabled
Enables hashed storage when set to true. The Security Verify Access appliance can persist OAuth 2.0
tokens in the clear text form or in the more secure hashed form.

The hashing algorithm set in the runtime.hashAlgorithm property will be used. When
verifying hashed tokens, the runtime.verificationHashAlgorithms property will be used. The
algorithms listed in the runtime.verificationHashAlgorithms property will be tried in the
specified order. This mechanism allows for upgrading of the hashing algorithm while continuing to
support old tokens.

Note: The oauth20.hashedTokenStorageEnabled property defaults to false, and the OAuth 2.0
tokens will be stored as-is.

Data type: Boolean
Example: false

oauth20.sessionEndpointEnabled
Enables the ability to return an authenticated session at the point-of-contact when the
oauth20.sessionEndpointEnabled property is set to true.

Note: The oauth20.sessionEndpointEnabled property defaults to false.

Data type: Boolean
Example: false

oauth20.tokenCache.cleanupWait
The amount of time, in seconds, to wait before it performs another cleanup of expired tokens in the
OAuth 2.0 token cache.

Note: The oauth20.tokenCache.cleanupWait property defaults to 120.

OAuth token clean up can be disabled by setting the cleanupWait value to 0.

Data type: Integer
Example: 120

oauth20.legacyAttributeHandling
Changes how associated attributes function across the API Protection and OpenID Connect solution.
This includes:

• OauthMappingExtUtils.retrieveAllAssociations()
OauthMappingExtUtils.getAssociation() calls in mapping rules

– When it is set to True, it does not return READONLY or SENSITIVE attributes.
– When it is set to False, it returns READONLY or SENSITIVE attributes.

• The user self care endpoint /mga/sps/mga/user/mgmt/grant/

– When it is set to True, attributes that are both READONLY and SENSITIVE are returned
– When it is set to False, attributes that are both READONLY and SENSITIVE are not returned.

• Attributes which are saved from attribute sources when performing identity enrichment.

– When it is set to True, attributes are saved against the grant as neither READONLY or SENSITIVE.
– When it is set to False, attributes are saved against the grant as READONLY. The post token rule

can be used to update this value if necessary.

oauth20.authorize.stateRequired
Specifies state as a required parameter in authorization code flow.

Data type: Boolean

Default: true

Note: For OIDC conformance, set to false.

254 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

oauth20.support.chunked.transfer.encoding
Specifies if Transfer-Encoding chunked is supported as a request header by /token and /introspect
endpoint.

Data type: Boolean

Default: false

oauth20.backwardCompatibilityEnabled
Specifies whether the redirect_uri is read in the decoded format or raw format. When set to true,
it is read in the decoded format.

Note: The oauth20.backwardCompatibilityEnabled property defaults to false.

Data type: Boolean
Example: false

oauth20.clientCacheLifetime
Length of time in seconds that a specific client instance is cached for. Once this time period is
exceeded, the client instance is removed from the cache. Setting it to 0 will default it to 60 secs for
dynamic clients.

Note: The oauth20.clientCacheLifetime property defaults to 5.

Data type: Integer
Example: 20

oauth20.deviceFlow.slowDownThreshhold
Specifies the length in seconds of the slow down threshold of polling interval during Device Flow.

Note: The oauth20.deviceFlow.slowDownThreshhold property defaults to 2.

Data type: Integer
Example: 5

oauth20.tokenCache.allowDBConnectExceptionEnable
Specifies if HTTP Status Code 502 Bad Gateway should be returned by the authorization server due to
database connection issue or HTTP Status Code 400 Bad Request during an Exception.

Note: The oauth20.tokenCache.allowDBConnectExceptionEnable property defaults to
false.

Data type: Boolean
Example: false

oauth20.tokenCache.cleanupOnlyOnPrimaryMaster
In a clustered environment, specifies if the cleanup thread should run only on the master node.

Note: The oauth20.tokenCache.cleanupOnlyOnPrimaryMaster property defaults to false.

Data type: Boolean
Example: false

oauth20.redirecturl.authority.legacy.behaviour
If set to false, the redirect_uri match against registered redirect_uri is performed by comparing with
authorities by eliminating additional characters.

Note: The oauth20.redirecturl.authority.legacy.behaviour property defaults to true.

Data type: Boolean
Example: false

PostgreSQL
postgresdb.fetchsize

Specifies the PostgreSQL database fetch size.

Chapter 18. Global settings 255

Data type: Integer
Example: 50

HTTP client
util.httpClient.defaultTrustStore

Stores the default truststore that HTTPS connections in HTTP client uses.

Note: The util.httpClient.TrustStore property defaults to rt_profile_keys.

Data type: String
Example: rt_profile_keys

util.httpClient.defaultSSLProtocol
Stores the default SSL protocol configuration that HTTPS connections in HTTP client uses.

Note: The util.httpClient.defaultSSLProtocol property defaults to TLS.

Data type: String
Example: TLS

util.httpClient.maxActiveConnections
Specifies the maximum number of HTTP and HTTPS connections, per host, between the appliance
runtime and other modules. In a multiple host environment, the runtime might need to establish many
HTTP/HTTPS connections at the same time. By specifying this property, you can limit the number of
active connections for each host. This setting ensures that each host can obtain their fair share of
HTTP/HTTPS connections without being forced to wait for other hosts to release connections.

• Data type: String
• Default: An unlimited number of HTTP/HTTPS connections are permitted

You can specify the maximum number of active connections in one of two ways:

• Specify a maximum number to apply to every host. Syntax:

"*=<count>"

• Specify a maximum number on a per host basis. Syntax:

"<host1>:<port1>=<count>,<host2>:<port2>=<count>,*=<count>"

<host>
The host value can be either an IP address, a hostname or domain name as specified in the
Endpoint URL. Specify the host value based on the URL format. For example:

– IP Address: 192.168.102.192
– Hostname or domain name: www.server1.com

<port>=<count>
The communication port on the host. For example, to limit port 80 to only 100 connections,
enter 80=100.

*=<count>
The count limit for servers that are not specified by a <host> value in this property. When set
to zero (*=0) there is no limit on the number of HTTP/HTTPS connections that can be created
to other servers. When set to an integer greater than zero, the integer specifies the maximum
number of HTTP/HTTPS connections that can be created to each of the other servers.

Note: Ensure that <count> is specified as a value of type integer. Do not use values of type
string for <count>.

Example 1: Specifying a maximum number to apply to every host

256 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

For example, your deployment must establish connections to two servers. You want to limit the
number of connections to 100 per server. You also want to ensure that when you add additional
servers, the number of connections to each additional server is limited to 100.

Use the syntax "*=<count>". For this example:

"*=100"

Example 2: Specifying maximum numbers on a per host basis

For example, your deployment must establish connections to two servers. You want to limit the
number of connections for one server to 100, but allow the other server to have 200 connections. In
addition, you do not want to limit the number of connections for any additional servers.

Use the syntax: "<host1>:<port1>=<count>,<host2>:<port2>=<count>,*=<count>"

For example, the runtime might need to establish the connections to the following URLs, for an SMS
OTP flow and an OIDC flow:

• http://www.server1.com/isam/sms_otp
• https://192.168.102.192/isam/oidc_sts

Example configuration entry:

"www.server1.com:80=100,192.168.102.192:443=200,*=0"

The example configuration entry specifies:

• The maximum number of HTTP/HTTPS connections that can be created to www.server1.com at a
time (on port 80) is 100.

• The maximum number of HTTP/HTTPS connections that can be created to 192.168.102.192 at a
time (on port 443) is 200.

• There is no limit on the number of HTTP/HTTPS connections that can be created to other hosts.

HTTP Client version 2
util.httpClientv2.getConnectionTimeout

Specifies the timeout for retrieving a connection from the connection pool. Value is in seconds.

Note: The util.httpClientv2.getConnectionTimeout property defaults to 5 seconds for every
host (*=5)

Data type: String

Example: *=5

You can specify the timeout by using one of the following methods:

• Specify a timeout that applies to every host and port.

“*=<timeout>”

• Specify a timeout on a per host and port basis

“<host1>:<port1>=<timeout>,<host2>:<port2>=<timeout2>,*=<timeout3>

util.httpClientv2.connectTimeout
Specifies the timeout for establishing a connection with the remote host. Value is in seconds.

Note: The util.httpClientv2.connectTimeout property defaults to 5 seconds for every host
(*=5).

Data type: String

Example: (*=5)

Chapter 18. Global settings 257

You can specify the timeout by using one of the following methods:

• Specify a timeout that applies to every host and port.

“*=<timeout>”

• Specify a timeout on a per host and port basis

“<host1>:<port1>=<timeout>,<host2>:<port2>=<timeout2>,*=<timeout3>

util.httpClientv2.connectionInactiveValidate
Specifies the period of inactivity in milliseconds after which pooled connections must be re-validated
prior to being reused. Value is in seconds.

Note: The util.httpClientv2.connectionInactiveValidate property defaults to 2 seconds
for every host (*=2).

Data type: String

Example: *=2

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.connectionTimeToLive
Specifies the maximum time a connection stays open. After which it automatically closes. Value is in
seconds.

Note: The util.httpClientv2.connectionTimeToLive property defaults to no timeout.

Data type: String

Example: *=30

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.socketTimeout
Specifies the timeout to wait for packets to arrive on an established connection. Value is in seconds.

Note: The util.httpClientv2.socketTimeout property defaults to 5 seconds for every host
(*=5).

Data type: String

Example: *=5

You can specify the timeout by using one of the following methods:

• Specify a timeout that applies to every host and port.

“*=<timeout>”

• Specify a timeout on a per host and port basis

258 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

“<host1>:<port1>=<timeout>,<host2>:<port2>=<timeout2>,*=<timeout3>

util.httpClientv2.defaultSSLProtocol
Specifies the default SSL protocol configuration that HTTPS connections in HTTP client uses.

The following values are valid:

• TLSv1
• TLSv1.1
• TLSv1.2
• TLS (This value enables all of the above protocols)

Note: The util.httpClientv2.defaultSSLProtocol property defaults to TLS.

Data type: String

Example: TLS

util.httpClientv2.defaultTrustStore
Specifies the default truststore that HTTPS connections in HTTP client uses.

Note: The util.httpClientv2.defaultTrustStore property defaults to rt_profile_keys.

Data type: String

Example: rt_profile_keys

util.httpClientv2.disableAutoRetries
Specifies whether or not to disable automatic request recovery and re-execution.

Note: The util.httpClientv2.disableAutoRetries property defaults to false for every host
(*=false).

Data type: String

Example: *=false

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.enableHostNameVerification
Specifies whether or not to enable hostname verification. If enabled it verifies that the target
hostname matches the names that are stored inside the server’s X.509 certificate once the
connection is established.

Note: The util.httpClientv2.enableHostNameVerification property defaults to true for
every host (*=host).

Data type: String

Example: *=true

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

Chapter 18. Global settings 259

util.httpClientv2.disablePublicSuffixVerification

Specifies whether or not to disable hostname verification using the list of valid public suffixes.
HttpClient uses the public suffix list to ensure that wildcards in SSL certificates cannot be misused
to apply to multiple domains with a common top-level domain. The HTTP Client ships with a copy of
the list retrieved at the time of the release. The local copy is a configuration file named local-copy-
effective_tld_names.dat and can be updated following the instructions at Managing advanced
configuration.

Note: The util.httpClientv2.disablePublicSuffixVerification property defaults to
false for every host (*=false).

Data type: String

Example: *=false

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.disableRedirectHandling
Specifies whether or not the HTTP Client automatically handles redirects.

Note: The util.httpClientv2.disableRedirectHandling property defaults to false for
every host (*=false).

Data type: String

Example: *=false

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.maxConnections
Specifies the maximum number of connections that are created in each connection pool.

Note:

• There is a separate connection pool that is created for each unique SSL connection key. This key is
generated by using the URL hostname and port, truststore, client keystore, client key alias, protocol,
and proxy server values that are specified in the HTTP Client V2 usage.

• The util.httpClientv2.maxConnections property defaults to 200 for every host (*=200).

Data type: String

Example: *=200

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

260 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.maxRouteConnections
Specifies the maximum number of connections in a connection pool that are available for each unique
route.

Note:

The util.httpClientv2.maxRouteConnections property defaults to 20 for every host (*=20).

Data type: String

Example: *=20

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.proxyHost
Specifies the hostname of the proxy server if requests must go through a proxy.

To disable the use of a proxy, leave this value, proxyPort and/or proxyProtocol empty.

Note: The util.httpClientv2.proxyHost defaults to none.

Data type: String

Example: test.com

util.httpClientv2.proxyPort
Specifies the port of the proxy server if requests must go through a proxy.

To disable the use of a proxy, leave this value, proxyHost and/or proxyProtocol empty.

Note: The util.httpClientv2.proxyPort property defaults to none.

Data type: Integer

Example: 443

util.httpClientv2.proxyProtocol
Specifies the protocol for the proxy server if requests must go through a proxy.

To disable the use of a proxy, leave this value, proxyHost and/or proxyPort empty.

Note: The util.httpClientv2.proxyProtocol property defaults to none.

Data type: String

Example: test.com

util.httpClientv2.proxyUsername
Specifies the username used to authenticate to the proxy server if requests must go through a proxy.
If no authentication is required, leave this value and proxyPassword as empty.

Note: The util.httpClientv2.proxyUsername property defaults to none.

Data type: String
Example: admin

util.httpClientv2.proxyPassword
Specifies the password used to authenticate to the proxy server if requests must go through a proxy. If
no authentication is required, leave this value and proxyUsername as empty.

Note: The util.httpClientv2.proxyPassword property defaults to none.

Chapter 18. Global settings 261

Data type: String
Example: passw0rd

Demo
live.demos.enabled

Enables the mobile demonstration application.
Data type: Boolean
Example: False

live.demos.settings
This setting can be used to pre-populate the settings of the mobile demo. This is a comma separated
set of key, value pairs that match what is submitted on the settings form.

Data type: String

Example: lmiHostAndPort=lmi.host.com, lmiAdminId=admin, lmiAdminPwd=admin,
acHostAndPort=127.0.0.1, websealHostNameAndPort=webseal.host.com

Knowledge questions properties
knowledge.questions.AnswerValidationRegEx

Specifies the regular expression used to validate the knowledge question answer value provided
during a knowledge question management operation. The assigned value is the list of invalid
characters to match against to determine if the supplied value is valid.

Note: At a minimum, this property must include the following characters: <>:"

Data type: RegEx
Example: [\[()<>,;:\\/\"\]=]

knowledge.questions.QuestionValidationRegEx
Specifies the regular expression used to validate the knowledge question text value provided during
a knowledge question management operation. The assigned value is the list of invalid characters to
match against to determine if the supplied value is valid.

Note: At a minimum, this property must include the following characters: <>:"

Data type: RegEx
Example: [\[()<>,;:\\/\"\]=]

Key encryption and signing service (KESS)
kess.crlEnabled

Checks the certificate revocation list. Checking is done by the key encryption and signature service
(KESS) for all functions that use an external certificate, except for the audit syslog. If your
configuration does not require CRL checking, you can disable it. For example, if you use if an internal
certificate authority (CA), you might want to disable CRL checking. The kess.crlEnabled property
defaults to true.
CRL site unavailability scenario

If you have kess.crlEnabled set to true and a CRL site becomes unavailable, you cannot
determine the revocation status of the certificate. In this situation, the single sign-on flow will fail.

Confirm a CRL site unavailability issue by looking for the message "FBTKJK056E The CRL site
could not be determined." in the runtime trace.log file.

As a temporary workaround, set the CRL checking to false to keep the single sign-on flow
running. As soon as the CRL site is working again, set kess.crlEnabled to true so that the
single sign-on flow contains the CRL check.

CAUTION: If you do stop CRL checking as a temporary workaround, be aware that the
certificate might have already been revoked by the CA. If this type of certificate is allowed

262 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

to pass the validation, it creates security issues. Therefore, ensure that you enable CRL
checking to avoid potential security issues such as this.

Data type: Boolean
Example: true

kess.crlInterval
The amount of time, in seconds, between successive CRL checks. Using an interval of time between
CRL checks reduces the performance impact of doing the checks every time a certificate needs to be
validated.

A value less than or equal to zero means that the runtime performs a CRL check every time it wants to
use a certificate. The default is 0 seconds.

If kess.crlEnabled is set to false, this value is ignored.

Data type: Integer
Example: 86400

This value means that a CRL check on a certificate is performed once per day.

kess.hostnameValidationDisabled
Determine whether to disable host name verification when establishing an SSL connection. Host name
verification is performed when the host name of the server does not match the CN of the certificate of
the server.

In a test environment, you might want to disable the validation. In a production environment, you
might want to enable validation.

The default value is False.

Data type: Boolean
Example: False

kess.keySelectionCriteria
Specify which key or certificate to use for signing, validating, encrypting, or decrypting various
messages. If there are multiple keys or certificates with the same Subject DN as the key or certificate
with the specified alias, this setting determines which one to use. Use one of the following selection
methods:
only.alias

Alias only: The selected key only, without Auto rollover. If the key is invalid, the software indicates
failure. Configure the property to use the value.

shortest.lifetime
Shortest lifetime: For signing, a valid key with the shortest available lifetime. For validation, key
lifetime availability runs from shortest to longest.

longest.lifetime
Longest Lifetime: For signing, a valid key with the longest available lifetime. For validation, key
lifetime availability runs from longest to shortest.

Data type: String
Example: only.alias

kessjksservice.exclude.inclusive.namespace.prefixes
Specifies a comma-separated list of prefix names. When this is set, the prefixes in the list are not
added to the InclusiveNamespaces list that is in the Signature Element.

Data type: String

Example: ds

kess.validateCertPath
Specifies whether to validate certificate paths when performing certificate validation.
The default value is true.

Chapter 18. Global settings 263

Data type: Boolean
Example: true

JSON Web Key
jwks.encryption.keystore

Defines the name of the encryption keystore to be used by the jwks endpoint for the runtime. These
certificates will have their public keys exposed, with the 'use' value 'enc'.

Default value: rt_profile_keys

jwks.signing.keystore

Defines the name of the signing keystore to be used by the jwks endpoint for the runtime. These
certificates will have their public keys exposed, with the 'use' value 'sig'.

Default value: rt_profile_keys

jwks.encryption.enabled

Specifies whether or not the jwks endpoint for the runtime will use the encryption keystore.

Default value: true

Data type: Boolean

Example: true

Policy information point (PIP)
pip.uncachedAttributes

Defines a comma-separated list of attributes that are generated by a policy information point (PIP)
that you do not want to be cached.
Data type: String list
Example: urn:ibm:security:jdbc:city, urn:ibm:security:ldap:priviledgeUser

Security token service (STS)
sts.ivcred.unauthenticated.user.name

Set to a special user account for unauthenticated user tokens when using IVCRED STS module in
validate mode. The Default value is "".

Data type: String

Example: guest

sts.ivcred.unauthenticated.user.registry.id

In addition to the user name set in sts.ivcred.unauthenticated.user.name, a user's registry
id can also be added when using IVCRED STS module in validate mode. The Default value is "".

This parameter is optional.

Data type: String

Example: cn=guest,o=ibm,c=us

sts.ivcred.unauthenticated.user.uuid

In addition to the user name set in sts.ivcred.unauthenticated.user.name, a user's UUID
can also be added when using IVCRED STS module in validate mode. The Default value is "".

This parameter is optional.

Data type: String

264 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Example: 81a2a65e-0018-0150-8080-3f83b0f74f4c

sts.ldapAttributeCache.TTL
Specifies a time-to-live (TTL) value, in seconds, for the amount of time to keep an LDAP attribute in
the cache. Specify 0 to disable.

The default value is 60.

Data type: Integer
Example: 60

sts.wstrust.error.shortexception
Set this parameter to True to provide a short exception in the 'wst:Reason' for STS exceptions.
When this parameter is set to False, the entire exception stack is provided in 'wst:Reason'.

Type: Boolean

Default: False

Example: False

sts.uuser.attributes.donottrim.list
Specifies a space-separated list of STS universal user attributes that keep whitespace in the value
when retrieved. All other attributes are trimmed and set as null if empty.
The default value is None.
Data type: String
Example: value1 value2 value3

Mobile Multi-Factor Authentication (MMFA)
mmfa.authenticator.cleanupWait

The amount of time, in seconds, to wait before another cleanup of expired authenticators is
performed.

MMFA authenticator clean up can be disabled by setting cleanupWait to 0.

The default value is 3600.

Data type: Integer

Example: 3600

mmfa.transactionArchival.maxCompletedPerUser

The number of historical transactions in a completed state to keep in the HVDB before archival to
the audit log. The oldest transactions will be removed first. A value of -1 will indicate that no archival
should be performed.

The default value is 50.

Data type: Integer

Example: 50

mmfa.transactionArchival.maxPendingPerUser

The number of transactions to keep in a pending state. Transactions over this number will have their
status set to "fail". The oldest transactions will be aborted first. A value of -1 will indicate that no
archival should be performed.

The default value is 1.

Data type: Integer

Example: 1

Chapter 18. Global settings 265

mmfa.transactionPending.minAgeBeforeAbort

The minimum number of seconds a transaction is in the pending state before being aborted via a
cleanup thread. Due to the cleanup thread interval, the total time a transaction can be in the pending
state can be between minAgeBeforeAbort and (minAgeBeforeAbort + cleanupInterval) - 1

The default value is 300.

Data type: Integer

Example: 300

mmfa.transactionPending.cleanupInterval

The number of seconds between each run of the pending transactions cleanup thread.

The default value is 150.

Data type: Integer

Example: 150

mmfa.transaction.cleanupOnlyOnPrimaryMaster

Indicates whether transaction cleanup should be run on all nodes in a cluster, or only on the primary
master. This applies to pending transaction cleanup as well as transaction archival.

The default value is false.

Data type: Boolean

Example: false

mmfa.devicePrompt.skipIfOneDevice
Indicates whether to skip the device selection page in an MMFA flow if the user only has one device or
authenticator registered.

The default value is false.

Data type: Boolean

Example: true

mmfa.silentpush.enabled
Indicates whether the IBM Verify silent push payload is enabled or disabled. For more information
see: Push notification registration.

The default value is true.

Data type: Boolean

Example: false

mmfa.transactionArchival.cleanupInterval
The number of seconds between each run of the transaction archival clean-up thread. Only applies to
mmfa.transactionArchival.maxCompletedPerUser. A value of -1 causes the thread to poll for
configuration changes, but not perform any clean-up.

The default value is 120

Data type: Integer

Example :120

mmfa.completionResponse.legacyBehaviour
If a transaction completes before the login wait page is returned older versions used to return a JSON
success payload. This process was changed to ensure that the login wait page is returned at least
once. If this property is set to true, the behavior will revert to the returning of the JSON success
payload.

The default value is false

266 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Data type: Boolean

Example :true

mmfa.devicePrompt.validateChosen
Specifies whether or not to validate that the device performing verification is the same device that was
chosen at the device selection step. If set to false a different device than the one selected by the user
can be used to verify the transaction.

The default value is true

Data type: Boolean

Example:true

WS-Federation
wsfed.idp.rstr.excluded.elements

Specifies a comma-separated list of elements to exclude from the WS-Federation request security
token response. Can optionally contain a federation realm and federation partner realm, to indicate
the federation or federation partner that uses the property values.

The default value is default=Forwardable,Delegatable,Status,Renewing.

The syntax for specifying federation and federation partner is:

default=<comma_separated_list_of_elements>:<federation_realm>=<comma_separated_list_of_elements>:
 <federation_realm>%<partner_realm>=<comma_separated_list_of_elements>

Data type: String

Example:

default=Forwardable,Delegatable,Status,Renewing:fed1-REALM=Forwardable,Delegatable:
fed1-REALM%partner1-REALM=Status

SAML 1.1
saml.use.legacy.clockskew.default

IBM Security Verify Access can add a clock skew of 60 seconds when validating the SAML assertion
timestamps. To enable the 60 second clock skew, add the custom property:

saml.use.legacy.clockskew.default = true

Default value = False

• Value type: Boolean
• Example value: True

Note: This custom property is also applicable for SAML 2.0

saml.allowDebugMessages
When specified as true, and a SAML artifact resolution failure occurs, the SystemOut.log and
SystemErr.log contains an informational message. In addition, the message contains extra debug
information about the request that contained the failed artifact and provides a reason for the event.

Note: This message is only available in English.

Default value: False

• Value type: Boolean
• Example value: SAML.allowDebugMessage = True

saml.allowNoRecipient
Use this custom property if a SAML 1.x service provider needs to accept a samlp:Response that does
not contain a Recipient attribute.

Chapter 18. Global settings 267

Default value: False

saml.assertion.IncludeNSPrefixList.DS
When this custom property is specified as true, ds is included in the Prefix List attribute of the
InclusiveNameSpaces in the SAML assertion.

Default value: False

• Value type: Boolean
• Example value: True

Note: This custom property is also applicable for SAML 2.0

saml.allowSpecificInvalidArtifactMessages
When this custom property is specified as true, and a SAML artifact resolution failure occurs, identity
provider sends a SAML Response with specific invalid message to tell the service provider that there is
no assertion available. The specific invalid message is FBTSML276E. If not specified, by default it is
false, and the invalid message send back to service provider is FBTSML013E.

Default value: False

• Value type: Boolean
• Example value: True

SAML 2.0
saml20.enableSubjectInAuthnRequest

Set to true if the Subject element is required for the SAML 2.0 AuthnRequest. The Subject element is
set to the userid of the existing authenticated session. The Default value is false.

Data type: Boolean

Example: true

saml20.idp.acsurlpattern
IBM Security Verify Access uses an exact string comparison between the AssertionConsumerService
URL in the AuthnRequest message and the protocol endpoint specified in metadata.

This custom property allows regular expression matching for the AssertionConsumerService URL and
the protocol endpoint, so that a dynamic AssertionConsumerService URL that matches the regular
expression can be provided in the AuthnRequest.

Data type: String

Note: The binding can be omitted if the configuration applies to all the bindings for that specific
federation and partner.

Format:

<FederationId>%<PartnerId>
%<Binding>=<RegularExpression>,<FederationId2>%<PartnerId2>
=<RegularExpression2>

Example:

https://www.myidp.ibm.com/isam/sps/saml20idp/saml20%https://www.mysp.ibm.com
/isam/sps/saml20sp/saml20%urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST=https://.*.ibm.com/
isam/sps/.*

saml20.sessionStore
Specifies the SAML 2.0 session footprint store.

SAML session footprint can be stored in HVDB, Redis or DSC. Select Distributed Map (DMap) if the
SAML session needs to be stored in HVDB or Redis. When the option is switched to DSC, the SAML
session gets stored in Distributed Session Cache.

268 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Data type: String

Note: The selection for the SAML 2.0 session footprint store is drop-down list with the following
options:

• DMap
• DSC

Example: DMap

Note: This configuration affects SAML 1.1 and SAML 2.0.

saml20.authn.request.provider.name.enabled
Set to true to add ProviderName value to SAML2.0 AuthnRequests.

Data type: Boolean

Example: False

Note: The default value is False.

saml20.signatureValidation.policy
Allowed Values: LENIENT/STRICT

Example: STRICT

Note: The default value is STRICT.

If STRICT is specified, the signature must be included in the received request and it will be validated.
If LENIENT is specified, the signature, if it exists, will be validated and if no signature is included in
the request, no error is reported.

OIDC
oidc.rp.idToken.validationSkew

The number of seconds of skew allowed on the 'nbf' and 'exp' claims of an idToken when it is being
processed by an OpenID Connect relying party. For instances where the clocks of two systems are not
perfectly synchronized.

Note: This advanced configuration does not apply to legacy OpenID Connect relying parties or
Reverse Proxy Relying parties.

Default value: 0
Data type: Integer

oidc.rp.metadata.cache.maxsize
Specifies the maximum number of entries the OpenID Connect provider metadata cache can hold
before older entries are purged. Setting this value to 0 disables the metadata cache.
Default value: 4096
Data type: Integer

oidc.rp.metadata.cache.lifetime
Defines the number of seconds an OpenID Connect relying party partner caches the metadata that is
retrieved from an OpenID Connect provider. Setting this value to 0 disables the metadata cache.
Default value: 60
Data type: Integer

Rhino Javascript Engine
js.version

Specifies the Rhino Javascript version.
Supported values: Context.VERSION_ES6, Context.VERSION_1_7, Context.VERSION_1_8
Default value: Context.VERSION_ES6

Chapter 18. Global settings 269

Data type: String
Example: Context.VERSION_ES6

js.optimizationLevel
Specifies the Rhino Java optimization level.
Default value: 0
Data type: String
Example: 0

Basic LDAP User
basicLdapUser.ldap.minBinds

Specifies the minimum number of binds to the LDAP server.
Default value: 1
Data type: Integer
Example: 1

basicLdapUser.ldap.maxBinds
Specifies the maximum number of binds to the LDAP server.
Default value: 1
Data type: Integer
Example: 1

Consent Device Registration
consentDeviceRegistration.authLevelHeaderEnabled

Specifies whether to add the authentication level header to the value set in the
consentDeviceRegistration.authLevelHeaderValue. This property is in the response of the Consent
Register Device authentication policy.
Default value: false
Data type: Boolean
Example: true

consentDeviceRegistration.authLevelHeaderValue
Specifies the value to set in the authentication level header in the response of the Consent Register
Device authentication policy if the consentDeviceRegistration.authLevelHeaderEnabled property is set
to true.
Default value: 2
Data type: Integer
Example: 1

FIDO2
fido2.u2fMigration.autoMigrate

Specifies whether to auto migrate a user's U2F device registrations to FIDO2/WebAuthn.
Default value: false
Data type: Boolean
Example: true

HTTP Session
httpSession.disableSerialization

Specifies whether to disable serialization in the HTTP session.

270 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Default value: true
Data type: Boolean
Example: true

Info Map
infomap.email.smtpStartTls

Specifies whether to use the StartTLS protocol command for communication with the SMTP server.
Default value: false
Data type: Boolean
Example: true

infomap.email.smtpTlsProtocol
Specifies the TLS protocol that is used for communication with the SMTP server.
Default value: None
Data type: String
Example: TLS

WebSEAL POC
poc.webseal.poc.sms.enabled

Specifies whether SMS is enabled on the point of contact environment.
Default value: false
Data type: Boolean
Example: true

Username
username.legacyBehavior

Specifies whether usernames that are retrieved from a database record are handled as is (true)
or converted to lowercase (false). For more information, see https://www.ibm.com/support/pages/
advanced-access-control-username-case-sensitivity.
Default value: false
Data type: Boolean
Example: true

Managing user registries
The appliance runtime profile has a user registry associated. Use the User Registry management page to
administer the users and group memberships. The user registry in discussion here is the one used by the
runtime applications, not the one used by the management interface.

Before you begin
Note: From version 9.0.7 and above, these characters "&|\><;" are not allowed for passwords in the AAC
or Federation user registry.

Procedure
1. From the top menu, select the user interface panel for your licensing level.

• AAC > Manage > User Registry
• Federation > Manage > User Registry

A list of all the current users in the registry is displayed. You can filter and reorder the list of users.

Chapter 18. Global settings 271

https://www.ibm.com/support/pages/advanced-access-control-username-case-sensitivity
https://www.ibm.com/support/pages/advanced-access-control-username-case-sensitivity

2. Select Users (current page) or Groups to manage users or groups, respectively.
3. To manage users, perform one or more of the following actions as needed:

Create a user in the registry

a. Click New.
b. In the Create User window, enter the user name and password for the new user.
c. Click OK.

Delete a user from the registry

a. Select the user to delete.
b. Click Delete.
c. In the Delete User window, click Yes to confirm the delete operation.

Change the password of a user in the registry

a. Select the user for which you want to change password.
b. Click Set Password.
c. In the Set Password window, enter the password in the New Password and Confirm

Password fields.
d. Click OK.

Manage group memberships of a user

a. Select the user of interest. The group memberships that are associated with this user are
displayed under the Group Membership section.

b. You can add the user to a group or delete the user from a group in the registry.
Add the user to a group

i) In the Group Membership section, click Add.
ii) In the Add to Group window, select the group to add this user to.

Note: Only a single group can be selected.
iii) Click OK.

Remove the user from a group

i) In the Group Membership section, select the group to remove the user from.
ii) Click Delete.

iii) In the Remove from Group window, click Yes to confirm the removal.
4. To manage groups, perform one or more of the following actions as needed:

Create a new group in the registry

a. Click New.
b. In the New Group window, enter the group name for the new group.
c. Click OK.

Delete a group from the registry

a. Select the group to delete.
b. Click Delete.
c. In the Delete Group window, click Yes to confirm the delete operation.

Manage group members

a. Select the group of interest. The users that are currently members of this group are displayed
under the Group Members section.

b. You can add a user to the group or delete a user from the group in the registry.

272 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Add a user to the group

a. In the Group Members section, click Add.
b. In the Add to Group window, select the user to add to the group.

Note: Only a single user can be selected.
c. Click OK.

Remove a user from the group

a. In the Group Members section, select the user to remove from the group.
b. Click Remove.
c. In the Remove from Group window, click Yes to confirm the removal.

Tuning runtime application parameters and tracing specifications
To manually tune selected runtime application parameters and tracing specifications, use the Runtime
Parameters management page.

About this task
Warning: Enabling trace for Oracle components “oracle.*” might result in the Oracle database
administrator password being logged in clear text.

Procedure
1. From the top menu, select AAC > Global Settings > Runtime Parameters or Federation > Global

Settings > Runtime Parameters.
This page contains three panels: Runtime Status, Runtime Tuning Parameters, and Runtime Tracing.

2. Perform one or more of the following actions to tune your runtime.

Note: Certain changes might require a restart of the runtime before they can take effect.

Disable automatic restart of the runtime
By default, the runtime is automatically restarted after certain changes are made. You can disable
this automatic restart function if you prefer manual restarts.

a. On the Runtime Tuning Parameters panel, select Auto Restart.
b. Click Edit.
c. In the Auto Restart window, define the value as False.
d. Click OK.

Enable Mutual TLS protection for the runtime
By default, the runtime is not protected by Mutual TLS. You can enable Mutual TLS by enabling the
flag.

a. On the Runtime Tuning Parameters panel, select Require MTLS.
b. Click Edit.
c. In the Require MTLS window, define the value as True.
d. Click OK.
e. Depending on the key used for Mutual TLS, add the corresponding certificate to the runtime

profile truststore.
f. Modify the Web reverse proxy junction to enable mutual authentication to junctioned WebSEAL

servers.

Note: For Mutual TLS, the runtime profile uses the keystore, truststore, and certificate specified
in the runtime tuning parameters, such as Inbound Keystore, Inbound Truststore, and Inbound
Keystore Label.

Chapter 18. Global settings 273

View the status of the runtime, and manage the state of the runtime (stop, start, or restart the
runtime)

a. Select the Runtime Status panel. The status of local and clustered runtimes are displayed.

• Under Local Runtime Status, you can view the runtime operational status, when it was last
started, and whether a restart is outstanding. If the value of the Restart Required field is
True, it means that the runtime must be restarted for some changes to take effect.

• Under Clustered Runtime Status, all nodes in the cluster are listed.

– The Master column indicates whether a node is the cluster master.
– The Runtime Status column indicates whether a node is running or stopped.
– The Changes Active column indicates whether changes made to the cluster configuration

are active on this node. Having a green indicator in this column means that all changes
made are already active. Having a yellow indicator in this column means that this node
must be restarted before some changes can take effect.

b. Depending on which runtime you want to manage, click the appropriate "local" or "remote"
option, for example: Restart Local Runtime or Restart All Clustered Runtimes.

c. Depending on what state you want the runtime in, click the appropriate action, for example to
stop the local runtime click Stop Local Runtime.

Modify the maximum or initial heap size

These parameters indicate the maximum and initial heap size in megabytes for the runtime Java
virtual machine.

a. On the Runtime Tuning Parameters panel, select Max Heap Size or Initial Heap Size.
b. Click Edit.
c. In the Max Heap Size or Initial Heap Size window, enter the heap size value as needed.
d. Click OK.

Modify the minimum or maximum threads
These parameters indicate the minimum number of core threads that the runtime server starts
with and the maximum number of threads that can be associated with the runtime server.

If the minimum value is not set or is set as -1, a default value is calculated based on the number of
hardware threads on the system.

If the maximum value is not set or is set as 0 or less, a default value of unbounded is used.

The minimum cannot be set to a value larger than the maximum.

a. On the Runtime Tuning Parameters panel, select Min Threads or Max Threads.
b. Click Edit.
c. In the Min Threads or Max Threads window, enter the required value.
d. Click OK.

Modify whether to suppress sensitive trace

Enabling this parameter prevents sensitive information from being exposed in log and trace files.
Examples of such sensitive information include bytes received over a network connection.

a. On the Runtime Tuning Parameters panel, select Suppress Sensitive Trace.
b. Click Edit.
c. In the Suppress Sensitive Trace window, select or clear the check box as needed.
d. Click OK.

Modify console log level

Console log level controls the granularity of messages that go to the console.log file.

274 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

a. On the Runtime Tuning Parameters panel, select Console Log Level.
b. Click Edit.
c. In the Console Log Level window, select the new value from the list.
d. Click OK.

Set whether to accept client certificates

This parameter controls whether the server accepts client certificates as a form of authentication.

a. On the Runtime Tuning Parameters panel, select Accept Client Certificates.
b. Click Edit.
c. In the Accept Client Certificates window, select or clear the check box as needed.
d. Click OK.

Maximum Session Count
This parameter defines the maximum number of sessions that is maintained in memory.

Note: The default setting is 250000. When this setting is used, the maximum number of sessions
is 250000.

a. On the Runtime Tuning Parameters panel, select Maximum Session Count.
b. Click Edit.
c. In the Maximum Session Count window, define the value.
d. Click OK.

Set session invalidation timeout

This parameter defines the amount of time a session can remain unused before it is no longer
valid.

Note: The default setting is 1200. When this setting is used, the session invalidation timeout is
1200 seconds.

a. On the Runtime Tuning Parameters panel, select Session Invalidation Timeout.
b. Click Edit.
c. In the Session Invalidation Timeout window, define the value in seconds.
d. Click OK.

Set session reaper poll interval

This parameter defines the wake-up interval in seconds for the process that removes invalid
sessions. The minimum value is 30 seconds.

The default setting is Unset. When this setting is used, or if a value less than the minimum is
entered, an appropriate value is automatically determined and used. This value overrides the
default installation value, which is 30 - 360 seconds, based on the session invalidation timeout
value. Because the default session invalidation timeout is 1800 seconds, the reaper interval is
usually between 120 and 180 seconds.

a. On the Runtime Tuning Parameters panel, select Session Reaper Poll Interval.
b. Click Edit.
c. In the Session Reaper Poll Interval window, define the value in seconds.
d. Click OK.

Set the keystore that is used by the runtime server for outbound SSL connections.

This parameter defines the key database that contains the runtime server's private key used for
outbound connections.

a. On the Runtime Tuning Parameters panel, select Keystore.
b. Click Edit.

Chapter 18. Global settings 275

c. In the Keystore window, select the key database from the list.
d. Click OK.

Set the keystore label that is used by the runtime server for outbound SSL connections

This parameter defines the label of the runtime server's private key used for outbound
connections.

a. On the Runtime Tuning Parameters panel, select Keystore Label.
b. Click Edit.
c. In the Keystore Label window, select the label from the list.
d. Click OK.

Set the truststore that is used by the runtime server for outbound SSL connections

This parameter defines the key database that contains keys that are trusted by the runtime server
for outbound connections.

a. On the Runtime Tuning Parameters panel, select Truststore.
b. Click Edit.
c. In the Truststore window, select the key database from the list.
d. Click OK.

Set the keystore that is used by the runtime server for inbound SSL connections.

This parameter defines the key database that contains the runtime server's private key used for
inbound connections..

a. On the Runtime Tuning Parameters panel, select Inbound Keystore.
b. Click Edit.
c. In the Inbound Keystore window, select the key database from the list.
d. Click OK.

Set the keystore label that is used by the runtime server for inbound SSL connections

This parameter defines the label of the runtime server's private key used for inbound connections.

a. On the Runtime Tuning Parameters panel, select Inbound Keystore Label.
b. Click Edit.
c. In the Inbound Keystore Label window, select the label from the list.
d. Click OK.

Set the truststore that is used by the runtime server for inbound SSL connections

This parameter defines the key database that contains keys that are trusted by the runtime server
for inbound connections.

a. On the Runtime Tuning Parameters panel, select Inbound Truststore.
b. Click Edit.
c. In the Inbound Truststore window, select the key database from the list.
d. Click OK.

Configure an outbound HTTP proxy

You must specify values for the properties for the HTTP proxy. You might also need to import the
root CA certificate from the proxy. See Table 1. HTTP proxy properties.

You must also set the JVM property http.nonProxyHosts by specifying the outgoing request
that bypasses the HTTP proxy. The value must include the string "localhost^|127.0.0.1*|
127.0.0.1:2026". Set the value with the runtime_profile.jvm_option advanced tuning
parameter.

276 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

For example,

runtime_profile.jvm_option -Dhttp.nonProxyHosts="*.mydomain.com|*.myotherdomain.com|
localhost^|127.0.0.1*|127.0.0.1:2026"

Table 22. HTTP proxy properties

Name Sample Value Description

http.proxyHost http.proxy.ibm.com The hostname or IP address of
the HTTP proxy

http.proxyPort 3128 The port of the HTTP proxy

https.proxyHost https.proxy.ibm.com The hostname or IP address of
the HTTPS proxy

https.proxyPort 3128 The port of the HTTPS proxy

a. For each property in the table above:

i) On the Runtime Tuning Parameters panel, select the property.
ii) Click Edit.

iii) In the property window, enter the value. See the sample values in the table.
iv) Click OK.

b. When all properties are set, follow the prompt to deploy the pending changes.

Certain functions, such as the OpenID connect single sign-on flow, require the root CA certificate of
the outbound HTTP proxy to be imported to the Security Verify Access runtime keystore.

Complete the following steps:

a. Go to your HTTP Proxy application and obtain the necessary certificate for exchange. The exact
steps to take are specific to the proxy application. Place the certificate on the local file system
where it can be accessed by the appliance.

b. On the Security Verify Access system, log in to the local management interface and select
System > Secure Settings > SSL Certificates

c. Select the rt_profile_keys keystore.
d. Select Manage > Edit SSL Certificate Database.
e. Select Manage > Import.
f. On the Signer Certificate panel, browse to locate the Certificate File. Enter a Certificate Label.

Click Import.
g. Deploy the changes.

Delete the value of a parameter
Use this button to delete the existing value of a parameter.

a. Select the parameter to reset the value for.
b. Click Delete. The value of the parameter is then changed to Unset.

Manage the application interface on which the runtime listens

a. On the Runtime Tuning Parameters panel, under Runtime Listening Interfaces, you can add,
edit, or delete a listening interface.

Note: If the runtime is exposed on an external IP address there must be network restrictions
in place to ensure that access is not allowed from untrusted clients, or the runtime must be
configured to require mutual TLS authentication.

To add a listening interface

i) Click Add.

Chapter 18. Global settings 277

ii) In the Runtime Listening Interfaces window, select the listening interface from the list.
iii) Specify the listening port.
iv) Select the SSL check box if security is required.
v) Click OK.

To modify a listening interface

i) Select the listening interface to edit.
ii) Click Edit.

iii) In the Runtime Listening Interfaces window, edit the values as needed.
iv) Click OK to save the changes.

To delete a listening interface

i) Select the listening interface to delete.
ii) Select Delete.

iii) Confirm the deletion.

Manage tracing specification

Note: Setting trace for Oracle components “oracle.*” results in the underlying Oracle JDBC jar
file being changed to a debugging jar file. This might have adverse effects on performance and as
such Oracle tracing should only be enabled for debugging purposes and disabled once complete.

a. Select the Runtime Tracing link from the top of this page. You can also access this panel from
the top menu by selecting Monitor > Logs > Runtime Tracing.

b. Use one of the following ways to edit the trace level of a component.

• Select the component name from the Component list. Select the ideal trace level for this
component from the Trace Level list. Then, click Add. Repeat this process to modify trace
levels for other components if needed. To clear all of the tracing levels, click Clear.

To log all events, select ALL as the trace level.

Note: This setting increases the amount of data in logs, so use this level when necessary.

com.tivoli.am.fim.authsvc.*
com.tivoli.am.fim.trustserver.sts.modules.*

Table 23. Valid trace levels. The following table contains the valid trace levels.

Level Significance

ALL All events are logged. If you create custom
levels, ALL includes those levels and can
provide a more detailed trace than FINEST.

FINEST Detailed trace information that includes all
of the details that are necessary to debug
problems.

FINER Detailed trace information.

FINE General trace information that includes
methods entry, exit, and return values.

DETAIL General information that details sub task
progress.

CONFIG Configuration change or status.

INFO General information that outlines the overall
task progress.

278 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 23. Valid trace levels. The following table contains the valid trace levels. (continued)

Level Significance

AUDIT Significant event that affects the server state
or resources.

WARNING Potential error or impending error. This level
can also indicate a progressive failure. For
example: the potential leaking of resources

SEVERE The task cannot continue, but component,
application, and server can still function.
This level can also indicate an impending
unrecoverable error.

FATAL The task cannot continue, and component,
application, and server cannot function.

OFF Logging is turned off.

• Enter the name and value of the trace component in the Trace Specification field. To modify
multiple components, separate two strings with a colon (:). Here is an example.

com.x.y.*=WARNING:com.a.b.*=WARNING:com.ibm.isva.*=INFO

c. Click Save.
3. When you make changes, the appliance displays a message that there are undeployed changes. If you

have finished making changes, deploy them.

Template files
Template files are HTML pages that are presented to your users during the authentication process.
The pages prompt users for authentication information, such as user names and passwords, or present
information to users, such as one-time passwords, status, or errors.

You can customize any of the HTML pages by exporting, modifying, and importing its corresponding
template file. Each template file uses one or more specific macros.

Managing template files
Use the local management interface to manage files and directories in the template files.

About this task
You can run the following tasks on the template files:

• New- Use this option if you want to create a new file or directory.
• Edit- Use this option if you want to view or modify the template file.
• Import- Use this option if you to import a file to the template files root.
• Export- Use this option if you want to export a file from the template files root.
• Rename- Use this option if you want to rename a file or directory from the template files root.
• Delete- Use this option if you want to delete a file or directory from the template files root.
• Import Zip- Use this option if you want to import the template files from a compressed file.
• Export Zip- Use this option if you want to export the template files as a compressed file.

Note: When you use this option to export template files as a compressed file, you cannot export
an individual folder. The root directory, including all the sub-directories, is exported. To access the
contents of a specific directory, export the entire template directory, and then view the directory from
the extracted compressed file on your local workstation. Administrators can refer to metadata.json

Chapter 18. Global settings 279

under file downloads after upgrades to check if there are new configuration parameters included for
AAC related endpoints.

Procedure
1. Select AAC > Global Settings > Template Files
2. Work with all the management files and directories.

Create a file or directory in the template files root

a. Select the directory of interest or make no selection to create a directory at the root level.
b. Select New.
c. Select File or Directory.
d. Enter the name of the file or directory.
e. Click Save.

View or update the contents of a file in the template files root

a. Select the file of interest.
b. Select Edit. You can then view the contents of the file.
c. Edit the contents of the file.
d. Click Save.

Export a file from the template files root

a. Select the file of interest.
b. Select Manage > Export.
c. Confirm the save operation when your browser displays a confirmation window.

Rename file from the template files root

a. Select the file or directory of interest.
b. Select Manage > Rename.
c. Enter the new resource name.
d. Click Save.

Delete file from the template files root

a. Select the file or directory of interest.
b. Select Manage > Delete.
c. Click Yes.

Import a file to the template files root

Note: In order to support a new locale, the top level directory name within the compressed file
must correspond to the locale identifier. For example, to add support for Swedish, the top level
directory name must be /sv or /sv_SE.

• Select a file.

a. Select Manage > Import.
b. Click Browse.
c. Browse to the file that you want to import the contents from.
d. Click Open.
e. Click Import.

• Select a folder.

a. Select Manage > Import.

280 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

b. Click Browse.
c. Browse to the file that you want to import to the selected folder.
d. Click Open.
e. Click Import.

Export the template file as a compressed file

a. Select Manage > Export Zip.
b. Confirm the save operation when your browser displays a confirmation window.

Import the template files as a compressed file
Make sure that the files in the compressed file are in the same directory structure as the files in the
root directory or appliance.
For example, if a file in the compressed file is in the /C directory of the appliance, the compressed
file must contain the C folder and the file that you want to import. When you import a compressed
file that contains:

• A file that exists in the appliance

The file is replaced in the appliance.
• A file or directory that does not exist in the appliance

The file or directory is created in the appliance. You can put these new files and directories in an
existing non-root directory or add a new directory in the root.

Note: You cannot delete a top level directory after you create it.

a. Select Manage > Import Zip.
b. Click Browse.
c. Browse to the file you want to import.
d. Click Open.
e. Click Import.

3. When you edit or import template files, the appliance displays a message that there are undeployed
changes. If you finish the changes, deploy them.

For more information, see Deploying pending changes.

Customizing the consent page
The consent page of an OpenID Connect Provider Federation can be changed with the Template Files
page in the local management interface.

About this task
All OpenID Connect Provider (OP) federations can have their own unique consent pages. Follow these
steps to set a consent page to be used by a specific federation.

Procedure
1. Log in to the local management console.
2. Select Federation > Global Settings > Template Files.
3. Expand the C locale.
4. Highlight the oidc folder.
5. Click New and select Directory.
6. Enter the Federation Name of the OpenID Connect Provider Federation to use the custom consent

page.
7. Click Save.

Chapter 18. Global settings 281

8. Highlight the new directory.
9. Click New and select File.

10. Enter consent.html as the file name.
11. Populate the file contents.
12. Click Save.
13. Deploy the pending changes.

Note: The deploy operation triggers a runtime restart.

Template page scripting
You can use JavaScript to add server-side scripting for Advanced Access Control and Federation template
pages. You can use JavaScript functions, closures, objects, and delegations.

Usage
You can customize template files or pages on the server. For example, you can customize an error
message that is displayed by the runtime server.

The template files menu is located under both the Federation and AAC menus.

To edit a Federation template file, go Federation > Template Files, select the specific template file, and
click Edit.

To edit an AAC template file, go to AAC > Template Files, select the specific template file, and click Edit.

The JavaScript engine supports the following syntax:

• Insert JavaScript code between <% and %>.
• Embed JavaScript expressions between <%= and %>.

Example tasks

• Access whitelisted Java classes. For example,

var javaStr = new java.lang.String("Hello")

• Access all the macro variables through templateContext. The standard object to access a Java object is
templateContext. For example,

templateContext.macros["@TIMESTAMP@"]

• Use the document.write function to write content to the output stream. For example,

templateContext.response.body.write("Hello")

Examples

Table 24. Example JavaScript

Template HTML Output

<%
var contents = {product:"Verify
Access",department:"Lab",country:"SG",region:"Asia"};
templateContext.response.body.write(contents.product);
%>

Verify Access

282 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 24. Example JavaScript (continued)

Template HTML Output

<%
var date = templateContext.macros["@TIMESTAMP@"].substring(0, 10);
templateContext.response.body.write(date);
%>

2017-01-25

The following code example shows how to use repeatable macros. The following example shows an
OAuth consent page.

<%
var test = templateContext.macros["oauthTokenScopeNewApprovalRepeatable"];
n = test.length;
for (i=0; i<n; i++){
 var scope = test[i]["@OAUTH_TOKEN_SCOPE_REPEAT@"];
 if (scope == "contacts"){
 label ="Do you grant permission to the client to access your phone book";
 }
 else if (scope == "photos"){
 label ="Do you grant permission to the client to access your photos";
 }
 else if (scope == "messages"){
 label ="Do you grant permission to the client to access your WhatsApp messages";
 }
 else{
 label ="Do you grant permission to the client to access your "+scope;
 }
%>

Setting an HTTP response header
You can use templateContext.response.setHeader(HeaderName, HeaderValue) to set an
HTTP response header.

For example, you can set the Content-Type to support both a mobile-based browser and a traditional
browser. A mobile-based browser might expect JSON format while a traditional browser expects forms-
based HTML.

 <%
templateContext.response.setHeader("Content-Type","application/json");
var myObj = { "name":"John", "age":31, "city":"New York" };
templateContext.response.body.write(JSON.stringify(myObj));
%>

To set an HTTP header that uses forms-based HTML:

templateContext.response.setHeader("Content-Type","text/html");

Setting an HTTP status code
You can use templateContext.response.setStatus(Code) to set an HTTP response status code.

For example, if you want to set the status to 400 (standard code for a bad request):

templateContext.response.setStatus(400);

Setting a Redirect URL
You can use templateContext.response.sendRedirect(URL) to redirect the HTTP response to a
different URL.

For example, when you configure single logout, you can redirect the response to a specific target page,
based on the federation name. An example scenario is a deployment that has one SAML 2.0 federation

Chapter 18. Global settings 283

with two partner federations. The partner federations are named saml20app2 and saml20sp. The
saml20app2 federation uses an application that is named jkebank. The saml20sp federation uses an
application that is named jkeschool. The page to display on logout is determined by the federation
name.

var fedName = templateContext.macros[@FEDERATION_NAME@"];
if (fedName == "saml20app2")
{
 templateContext.response.sendRedirect("http://jkebank:1337");
}
else if
{
(fedName == "saml20sp")
{
 templateContext.response.sendRedirect("http://jkeschool:1400");
}

Obtaining a list of macros that are available for a template page
In some scenarios, you might want to write JavaScript based on configuration values in your deployment.
For example, you might implement one action based on the authentication type, such as if the OTP type
is TOTP. Another example is you might implement an action if the Federation name of the single sign-on
partner matches a certain value.

Information such as the OTP type and partner name can be retrieved only through the template page
macros. To use such information, you need to know which macros are used by the page. The JavaScript
engine support provides a utility that can print the available macros for a page.

Use the following syntax to obtain a list of the available macros.

<%
var javaStr = new java.lang.String(JSON.stringify(templateContext.macros));
templateContext.response.body.write(javaStr.replaceAll('@','#'));
%>

For example, the following sample code prints the macros from a template page that ran a single sign-on
flow with a partner that does not exist.

{

 "@PAGE_IDENTIFIER@": "/saml20/invalid_init_msg.html",
 "@TARGET@": "https://www.mysp.ibm.com/isam/mobile-demo/diag",
 "@PARTNER_ENTITY_ID@": "",
 "@ERROR_MESSAGE@": "FBTSML002E The value https://saml.partner.com for attribute PartnerId is not
valid.",
 "@FEDERATION_NAME@": "saml20idp",
 "@FEDERATION_ENTITY_ID@": "https://www.myidp.ibm.com/isam/sps/saml20idp/saml20",
 "@REQ_ADDR@": "/sps/saml20idp/saml20/logininitial",
 "@ERROR_CODE@": "FBTSML002E",
 "@EXCEPTION_STACK@": "",
 "@PARTNER_NAME@": "",
 "@TIMESTAMP@": "2017-06-22T03:34:39Z",
 "@SAMLSTATUS@": "<fim:FIMStatusCollection xmlns:fim=\"urn:ibm:names:ITFIM:saml\"
 xmlns:samlp=\"urn:oasis:names:tc:SAML:2.0:protocol\"><fim:FIMStatusCollectionEntry>
 <samlp:Status><samlp:StatusCode Value=\"urn:oasis:names:tc:SAML:2.0:status:Responder\"></
samlp:StatusCode>
 <samlp:StatusDetail><fim:FIMStatusDetail MessageID=\"invalid_attribute_value\">
 <fim:SubstitutionString>https://saml.salesforce.com</fim:SubstitutionString>
 <fim:SubstitutionString>PartnerId</fim:SubstitutionString></fim:FIMStatusDetail>
 </samlp:StatusDetail></samlp:Status></fim:FIMStatusCollectionEntry></fim:FIMStatusCollection>",
 "@EXCEPTION_MSG@": ""

}

The format is JSON { "name1":"value1","name2":"value2"}

Limitations
• JavaScript validation is done only when a template file is edited (imported) or created. A template file

that is imported as a part of an Import compressed file is not validated.

284 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

• You must restart the runtime manually to activate changes to OpenID Connect template files. In the
administrative interface, click Federation -> Runtime Tuning -> Restart Runtime.

• When you access a variable, do not end the variable name with a semicolon. For example, in the
following JavaScript, do not end <%=example%> with a semicolon <%=example;%>.

<%var example = "Hello World"; %>
<%=example%>

The correct syntax is <%=example%>. Do not use the incorrect syntax <%=example;%>.

Template files reference
Template files are HTML pages that are presented to your users during the authentication process.
The pages prompt users for authentication information, such as user names and passwords, or present
information to users, such as one-time passwords, status, or errors.

Consent to register device template files
These files support consent to registering a device.

Consent to register device template files
These files support consent to registering a device.

Table 25. Default template files in the ac/ directory

Page name File name and macros Description

Attribute Collection JavaScript ac/info.js Detects the location of the device
from which the requests are
made. Collects the web browser
attributes and sends them to the
server for storing in the database.
When the user logs out or when
the current session times out, the
script deletes the attributes from
the database.

Dynamics Attributes JavaScript ac/javascript_rules/
dynamic_attributes.js

Runs after each request is
processed by risk engine. Use
it to capture attributes that do
not get captured automatically.
Captured attributes are stored
either in the session storage or
the behavior storage area of the
risk-based component, or both.
The risk profile configuration
dictates where the attributes are
stored.

User self-care template files
These files support user self-care tasks.

User self-care template files
These files support user self-care tasks.

Chapter 18. Global settings 285

Table 26. Default template files in the mga/ directory

Page name File name and macros Description

Common User Profile
Management JavaScript

mga/user/mgmt/common.js Used by one-time password
pages and by device
management pages. Contains
functions and properties that are
used for making calls to the user
self-care REST services.

Device Attributes mga/user/mgmt/device/
device_attributes.html

Enables or disable devices.
Renames or removes device.
Displays all of the attributes for
a device.

For more information, see
Managing your registered
devices.

Device Attributes JavaScript mga/user/mgmt/device/
device_attributes.js

Processes values that
are entered in the
device_attributes.html
template

Device Selection mga/user/mgmt/device/
device_selection.html

Displays device name, status
(enabled or disabled), and time of
last activity.

For more information, see
Managing your registered
devices.

Device Selection JavaScript mga/user/mgmt/device/
device_selection.js

Processes data to display in
the device_selections.html
template

Authorization Grant mga/user/mgmt/device/
grant_attributes.html

Enables or disables an OAuth
2.0 authorization grant. Removes
an OAuth 2.0 authorization
grant. Displays the OAuth 2.0
tokens and attributes of an
authorization grant. For more
information, see Managing OAuth
2.0 Authorization Grants.

Authorization Grants
JavaScript

mga/user/mgmt/device/
grant-attributes.js

Processes data to display in
the grant_attributes.html
template.

HMAC OTP Shared Key mga/user/mgmt/otp/
otp.html

Resets TOTP and HOTP Secret
Key.

For more information, see
Managing OTP secret keys.

HMAC OTP Shared Key
JavaScript

mga/user/mgmt/otp/otp.js Resets TOTP and HOTP Secret
Key.

286 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 26. Default template files in the mga/ directory (continued)

Page name File name and macros Description

Knowledge Questions
management

mga/user/mgmt/questions/
user_questions.html

Macros:

• @USERNAME @
• @MAX_STORED_QUESTIONS@

Displayed for the user to manage
their knowledge questions. The
user can select pre-configured
questions or write their own
questions.

Knowledge Questions
JavaScript functions

mga /user/mgmt/questions/
user_questions.js

Consists of the JavaScript
functions that:

• Display the knowledge
questions.

• Allow the user to manage their
knowledge questions.

Authentication process
These files support the authentication process

Authentication process template files
These files support the authentication process. For more information, see Authentication.

Table 27. Default template files in the authsvc/ directory

Page name File name and macros Description

Server Error authsvc/server_error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays general server errors.

User Error authsvc/user_error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during
authentication policy execution
that are caused by user input.

Authentication mechanisms
These files support the authentication mechanisms.

Authentication mechanisms
These files support the authentication mechanisms. For more information, see Authentication.

Chapter 18. Global settings 287

Table 28. Default template files in the otp/ directory

Page name File name and macros
Description and link to file
contents

Change PIN required otp/change_pin.html

Macros

• @ERROR_MESSAGE@
• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

Enables the user to enter a new
PIN.

OTP Email Delivery Message otp/delivery/
email_message.xml

Used by EmailOTPDelivery as
the content of the email that it
sends to the user.

The template file must be a
compliant XML file.

The content can be plain text or
HTML. Following is an example
that uses HTML in the email
template:

<?xml version="1.0"
encoding="UTF-8"?>
<root>
<Subject>
 <Value>One-time Password</
Value>
</Subject>
<Message>
 <Value><![CDATA[<html>
<body>
<img src="https://
www.example.com/images/
logo.gif" />

This is your HTML
email one-time password
@OTP_STRING@.

 <p>Thank you,

 The Example Co.</p>
</body>
 </html>]]>
 </Value>
</Message>
</root>

For more information about
HTML formatting of email
messages, see HTML format for
OTP email messages.

OTP SMS Delivery Message otp/delivery/
sms_message.xml

Used by SMSOTPDelivery as
the content of the SMS that it
sends to the user.

The template file must be a
compliant XML file.

288 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 28. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

One-Time Password Delivery
Selection

otp/
delivery_selection.html

Macros

• @OTP_METHOD_CHECKED@
• @OTP_METHOD_LABEL@

Displays the list of methods
for generating, delivering, and
verifying the one-time password.

OTP General Error otp/errors/allerror.html

Macros

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays general errors that
happen during the one-time
password flow.

OTP Validation Error otp/errors/
error_could_not_validate_
otp.html

Macros

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
validation of the one-time
password that the user submits.

OTP Generation Error otp/errors/
error_generating_otp.html

Macros

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
generation of a one-time
password.

OTP Methods Retrieval Error otp/errors/
error_get_delivery_option
s.html

Macros

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
retrieval of the list of methods for
delivering one-time password to
the user.

Chapter 18. Global settings 289

Table 28. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

OTP Delivery Error otp/errors/
error_otp_delivery.html

Macros

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
delivery of a one-time password
to the user.

OTP STS Invocation Error otp/errors/
error_sts_invoke_failed.h
tml

Macros

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
invocation of the Security Token
Service.

One-Time Password Login otp/login.html

Macros

• @ERROR_MESSAGE@
• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

Displays the form where the
user can enter the one-time
password.

Enter Next OTP Form otp/next_otp.html

Macros

• @ERROR_MESSAGE@
• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

Enables the user to enter the
next one time password.

Table 29. Default template files in the authsvc/authenticator directory

Page name File name and macros Description

Authenticator Error Page authsvc/authenticator/
error.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

A generic authenticator error
page.

290 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 29. Default template files in the authsvc/authenticator directory (continued)

Page name File name and macros Description

Authenticator Login Page authsvc/authenticator/
login.html

Macros

• @USERNAME@
• @JUNCTION@
• @ACTION@

A generic authenticator
username and password login
page.

Table 30. Default template files in the authsvc/authenticator/basicldapuser directory

Page name File name and macros Description

Change Password authsvc/authenticator/
basicldapuser/
change_password.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @USERNAME@
• @ACTION@
• @OLDPASSWORD@
• @POLICYMESSAGE@

Enables the user to change their
LDAP password.

Username and Password Login authsvc/authenticator/
bascildapuser/login.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Displays the form where the user
can enter their username and
password to log in.

Table 31. Default template files in the authsvc/authenticator/branching directory

Page name File name and macros Description

Generic Decision authsvc/authenticator/
branching/
generic_decision.html

Macros

• @BRANCHES@
• @JUNCTION@
• @ACTION@

Displays a form that allows the
user to select an authentication
branch to use from a list of
available branches.

Chapter 18. Global settings 291

Table 31. Default template files in the authsvc/authenticator/branching directory (continued)

Page name File name and macros Description

Second Factor Decision authsvc/authenticator/
branching/
second_factor_decision.ht
ml

• @MECHANISMS@
• @ERROR_MESSAGE@
• @METHODS@
• @JUNCTION@
• @MOBILE_NUM@
• @EMAIL_ADDR@
• @ACTION@

Displays a form that allows the
user to select a second factor
authentication method to use
from a list of available methods.

Identifier First Authentication
Page

authsvc/authenticator/
branching/
identifier_first.html

Macros:

• @FIDO_RP_ID@
• @FIDO_TIMEOUT@
• @FIDO_CHALLENGE@
• @FIDO_USER_VERIFICATION
@

• @FIDO_STATUS@
• @FIDO_ERROR_MESSAGE@
• @STATE@
• @ACTION@

Displays a form that allows
the user to submit their
username or perform autofill
FIDO authentication.

IFA Authentication Method
Choice Page

authsvc/authenticator/
branching/ifa_choice.html

• @ERROR_MESSAGE@
• @IS_FIDO@
• @IS_MMFA@
• @FINGERPRINT_PREFERRED@
• @STATE@
• @ACTION@
• @USERNAME@

If enrolled, the user is
prompted to choose between
FIDO2/WebAuthn authentication,
MMFA authentication, or
standard username/password
authentication.

292 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 31. Default template files in the authsvc/authenticator/branching directory (continued)

Page name File name and macros Description

IFA FIDO2 PAIR Registration
Page

authsvc/authenticator/
branching/
ifa_fido2pair_reg.html

Macros:

• @FIDO_ERROR_MESSAGE@
• @STATE@
• @FIDO_USER_NAME@
• @ACTION@
• @ERROR_MESSAGE@
• @FIDO_INFOMAP_PARAM@
• @CANCEL_ACTION@

Displays a page that allows a user
to register a FIDO2 device for
authentication.

IFA Redirect Page authsvc/authenticator/
branching/
ifa_redirect.html

• @ERROR_MESSAGE@
• @IFA_REDIRECT_URL@
• @USERNAME@

Redirects the user to the
configured Redirect URL, if the
username matched a set regular
expression.

Table 32. Default template files in the authsvc/authenticator/ci directory

Page name File name and macros Description

Username and Password Login authsvc/authenticator/ci/
login.html

Macros

• @USERNAME@
• @JUNCTION@
• @ACTION@

Displays the form where the user
can enter their username and
password to log in.

Authenticate Page authsvc/authenticator/ci/
authenticate_dialog.html

Macros

• @HIDE_TRANSIENT_IF_ENRO
LL@

• @EXPAND_VERIFY_METHODS@
• @JIT_ENROLLMENT@
• @AUTH_METHODS@
• @SIGNATURE_METHODS@
• @TRANSIENT_METHODS@
• @JUNCTION@
• @ACTION@

Displays a form that allows the
user to select a method to use for
two-step verification.

Chapter 18. Global settings 293

Table 32. Default template files in the authsvc/authenticator/ci directory (continued)

Page name File name and macros Description

Choose Method Page authsvc/authenticator/ci/
choose_method.html

Macros

• @AUTH_METHODS@
• @SIGNATURE_METHODS@
• @TRANSIENT_METHODS@
• @ACTION@

Displays a form that allows the
user to select a method to use for
two-step verification.

Verify Page authsvc/authenticator/ci/
verify.html

Macros

• @TYPE@
• @ERROR_MESSAGE@
• @CORRELATION@
• @JUNCTION@
• @ACTION@
• @ID@

Displays a form that allows the
user to enter the access code
that is used to authenticate the
two-step verification.

Device Connected Page authsvc/authenticator/ci/
device_connected.html

Macros

• @TYPE@
• @DEVICE_NAME@
• @JUNCTION@
• @ACTION@

Displays a confirmation page
that a device was successfully
connected and can now be
selected as a method for two-
step verification.

Enrollment Page authsvc/authenticator/ci/
enrollment.html

Macros

• @TYPE@
• @CORRELATION@
• @JUNCTION@
• @ACTION@

Displays a form that is used
to validate an OTP during an
enrollment flow.

Error Page authsvc/authenticator/ci/
error.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Displays errors during the CI
authentication.

294 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 32. Default template files in the authsvc/authenticator/ci directory (continued)

Page name File name and macros Description

JIT Enroll Page authsvc/authenticator/ci/
jit_enroll.html

Macros

• @ERROR_MESSAGE@
• @JIT_TYPE@
• @JUNCTION@
• @ACTION@

Displays a form that allows a
user with no existing device
registrations to enroll a device
during a CI authentication.

TOTP Enrollment Page authsvc/authenticator/ci/
totp_enrollment.html

Macros

• @ERROR_MESSAGE@
• @QRCODE@
• @JUNCTION@
• @ACTION@

Displays a page that allows a
user to enroll a device for TOTP
authentication.

Push Notification Page authsvc/authenticator/ci/
try_push.html

Macros

• @DEVICE_NAME@
• @JUNCTION@
• @ACTION@

Displays a page that allows
a device to be configured
and tested to receive push
notifications to authenticate the
two-step verification.

User Self-Care Page authsvc/authenticator/ci/
usc.html

Macros

• @ENABLED_METHODS@
• @NAME@
• @AUTH_METHODS@
• @AUTHENTICATORS@
• @EMAIL@
• @USERNAME@
• @DEVICE_COUNT@
• @METHOD_COUNT@
• @JUNCTION@
• @ACTION@

Displays a page that allows a
user to manage their registered
authentication devices.

Username Login Page authsvc/authenticator/ci/
username.html

Macros

• @USERNAME@
• @JUNCTION@
• @ACTION@

Displays the form where the user
can enter their username to log in
without a password.

Chapter 18. Global settings 295

Table 32. Default template files in the authsvc/authenticator/ci directory (continued)

Page name File name and macros Description

Verify Registration Page authsvc/authenticator/ci/
verify_registration.html

Macros

• @QRCODE@
• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION

Displays a page that allows a user
to enroll a device to use IBM
Verify for authentication.

Wait Page authsvc/authenticator/ci/
wait.html

Macros

• @ACTION

Displays a page while it waits
between polls during an IBM
Verify authentication.

Table 33. Default template files in the authsvc/authenticator/email_message directory

Page name File name and macros Description

Email Delivery Message authsvc/authenticator/
email_message/
email_message.xml

Macros

• @ATTRIBUTE@

The email content that is sent to
the SMTP server.

Error Page authsvc/authenticator/
email_message/error.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

The email content that is sent to
the SMTP server.

296 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 34. Default template files in the authsvc/authenticator/fido directory

Page name File name and macros Description

Assertion Page authsvc/authenticator/
fido/assertion.html

Macros

• @FIDO_RP_ID@
• @FIDO_TIMEOUT@
• @FIDO_CHALLENGE@
• @FIDO_USER_VERIFICATION
@

• @FIDO_USER_ID@
• @FIDO_STATUS@
• @FIDO_ERROR_MESSAGE@
• @STATE@
• @ACTION@
• @FIDO_ALLOW_CREDENTIALS
@

• @FIDO_EXTENSIONS@
• @ERROR_MESSAGE@
• @FIDO_INFOMAP_PARAM@
• @CANCEL_ACTION@

Displays a form that allows
a user to perform a FIDO
authentication.

Chapter 18. Global settings 297

Table 34. Default template files in the authsvc/authenticator/fido directory (continued)

Page name File name and macros Description

Attestation Page authsvc/authenticator/
fido/attestation.html

Macros

• @FIDO_RP_ID@
• @FIDO_RP_NAME@
• @FIDO_USER_ID@
• @FIDO_USER_NAME@
• @FIDO_DISPLAY_NAME@
• @FIDO_TIMEOUT@
• @FIDO_CHALLENGE@
• @FIDO_REQUIRE_RESIDENT_
KEY@

• @FIDO_RESIDENT_KEY@
• @FIDO_USER_VERIFICATION
@

• @FIDO_AUTHENTICATOR_ATT
ACHMENT@

• @FIDO_ATTESTATION@
• @FIDO_STATUS@
• @FIDO_ERROR_MESSAGE@
• @ACTION@
• @FIDO_ALLOW_CREDENTIALS
@

• @FIDO_EXTENSIONS@
• @FIDO_PUBKEY_CRED_PARAM
S@

• @ERROR_MESSAGE@
• @FIDO_INFOMAP_PARAM@
• @STATE@
• @CANCEL_ACTION@

Displays a form that allows a
user to register a FIDO device for
authentication.

Error Page authsvc/authenticator/
fido/error.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@

Displays errors during the FIDO
authentication.

298 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 35. Default template files in the authsvc/authenticator/fido2pair directory

Page name File name and macros Description

FIDO2 PAIR Authentication
Decision Page

authsvc/authenticator/
fido2pair/
fido2pair_authn_decision.h
tml

Macros

• @FIDO_RP_ID@
• @FIDO_TIMEOUT@
• @FIDO_CHALLENGE@
• @FIDO_USER_VERIFICATION@
• @FIDO_USER_ID@
• @FIDO_STATUS@
• @FIDO_ERROR_MESSAGE@
• @STATE@
• @ACTION@
• @PERSISTENT_USERNAME@
• @FIDO_ALLOW_CREDENTIALS@
• @FIDO_EXTENSIONS@
• @JUNCTION@

Displays a page that allows a
user to either login by using a
username and password or by
using an already registered FIDO
device.

FIDO2 PAIR Login Success
Page

authsvc/authenticator/
fido2pair/
fido2pair_login_success.ht
ml

Displays a page that indicates
that the login was successful.
The page is imported into
the reverse proxy management
root when FIDO2 PAIR is
configured and the administrator
chooses to overwrite the default
login success page. It saves
the persistent token from
the reverse proxy into the
browser for subsequent FIDO2
authentication.

FIDO2 PAIR Device
Registration Complete Page

authsvc/authenticator/
fido2pair/
fido2pair_reg_complete.htm
l

Macros

• @JUNCTION@
• @ACTION@

Displays a page that indicates
that a FIDO2 device was
registered successfully and can
now be used for subsequent
authentications.

Chapter 18. Global settings 299

Table 35. Default template files in the authsvc/authenticator/fido2pair directory (continued)

Page name File name and macros Description

FIDO2 PAIR Device
Registration Decision Page

authsvc/authenticator/
fido2pair/
fido2pair_reg_decision.htm
l

Macros

• @USERNAME@
• @JUNCTION@
• @ACTION@

Displays a page that allows a user
to decide whether they would
like to register a FIDO2 device
for authentication after the initial
username and password login.

FIDO2 PAIR Device
Registration Page

authsvc/authenticator/
fido2pair/
fido2pair_reg_mechanism.ht
ml

Macros

• @FIDO_ERROR_MESSAGE@
• @STATE@
• @FIDO_USER_NAME@
• @ACTION@
• @ERROR_MESSAGE@
• @FIDO_INFOMAP_PARAM@
• @CANCEL_ACTION@

Displays a page that allows a user
to register a FIDO2 device for
authentication.

Table 36. Default template files in the authsvc/authenticator/infomap directory

Page name File name and macros Description

Error Page authsvc/authenticator/
infomap/error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays a page that shows the
details of an error that was
encountered.

300 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 36. Default template files in the authsvc/authenticator/infomap directory (continued)

Page name File name and macros Description

FIDO Assertion Page authsvc/
authenticator/infomap/
fido_assertion.html

Macros

• @FIDO_RP_ID@
• @FIDO_TIMEOUT@
• @FIDO_CHALLENGE@
• @FIDO_USER_VERIFICATION
@

• @FIDO_USER_ID@
• @FIDO_STATUS@
• @FIDO_ERROR_MESSAGE@
• @ACTION@
• @FIDO_ALLOW_CREDENTIALS
@

• @FIDO_EXTENSIONS@
• @ERROR_MESSAGE@
• @FIDO_INFOMAP_PARAM@
• @STATE@
• @CANCEL_ACTION@

Displays a form that allows
a user to perform a FIDO
authentication.

Chapter 18. Global settings 301

Table 36. Default template files in the authsvc/authenticator/infomap directory (continued)

Page name File name and macros Description

FIDO Attestation Page authsvc/
authenticator/infomap/
fido_attestation.html

Macros

• @FIDO_RP_ID@
• @FIDO_RP_NAME@
• @FIDO_TIMEOUT@
• @FIDO_CHALLENGE@
• @FIDO_USER_ID@
• @FIDO_USER_NAME@
• @FIDO_USER_DISPLAY_NAME
@

• @FIDO_STATUS@
• @FIDO_ERROR_MESSAGE@
• @ACTION@
• @FIDO_EXCLUDED_CREDENTI
ALS@

• @FIDO_PUBKEY_CRED_PARAM
S@

• @FIDO_AUTHENTICATOR_SEL
ECTION@

• @FIDO_EXTENSIONS@
• @ERROR_MESSAGE@
• @FIDO_INFOMAP_PARAM@
• @STATE@
• @CANCEL_ACTION@
• @FIDO_ATTESTATION@

Displays a form that allows a
user to register a FIDO device for
authentication.

Username Login Page authsvc/authenticator/
infomap/login.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Displays the form where the user
can enter their username to log
in.

302 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 37. Default template files in the authsvc/authenticator/mmfa directory

Page name File name and macros Description

Mobile Multi-Factor
Authentication Device Selection
Page

authsvc/
authenticator/mfa/
device_selection.html

Macros

• @JUNCTION@
• @ACTION@
• @MMFA_DEVICE_CHECKED@
• @MMFA_DEVICE_ID@
• @MMFA_DEVICE_LABEL@

Displays a form that allows a user
to select which registered device
to send a mobile multi factor
authentication notification.

Mobile Multi-Factor
Authentication Error Page

authsvc/authenticator/
mmfa/error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@

Displays a page that shows the
details of an error that was
encountered.

Mobile Multi-Factor
Authentication Login Wait Page

authsvc/authenticator/
mmfa/login_wait.html

• @ACTION@
• @MMFA_TRANSACTION_STATU
S@

• @ERROR_MESSAGE@
• @MMFA_TRANSACTION_ID@
• @MMFA_CONTEXT_MESSAGE@
• @RETURN_ENABLED@
• @TOTP_ENROLLED@
• @MMFA_DEVICE_NAME@
• @JUNCTION@

Displays a page that shows that
a notification was sent to the
selected device and waits for a
response.

Chapter 18. Global settings 303

Table 38. Default template files in the authsvc/authenticator/mobileuserapproval directory

Page name File name and macros Description

Mobile User Approval Challenge
Page

authsvc/authenticator/
mobileuserapproval/
challenge.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@
• @SERVER_CHALLENGE@
• @HANDLE@

Displays a form that allows a user
to sign the challenge data with
the key that is associated with a
given key handle.

Mobile User Approval Error Page authsvc/authenticator/
mobileuserapproval/
error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays a page that shows the
details of an error that was
encountered.

Table 39. Default template files in the authsvc/authenticator/qrlogin directory

Page name File name and macros Description

QR Login Error Page authsvc/authenticator/
qrlogin/error.html

Macros

• @JUNCTION@
• @ERROR@

Displays errors during the QR
code authentication.

QR Login Page authsvc/authenticator/
qrlogin/qrlogin.html

Macros

• @DSI@
• @IN_BRANCH@
• @ACTION@
• @LSI@
• @JUNCTION@

Displays a page that allows a user
to authenticate by scanning a QR
code with a registered device.

304 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 39. Default template files in the authsvc/authenticator/qrlogin directory (continued)

Page name File name and macros Description

QR Login Response Page authsvc/authenticator/
qrlogin/qrresponse.html

Macros

• @USERNAME@
• @ACTION@

Sends a response to the device
to indicate that the QR code
authentication was successful.

Table 40. Default template files in the authsvc/authenticator/recaptcha directory

Page name File name and macros Description

ReCAPTCHA Challenge Page authsvc/authenticator/
recaptcha/standalone.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@
• @SITE_KEY@

Displays a form that prompts
a user to fulfill a specific re-
CAPTCHA challenge.

Table 41. Default template files in the authsvc/authenticator/rsa_securid directory

Page name File name and macros Description

RSA SecurID One-Time Password
Error

authsvc/authenticator/
rsa_securid/error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the RSA
SecurID one-time password
authentication.

RSA SecurID One-Time Password
Login

authsvc/authenticator/
rsa_securid/code.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@

Displays a form where the user
can enter the RSA SecurID one-
time password to log in.

RSA SecurID One-Time Password
Login (New PIN)

authsvc/authenticator/
rsa_securid/new_pin.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@

Enables a user to enter a new
RSA SecurID pin.

Chapter 18. Global settings 305

Table 41. Default template files in the authsvc/authenticator/rsa_securid directory (continued)

Page name File name and macros Description

RSA SecurID One-Time Password
Login (Next OTP)

authsvc/authenticator/
rsa_securid/
next_code.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@

Enables a user to enter the next
RSA SecurID one-time password.

Table 42. Default template files in the authsvc/authenticator/u2f directory

Page name File name and macros Description

U2F Token Error Page authsvc/
authenticator/u2f/
error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@

Displays errors during the U2F
token authentication.

U2F Token Registration Page authsvc/
authenticator/u2f/
register.html

Macros

• @U2F_APP_ID@
• @U2F_CHALLENGE@
• @U2F_VERSION@
• @ACTION@
• @CANCEL_ACTION@
• @U2F_TOKENS@
• @JUNCTION@
• @UNREGISTER_ACTION
• @UPDATE_ACTION@

Displays a form to allow a user
to register a U2F token for
authentication.

Table 43. Default template files in the authsvc/authenticator/verify_gateway directory

Page name File name and macros Description

IBM Verify Gateway Response
Page

authsvc/authenticator/
verify_gateway/
response.html

This file is not currently used.

306 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 44. Default template files in the authsvc/authenticator/password/ directory

Page name File name and macros Description

Change Password authsvc/authenticator/
password/
change_password.html

Macros

• @USERNAME@
• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Enables the users to change their
registry password.

Username and Password Error authsvc/authenticator/
password/error.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
username and password
authentication or when the users
modify their password.

Username and Password Login authsvc/authenticator/
password/login.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Displays the form where the
users can enter their username
and password to log in.

Table 45. Default template files in the authsvc/authenticator/http_redirect/ directory

Page name File name and macros Description

HTTP Redirect Authentication
Error

authsvc/authenticator/
http_redirect/
allerror.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays general errors during
for HTTP redirect authentication
mechanism.

Chapter 18. Global settings 307

Table 45. Default template files in the authsvc/authenticator/http_redirect/ directory
(continued)

Page name File name and macros Description

HTTP Redirect Authentication
Failed

authsvc/authenticator/
http_redirect/
error_authenticate.html

Macros

• MAC
• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the HTTP
redirect authentication flow.

Table 46. Default template files in the authsvc/authenticator/macotp/ directory

Page name File name and macros Description

MAC One-Time Password
Delivery Selection

authsvc/
authenticator/macotp/
delivery_selection.html

Macros

• @JUNCTION@
• @ACTION@
• @OTP_METHOD_ID@
• @OTP_METHOD_CHECKED@
• @OTP_METHOD_LABEL@

Displays the list of methods
for generating, delivering, and
verifying the one-time password.

MAC OTP One-Time Password
Error

authsvc/authenticator/
macotp/error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
MAC one-time password
authentication.

308 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 46. Default template files in the authsvc/authenticator/macotp/ directory (continued)

Page name File name and macros Description

MAC One-Time Password Login authsvc/authenticator/
macotp/login.html

Macros

• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

• @OTP_DELIVERY_ATTR@
• @ERROR_MESSAGE@
• @ACTION@
• @JUNCTION@
• @OTP_HINT@
• @OTP_LOGIN_DISABLED@
• @OTP_REGENERATE_DISABLE
D@

Displays the form where the
user can enter the MAC one-time
password.

Table 47. Default template files in the authsvc/authenticator/rsa/ directory

Page name File name and macros Description

RSA One-Time Password Error authsvc/
authenticator/rsa/
error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
RSA one-time password
authentication.

RSA One-Time Password Login authsvc/
authenticator/rsa/
code.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Displays the form where the
users can enter the RSA one-time
password to log in.

Chapter 18. Global settings 309

Table 47. Default template files in the authsvc/authenticator/rsa/ directory (continued)

Page name File name and macros Description

RSA One-Time Password Login
(New PIN)

authsvc/
authenticator/rsa/
new_pin.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Enables users to enter a new RSA
pin.

RSA One-Time Password Login
(Next OTP)

authsvc/
authenticator/rsa/
next_code.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@

Enables users to enter the next
RSA one-time password.

Table 48. Default template files in the authsvc/authenticator/totp/ directory

Page name File name and macros Description

TOTP One-Time Password Error authsvc/authenticator/
totp/error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
TOTP one-time password
authentication.

TOTP One-Time Password Login authsvc/authenticator/
totp/login.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@

Displays the form where the
users can enter the TOTP
password to log in.

310 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 49. Default template files in the authsvc/authenticator/hotp/ directory

Page name File name and macros Description

HOTP One-Time Password Error authsvc/authenticator/
hotp/error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
HOTP one-time password
authentication.

HOTP One-Time Password Login authsvc/authenticator/
hotp/login.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@

Displays the form where the
users can enter the HOTP
password to log in.

Table 50. Default template files in the authsvc/authenticator/consent_register_device/
directory

Page name File name and macros Description

Consent page authsvc/authenticator/
consent_register_device/
consent-form.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @ACTION@

Prompts the user to provide
consent for registering a device.

Consent to Device Registration
Error

authsvc/authenticator/
consent_register_device/
error.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
consent to device registration
flow.

Chapter 18. Global settings 311

Table 51. Default template files in the authsvc/authenticator/eula/ directory

Page name File name and macros Description

End-User License Agreement
license file display

authsvc/authenticator/
eula/license.txt

Contains the license agreement
to display to the user.

The template does not use
replacement macros.

Note: You can add more license
files to the template tree.

Specify the metadata in the End-
User License Agreement for the
following purposes:

• Auditing
• Forensic

The End-User License Agreement
authentication mechanism
removes the metadata before it
displays the license agreement
to the user. The metadata must
be on the first line of the license
agreement. For example,

Metadata: Version:
1.0 Identifier:
135223434343

When the user accepts the
license agreement or declines
the license agreement, the
mechanism audits:

• The user action.
• The license file name.
• The corresponding metadata.

End-User License Agreement
license agreement display

authsvc/authenticator/
eula/eula.html

Macros

• @USERNAME@
• @LICENSE@
• @JUNCTION@
• @ACTION@

Displays the page where the user
views the license and accepts the
license agreement.

312 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 51. Default template files in the authsvc/authenticator/eula/ directory (continued)

Page name File name and macros Description

End-User License Agreement
license agreement decline

authsvc/authenticator/
eula/
error_license_declined.ht
ml

Macros

• @USERNAME@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @ERROR_MESSAGE@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@
• @LICENSE_FILE@
• @LICENSE_METADATA@
• @JUNCTION@

Displays the page where the user
declines the license agreement.

Table 52. Default template files in the authsvc/authenticator/knowledge_questions/ directory

Page name File name and macros Description

Knowledge Questions
authentication mechanism
knowledge login form

authsvc/authenticator/
knowledge_questions/
login.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@
• @QUESTION_INDEX@
• @QUESTION_TEXT@
• @QUESTION_UNIQUE_ID@
• @QUESTION_COUNT@

Displays the form where the
user enters the answers to the
required knowledge questions.

Knowledge Questions
authentication mechanism
knowledge question
authentication errors

authsvc/authenticator/
knowledge_questions/
error.html

Macros

• @JUNCTION@
• @REQ_ADDR@
• @TIMESTAMP@
• @ERROR_MESSAGE@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors
during knowledge-question
authentication.

Chapter 18. Global settings 313

Table 52. Default template files in the authsvc/authenticator/knowledge_questions/ directory
(continued)

Page name File name and macros Description

Knowledge Questions
authentication mechanism
missing knowledge questions
with grace period

authsvc/authenticator/
knowledge_questions/
not_enough_questions_foun
d_continue.html

Macros

• @JUNCTION@
• @USERNAME@
• @NUM_REQUIRED_ANSWERS@
• @NUM_REGISTERED_QUESTIO
NS@

• @GRACE_PERIOD_AUTH_COUN
T@

• @MAX_GRACE_PERIOD_AUTH_
COUNT@

• @ACTION@

Displayed when the user did
not register the required number
of knowledge questions and
answers that are required for
successful authentication. The
following conditions must also be
true:

• The administrator configured
the environment to allow
grace-period authentication.

• The user did not reach the limit
of grace-period logins.

Knowledge Questions
authentication mechanism
missing knowledge questions
without grace period

authsvc/authenticator/
knowledge_questions/
not_enough_questions_foun
d_error.html

Macros

• @JUNCTION@
• @USERNAME@
• @NUM_REQUIRED_ANSWERS@
• @NUM_REGISTERED_QUESTIO
NS@

• @REQ_ADDR@
• @TIMESTAMP@

Displayed when the user did
not register the required number
of knowledge questions and
answers that are required for
successful authentication. One
of the following conditions must
also be true:

• The administrator did not
configure the environment
to allow grace-period
authentication.

• The user reached the limit of
grace-period logins.

314 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 53. Default template files in the authsvc/authenticator/otp/ directory

Page name File name and macros Description

OTP Enrollment main page authsvc/
authenticator/otp/
enroll.html

Macros

• @ERROR_MESSAGE@
• @JUNCTION@
• @ACTION@
• @STATE@
• @SECRET_KEY@
• @QR_CODE@
• @VALIDATE@
• @SUCCESS@

Prompts a user to enroll TOTP or
HOTP by displaying a QR code
for the user to scan, or a manual
code for them to type into their
OTP application.

OTP Enrollment errors authsvc/
authenticator/otp/
error.html

Macros

• @JUNCTION@
• @ERROR_MESSAGE@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during OTP
enrollment.

Authentication error template files
These files display errors that occur during authentication.

Authentication error template files
These files display errors that occur during authentication.

Table 54. Default files in the proper/ directory

Page name File name and macros Description

Access Denied proper/errors/
access_denied.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@

Displays a message that the
user cannot access the requested
resource.

Chapter 18. Global settings 315

Table 54. Default files in the proper/ directory (continued)

Page name File name and macros Description

General Error proper/errors/
allerror.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays general errors that are
not displayed in other template
files.

Missing Component Error proper/errors/
missingcomponent.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays an error that the
component required to process
the request was not correctly
configured or was not initialized.

Authentication Required proper/errors/
need_authentication.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@

Displays an error that
authentication is required to
access the requested resource.

Protocol Determination Error proper/errors/
noprotdet.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays an error that the
access request is to an unknown
address. The error might occur
because no configured endpoint
or protocol exists that is mapped
to this endpoint.

Protocol Runtime Error proper/errors/
protocol_error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors that an error
occurred fulfilling a request to a
specified address, and the error
was caused by an unexpected
error on the protocol module.

316 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

OAuth template files
These files support OAuth.

OAuth template files
These files support OAuth. For more information, see OAuth 2.0 and OIDC Support.

Table 55. Default files in the oauth20/ directory

Page name File name and macros Description

OAuth 2.0 Trusted Clients
Manager

oauth20/
clients_manager.html

Macros:

• @USERNAME@
• @OAUTH_CLIENT_COMPANY_N
AME@

• @PERMITTED_SCOPES@
• @OAUTH_CUSTOM_MACRO@

Used by resource owners to
show and manage trusted clients
information.

OAuth 2.0 - Consent to
Authorize

oauth20/
user_consent.html

Macros:

• @USERNAME@
• @OAUTH_CLIENT_COMPANY_N
AME@

• @PERMITTED_SCOPES@
• @OAUTH_CUSTOM_MACRO@

Used by the authorization server
to determine and store user
consent information about which
OAuth clients are authorized to
access the protected resource.

The page also lists of scopes that
the OAuth client requests. These
lists are shown in the consent
page and can be of indeterminate
length. The template supports
multiple copies of stanzas that
are repeated once for each scope
in the lists.

OAuth 2.0 - Error oauth20/user_error.html

Macros:

• @OAUTH_CLIENT_COMPANY_N
AME@

• @CLIENT_TYPE@
• @CLIENT_ID@
• @REDIRECT_URI@
• @STATE@
• @RESPONSE_TYPE@
• @USERNAME@
• @OAUTH_TOKEN_SCOPE_REPE
AT@

• @OAUTH_OTHER_PARAM_REPE
AT@

• @OAUTH_OTHER_PARAM_VALU
E_REPEAT@

Shows detailed text information
when an error occurs in an OAuth
2.0 flow.

Chapter 18. Global settings 317

Table 55. Default files in the oauth20/ directory (continued)

Page name File name and macros Description

OAuth - Response oauth20/
user_response.html

Macros:

• @OAUTH_CODE@

Displays the authorization code
of an OAuth client that did not
specify a client redirection URI
upon registration.

When the OAuth client does not
specify a client redirection URI
or cannot receive redirects, the
authorization server does not
know where to send the resource
owner after authorization. As a
result, the OAuth client does not
receive the authorization code
that is required to exchange for
an access token or refresh token.

The page includes several codes:

• The authorization code that the
resource owner can provide to
the trusted OAuth client.

• The authorization code
as machine-readable Quick
Response (QR) code.

Note: The encoder that
creates the QR code follows
the ISO/IEC 18004:2006
specification. Scanners that
support this specification can
read the generated QR code.

Customizing SAML 2.0 pages
Verify Access generates files that are displayed in response to events that occur during single sign-on
requests. The response that is displayed might be a form, such as when login information is required, or
an error or information statement about a condition that occurred while the request was processed.

You can customize the event pages by modifying their appearance or content.

Before you continue with the customization, you need to have a thorough understanding of how event
pages are generated and displayed.

Generation of event pages
Event pages are displayed in response to events that occur during single sign-on requests. They usually
contain a form (such as a prompt for user name and password information) or text (such as an
informational or error message).

Event pages are dynamic pages that are generated by Security Verify Access by using the following
information:
Template files

XML or HTML files that are provided with the appliance and contain elements, such as fields, text, or
graphics, and sometimes macros that are replaced with information that is specific to the request or
to provide a response to the request.

318 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Page identifiers
Event information that corresponds to one or more template files. Each page identifier corresponds to
a specific event condition, such as a specific error or a condition in which a message or a form must be
displayed.

Message catalogs
Text that is used to replace macros in the template files.

When a request is received, the appropriate response page is generated as follows:

1. Processing of the request occurs and a response to an event is required.
2. Template files and page identifiers are read from the file system.
3. Macros in the template files are replaced with values that are appropriate for the response that is

needed.
4. An appropriate event page is generated.
5. The generated event page is displayed.

SAML 2.0 page identifiers
The SAML 2.0 runtime can display HTML pages in response to events that occur during single sign-on
requests. You can select which pages to display and also modify the pages.

Use HTML pages for the following purposes:

• Displaying success and error messages to users
• Asking users for confirmation
• Sending SAML messages

You can customize these HTML pages so that they display what you want. These pages contain macros
and are similar to other HTML pages in Security Verify Access. A macro is text in an HTML page that is
replaced with context-specific information. For example, the macro @ERROR_MESSSAGE@ is replaced by
text that describes the error that occurred.

You can find the SAML 2.0 pages in the local management interface using these steps:

1. Click Federation > Global Settings > Template Files.
2. Expand the locale folder to locate a template file.

For example, the English version of the SAML consent_to_federate.html template is in C/saml20.

All of the available SAML 2.0 HTML pages are listed in the following table.

Table 56. SAML 2.0 HTML page identifiers and macros

Page identifier Description Macros and descriptions

saml20/
consent_to_federate.html

Displays during the SAML
single sign-on flow whenever
the service provider wants to
federate the account at the
identity provider with the account
at the service provider.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:SPProviderID@
The ID of the Service
Provider.

@TOKEN:SPDisplayName@
The name of the Service
Provider.

@TOKEN:IPProviderID@
The name of the Identity
Provider.

Chapter 18. Global settings 319

Table 56. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
logout_partial_success.ht
ml

Displays whenever the SAML
single log out flow completes
with partial success.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

saml20/
logout_success.html

Displays whenever the SAML
single log out flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

saml20/
nimgmt_terminate_success.
html

Displays whenever the SAML
name identifier management
terminate flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

@TOKEN:PartnerID@
The ID of the partner.

saml20/
nimgmt_update_success.htm
l

Displays whenever the SAML
name identifier management
update flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

@TOKEN:PartnerID@
The ID of the partner.

saml20/
saml_post_artifact.html

Sends the SAML artifact to the
partner for HTTP POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

320 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 56. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
saml_post_request.html

Sends the SAML request
message to partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
saml_post_response.html

Sends the SAML response
message to the partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
art_exchange_failed.html

Displays whenever there is a
failure during the SAML artifact
resolution flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/authn_failed.html Displays whenever there is a
failure during the SAML single
sign-on flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 18. Global settings 321

Table 56. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_building_msg.html

Displays whenever an outgoing
SAML message is not
constructed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_decrypting_msg.html

Displays whenever an incoming
SAML message is decrypted.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_missing_config_para
m.html

Displays whenever a SAML flow
is run on a SAML federation with
invalid configuration.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_parsing_art.html

Displays whenever an incoming
SAML artifact is parsed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

322 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 56. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_parsing_msg.html

Displays whenever an incoming
SAML message is parsed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_sending_msg.html

Displays whenever an outgoing
SAML message is sent.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_art.html

Displays whenever an incoming
SAML artifact is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_init_msg
.html

Displays whenever a SAML flow is
initiated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 18. Global settings 323

Table 56. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_validating_msg.html

Displays whenever an incoming
SAML message is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_msg_sign
ature.html

Displays whenever an incoming
SAML message is signature
validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/invalid_art.html Displays whenever an incoming
SAML artifact is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
invalid_init_msg.html

Displays whenever a SAML flow is
initiated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

324 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 56. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/invalid_msg.html Displays whenever an incoming
SAML message is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/logout_failed.html Displays whenever there is a
failure during SAML single logout
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
nimgmt_terminate_failed.h
tml

Displays whenever there is a
failure during the SAML name
identifier terminate management
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
nimgmt_update_failed.html

Displays whenever there is a
failure during the SAML name
identifier update management
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 18. Global settings 325

Template page for the WAYF page
The Where Are You From (WAYF) page is used at the service provider. The WAYF page enables users to
select their identity provider if there is more than one configured in the federation.

When a user arrives at a service provider, a WAYF identifier can be delivered through a cookie or query-
string parameter with the request. The entity ID of the identity provider is stored as the value of the
cookie or query-string parameter. If the WAYF identifier cookie or query-string parameter is not present,
the WAYF page opens.

An example URL that includes the query string parameter for WAYF:

https://sp.host.com/isam/sps/samlfed/saml20/
logininitial?RequestBinding=HTTPRedirect&ResponseBinding
=HTTPPost&ITFIM_WAYF_IDP=https://idp.host.com/isam/sps/samlfed/saml20

This example is for a SAML 2.0 single sign-on URL. The query string parameter name is
ITFIM_WAYF_IDP. The value of the identity provider ID is https://idp.host.com/isam/sps/
samlfed/saml20.

The WAYF page requires the user to indicate where they came from. If the user is not logged on to their
identity provider, they are asked to log on. Depending on the attributes passed, the service provider can
grant or deny access to the service.

You can find the template pages for WAYF in the local management interface using these steps:

1. Click Federation > Global Settings > Template Files.
2. Expand the locale folder and navigate to /pages/itfim/wayf.

Administrators can use the WAYF page without modifications, but in some cases might want to modify the
HTML style to match the specific deployment environment.

This template file provides several replacement macros:

@WAYF_FORM_ACTION@
This macro is replaced with the endpoint of the original request. This macro does not belong within a
repeatable section.

@WAYF_FORM_METHOD@
This macro is replaced with the HTTP method of the original request. This macro does not belong
within a repeatable section.

@WAYF_FORM_PARAM_ID@
This macro is replaced with ID used by the action for the identity provider. This macro is repeated
once for each identity provider.

@WAYF_IP_ID@
This macro is replaced with the unique ID of the identity provider. This macro is repeated once for
each identity provider.

@WAYF_IP_DISPLAY_NAME@
This macro is replaced with the configured display name of the identity provider. This macro is
repeated once for each identity provider.

@WAYF_HIDDEN_NAME@
This macro is replaced with the name of the hidden parameter. This macro is repeated once for each
original request parameter and is hidden.

@WAYF_HIDDEN_VALUE@
This macro is replaced with the value of the hidden parameter. This macro is repeated once for each
original request parameter and is hidden.

326 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Customizing the Consent to Federate Page
A consent to federate page is an HTML form which prompts a user to give consent to joining a federation.
You can customize the consent to federate page to specify what information it requests from a user.

Before you begin
Determine what values you want to use for the consent to federate page.

About this task
When a user accesses a federation, they agree to join the federation. The HTML form saml20/
consent_to_federate.html prompts for this consent. You can customize what the form requests
by adding consent values. These values indicate how a user agrees to join a federation and if service
providers are notified of the consent. Identity providers receive the consent values in the SAML 2.0
response.

The following values determine how a user joins a federation:
1

A user agrees to join a federation without notifying the service provider.
0

A user refuses to join a federation.
A URI value

A URI can indicate whether the user agrees to join a federation and if you want to notify the service
provider about the user consent. The following table lists and describes the supported URI values.

Table 57. Supported consent values for SAML 2.0 response

Consent value URI Description

Unspecified urn:oasis:names:tc:
SAML:2.0:consent:
unspecified

The consent of the user is not
specified.

Obtained urn:oasis:names:tc:
SAML:2.0:consent: obtained

Specifies that user consent is
acquired by the issuer of the
message.

Prior urn:oasis:names:tc:
SAML:2.0:consent: prior

Specifies that user consent is
acquired by the issuer of the
message before the action which
initiated the message.

Implicit urn:oasis:names:tc:
SAML:2.0:consent: current-
implicit

Specifies that user consent is
implicitly acquired by the issuer of
the message when the message
was initiated.

Explicit urn:oasis:names:tc:
SAML:2.0:consent: current-
explicit

Specifies that the user consent is
explicitly acquired by the issuer of
the message at the instance that
the message was sent.

Unavailable urn:oasis:names:tc:
SAML:2.0:consent:
unavailable

Specifies that the issuer of the
message was not able to get
consent from the user.

Inapplicable urn:oasis:names:tc:
SAML:2.0:consent:
inapplicable

Specifies that the issuer of the
message does not need to get or
report the user consent.

Chapter 18. Global settings 327

Follow the steps in this procedure to customize the consent to federate page.

Procedure
1. Log in to the local management interface.
2. Click Federation > Global Settings > Template Files.
3. Expand a locale and select saml20/consent_to_federate.html.
4. Click Edit and add the appropriate consent values for your federation.
5. Click Save.
6. Deploy the changes.

Example
The following example shows an added URI with a consent value Obtained:

<input type="radio" checked name="Consent"
value="urn:urn:oasis:names:tc:SAML:2.0:consent:obtained"/>
Consent Obtained.

In this example, the user consent is acquired by the issuer of the message.

Template file macros
Most template pages contain one or more macros. The macros are replaced by values that are specific to
the action that is requested on the page.

Macro Value that replaces the macro

@CLIENT_ID@ The client_id parameter that is specified in the
authorization request.

@CONSENT_FORM_VERIFIER@ A unique identifier for the consent_form_verifier parameter
value. The value is automatically generated by the
authorization server. Do not modify the parameter name or
value.

@DETAIL@ The error message.

@ERROR_CODE@ Characters that uniquely identify the error.

@ERROR_DESCRIPTION@ The native language support (NLS) text of the error message
that is associated with the error.

@ERROR_MESSAGE@ An error message that is specific to the action in the page. For
example, on the One-time password template page for login,
the error message indicates that the password submitted
contains errors, such as the password is not valid or has
expired.

@EXCEPTION_MSG@ The exception message.

@EXCEPTION_STACK@ The stack trace of the error.

@GRACE_PERIOD_AUTH_COUNT@ The amount of grace-period authentication.

@KICKOFF_METHOD@ The value that is set for the advanced configuration entry
sps.authService.policyKickoffMethod. Available only
through the use of an Infomap authenticator.

@LICENSE@ The contents of the license file.

@LICENSE_FILE@ The name of the license file.

328 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Macro Value that replaces the macro

@LICENSE_METADATA@ The metadata that is either:

• Defined in the license file.
• Not Available if it is not defined.

@MAPPING_RULE_DATA@ If the submitted one-time password contains an error,
this value is the STS Universal User context attribute
with the name @MAPPING_RULE_DATA@ and is type
otp.sts.macro.type. This context attribute can be set in
the OTPVerify mapping rule.

@MAX_GRACE_PERIOD_AUTH_COUNT@ The maximum count of grace-period authentication that is
allotted to a policy.

@MAX_STORED_QUESTIONS@ The maximum number of answers that can be stored per user.

@NUM_REQUIRED_ANSWERS@ The number of valid answers that is required for successful
authentication.

@NUM_REGISTERED_QUESTIONS@ The number of questions that the user registered.

@OAUTH_AUTHORIZE_URI@ The URI for the authorization endpoint.

@OAUTH_CLIENT_COMPANY_NAME@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list. The values
are replaced with the name of the company that requests
access to the protected resource.

@OAUTH_CLIENTMANAGERURL@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list. The values
are replaced with the endpoint of the trusted clients manager.

@OAUTH_CLIENT_NAME@ A macro that represents the name of the client that requests
access to the protected resource.

@OAUTH_CODE@ The oauth_code parameter that is specified in the
authorization response.

@OAUTH_CUSTOM_MACRO@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list. The values
are replaced with trusted client information that contains
additional information about an authorized OAuth client.

@OAUTH_OTHER_PARAM_REPEAT@ A multi-valued macro that belongs inside an [RPT
oauthOtherParamsRepeatable] repeatable replacement
list. The values show the list of extra parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPE
AT@

A multi-valued macro that belongs inside an [RPT
oauthOtherParamsRepeatable] repeatable replacement
list. The values show the list of extra parameter values.

@OAUTH_TOKEN_SCOPE_REPEAT@ A multi-valued macro that belongs inside an [RPT
oauthTokenScopePreapprovedRepeatable] or [RPT
oauthTokenScopeNewApprovalRepeatable]repeatable
replacement lists. The values inside the [RPT
oauthTokenScopePreapprovedRepeatable] show the list
of token scopes that have been previously approved by the
resource owner. Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable] show the list
of token scopes that have not yet been approved by the
resource owner.

Chapter 18. Global settings 329

Macro Value that replaces the macro

@OTP_HINT@ The one-time password hint. The hint is a sequence of
characters that is associated with the one-time password.

@OTP_METHOD_CHECKED@ For the first method, this macro is replaced with an HTML radio
button attribute that causes that radio button to be selected.
For the remaining methods that generate, deliver, and verify
one-time passwords, this macro is replaced with an empty
string.

@OTP_METHOD_ID@ The ID of the method for generating, delivering, and
verifying the one-time password. This ID is generated by the
OTPGetMethods mapping rule.

@OTP_METHOD_LABEL@ The label of the method for generating, delivering, and
verifying the one-time password. This label is generated by
the OTPGetMethods mapping rule.

@OTP_METHOD_TYPE@ The type of the currently selected method for generating,
delivering, and verifying the one-time password. This type
is generated by the OTPGetMethods mapping rule and was
selected by the user.

@OTP_STRING@ The one-time password that is generated by the one-time
password provider.

@PERMITTED_SCOPES@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable list. The values are replaced
with the token scopes to which the OAuth client has access.

@QUESTION_COUNT@ The number of questions that are presented on the login page.

@QUESTION_TEXT@ The question text. This macro is only populated when the
question is a user-provided question.

@QUESTION_INDEX@ The question index. This index corresponds to the array of
questions that are presented on the page when questions are
presented as a group.

@QUESTION_UNIQUE_ID@ The question unique identifier.

@REDIRECT_URI@ The redirect URI that the authorization server uses to send
the authorization code to. The value depends on the following
items:

• Redirect URI that is entered during partner registration.
• oauth_redirect parameter that is specified in the

authorization request

@REGENERATE_ACTION@ The URl where the Generate button posts the form to
regenerate and deliver the new one-time password value.

@RESPONSE_TYPE@ The response_type parameter specified in the authorization
request.

@REQ_ADDR@ The URL into which the request from the user is sent.

@RESELECT_ACTION@ The URl where the Reselect button posts the form to reselect
the method for generating, delivering, and verifying the one-
time password value.

@STATE@ The state parameter that is specified in the authorization
request.

330 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Macro Value that replaces the macro

@STS_USER_MESSAGE_EXCEPTION@ This macro is populated with the customized user exception
that is set in a JavaScript mapping rule by using the following
utility:

IDMappingExtUtils.throwSTSUserMessageException(String
message);

A template page can then use this macro to display a
customized exception.

For example:

<h1 class="pageTitle error">An error has occurred</h1>
<div class="instructions">@STS_USER_MESSAGE_EXCEPTION@</
div>

@TIMESTAMP@ The time stamp when the error occurred.

@UNIQUE_ID@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list. The values
are replaced with a unique identifier that identifies the trusted
client information for each entry in the list.

@USERNAME@ The Security Verify Access user name.

Template File Locales
Use the local management interface to manage allowed locales for both messages and template files.

Template Files can be associated with a specific language and/or region. The directory structure of the
template pages that is combined with specific Advanced configuration properties allows an administrator
to configure which locale version of pages is returned to a user in differing situations.

Users can configure which locales are supported on the appliance and which locale is the fallback default
in circumstances where a requested locale is not supported.

The following advanced configuration properties controls the default locales and the allowed locales:

Property Description

sps.page.allowedLocales This is a comma separated list of allowed locales with
or without region. For example, pt_BR, it. This example
demonstrates that the Portuguese language from Brazil
region and any Italian language are allowed by the
appliance.

The default for this item is a special identifier "all", which
denotes that all locale and region combinations are allowed
by the appliance.

sps.page.defaultLocale This is a single entry, that identifies the fallback locale
when the request does not include any locale from the
allowedLocales list.

For example, if the default for this item is en, this
means if the request does not contain a locale from the
allowedLocales list, the response is using the English
language templates, and messages.

In template files, the English version is provided by the top
level directory /C.

Chapter 18. Global settings 331

Property Description

sps.page.strictLocaleMatching A flag which controls whether the locale matching algorithm
should be strict for matching the requested locale to the
available template files, as well as the allowed locales list.

When set to true, both the base language code (for
example, en, pt) and the region code (for example, US, BR)
must exactly match. When set to false, an exact match
of base language and region code will be preferred, but if
no exact match is found, an approximate match of only the
base language code will be accepted.

The default value is false.

Messages can only be translated to languages which are pre-defined out of the box and cannot be
extended beyond what is available on the appliance by default. In the case that the configured default is
not an out of the box supported locale for messages, the English messages are returned.

For more information on advanced configuration properties, see Advanced configuration properties.

Template Files and Content Security Policy
The Advanced Access Control (AAC) template files have been developed for compliance with content
security policy (CSP) directives.

Content Security Policy is not enabled for AAC responses by default but can be enabled by configuring the
reverse proxy to add the CSP header to all outgoing responses. In the reverse proxy configuration file set
the following response header:

[rsp-header-names]
 content-security-policy = default-src ‘self’; frame-ancestors 'self'; form-action 'self';

Note: The header can be set on a junction only by setting the same entry in the junction specific stanza
[rsp-header-names:/junction_name].

The example content security policy header that is shown above is the level of CSP as is enabled by
default for Reverse Proxy responses (other than the junction specific configuration).

Reverse Proxy Configuration for CSP Compliant Advanced Access Control
(AAC) Templates
There are some reverse proxy and junction configuration entries that need to be considered for the
content security policy compliant AAC templates to work as designed.

Inline Images
In AAC, there are some scenarios that require images to be made available to the HTML file as inline data.
For example, QR codes. The image is not available as a static image but it is generated dynamically. The
resulting HTML includes the base64 encoded image.

For example,

<img src=“data:image/png;base64, <base64 encoded image text>” />

These types of inline image will require that the content security policy is relaxed slightly to allow the
inline data:

content-security-policy = default-src ‘self’; frame-ancestors 'self'; form-action 'self'; img-
src ‘self’ data:

332 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

This can be set explicitly on each response with the rsp-header-names entry in the reverse proxy
configuration file or an HTTP transformation rule can be used to swap the content security policy header
for the effected policy URI only.

For example:

1. Create the HTTP Transformation Rule (LUA).

HTTPResponse.removeHeader("content-security-policy")
HTTPResponse.setHeader("content-security-policy", "default-src 'self'; frame-ancestors
'self'; form-action 'self'; img-src 'self' data:;")

2. Apply the transformation rule to the GET on the effected policy ID.

request-match = response:GET /mga/sps/authsvc?
PolicyId=urn:ibm:security:authentication:asf:qrcode HTTP/*

Identity Cookie
The reverse proxy junction can pass identity information in a variety of ways including the injection of
JavaScript code into the HEAD of all HTML responses. This method is not compliant with the content
security policy directives stated above. As such the method used for the identity cookie should be set as
HTTP Header rather than inline.

reCAPTCHA
The reCAPTCHA authentication policy requires multiple requests to a non-origin server. As such, the
content security policy must enable these requests.

To enable this, include the following directives:
script-src

'self'

https://www.recaptcha.net

https://recaptcha.net

https://www.gstatic.com/recaptcha/

https://www.gstatic.cn/recaptcha/

https://www.google.com/recaptcha/;

frame-src

'self'

*.recaptcha.net

recaptcha.net

https://www.google.com/recaptcha/

https://recaptcha.google.com;

img-src

'self'

www.gstatic.com/recaptcha;

worker-src

'self'

www.recaptcha.net;

For example,

Chapter 18. Global settings 333

https://www.recaptcha.net/
https://recaptcha.net/
https://www.gstatic.com/recaptcha/
https://www.gstatic.cn/recaptcha/
https://www.google.com/recaptcha/
http://recaptcha.net/
http://recaptcha.net/
https://www.google.com/recaptcha/
https://recaptcha.google.com/
http://www.gstatic.com/recaptcha
http://www.recaptcha.net/

Content-Security-Policy = default-src 'self'; frame-ancestors 'self'; form-action 'self';
script-src 'self' https://www.recaptcha.net
https://www.google.com/recaptcha/ https://recaptcha.net https://www.gstatic.com/recaptcha/
https://www.gstatic.cn/recaptcha/;
frame-src 'self' *.recaptcha.net recaptcha.net https://www.google.com/recaptcha/ https://
recaptcha.google.com; img-src 'self'
www.gstatic.com/recaptcha; worker-src 'self' www.recaptcha.net;

Template Files Format

Each individual template file is split into the following three files:
The HTML template file

This file contains the actual HTML and any potential dynamic Macro replacements. The Macro
replaced data is passed to a secondary JavaScript file using either the HTML script element dataset or
the script text content as JSON.

An optional JavaScript file
This file contains any required scripting including handlers for HTML elements such as buttons,
links, and more. There is no Macro replacement performed in JavaScript files for authentication
mechanism templates. For example, the templates in C/authsvc/authenticator. However, Macro
replacement does work in user self care JavaScript files, such as those in C/mga or C/mmfa.
JavaScript files must be included by the HTML template.

An optional css file
This contains any required styling for the HTML elements. Stylesheet files must be included by the
HTML template.

Directory Structure
There are different layouts for the various AAC template files:

1. Authentication Mechanism templates

• The HTML template files exist in the location: <LANG>/authsvc/authenticator/<mech_name>
• The JavaScript template files exist in the location: C/static/javascript/<mech_name>
• The css template files exist in the location: C/static/css/<mech_name>

Note: Some files only exist in the C/static directory and not other language directories, as they
do not contain any translated strings.

2. MMFA User Self Care templates

• The HTML, JavaScript, and css template files exist in the location: <LANG>/mmfa/user/mgmt/mmfa

The exception to this is that the manage.html app templates are split into:

• The HTML template files exist in the location: <LANG>/mmfa/user/mgmt/mmfa/usc
• The JavaScript template files exist in the location: <LANG>/mmfa/user/mgmt/mmfa/usc/
static/js

• The css template files exist in the location: <LANG>/mmfa/user/mgmt/mmfa/usc/static/css
3. Other User Self Care templates

• The HTML, JavaScript, and css template files exist in or under the location: <LANG>/mga/user/
mgmt/

Mapping rules
Mapping rules are JavaScript code that runs during the authentication flow for Advanced Access Control
and Federation.

Mapping rules can be used for multiple purposes. For Advanced Access Control, you can modify rules for
the Authentication Service, OTP, and OAuth 2.0. For Federation, you can modify mapping rules to manage

334 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

identities for OIDC and SAML 2.0. Use the task topic below that applies to the type of mapping rule you
want to manage.

Note: Support for the importing of a mapping rule into another mapping rule applies to all mapping rules.

Managing JavaScript mapping rules
Create or edit JavaScript mapping rules.

About this task
When you activate the Advanced Access Control offering, the following mapping rule types are available:

AuthSvc
Authorization service mapping rule.

OAUTH
OAuth mapping rule.

OTP
One-time password mapping rule.

OIDC
OpenID Connect mapping rule.

SAML2_0
SAML 2.0 mapping rule.

Procedure
1. Click AAC.
2. Under Global Settings, click Mapping Rules.

All existing mapping rules are displayed.
3. You can create and manage a mapping rule with the following methods:

Create a mapping rule

a. Click Add.
b. In the Content field, enter the JavaScript mapping rule content.
c. In the Name field, enter a name for the rule.
d. In the Category field, select the type of the mapping rule from the list.

Note: Only the mapping rule types that apply to your current activated offering are displayed in
the list.

e. Click Save.

Modify a mapping rule

a. Select the mapping rule to modify.
b. Click Edit.
c. Modify the mapping rule in the Content field as needed.

Note: The Name and Category fields are not editable.
d. Click Save.

Delete a mapping rule

a. Select the mapping rule to delete.
b. Click Delete.
c. Click Delete to confirm.

Chapter 18. Global settings 335

Replace a mapping rule

a. Select the mapping rule to replace.
b. Click Replace.
c. Click the Browse button and select the local file that contains the new contents.
d. Click OK.

Import a mapping rule

a. Click Import.
b. In the Name field, enter a name for the rule.
c. In the Category field, select the type of the mapping rule from the list.

Note: Only the mapping rule types that apply to your current activated offering are displayed in
the list.

d. Click the Browse button and select the local file that contains the new contents.
e. Click OK.

Export a mapping rule

a. Select the mapping rule to export.
b. Click Export.

Import multiple mapping rules

a. Click Manage and select Import Zip from the drop-down menu.
b. Click the Browse button and select the local zip file that contains the mapping rules to import.

The mapping rules must exist in the root directory of the zip file alongside a manifest.json
file that describes each new mapping rule.

The manifest.json file is an array of entries where each entry must contain each of:
name

The name of the mapping rule.
category

The category of the mapping rule.
fileName

The name of the file in the zip that contains the mapping rule contents.

For example:

[
 {“name”:”ruleA”, “category”:”InfoMap”, “fileName”:”ruleA.js”},
 {“name”:”ruleB”, “category”:”AuthSvc”, “fileName”:”ruleB.js”}
]

An error will be returned if:

• A file exists without a manifest entry.
• A manifest entry exists for a non existent file.
• A manifest entry does not contain name, category, and fileName.

c. Click OK.

Exporting multiple mapping rules

a. Click Manage and select Export Zip from the drop-down menu.

336 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Managing mapping rules
The mapping rules are JavaScript code that run during the authentication flow. Use the rules to customize
the authentication service and the one-time password generation, delivery, and verification.

Before you begin
Attention: Use extreme care when you replace mapping rules. Any change that you make to a
mapping rule can affect the entire runtime environment. Always export a copy of the original rule
you plan to replace so that you have a backup copy.

About this task
You can customize several components through JavaScript code. For example, you can customize the
Authentication Service to modify the content of user credential by modifying the AuthSvcCredential
mapping rule.

The JavaScript code is run by the Rhino JavaScript engine. Your JavaScript code must conform to
JavaScript 1.7. Your JavaScript code is not run under a browser environment. Therefore, you cannot
use objects and functions that are available only in a browser environment. You can, however, use
standard JavaScript objects (such as Math) and functions (such as parseInt). In addition, your
JavaScript code can use allowed Java classes, which you might need so that you can use operations
that are not supported by standard JavaScript functions. You can find the list of these Java classes at
“JavaScript Allowlist” on page 348. To find out more about using Java classes in JavaScript, see the Rhino
documentation https://developer.mozilla.org/en/docs/Rhino.

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Policy, click Authentication.
4. Click Advanced.
5. Take one of the following actions:

View a mapping rule:

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the mapping rule is displayed.
c. Click OK to close the panel.

Export a mapping rule:

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:
Use an existing mapping rule as the basis for the updated mapping rule.

Attention: When you replace this file, an error in the JavaScript source might be found
immediately after it is replaced or it might not be found until the file is run.

a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or the Browse button and select a file.

Attention: The name of the mapping rule cannot be replaced. The name of the uploaded
file is ignored.

Chapter 18. Global settings 337

https://developer.mozilla.org/en/docs/Rhino

d. Click OK to upload the mapping rule.

What to do next
When you replace a mapping rule, the appliance displays a message that there are undeployed changes.
Deploy the changes when you are done. For more information, see Chapter 15, “Deploying pending
changes,” on page 227.

Authentication Service Credential mapping rule
The Authentication Service Credential mapping rule is JavaScript code that you can use to customize the
information that is contained in the user credential.

During authentication, the Authentication Service gathers information about the authenticated user,
including attributes associated with the user ID. After successful authentication, the Authentication
Service provides this information to the Authentication Service Credential mapping rule. The main task
of the mapping rule is to modify or add attributes to the user information before it is used to generate a
credential.

Customizing the mapping rule is an advanced way to customize the credential. To specify basic credential
attributes, use an authentication policy and the Credentials panel in the local management interface
instead of creating a custom mapping rule. See Creating an authentication policy.

If you write your own mapping rule and use it to replace the existing rule, be aware of the following
considerations:

• Credential attributes are string values. For example, user names and lists of groups are string arrays.
• Do not use spaces, commas, or colons in credential attribute names. Use alphanumeric characters.

The sample mapping rule provides more descriptions about considerations for writing your own mapping
rule.

A default AuthSvcCredential mapping rule is provided. To review the rule:

1. Log in to the local management interface.
2. Click AAC
3. Under Policy, click Authentication.
4. Click Advanced.
5. Select AuthSvcCredential.

6. Click .
7. Choose a location and save the file.

To review an example of a customized credential mapping rule:

1. Log in to the local management interface.
2. Click System.
3. Click File Downloads.
4. Click access_control > examples > mapping_rules.
5. Select authsvc_credential.js.
6. Click Export to download the file.

If you create your own rule, use it to replace the existing rule. See the replacement instructions in
“Managing mapping rules” on page 79.

OTPGetMethods mapping rule
OTPGetMethods specifies the methods for delivering the one-time password to the user.

This sample mapping rule sets password delivery conditions for the following delivery methods:

338 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

• By email
• By SMS
• No delivery

Each delivery method includes the following attributes and their corresponding value:

id
Specifies a unique delivery method ID. This value replaces the @OTP_METHOD_ID@ macro in the OTP
Method Selection page. Use a unique value across different methods. For example, sms.

deliveryType
Specifies the delivery plug-in that delivers the one-time password. The value must match one of the
types in the DeliveryTypesToOTPDeliveryModuleIds parameter of the OTP response file. For
example, sms_delivery.

deliveryAttribute
Specifies an attribute that is associated with the delivery type. The value depends on the one-time
password provider plug-in for the delivery type. For example:

• For SMS delivery, the value is the mobile number of the user. For example, mobileNumber.
• For email delivery, the value is the email address of the user. For example, emailAddress.
• For no delivery, the value is an empty string.

label
Specifies the unique delivery method to the user. For time-based and counter-based one-time
password, use this attribute to specify the secret key of the user. If label is not specified, the time-
based and counter-based one-time password code retrieves the key by invoking the user information
provider plug-in. This parameter replaces the @OTP_METHOD_LABEL@ macro in the OTP Method
Selection page.

otpType
Specifies the one-time password provider plug-in that generates and verifies the password. The value
must match one of the types in the OTPTypesToOTPProviderModuleIds parameter of the OTP
response file. For example, mac_otp.

userInfoType
Specifies which user information provider plug-in to use to retrieve user information that is required
to calculate the one-time password. This parameter is only required if user information is used for
calculation of the one-time password.

To customize one-time password delivery, you can do one of the following actions:

• Create your own mapping rules that are based on the sample OTPGetMethods mapping rule.
• Modify the sample OTPGetMethods mapping rule.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

OTPGenerate mapping rule
OTPGenerate mapping rule specifies the generation of the one-time password for the user.

You can use the OTPGenerate mapping rule in the following configuration:

Modify the one-time password type of the selected method to generate the one-time password
Indicates the one-time password type to determine the one-time password Provider plug-in that
generates the one-time password for the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

Chapter 18. Global settings 339

OTPDeliver mapping rule
The OTPDeliver mapping rule specifies the delivery method of the one-time password to the user.

Use the following OTPDeliver mapping rules:

Generate the one-time password hint
The one-time password hint is a sequence of characters that is associated with the one-time
password. The one-time password hint is displayed in the One-Time Password Login page. It is
also sent to the user together with the one-time password.

You can customize the way the one-time password hint is generated by modifying the following
section in the default OTPDeliver mapping rule:

var otpHint = Math.floor(1000 + (Math.random() * 9000));

Note: See the comments in the mapping rule for more details.

Generate the formatted one-time password
The formatted one-time password is the formatted version of the one-time password. The
formatted one-time password, instead of the actual one-time password, is sent to the user. For
example, for one-time password hint abcd, and one-time password 12345678, you can set the
formatted one-time password as abcd-12345678. For one-time password hint efgh, and one-time
password87654321, you can set the one-time password as efgh#8765#4321.

You can customize the way that the one-time password is generated by modifying the following
section in the sample OTPDeliver mapping rule:

var otpFormatted = otpHint + "-" + otp;

Note: See the comments in the mapping rule for more details.

Modify the delivery type of the selected method for delivering the one-time password
The delivery type specifies the one-time password Delivery plug-in that delivers the one-time
password to the user.

Modify the delivery attribute of the selected method to deliver
The delivery attribute is an attribute that is associated with delivery type. The meaning of the delivery
attribute depends on the one-time password provider plug-in for the delivery type. For example, for
SMS delivery type, the delivery attribute is the mobile number of the user. For email delivery type, the
delivery attribute is the email address of the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

OTPVerify mapping rule
OTPVerify specifies the verification of the one-time password that is submitted by the user.

You can customize the sample OTPVerify mapping rule to modify the following verification rules:

Modify the one-time password type of the user
Indicates the one-time password type to determine the one-time Provider plug-in that verifies the
one-time password submitted by the user.

Set the authentication level of the user
After one-time password authentication completes, a credential is issued that contains the
authentication level of the user. You can customize the authentication level by modifying the following
section in the mapping rule:

var authenticationLevel = contextAttributesAttributeContainer.getAttributeValueByNameAndType
 ("otp.otp-callback.authentication-level", "otp.otp-callback.type");
var attributeAuthenticationLevel = new Attribute("AUTHENTICATION_LEVEL",

340 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 "urn:ibm:names:ITFIM:5.1:accessmanager", authenticationLevel);
attributeContainer.setAttribute(attributeAuthenticationLevel);

Enforce the number of times the user can submit the one-time password in the one-time password
login page

If a user exceeds the permitted number of times to submit a one-time password, an error message
displays. You can customize the number of times that the user can submit the one-time password in
the one-time password login page by modifying the following section in the mapping rule:

var retryLimit = 5;

By default, this option is set to false.

Note: This setting applies only to MAC OTP.

Identify the secret key of a user
When a user registers with a time-based one-time password application, they are assigned a secret
key. Store the secret key in this mapping rule for verification of the user by modifying the following
code:

var secretStr = new java.lang.String(SECRET_KEY_GOES_HERE);

By default, this option is set to false.
Override the one-time password target URL

By default, a user is redirected to a target URL upon completion of an one-time password flow. That
target URL was either the initial cached request at the WebSEAL or reverse proxy instance or was
specified as part of the one-time password invocation using the Target query string parameter.
You can use the OTPVerify mapping rule to override this target URL by adding an attribute called
itfim_override_targeturl_attr. This attribute ensures that at the completion of a successful
one-time password flow, the user is redirected to the override target instead of the initial target.
Example code:

var targetUrl = new java.lang.String("http://www.example.com/url");
var targetUrlAttr = new Attribute("itfim_override_targeturl_attr",
"urn:ibm:names:ITFIM:5.1:accessmanager", targetUrl);
attributeContainer.setAttribute(targetUrlAttr);

To customize one-time password verification, you can do one of the following actions:

• Create your own verification rules that are based on the sample OTPVerify mapping rule.
• Modify the sample OTPVerify mapping rule.

You can also customize the mapping rule to use access control context data. For details see, “Customizing
one-time password mapping rules to use access control context data” on page 84.

Customizing one-time password mapping rules to use access control context
data
Some authentication scenarios require that context data used in making an access control decision be
available during authentication. You can configure Security Verify Access to capture the content data and
make it available to the one-time password mapping rules.

About this task
You can configure Security Verify Access to perform access control policy evaluation when a resource is
accessed. The access control policy evaluation can result on a permit with authentication. The required
authentication is determined by the access control policy. Some scenarios require that the context data
used to perform the access control decision be available during the authentication. In order to provide
access to the access control context data, you can persist the context information for the predefined
authentication obligations that perform one-time password authentication.

Chapter 18. Global settings 341

Note: The context data available is limited to the attributes referenced by the access control policy and
the request attributes provided by the policy enforcement point. If the policy relies on the risk score to
perform access control, the context data available also includes the risk-profile attributes.

Procedure
1. Log in to the local management interface.
2. Click AAC > Global Settings > Advanced Configuration.
3. Select attributeCollection.authenticationContextAttributes.

4. Click for the property.
5. In the text field, enter a list of comma separated attribute names to be collected during the

authorization policy evaluation.
For example, if your scenario requires the authentication level and host of the request the
configuration property, enter authenticationLevel, http:host.
The access control context data is provided to the one-time password mapping rules as context
attributes values. The following format is used:

<stsuuser:Attribute name="AttributeName-AttributeURI"
 type=""authn.service.context.attribute.type.AttributeDatatype">
<stsuuser:Value>AttributeValue</stsuuser:Value>
</stsuuser:Attribute>

Where:

• name is the attribute name and attribute identifier separated by a dash (-).
• type is the attribute data type prefixed by authn.service.context.attribute.type.

For example the authenticationLevel attribute value is added as:

<stsuuser:Attribute name="authenticationlevel-urn-ibm:
 security:subject:authenticationlevel"
 type="authn.service.context.attribute.type.Integer">
<stsuuser:Value>1</stsuuser:Value>
</stsuuser:Attribute>

6. Click OK.
7. When you edit a property, a message indicates that there are undeployed changes. If you have finished

making changes, deploy them.

For more information, see Chapter 15, “Deploying pending changes,” on page 227.
8. Configure the mapping rule to use the information collected by this property as the context attribute.

a) Click AAC.
b) Under Policy, click Authentication.
c) Click Advanced.
d) Select and export the mapping rule.
e) Use a text editor and modify the rule to access the attributes collected during the access control

policy evaluation in the following format:

var accessControlAttribute =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("AttributeName-AttributeURI",
"authn.service.context.attribute.type.AttributeDatatype");

Where:

• name is the attribute name and attribute identifier separated by a dash (-).
• type is the attribute data type prefixed by authn.service.context.attribute.type.

342 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

For example, the authenticationLevel attribute can be obtained using the following
information:

var accessControlAuthenticationLevel =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("authenticationlevel-urn-ibm:security:subject:authenticationlevel",
"authn.service.context.attribute.type.Integer");

f) Save the mapping rule and take note of its location.
g) In the local management interface, click AAC.
h) Under Policy, click Authentication.
i) Click Advanced.
j) Select the mapping rule you want to replace.

k) Click Replace. The Replace Mapping Rule panel opens.
l) Click the field or the Browse button and select the file for your saved mapping rule.

Attention: The name of the mapping rule cannot be replaced. The name of the uploaded file
is ignored.

m) Click OK to upload the mapping rule.

Managing OAuth 2.0 mapping rules
Use the mapping rules to customize the methods for the OAuth 2.0 or OIDC flow.

About this task
The OAuth 2.0 and OIDC mapping rules are JavaScript code that run during the OAuth 2.0 or OIDC flow.
You can view, export, and replace OAuth or OIDC mapping rules.

View the mapping rule if you want to see the content and structure of the mapping rule. Export the
mapping rule if you want to save a copy of the mapping rule. You can also edit this copy. Replace a
mapping rule if you want to use a new mapping rule.

Procedure
1. Log in to the local management interface.
2. Click AAC > Policy > OpenID Connect and API Protection or Federation > Manage > OpenID

Connect and API Protection.
3. Click Mapping Rules.
4. Perform one or more of the following actions:

View a mapping rule

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the mapping rule is displayed.
c. Click OK to close the panel.

Export a mapping rule

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:

Note: Use an existing mapping rule as the basis for the updated mapping rule.

a. Select a mapping rule that you want to replace.

Chapter 18. Global settings 343

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or Browse and select a file.
d. Click OK to upload the mapping rule.

5. When you replace a mapping rule, the appliance displays a message that there are undeployed
changes. If you are finished with the changes, deploy them.

For more information, see Chapter 15, “Deploying pending changes,” on page 227.

Related reference
“OAuth 2.0 and OIDC mapping rule methods” on page 163
You can use Java methods to customize the PreTokenGeneration and PostTokenGeneration
mapping rules.

OAuth 2.0 mapping rule methods
You can use Java methods to customize the PreTokenGeneration and PostTokenGeneration
mapping rules.

The sample mapping rules are oauth_20_pre_mapping.js and oauth_20_post_mapping.js.

You can access the sample mapping rules from the LMI. Navigate to System > Secure Settings > File
Downloads. Continue to either of the following locations:

• access_control > examples > mapping rules
• federation > examples > mapping rules

The following limitations affect the attribute keys and values that are associated with the state_id by
using the OAuthMappingExtUtils class:

• Keys cannot be null or empty.
• Values cannot be null but can be empty.
• Associated key-value pairs are read and write-allowed and not-sensitive.
• Some keys are reserved for system use and cannot be modified by this utility. For example, the keys and

values for the API PIN protection.

For more information, see the Javadoc. In the LMI, navigate to System > Secure Settings > File
Downloads. Continue to either access_control > doc or federation > doc.

See also “JavaScript Allowlist” on page 348.

Actions to be performed in mapping rules
For certain grant types, you must perform these actions in the pre-token mapping rule.
Resource owner password credentials (ROPC) grant type flow

For the ROPC flow, the pre-token mapping rule is responsible for performing validation of the user
name and password. This validation can be performed in various ways. The pre-defined rule that is
included with the appliance provides the following examples:

• The java class PluginUtils can be used to validate a user name and password against a
configured LDAP.

To configure the LDAP to be used, see “Configuring username and password authentication” on
page 50.

• Validate the user name and password through an HTTP callout. The mapping rule sends the user
name and password to a web service. As the format of the messages is not fixed, various services
(for example, REST, SOAP, SCIM) can be used for this purpose. Javadoc on the HTTP client and all
other exposed Java classes available in mapping rules can be downloaded from the appliance File
Downloads page under the path access_control > doc > ISAM-javadoc.zip.

344 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

JWT and SAML bearer grant type flow

For the JWT or SAML assertion bearer grant type flows, the pre-token mapping rule must perform the
following actions:

• Validate the assertion, including but not limited to:

– Validate the signature (if signed).
– Decrypt the assertion (if encrypted).
– Check the expiry and "not before" value of the assertion.
– Ensure that the issuer is a trusted party.

• Extract the subject from the assertion and set the USERNAME field of the STSUU.

The USERNAME field of the STSUU can be set via a call, for example:

// username is a variable containing the subject of the assertion

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("username","urn:ibm:names:ITFIM:oauth:rule:decision", username));

The validation of the assertion can be performed in various ways:

– HTTP callout to a web service. Use the HTTP client to perform this.
– WS-Trust request to the Secure Token Service (STS).

- A chain must be configured to consume the assertion and return the required information.
- The STSClientHelper will be called to invoke the STS via HTTP. For more information about

this class, see the Javadoc that is embedded in the appliance.

Any attributes of the assertion can be extracted and associated to the OAuth grant to be used
later. For more information about associating attributes, see “OAuth 2.0 and OIDC mapping rule
methods” on page 163.

• The type of the username attribute added must be
"urn:ibm:names:ITFIM:oauth:rule:decision" to ensure that only a value populated from
the rule is used.

MMFA mapping rule methods
Customize the OAuth PreTokenGeneration and PostTokenGeneration mapping rules by using these
methods.

Sample mapping rules are available from System > Secure Settings > File Downloads under the
access_control > examples > mapping rules directory.

The following limitations affect the attribute keys and values that are associated with the state_id by
using the MMFAMappingExtUtils class:

• Keys cannot be null or empty.
• Values can only be null or empty when specified.
• Associated key-value pairs are read-only and not case sensitive.
• The push token is read-only and case sensitive.

registerAuthenticator

public static String registerAuthenticator(
 String stateId
)

This method performs the final steps of registering an authenticator. Use the following parameters:

Chapter 18. Global settings 345

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

These responses come from the runtime after registration.

• The new authenticator's ID if successful.
• Null if not successful.

savePushToken

public static boolean savePushToken(
 String stateId,
 String pushToken,
 String applicationID
)

This method saves the push token and application ID with the authorization grant state ID. Use the
following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

pushToken

The push token the authenticator application has received from its push notification service
provider. This parameter cannot be null or empty.

applicationID

The application ID of the authenticator application. This parameter can be null or empty.

These responses come from the runtime.

• True if successful.
• False if not successful.

savePushToken

public static boolean savePushToken(
 String stateId,
 String pushToken
)

This method saves the push token and application ID with the authorization grant state ID. Use the
following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

pushToken

The push token the authenticator application has received from its push notification service
provider. This parameter cannot be null or empty.

These responses come from the runtime.

• True if successful.
• False if not successful.

saveDeviceAttributes

public static boolean saveDeviceAttributes(
 String stateId,
 String deviceName,
 String deviceType,
 String osVersion,

346 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 String fingerprintSupport,
 String frontCameraSupport,
 String tenantId
)

This method saves various device attributes with the authorization grant state ID. Use the following
parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

deviceName

The name of the device the authenticator is installed on. This parameter can be null or empty. If
empty, the value is cleared.

deviceType

The type of the device the authenticator is installed on. This parameter can be null or empty. If
empty, the value is cleared.

osVersion

The OS version of the device the authenticator is installed on. This parameter can be null or empty.
If empty, the value is cleared.

fingerprintSupport

The type of fingerprint sensor that is supported by the device. This parameter can be null or
empty. If empty, the value is cleared.

frontCameraSupport

flag that indicates if the device has a front facing camera. This parameter can be null or empty. If
empty, the value is cleared.

tenantId

The tenant ID for this registration, if the authenticator application is multi-tenant. This parameter
can be null or empty. If empty, the value is cleared.

These responses come from the runtime.

• True if successful.
• False if not successful.

XML Mapping Rules Method
Customize mapping rules by using these methods from the XMLExtUtils class.

Sample mapping rules are available from System > Secure Settings > File Downloads, under the
access_control > examples > mapping rules directory.

getNode

public static Node getNode(String xpath, Element elem)

public static Node getNode(String xpath, Document doc)

The following methods evaluate an XPath on an XML document or element to retrieve a Node. Use the
following parameters:
xpath

The XPath to evaluate. This parameter cannot be null or empty.
elem

The XML element on which to evaluate the specified XPath.

Chapter 18. Global settings 347

doc
The XML document on which to evaluate the specified XPath.

The following responses are expected:

• A node, if successful
• Null, if not successful

getNodes

public static NodeList getNodes(String xpath, Element elem)

public static NodeList getNodes(String xpath, Document doc)

The following methods evaluate an XPath on an XML document or element to retrieve a Node. Use the
following parameters:
xpath

The XPath to evaluate. This parameter cannot be null or empty.
elem

The XML element on which to evaluate the specified XPath.
doc

The XML document on which to evaluate the specified XPath.

The following responses are expected:

• A NodeList, if successful
• Null, if not successful

See JavaScript whitelist.

JavaScript Allowlist
Advanced Access Control JavaScript mapping rules and Federation mapping rules call Java code from
JavaScript. The set of classes that can be called is restricted.

Exercise reasonable caution when you call Java code from JavaScript rules to ensure that accidental
damage to appliance resources is avoided.

348 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Common classes allowed in one-time password, OAuth or API protection, dynamic attributes, and
JavaScript PIP, federation mapping rules, and access policies.

java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Class
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.reflect.Array
java.lang.Short
java.lang.String
java.lang.System

java.io.ByteArrayInputStream
java.io.ObjectInputStream
java.io.PrintStream

java.math.BigDecimal

java.util.ArrayList **
java.util.Base64
java.util.Base64$Decoder
java.util.Base64$Encoder
java.util.Date
java.util.HashSet **
java.util.HashMap **
java.util.Iterator
java.util.List
java.util.logging.Level
java.util.Map
java.util.Set
java.util.UUID

com.ibm.security.access.httpclient.HttpClient
com.ibm.security.access.httpclient.HttpResponse
com.ibm.security.access.httpclient.Headers
com.ibm.security.access.httpclient.Parameters
com.ibm.security.access.httpclient.HttpClientV2
com.ibm.security.access.httpclient.RequestParameters
com.ibm.security.access.scimclient.ScimClient
com.ibm.security.access.scimcleint.ScimConfig
com.ibm.security.access.ciclient.CiClient
com.ibm.security.access.ciclient.CiClientV2
com.tivoli.am.rba.attributes.AttributeIdentifier
com.tivoli.am.rba.extensions.RBAExtensions
com.tivoli.am.rba.fingerprinting.ValueContainerIdentifierAdapter
com.tivoli.am.rba.extensions.Attribute$Category
com.tivoli.am.rba.extensions.Attribute$DataType
com.tivoli.am.rba.extensions.Attribute
com.tivoli.am.rba.extensions.PluginUtils
com.tivoli.am.fim.trustserver.sts.utilities.XMLExtUtils

** Inner classes for these classes are not supported. Methods that involve an inner class
implementation of an interface are not available. For example, do not use the following methods in
java.util.HashMap:

• Collection<V> values()
• Set<K> keySet()
• Set<Map.Entry<K,V>> entrySet()

For more information about dynamic attributes, see Dynamic attributes.

For information about federation mapping rules, see Mapping rules.

Chapter 18. Global settings 349

Additional classes allowed in one-time password, OAuth or API protection mapping rules,
federation mapping rules, and access policies

com.tivoli.am.fim.base64.BASE64Utility
com.tivoli.am.fim.fedmgr2.trust.util.LocalSTSClient
com.tivoli.am.fim.fedmgr2.trust.util.LocalSTSClient$LocalSTSClientResult
com.tivoli.am.fim.saml20.protocol.extension.js.JSMessageExtensionContext
com.tivoli.am.fim.trustserver.sts.modules.http.stsclient.STSClientHelper
com.tivoli.am.fim.trustserver.sts.oauth20.Client
com.tivoli.am.fim.trustserver.sts.oauth20.Grant
com.tivoli.am.fim.trustserver.sts.oauth20.Token
com.tivoli.am.fim.trustserver.sts.oauth20.Definition
com.tivoli.am.fim.trustserver.sts.oauth20.OidcDefinition
com.tivoli.am.fim.trustserver.sts.STSModuleException
com.tivoli.am.fim.trustserver.sts.STSUniversalUser *
com.tivoli.am.fim.trustserver.sts.utilities.HttpResponse
com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtCacheDMAPImpl
com.tivoli.am.fim.trustserver.sts.utilities.InfoCardClaim
com.tivoli.am.fim.trustserver.sts.utilities.KubernetesUtils
com.tivoli.am.fim.trustserver.sts.utilities.MMFAMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.OAuthMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.QueryServiceAttribute
com.tivoli.am.fim.trustserver.sts.utilities.USCContextAttributesHelper
com.tivoli.am.fim.trustserver.sts.uuser.Attribute *
com.tivoli.am.fim.trustserver.sts.uuser.AttributeList *
com.tivoli.am.fim.trustserver.sts.uuser.AttributeStatement *
com.tivoli.am.fim.trustserver.sts.uuser.ContextAttributes *
com.tivoli.am.fim.trustserver.sts.uuser.Group *
com.tivoli.am.fim.trustserver.sts.uuser.Principal *
com.tivoli.am.fim.trustserver.sts.uuser.RequestSecurityToken *
com.tivoli.am.fim.trustserver.sts.uuser.Subject *
com.tivoli.am.fim.utils.IteratorWrapper
com.tivoli.am.rba.pip.JavaScriptPIP
com.tivoli.am.rba.pip.JavaScriptPIP$Context
java.mail.internet.InternetAddress
com.tivoli.am.fim.saml.misc.Saml20ObjectFactory
com.tivoli.am.fim.saml.protocol.Saml20IDPList
com.tivoli.am.fim.saml.protocol.Saml20IDPListImpl
com.tivoli.am.fim.saml.protocol.Saml20Scoping
com.tivoli.am.fim.saml.protocol.Saml20IDPEntry
com.tivoli.am.fim.saml.protocol.Saml20IDPEntryImpl
com.tivoli.am.fim.saml.protocol.Saml20AuthnRequest
com.tivoli.am.fim.saml.protocol.Saml20ScopingImpl

* The allow list does not contain any implementation of the interfaces that are defined in the
org.w3c.dom package. For example, you cannot use the method org.w3c.dom.Document toXML()
in com.tivoli.am.fim.trustserver.sts.STSUniversalUser.

Additional classes allowed in JavaScript PIP

com.tivoli.am.fim.base64.BASE64Utility
com.tivoli.am.rba.pip.JavaScriptPIP
com.tivoli.am.rba.pip.JavaScriptPIP$Context
com.tivoli.am.rba.rtss.AttributeLocatorImpl

For more information about policy information points, see Managing policy information points.

350 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Additional classes allowed in mapping rules

packages.com.ibm.security.access.user.UserLookupHelper
packages.com.ibm.security.access.user.User
com.ibm.security.access.ldap.utils.AttributeUtil
com.ibm.security.access.ldap.utils.AttributeUtil$AttributeGetResult
com.ibm.security.access.ldap.LdapAttributeGetResult
com.ibm.security.access.ldap.LdapModifyResult
com.ibm.security.access.ldap.LdapSearchResult
com.ibm.security.access.ldap.LdapContextCreateResult
com.sun.jndi.ldap.LdapSearchEnumeration
javax.naming.NamingEnumeration
javax.naming.directory.BasicAttributes
javax.naming.directory.BasicAttribute
javax.naming.directory.SearchResult
com.ibm.security.access.recaptcha.RecaptchaClient
com.ibm.security.access.signing.SigningHelper
javax.crypto.SecretKey
javax.crypto.SecretKeyFactory
javax.crypto.spec.PBEKeySpec
com.ibm.crypto.provider.PBEKey
com.ibm.crypto.provider.PBKDF2KeyImpl
com.ibm.ws.logging.internal.impl.BaseTraceService$TeePrintStream
com.tivoli.am.fim.email.Email
com.tivoli.am.fim.email.EmailDeliveryException
com.tivoli.am.fim.email.EmailSender
com.tivoli.am.fim.email.EmailSender$SendStatus

For information on mapping rules, see:

• “Managing OAuth 2.0 and OIDC mapping rules” on page 162
• “Managing mapping rules” on page 79

Additional classes to manage server connections

com.ibm.security.access.server_connections.LdapServerConnection
com.ibm.security.access.server_connections.LdapServerConnection$LdapHost
com.ibm.security.access.server_connections.ServerConnection
com.ibm.security.access.server_connections.ServerConnectionFactory
com.ibm.security.access.server_connections.SmtpServerConnection
com.ibm.security.access.server_connections.WebServerConnection
com.ibm.security.access.server_connections.CiServerConnection

For more information, see “Managing server connections” on page 370.

Classes to use with InfoMap

com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapResult
com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapString
com.tivoli.am.fim.authsvc.local.client.AuthSvcClient

For more information, see “Configuring an Info Map authentication mechanism” on page 60.

Chapter 18. Global settings 351

Classes to use in Access Policies

com.ibm.security.access.policy.Context
com.ibm.security.access.policy.Cookie
com.ibm.security.access.policy.decision.ChallengeDecisionHandler
com.ibm.security.access.policy.decision.DecisionHandler
com.ibm.security.access.policy.decision.DenyDecisionHandler
com.ibm.security.access.policy.decision.Decision
com.ibm.security.access.policy.decision.DecisionType
com.ibm.security.access.policy.decision.HtmlPageChallengeDecisionHandler
com.ibm.security.access.policy.decision.HtmlPageDecisionHandler
com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler
com.ibm.security.access.policy.decision.RedirectChallengeDecisionHandler
com.ibm.security.access.policy.decision.RedirectDecisionHandler
com.ibm.security.access.policy.decision.RedirectDenyDecisionHandler
com.ibm.security.access.policy.oauth20.AuthenticationContext
com.ibm.security.access.policy.oauth20.AuthenticationRequest
com.ibm.security.access.policy.oauth20.Claim
com.ibm.security.access.policy.oauth20.ProtocolContext
com.ibm.security.access.policy.ProtocolContext
com.ibm.security.access.policy.Request
com.ibm.security.access.policy.saml20.AuthnRequest
com.ibm.security.access.policy.saml20.ProtocolContext
com.ibm.security.access.policy.saml20.RequestedAuthnContext
com.ibm.security.access.policy.Session
com.ibm.security.access.policy.user.Attribute
com.ibm.security.access.policy.user.Group
com.ibm.security.access.policy.user.User

For more information, see Access policies.

Additional classes to customize FIDO2 flows

com.tivoli.am.fim.fido.mediation.FIDO2Registration
com.tivoli.am.fim.fido.mediation.FIDO2RegistrationHelper
com.tivoli.am.fim.fido.server.FIDOClientManager
com.tivoli.am.fim.fido.server.LocalFIDOClient

For more information, see FIDO2 Mediation and FIDO Client Manager

Additional classes to manage 2FA registrations

com.tivoli.am.fim.registrations.Mechanism
com.tivoli.am.fim.registrations.MechanismList
com.tivoli.am.fim.registrations.MechanismRegistrationHelper
com.tivoli.am.fim.registrations.cloud.CloudMechanism
com.tivoli.am.fim.registrations.local.FIDORegistration
com.tivoli.am.fim.registrations.local.MMFARegistration
com.tivoli.am.fim.registrations.local.HOTPRegistration
com.tivoli.am.fim.registrations.local.TOTPRegistration
com.tivoli.am.fim.registrations.local.KnowledgeQuestionRegistration
com.tivoli.am.fim.registrations.local.EULAStatus
com.tivoli.am.fim.registrations.local.MMFATransactionData

Managing JavaScript mapping rules
Create, edit, or delete JavaScript mapping rules.

About this task
When you activate the Federation offering, the following mapping rule types are available:

OAUTH
OAuth mapping rule.

OIDC
OpenID Connect mapping rule.

352 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

SAML2_0
SAML 2.0 mapping rule.

SAML2_0_AUTHN_REQ
SAML 2.0 Authentication Request mapping rule

Procedure
1. Click Federation.
2. Under Global Settings, click Mapping Rules.

All existing mapping rules are displayed.
3. You can create, edit, or delete a mapping rule.

Create a mapping rule

a. Click Add.
b. In the Content field, enter the JavaScript mapping rule content.
c. In the Name field, enter a name for the rule.
d. In the Category field, select the type of the mapping rule from the list.

Note: Only the mapping rule types that apply to your current activated offering are displayed in
the list.

e. Click Save.

Modify a mapping rule

a. Select the mapping rule to modify.
b. Click Edit.
c. Modify the mapping rule in the Content field as needed.

Note: The Name and Category fields are not editable.
d. Click Save.

Delete a mapping rule

a. Select the mapping rule to delete.
b. Click Delete.
c. Click Delete to confirm.

Replace a mapping rule

a. Select the mapping rule to replace.
b. Click Replace.
c. Click the Browse button and select the local file that contains the new contents.
d. Click OK.

Import a mapping rule

a. Click Import.
b. In the Name field, enter a name for the rule.
c. In the Category field, select the type of the mapping rule from the list.

Note: Only the mapping rule types that apply to your current activated offering are displayed in
the list.

d. Click the Browse button and select the local file that contains the new contents.
e. Click OK.

Export a mapping rule

a. Select the mapping rule to export.

Chapter 18. Global settings 353

b. Click Export.

Import multiple mapping rules

a. Click Manage and select Import Zip from the drop-down menu.
b. Click the Browse button and select the local zip file that contains the mapping rules to import.

The mapping rules must exist in the root directory of the zip file alongside a manifest.json
file that describes each new mapping rule.

The manifest.json file is an array of entries where each entry must contain each of:
name

The name of the mapping rule.
category

The category of the mapping rule.
fileName

The name of the file in the zip that contains the mapping rule contents.

For example:

[
 {“name”:”ruleA”, “category”:”InfoMap”, “fileName”:”ruleA.js”},
 {“name”:”ruleB”, “category”:”AuthSvc”, “fileName”:”ruleB.js”}
]

An error will be returned if:

• A file exists without a manifest entry.
• A manifest entry exists for a non existent file.
• A manifest entry does not contain name, category, and fileName.

c. Click OK.

Exporting multiple mapping rules

a. Click Manage and select Export Zip from the drop-down menu.

Customizing SAML 2.0 identity mapping
Use mapping rules to map local identities to SAML tokens and to map SAML tokens to local identities.

You can use an attribute source, such as LDAP, for the identity mapping. See Managing attribute sources.

You can use an HTTP external user mapping to map a local identity to a SAML token and to map SAML
token to a local identity.

See Managing JavaScript mapping rules for information about how to create or modify mapping rules.

Mapping a local identity to a SAML 2.0 token
You can map a local identity to a SAML 2.0 token for an identity provider.

The Security Verify Access server places the local user identity information into an XML document that
conforms to the security token service universal user (STSUUSER) schema. The identity provider issues a
SAML 2.0 token to the service provider. It generates the SAML 2.0 token based on the local identity of the
user. You can customize how the local identity is converted into a SAML 2.0 token by using a mapping rule.

Security Verify Access first converts the local identity to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a SAML 2.0 token.

Your mapping rule does not operate directly on local identity or SAML 2.0 token. Instead, it operates on
the STS Universal User. Any modification that you make to an STS Universal User has an impact on the
output SAML 2.0 token.

354 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

The mapping rule is responsible for the following tasks:

1. Mapping Principal Attr Name to a Principal Name entry. When the token module generates the token,
this Principal name is not directly used. Instead, the value in the Name field is sent as input to the
alias service. The alias service obtains the alias name, name identifier, for the principal, and places the
returned alias in the generated token module.

The type must be valid for SAML. For example:

urn:oasis:names:tc:SAML:2.0:assertion

2. Setting the authentication method to the password mechanism. This action is required by the SAML
standard.

3. Setting the audience of the audience restriction condition to the value of the STSUU element
AudienceRestriction. If this STSUU element is not present, the audience is set to the Provider
ID of the federation partner.

4. Populating the attribute statement of the assertion with the attributes in the AttributeList in the
In-STSUU. This information becomes custom information in the token.

Custom attributes might exist that are required by applications that use information that is to be
transmitted between federation partners.

5. Specifying whether the assertion conditions should contain the <saml:OneTimeUse></
saml:OneTimeUse> element. If so, insert a special context attribute into the STSUU as shown:

var oneTimeUseAttr = new Attribute("AssertionIncludeOneTimeUse","urn:oasis:names:tc:SAML:2.0:assertion",
"true");
stsuu.addContextAttribute(oneTimeUseAttr);

6. Setting the NameID attribute in the assertion with Transient NameId format. This action is useful when
you want to specify a name value to use instead of the default UUID that is generated by the runtime
for Transient NameID format.

To replace the UUID, create a principal name attribute of type
urn:oasis:names:tc:SAML:2.0:nameid-format:transient, with its value provided by user.

The examples below show the user-provided value UserGeneratedTransientId but it could be any
other value. The value of the specified STSUU principal name will be set as the NameID in the SAML
assertion.

Example mapping rule

importPackage(Packages.com.tivoli.am.fim.trustserver.sts.uuser);
var transientNameId = "UserGeneratedTransientId";
stsuu.addPrincipalAttribute(new Attribute("name",
 "urn:oasis:names:tc:SAML:2.0:nameid-format:transient", transientNameId));

Example STSUU values after mapping rule applied

 <stsuuser:Attribute name="name" type="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">
 <stsuuser:Value>UserGeneratedTransientId</stsuuser:Value>
 </stsuuser:Attribute>

Example SAML assertion NameID with Transient NameId formats

<saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"
 NameQualifier="https://ip-wga/isam/sps/saml20ip/saml20"
 SPNameQualifier="https://sp-wga/isam/sps/saml20sp/saml20"
 >UserGeneratedTransientId</saml:NameID>

7. Determine if the partner requires a specific SPNameQualifier within NameID of assertion for
transient identifiers. To change SPNameQualifer within NameID of assertion, insert a special context
attribute into the STSUU with a value agreed with partner as shown in the following example:

var SPNameQualifierAttr = new
Attribute("AssertionChangeSPNameQualifier","urn:oasis:names:tc:SAML:2.0:assertion","http://sp

Chapter 18. Global settings 355

/target/app");
stsuu.addContextAttribute(SPNameQualifierAttr);

Mapping a SAML 2.0 token to a local identity
You can map a SAML 2.0 token to a local identity for a service provider.

A service provider consumes a SAML 2.0 token that is issued by an identity provider. It generates the local
identity of the user based on a SAML 2.0 token. You can customize how a SAML 2.0 token is converted
into the local identity of the user by using a mapping rule.

Security Verify Access first converts a SAML 2.0 token to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a local identity of the user.

Your mapping rule does not operate directly on the local identity or SAML 2.0 token. Instead, it operates
on the STS Universal User. Any modifications that you make on the STS Universal User impacts the output
local identity of the user.

STSRequest and STSResponse access using a JavaScript mapping rule
By using the Default Mapping STS Module and a JavaScript mapping rule, you can perform identity
mapping. The mapping rule can access STSRequest and STSResponse objects.

The following two implicit objects and the classes required by these two objects can be exposed (for
example, Java DOM, XML classes, and so on):

• STSRequest which represents the WS-Trust request
• STSResponse, which represents the WS-Trust response

Use JavaScript code stsrequest.getRequestSecurityToken().getBase() to get the input
security token from the WS-Trust request. This returns the input security token as an instance of the
Java class org.w3c.dom.Element.

Use JavaScript code
stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken
(outputSecurityToken) to set the output security token in the WS-Trust response. The
outputSecurityToken is the output security token represented as an instance of Java class
org.w3c.dom.Element. By default, WS-Trust response contains only one output security token. To return
additional output security tokens, you can use the following JavaScript code:

 stsresponse.addRequestSecurityTokenResponse().setRequestedSecurityToken(outputSecurityToken)

The examples in the following topics show the mapping to and from a base64 encoded JSON string. They
use the Default Mapping module with a JavaScript mapping rule. The JavaScript mapping rule accesses
the STSRequest and STSResponse objects and performs the identity mapping.

Mapping a JSON Web Token to a SAML2 token example
You can map a base64 encoded JSON string to a SAML 2 token by using a JavaScript mapping rule.

About this task
The steps show an end-to-end JSON to SAML2 mapping. STSRequest and STSResponse access using a
JavaScript mapping rule provides a description of this support.

Procedure
1. Create a JavaScript mapping rule by using the local management interface.

a) Select Federation > Global Settings > Mapping Rules.
b) Click Add.

356 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

c) In the Content field, copy and paste the following code:

 importClass(com.tivoli.am.fim.base64.BASE64Utility);
 importClass(com.tivoli.am.fim.trustserver.sts.uuser.Attribute);

 var jwtElement = stsrequest.getRequestSecurityToken().getBase();
 var jwtText = jwtElement.getTextContent();
 var jwtString = new java.lang.String(BASE64Utility.decode(jwtText), "UTF-8");
 var jwt = JSON.parse(jwtString);

 for (var name in jwt) {
 if (jwt.hasOwnProperty(name)) {
 if ("sub".equals(name)) {
 stsuu.addPrincipalAttribute(new Attribute("name",
 "urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress", jwt[name]));
 } else {
 stsuu.addAttribute(new Attribute(name,
"urn:oasis:names:tc:SAML:2.0:attrname-format:basic", jwt[name]));
 }
 }
 }

d) In the Name field, enter jwt_saml.
e) In the Category field, select SAML2_0.
f) Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a) Select Federation > Manage > Security Token Service.
b) Click Templates.
c) Click Add and name the template JSON to SAML2. Click OK.
d) Select the JSON to SAML2 template and add the Default Map Module in Map mode and a Default

SAML 2.0 token in Issue mode.
e) Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created in the previous steps.
a) Within the Security Token Service panel, select Module Chains.
b) Click Add to create the module chain, with the following values:

Table 58. JSON to SAML2 module chain values

Tab: Field Value

Overview: Name JSON to SAML2

Overview: Description base64 encoded JSON string to SAML2
conversion STS chain

Overview: Template JSON to SAML2

Lookup: Request Type Validate

Lookup: Applies to Address jwtappliesto

Lookup: Issuer Address jwtissuer

Properties: Default Map Module (JavaScript file
containing the identity mapping rule

jwt_saml

Properties: Default SAML 2.0 Token (Name of
the organization issuing the assertions)

isam

Properties: Default SAML 2.0 Token (Amount of
time before the issue date that an assertion is
considered valid)

60

Chapter 18. Global settings 357

Table 58. JSON to SAML2 module chain values (continued)

Tab: Field Value

Properties: Default SAML 2.0 Token (Amount
of time that the assertion is valid after being
issued)

60

Properties: Default SAML 2.0 Token (List of
attribute types to include)

*

Use the defaults for all of the fields that are not specified in the table.
c) Save and deploy the changes.

4. Use curl to test the chain.
a) Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">jwtissuer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">
 <wsa:Address>jwtappliesto</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<JWT>ewogICJlbWFpbCI6ICJqb2huLmRvZUBleGFtcGxlLmNvbSIsIAogICJmYW1pbHlfbmFtZSI6ICJkb2UiLCAK
ICAiZ2l2ZW5fbmFtZSI6ICJqb2huIiwgCiAgImlzcyI6ICJpc2FtIiwgCiAgInN1YiI6ICIwMTIzNDU2Nzg5Igp9</
JWT>
 </wst:Base>
 </ns1:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold embedded element, <JWT> </JWT>, is the input to the chain. This is a Base64 encoded
JSON string that contains the following data::

{
 "email": "john.doe@example.com",
 "family_name": "doe",
 "given_name": "john",
 "iss": "isam",
 "sub": "0123456789"
}

b) Save this file as jwt.xml.
c) Run the following curl command, where jwt.xml is the WS-Trust 1.2 message:

curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@jwt.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-
ENV:Header>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-open.org/
ws-sx/ws-trust/200512">

358 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 <wst:RequestSecurityTokenResponse xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="uuidc1288a62-0153-1f8b-bf2a-b4c46f51cd03">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>jwtappliesto</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Lifetime xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wsu:Created>2016-03-29T06:56:13Z</wsu:Created>
 <wsu:Expires>2016-03-29T06:57:13Z</wsu:Expires>
 </wst:Lifetime>
 <wst:RequestedSecurityToken>
 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ID="Assertion-
uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03"
 IssueInstant="2016-03-29T06:56:13Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:entity">isam</saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress">
 0123456789</saml:NameID>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData
NotOnOrAfter="2016-03-29T06:57:13Z"></saml:SubjectConfirmationData>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2016-03-29T06:55:13Z"
NotOnOrAfter="2016-03-29T06:57:13Z">
 <saml:AudienceRestriction>
 <saml:Audience>jwtappliesto</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2016-03-29T06:56:13Z">
 <saml:AuthnContext>

<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password
 </saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="given_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">john</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="email"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue
xsi:type="xs:string">john.doe@example.com</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="iss"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">isam</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="family_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">doe</
saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:RequestedSecurityToken>

The JSON string is mapped into the SAML assertion, as shown by the previous bold text. The
attributes in the SAML2 assertion are mapped from JSON attributes.

<wst:RequestedAttachedReference xmlns:wss="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wss:SecurityTokenReference xmlns:wss11="http://docs.oasis-
open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
 wss11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0">
 <wss:KeyIdentifier

Chapter 18. Global settings 359

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd"
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLID">
 Assertion-uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03</
wss:KeyIdentifier>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</
wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/
valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

Related tasks
Mapping a SAML2 token to a base64 encoded JSON string example

Mapping a SAML2 token to a JSON Web Token example
You can map a SAML 2 token to a base64 encoded JSON string by using a JavaScript mapping rule.

About this task
The steps show an end-to-end SAML to JSON mapping. STSRequest and STSResponse access using a
JavaScript mapping rule provides a description of this support.

Procedure
1. Create a JavaScript mapping rule using the local management interface.

a) Select Federation > Global Settings > Mapping Rules.
b) Click Add.
c) In the Content field, copy and paste the following code:

 importClass(com.tivoli.am.fim.base64.BASE64Utility);
 importClass(com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils)

 var jwt = {};

 var it = stsuu.getPrincipalAttributes();
 var jt = stsuu.getAttributes();

 while (it.hasNext()) {
 var attribute = it.next();
 var name = new String(attribute.getName());
 var value = new String(attribute.getValues()[0]);

 if ("name".equals(name)) {
 jwt["sub"] = value;
 } else {
 jwt[name] = value;
 }
 }

 while (jt.hasNext()) {
 var attribute = jt.next();
 var name = new String(attribute.getName());
 var value = new String(attribute.getValues()[0]);

 jwt[name] = value;
 }

 var document = IDMappingExtUtils.newXMLDocument();
 var jwtString = JSON.stringify(jwt);
 var jwtText = document.createTextNode(BASE64Utility.encode((new
java.lang.String(jwtString)).getBytes("UTF-8")));
 var jwtElement = document.createElement("JWT");

360 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 jwtElement.appendChild(jwtText);

 stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken(jwtElement);

d) In the Name field, enter saml_jwt.
e) In the Category field, select SAML2_0.
f) Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a) Select Federation > Manage > Security Token Service.
b) Click Templates.
c) Click Add and name the template SAML2 to JSON. Click OK.
d) Select the SAML2 to JSON template and add the Default SAML 2.0 Token in Validate mode and a

Default Map Module in Map mode.
e) Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created in the previous steps.
a) Within the Security Token Service panel, select Module Chains.
b) Click Add to create a module chain, with the following values:

Table 59. SAML2 to JSON module chain values

Tab: Field Value

Overview: Name SAML2 to JSON

Overview: Description SAML2 to base64 encoded JSON string
conversion STS chain

Overview: Template SAML2 to JSON

Lookup: Request Type Validate

Lookup: Applies to Address SAML2_AppliesTo

Lookup: Issuer Address SAML2_Issuer

Properties: Default Map Module (JavaScript file
containing the identity mapping rule

saml_jwt

Use the defaults for all of the fields not in the table.
c) Save and deploy the changes.

4. Use curl to test the chain.
a) Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">SAML2_Issuer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">
 <wsa:Address>SAML2_AppliesTo</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>

Chapter 18. Global settings 361

<wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 ID="Assertion-uuidbcb46a39-0153-1337-8efa-fec506fb7461"
IssueInstant="2016-03-28T10:10:53Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">isam</
saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress">0123456789</saml:NameID>
 <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData NotOnOrAfter="2016-03-28T10:11:53Z"/>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2016-03-28T10:09:53Z"
NotOnOrAfter="2016-03-29T10:11:53Z">
 <saml:AudienceRestriction>
 <saml:Audience>jwt_saml</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2016-03-28T10:10:53Z">
 <saml:AuthnContext>
 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password</
saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="given_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">john</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="email" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml:AttributeValue xsi:type="xs:string">john.doe@example.com</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="iss" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml:AttributeValue xsi:type="xs:string">isam</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="family_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">doe</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:Base>
 </ns1:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold element in the SAML2 assertion is mapped to the JSON attributes in the result.
b) Save this file as saml2.xml.
c) Run the following curl command, where saml2.xml is the WS-Trust 1.2 message:

curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@saml2.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-
ENV:Header>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-open.org/
ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 wsu:Id="uuidc1676e30-0153-16a8-86b5-c34fd1aca7a8">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>SAML2_AppliesTo</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>

362 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 <wst:RequestedSecurityToken>

<JWT>eyJzdWIiOiIwMTIzNDU2Nzg5IiwiZ2l2ZW5fbmFtZSI6ImpvaG4iLCJOb3RPbk9yQWZ0ZXIiOiIyMDE2LTAz

LTI5VDEwOjExOjUzWiIsIkF1dGhlbnRpY2F0aW9uTWV0aG9kIjoidXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6MS4w

OmFtOnBhc3N3b3JkIiwiZW1haWwiOiJqb2huLmRvZUBleGFtcGxlLmNvbSIsIkF1ZGllbmNlUmVzdHJpY3Rpb25

Db25kaXRpb24uQXVkaWVuY2UiOiJqd3Rfc2FtbCIsImlzcyI6ImlzYW0iLCJJc3N1ZUluc3RhbnQiOiIyMDE2LT

AzLTI4VDEwOjEwOjUzWiIsImZhbWlseV9uYW1lIjoiZG9lIiwiTm90QmVmb3JlIjoiMjAxNi0wMy0yOFQxMDowO

To1M1oiLCJBdXRoZW50aWNhdGlvbkluc3RhbnQiOiIyMDE2LTAzLTI4VDEwOjEwOjUzWiIsImlzc3VlciI6Iml
 zYW0ifQ==</JWT>
 </wst:RequestedSecurityToken>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</
wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/
valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

The bold embedded element, <JWT> </JWT>) , is the result in a Base64 encoded JSON Web
Token:

{
 "sub": "0123456789",
 "given_name": "john",
 "NotOnOrAfter": "2016-03-29T10:11:53Z",
 "AuthenticationMethod": "urn:oasis:names:tc:SAML:1.0:am:password",
 "email": "john.doe@example.com",
 "AudienceRestrictionCondition.Audience": "jwt_saml",
 "iss": "isam",
 "IssueInstant": "2016-03-28T10:10:53Z",
 "family_name": "doe",
 "NotBefore": "2016-03-28T10:09:53Z",
 "AuthenticationInstant": "2016-03-28T10:10:53Z",
 "issuer": "isam“
}

Related tasks
Mapping a base64 encoded JSON string to a SAML2 token example

OpenID Connect mapping rules
Mapping rules allow users to customize the information that is propagated from an OpenID Connect
Provider or what is consumed by a Relying Party.

These mapping rules can either be JavaScript, which is invoked internally via the STS, or the mapping can
be performed externally via a HTTP request.

OpenID Connect Provider mapping rules
When you write mapping rules for a provider, the primary goal is to augment the claims that are included
in the ID token.

After mapping rule execution, all attributes in the STSUU will be added to the id_token as a claim, where
the attribute key is the key in the id_token, and the value is the value of the attribute. If there are several
attributes with the same key, then an array containing each attribute will be added to the claim. Some
context information is made available to the user when writing mapping rules; the context attributes of
the passed in STSUU will contain attributes with the type “urn:ibm:ITFIM:oidc:provider:context”, which
can be used to make decisions on what claims are added, or if any other actions are performed.

These context attributes include:

• The client ID of the client making the request.
• The federation name of the provider servicing the request.

Chapter 18. Global settings 363

• The redirect URI sent in the request.
• The response type of the request.
• The state parameter of the request.
• The user-consented scopes for the request.

OpenID Connect Relying Party mapping rules
When you write mapping rules for a Relying Party, the resulting STSUU is turned into a PAC that is used to
authenticate the user to a Reverse Proxy via EAI.

The attributes that are included in that PAC will be the attributes of the STSUU, and the principal will
be the first principal which was in the STSUU. When writing mapping rules for a Relying Party, the
values of the id_token will be made available as Attributes in the STSUU. Some additional context
is made available to the user via the STSUU's context attributes. These attributes will have the types
“urn:ibm:ITFIM:oidc:client:idtoken:param” and “urn:ibm:ITFIM:oidc:client:token:param”.

These context attributes include:

• All of the claims inside the id_token.
• The raw JWT.
• Any issued access or refresh tokens.
• All of the properties of the issued bearer token if an authorization code flow is used.
• All of the parameters issued in the response if an implicit flow is used.

Attribute sources
Both OpenID Connect Providers and Relying Parties can be configured to use an attribute source.

For an OpenID Connect Provider, this can be used instead of a mapping rule. However for an OpenID
Connect Relying Party a mapping rule must still be present, this mapping rule is required to construct the
principal used in the iv-cred.

For more information about attribute sources, see Managing attribute sources.

Import a mapping rule from another mapping rule
You can reuse mapping rules by importing a mapping rule from another mapping rule.

When you want to create a new mapping rule, or customize an existing mapping rule, you can reuse
JavaScript code from a previously defined mapping rule. With this feature, you can define a mapping rule
once and then reuse it in other mapping rules.

Use the function importMappingRule() to specify a mapping rule to import. For example, you can
define a mapping rule that is called Utility.js that contains functions for obtaining an HTTP header
and an HTTP cookie.

function getHeader(name) {
 // function for getting HTTP header
}

function getCookie(name) {
 // function for getting HTTP cookie
}

If you have another mapping rule that is called Credential.js, which also needs to obtain HTTP
headers, use the following code to include the functions from the Utility.js mapping rule:

importMappingRule("Utility");
var host = getHeader("Host");
// do something with the host header

364 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

var sessionID = getHeader("PD-SESSION-ID");
// do something with the session ID

The function importMappingRule() accepts a list of mapping rule names and imports each of the
mapping rules. For example:

importMappingRule("Utility","Credential","UserIdentity");

Alternatively, you can also make multiple calls to importMappingRule() within one script. For
example:

importMappingRule("Utility");
importMappingRule("Credential");
importMappingRule("UserIdentity");

The JavaScript engine throws an error if you do not specify a mapping rule name, or if you specify the
name of a mapping rule that does not exist.

Use the Local Management Interface (LMI) to view existing mapping rules that are defined on your
system. Select Federation > Global Settings > Mapping Rules, or AAC > Global Settings > Mapping
Rules.

Note:

On the LMI menu, the icon Import is for importing mapping rules into IBM Security Verify Access,
not for importing a mapping rule into an existing mapping rule. Use the Edit icon to add the
importMappingRule() function to an existing mapping rule.

Auditing from Mapping Rules
Data that is used in JavaScript Mapping rules can be audited with IDMappingExtUtils.

Data that is used in making an access control decision is audited in JavaScript Mapping Rules. You can use
the IDMappingExtUtils.logAuditEvent() function to capture data and make it available in audit
logs.

Scenario 1: User completed password reset (USC_PasswordReset_Success)
IDMappingExtUtils.logAuditEvent(username, "Successfully completed password reset", true);

produces the following audit log entry:

<CommonBaseEvent creationTime="2018-09-04T00:23:05.239Z" extensionName="IBM_SECURITY_AUTHN"
globalInstanceId="FIMa1f61b1801651c11a034fb3858d13" sequenceNumber="0" version="1.1">
 <contextDataElements name="Security Event Factory" type="eventTrailId">
 <contextId>FIM_a1f61b17016516b19127fb3858d13aff+667021443</contextId>
 </contextDataElements>
 <extendedDataElements name="EventName" type="string">
 <values>JavaScriptEvent</values>
 </extendedDataElements>
 <extendedDataElements name="Username" type="string">
 <values>testuser</values>
 </extendedDataElements>
 <extendedDataElements name="Outcome" type="string">
 <values>SUCCESSFUL</values>
 </extendedDataElements>
 <extendedDataElements name="Message" type="string">
 <values>Successfully completed password reset</values>
 </extendedDataElements>
 <extendedDataElements name="progName" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="authnProvider" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="partner" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="trustRelationship" type="string">

Chapter 18. Global settings 365

 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="userInfoList" type="noValue">
 <children name="userInfo" type="noValue">
 <children name="registryUserName" type="string">
 <values>Not Available</values>
 </children>
 <children name="appUserName" type="string">
 <values>testuser</values>
 </children>
 </children>
 </extendedDataElements>
 <extendedDataElements name="authnType" type="string">
 <values>authenticationService</values>
 </extendedDataElements>
 <extendedDataElements name="action" type="string">
 <values>validate</values>
 </extendedDataElements>
 <extendedDataElements name="tokenType" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="authnScope" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="outcome" type="noValue">
 <children name="result" type="string">
 <values>SUCCESSFUL</values>
 </children>
 <children name="majorStatus" type="int">
 <values>0</values>
 </children>
 </extendedDataElements>
 <sourceComponentId application="IBM Security Verify Access"
component="Authentication and Federated Identity" componentIdType="ProductName"
executionEnvironment="Linux[amd64]#3.10.0-693.21.1.el7_1.iss8_1.4.x86_64"
location="localhost" locationType="FQHostname"
subComponent="com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils"
threadId="Default Executor-thread-44" componentType="http://www.ibm.com/namespaces/autonomic/
Tivoli_componentTypes"/>
 <situation categoryName="ReportSituation">
 <situationType
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="ReportSituation"
reasoningScope="INTERNAL" reportCategory="SECURITY"/>
 </situation>
 </CommonBaseEvent>

Scenario 2: OAuth flow is used to enroll Mobile Multi-Factor Authentication
(*PostTokenGeneration)

var auditData = {"status":"registering MMFA", "deviceName":device_name,
"deviceType":device_type, "osVersion":os_version};
IDMappingExtUtils.logAuditEvent(displayName, JSON.stringify(auditData), true);

produces the following audit log entry:

<CommonBaseEvent creationTime="2018-09-04T00:23:05.241Z" extensionName="IBM_SECURITY_AUTHN"
globalInstanceId="FIMa1f61b1901651d24b0adfb3858d13" sequenceNumber="1" version="1.1">
 <contextDataElements name="Security Event Factory" type="eventTrailId">
 <contextId>FIM_a1f61b17016516b19127fb3858d13aff+667021443</contextId>
 </contextDataElements>
 <extendedDataElements name="EventName" type="string">
 <values>JavaScriptEvent</values>
 </extendedDataElements>
 <extendedDataElements name="Username" type="string">
 <values>displayName</values>
 </extendedDataElements>
 <extendedDataElements name="Outcome" type="string">
 <values>SUCCESSFUL</values>
 </extendedDataElements>
 <extendedDataElements name="Message" type="string">
 <values>{"status":"registering MMFA","deviceName":"Jasmine's
iPhone","deviceType":"iPhone","osVersion":"11"}</values>
 </extendedDataElements>
 <extendedDataElements name="progName" type="string">
 <values>Not Available</values>

366 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 </extendedDataElements>
 <extendedDataElements name="authnProvider" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="partner" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="trustRelationship" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="userInfoList" type="noValue">
 <children name="userInfo" type="noValue">
 <children name="registryUserName" type="string">
 <values>Not Available</values>
 </children>
 <children name="appUserName" type="string">
 <values>displayName</values>
 </children>
 </children>
 </extendedDataElements>
 <extendedDataElements name="authnType" type="string">
 <values>authenticationService</values>
 </extendedDataElements>
 <extendedDataElements name="action" type="string">
 <values>validate</values>
 </extendedDataElements>
 <extendedDataElements name="tokenType" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="authnScope" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="outcome" type="noValue">
 <children name="result" type="string">
 <values>SUCCESSFUL</values>
 </children>
 <children name="majorStatus" type="int">
 <values>0</values>
 </children>
 </extendedDataElements>
 <sourceComponentId application="IBM Security Verify Access"
component="Authentication and Federated Identity" componentIdType="ProductName"
executionEnvironment="Linux[amd64]#3.10.0-693.21.1.el7_1.iss8_1.4.x86_64"
location="localhost" locationType="FQHostname"
subComponent="com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils"
threadId="Default Executor-thread-44" componentType="http://www.ibm.com/namespaces/autonomic/
Tivoli_componentTypes"/>
 <situation categoryName="ReportSituation">
 <situationType
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="ReportSituation"
reasoningScope="INTERNAL" reportCategory="SECURITY"/>
 </situation>
 </CommonBaseEvent>

Scenario 3: OTP retry limit is reached (OTPVerify)
IDMappingExtUtils.logAuditEvent("", "Retry limit exceeded.", false);

produces the following audit log entry:

<CommonBaseEvent creationTime="2018-09-04T00:50:24.603Z" extensionName="IBM_SECURITY_AUTHN"
globalInstanceId="FIMa20f1edb01651a4c8c61fb3858d13" sequenceNumber="2" version="1.1">
 <contextDataElements name="Security Event Factory" type="eventTrailId">
 <contextId>FIM_a20f1ed2016510a09325fb3858d13aff+1389200945</contextId>
 </contextDataElements>
 <extendedDataElements name="EventName" type="string">
 <values>JavaScriptEvent</values>
 </extendedDataElements>
 <extendedDataElements name="Username" type="string">
 <values></values>
 </extendedDataElements>
 <extendedDataElements name="Outcome" type="string">
 <values>UNSUCCESSFUL</values>
 </extendedDataElements>
 <extendedDataElements name="Message" type="string">
 <values>Retry limit exceeded.</values>
 </extendedDataElements>

Chapter 18. Global settings 367

 <extendedDataElements name="progName" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="authnProvider" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="partner" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="trustRelationship" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="userInfoList" type="noValue">
 <children name="userInfo" type="noValue">
 <children name="registryUserName" type="string">
 <values>Not Available</values>
 </children>
 <children name="appUserName" type="string">
 <values></values>
 </children>
 </children>
 </extendedDataElements>
 <extendedDataElements name="authnType" type="string">
 <values>authenticationService</values>
 </extendedDataElements>
 <extendedDataElements name="action" type="string">
 <values>validate</values>
 </extendedDataElements>
 <extendedDataElements name="tokenType" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="authnScope" type="string">
 <values>Not Available</values>
 </extendedDataElements>
 <extendedDataElements name="outcome" type="noValue">
 <children name="result" type="string">
 <values>UNSUCCESSFUL</values>
 </children>
 <children name="failureReason" type="string">
 <values>Retry limit exceeded.</values>
 </children>
 <children name="majorStatus" type="int">
 <values>1</values>
 </children>
 </extendedDataElements>
 <sourceComponentId application="IBM Security Verify Access"
component="Authentication and Federated Identity" componentIdType="ProductName"
executionEnvironment="Linux[amd64]#3.10.0-693.21.1.el7_1.iss8_1.4.x86_64"
location="localhost" locationType="FQHostname"
subComponent="com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils"
threadId="Default Executor-thread-692" componentType="http://www.ibm.com/namespaces/autonomic/
Tivoli_componentTypes"/>
 <situation categoryName="ReportSituation">
 <situationType
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="ReportSituation"
reasoningScope="INTERNAL" reportCategory="SECURITY"/>
 </situation>
 </CommonBaseEvent>

HTTP Claims
HTTP claims can be accessed by OIDC, OAuth, SAML, Authsvc credential, InfoMap, and FIDO mapping
rules.

HTTP Claims in OIDC, OAuth and SAML JavaScript Mapping Rules
HTTP Request claims can be accessed by OIDC, OAuth, and SAML mapping rules from the Security Token
Service Universal User (stsuu) variable that is available by default.

If sps.httpRequestClaims.enabled (see SPS HTTP Request Claims) is true, then the header, cookie
and parameter values are added to the claims attribute in the request security token.

The following example is an example for retrieving and logging HTTP headers from the request claims:

var claims = stsuu.getRequestSecurityToken().getAttributeByName("Claims").getNodeValues();
for (var i = 0; i < claims.length; i++) {

368 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

 var dialect = claims[i].getAttribute("Dialect");
 if ("urn:ibm:names:ITFIM:httprequest".equalsIgnoreCase(dialect)) {
 var headers = claims[i].getElementsByTagName("Header");
 for (var j = 0; j < headers.getLength(); j++) {
 var header = headers.item(j);
 var name = header.getAttribute("Name");
 var values = header.getElementsByTagName("Value");
 for (var k = 0; k < values.getLength(); k++) {
 var value = values.item(k).getTextContent();
 IDMappingExtUtils.traceString("Header with name [" + name + "] and value [" +
value + "]");
 }
 }
 }
}

A similar code can be used to access cookies and query string parameters, providing values match the
regex filter defined in the sps.httpRequestClaims.filterSpec (see SPS HTTP Request Claims))
advanced configuration parameter.

HTTP Claims in Authsvc and InfoMap JavaScript Mapping Rules
HTTP Request claims can be accessed by the Authsvc credential and InfoMap mapping rules by using the
context variable that is defined by default in the Authsvc mapping rules.

If sps.httpRequestClaims.enabled (see SPS HTTP Request Claims) is true, then the header,
cookie, and parameter values are available in the urn:ibm:security:request namespace of the
request context.

The following example is an example for retrieving and logging HTTP headers from the request claims:

var headers = context.get(Scope.REQUEST, "urn:ibm:security:asf:request", "headers").toArray();
for (var i = 0; i < headers.length; i++) {
 var name = headers[i];
 var value = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:header", name);
 IDMappingExtUtils.traceString("Header with name [" + name + "] and value [" + value + "]");
}

A similar code can be used to access cookies and query string parameters, providing values match the
regex filter defined in the sps.httpRequestClaims.filterSpec (see SPS HTTP Request Claims))
advanced configuration parameter.

HTTP Claims in FIDO2 Mediator JavaScript Mapping Rules
HTTP Request claims can be accessed by a FIDO Mediator mapping rule from the
context.requestData variable that is defined by default in FIDO mapping rules.

If sps.httpRequestClaims.enabled (see SPS HTTP Request Claims) is true, then header, cookie
and parameter values are added to the requestData field of the context parameter.

The following example is an example for retrieving and logging HTTP headers from the request claims:

var headers = context.requestData.headers
for (var name in headers) {
 var value = context.requestData.headers[name];
 IDMappingExtUtils.traceString("Header with name [" + name + "] and value [" + value + "]");
}

A similar code can be used to access cookies and query string parameters, providing values match the
regex filter defined in the sps.httpRequestClaims.filterSpec (see SPS HTTP Request Claims))
advanced configuration parameter.

Chapter 18. Global settings 369

Managing Distributed Session Cache
In a clustered appliance environment, session information is stored in the Distributed Session Cache. To
work with these sessions, use the Distributed Session Cache management page.

About this task
The Distributed Session Cache feature replaces the Session Management Server. The Session
Management Server (SMS) is not supported on IBM Security Verify Access for Web Version 8 and later.

Procedure
1. From the top menu, select the menu for your activation level.

• Web > Manage > Distributed Session Cache
• AAC > Global Settings > Distributed Session Cache
• Federation > Global Settings > Distributed Session Cache

All replica set names and the number of sessions in each replica set are displayed.
2. You can then view the replica set server list and manage sessions in a particular replica set.

a) To view a list of the servers that are registered with a replica set, select the replica set and then
click Servers.

b) To manage the sessions in a replica set, select the replica set and then click Sessions.

Tip: Typically, the list of sessions contains many entries. You can locate a session or a user faster by
using the filter in the upper left corner.

Delete a specific session

i) Select the session to delete.
ii) Click Delete.

iii) In the confirmation window, click Delete Session.

Delete all sessions for a user

i) Select any session for that user.
ii) Click Delete.

iii) In the confirmation window, click Delete User.

Managing server connections
To use data from outside your appliance in your policies, you must define the server connection to access
the data.

Before you begin
Obtain the connection information for the existing database server you want to define for your policy
information point.

About this task
You can create server connections to data sources, such as Oracle, DB2, PostgreSQL, LDAP, SMTP, Web
Service, Cloud Identity, and Verify Access Runtime, or SMS Gateway. You can have multiple servers for an
LDAP connection.

Note:

LDAP anonymous bind credentials:

username : anonymous password: anonymous

370 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Procedure
1. Log in to the local management interface.
2. Click AAC.
3. Under Global Settings, click Server Connections.
4. Take one of the following actions:

Filter server connections:

a. In the Quick Filter field, type one or more characters. For example, enter g to search for all
server connection names that contain g or G.

b. Press Enter.

Add a server connection:

a. Click the drop-down button.
b. Select Oracle, DB2, PostgreSQL, LDAP, SMTP, Web Service, Cloud Identity or Verify Access

Runtime.
c. Complete the properties for the new server connection.

Modify an existing server connection:

a. Select a server connection.

b. Click .
c. Complete the properties for the server connection.

Delete a server connection:

Note: Do not delete a server connection if it returns attributes that are used in a policy or risk
score.

a. Select a server connection.

b. Click .
5. For LDAP connections, take one of the following actions in the Servers tab.

Add a server connection:

a. Click the drop-down button.
b. Complete the properties for the new server connection.

Modify an existing server connection:

a. Click .
b. Complete the properties for the server connection.

Delete a server connection:

a. Select a server connection.

b. Click .

Move a server connection:

a. Select a server connection.

b. Click or .

What to do next
• For information on server properties, see “Server connection properties” on page 372.

Chapter 18. Global settings 371

• After you define a server connection to a data source, you can create a policy information point to
access this data and use it in policies. See Managing policy information points.

Server connection properties
To access a data source outside of the appliance, define the properties of the server.

The Server Connection properties table describes the properties on the Server Connections panel for the
Advanced Access Control and Federation module activation levels.

• Advanced Access Control: Configure LDAP, database, web service, or Cloud Identity server connections
so that you can set up policy information points. You can configure any of the server connection types.

• Federation: Configure an LDAP server as an attribute source for attribute mapping. Federation does not
configure any of the other database server connection types.

Table 60. Server Connection properties

Property Description

Name Specifies the name for the server connection. Ensure that the name
is unique. Select this name when you define the policy information
point.

Note: The server connection name must begin with an alphabetic
character. Do not use control characters, leading and trailing blanks,
and the following special characters ~ ! @ # $ % ^ & * () + | ` = \ ; " '
< > ? , [] { } / anywhere in the name.

Description Describes the server connection. This property is optional.

Type Shows the server connection type. (Read only)

JNDI ID (Oracle, DB2,
PostgreSQL only)

Specifies the JNDI ID that the server uses. Ensure that the ID is
unique. Use only alphanumeric characters: a-b, A-B, 0-9

Set the connection by using the
full URL (Oracle only)

Indicates that the connection to the database is set as the full JDBC
URL.

Set the connection by using the
server name and port (Oracle
only)

Indicates that the connection to the database is set by specifying the
server name and port.

Server name (Oracle, DB2,
PostgreSQL, SMTP only)

Specifies the name or IP address for the server.

Port (Oracle, DB2, PostgreSQL,
LDAP, SMTP, Redis only)

Specifies the port number where the connection to the server can be
made.

URL (Oracle only) Specifies the JDBC URL where the connection to the database can be
made.

URL (Web Service only) Specifies the URL where the connection to the server can be made.

Master Name (Redis-Sentinel
only)

User name (Oracle, DB2,
PostgreSQL, SMTP, and Web
Service only)

Specifies the user name that has the correct permissions to access
the resources.

Password (Oracle, DB2,
PostgreSQL, SMTP, and Web
Service only)

Specifies the password to access the server.

372 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 60. Server Connection properties (continued)

Property Description

SSL Specifies whether SSL is used for connecting to the server. Select
True or False. The default value is True.

Driver type (Oracle only) Specifies the driver type. Select Thin or OCI. The default value is
Thin.

Service name (Oracle only) Specifies the name of the service.

Database name (DB2,
PostgreSQL only)

Specifies the name of the database.

Host name (LDAP and Redis
only)

Specifies the host name or IP address of the LDAP and Redis server.

For Redis-Sentinel, select the Servers tab to add specify the servers.

Bind DN (LDAP only) Specifies the LDAP distinguished name (DN) that is used when
binding, or signing on, to the LDAP server.

Note: If this value is set to "anonymous", the appliance uses an
anonymous bind to the LDAP directory server. Typically the bind-dn
has significant privileges so that it can be used to modify LDAP
registry entries, such as creating users and resetting passwords
via pdadmin or the Registry Direct Java API. Using an anonymous
connection to LDAP typically comes with very limited access,
perhaps at most search and view of entries, at the least no access
at all. If anonymous access has sufficient privileges, then it might
be usable for the WebSEAL level of access on users and groups.
This access includes the permission for a user to change password
if "bind-auth-and-pwdchg = yes" is set ("ldap.bind-auth-
and-pwdchg = true" for Registry Direct Java API).

Bind Password (LDAP only) Specifies the password for the LDAP bind DN.

Note: If bind DN (bind-dn) is set to anonymous, you can use any
non-empty string as the value of bind password (bind-pwd).

Administration hostname
(Cloud Identity only)

Specifies the administration hostname of the Cloud Identity
subscription.

Client ID (Cloud Identity only) Specifies the client ID of an API Client on Cloud Identity.

Client Secret (Cloud Identity
only)

Specifies the client secret of an API Client on Cloud Identity.

SSL Truststore (LDAP, Web
Service, Cloud Identity, and Redis
only)

Specifies the truststore that verifies the credentials.

SSL Mutual Authentication Key
(LDAP, Web Service, Cloud
Identity, Redis only)

Label of the client certificate to be presented when connecting to the
LDAP. This property is sourced from SSL Truststore.

Note: This field is required only if mutual SSL authentication is
required by the server.

Connection URL (SMS Gateway
only)

The URL of the SMS Gateway where the phone number of the user
and the one-time password is sent. Must include the protocol.

Chapter 18. Global settings 373

Table 60. Server Connection properties (continued)

Property Description

Basic Authentication User
Name (SMS Gateway only)

The username that is used in HTTP Basic authentication.

SMS Delivery does not use the HTTP basic authentication if this
configuration is not specified.

Basic Authentication Password
(SMS Gateway only)

The password that is used in HTTP Basic authentication.

SMS Delivery does not use HTTP Basic authentication if this
configuration is not specified.

HTTPS Trust Store (SMS
Gateway only)

The keystore that validates the SMS Gateway SSL certificate.

This configuration must be specified only when SMS Delivery
communicates with the SMS Gateway by using HTTPS.

Client Authentication Key (SMS
Gateway only)

The certificate that is used as the client certificate in SSL Client
authentication.

SMS Delivery does not use SSL Client authentication if this
configuration is not specified.

HTTP Request Parameters (SMS
Gateway only)

The list of name and value pairs that is included in the body of the
HTTP POST request to the SMS Gateway. In each pair, the name and
the value are separated by equal sign.

Two macros, $DEST_NO$ and MSG, are replaced with the phone
number of the user and the content of the SMS. These two macros
can be used only as values in the name and value pair.

Success HTTP Return Code
(SMS Gateway only)

The response code from the SMS Gateway that is an
acknowledgment from the SMS Gateway that the request is
successfully processed.

The default SuccessHTTPReturnCode, which is 200, is used when
this configuration is not specified.

Success HTTP Response Body
Regex Pattern (SMS Gateway
only)

This parameter defines the Java regular-expression pattern that
matches the HTTP response body the SMS Gateway returns. When
the match is successful, the SMS delivery is successful.

The default value is empty.

The default behavior is that the HTTP response body is not
going to be matched against any Java regular-expression. The
success or failure decision is going to be based on the
SuccessHTTPReturnCode value only.

Note: For information on SSL configuration, see Configuring SSL connections.

The properties in the following table are connection manager properties. The defaults that are listed are
the current known defaults. All tuning properties are optional.

Table 61. Tuning properties

Property Description

Aged timeout (seconds) (Oracle,
DB2, PostgreSQL only)

Specifies the amount of time, in seconds, before a physical
connection is discarded by pool maintenance. Specify -1 to disable
this timeout. The default is -1.

374 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Table 61. Tuning properties (continued)

Property Description

Connection timeout (seconds) Specifies the amount of time, in seconds, after which a connection
times out.

For Oracle, DB2, PostgreSQL, and SMTP, specify -1 to disable this
timeout. The default is 30 seconds.

For LDAP, specify only integers, 1 or greater. The default is 120
seconds.

For Redis, the default is 10 seconds

Min Idle Size (Redis only) Specifies the minimum number of established connections that must
be kept in the pool.

Max Idle Size (Redis only) Specifies the maximum number of established connections that
must be kept in the pool.

Max Idle Time (seconds) Specifies the maximum amount of time, in seconds, after which an
unused or idle connection is discarded during pool maintenance.
Specify -1 to disable this timeout. The default is 1800 seconds.

Max Idle Time (seconds) (LDAP
only)

Specifies the amount of time, in seconds, after which an established
connection is discarded as idle. Set this to a value lower than the
connection idle timeout on the LDAP server.

Note: This is only applicable for performing Attribute Mapping from
an LDAP server.

Reap time (seconds) (Oracle,
DB2, PostgreSQL only)

Specifies the amount of time, in seconds, between runs of the pool
maintenance thread. Specify -1 to disable pool maintenance. The
default is 180 seconds.

Max pool size (Oracle, DB2,
PostgreSQL only)

Specifies the maximum number of physical connections for a pool.
Specify 0 for unlimited. The default is 50.

Max pool size (LDAP and Redis
only)

Specifies the maximum number of connections that are pooled.

Note: This is only applicable for performing Attribute Mapping from
an LDAP server.

Min pool size (Oracle, DB2,
PostgreSQL only)

Specifies the minimum number of physical connections to maintain
in a pool. The aged timeout can override the minimum.

Purge policy (Oracle, DB2,
PostgreSQL only)

Specifies which connections to delete when a stale connection is
detected in the pool. Select from the following options:
Entire pool

When a stale connection is detected, all connections in the pool
are marked stale, and when no longer in use, are closed. This is
the default option.

Failing connection only

When a stale connection is detected, only the connection that
was found to be bad is closed.

Validate all connections

When a stale connection is detected, connections are tested and
the ones that are found to be bad are closed.

Chapter 18. Global settings 375

Table 61. Tuning properties (continued)

Property Description

Max connections per thread
(Oracle, DB2, PostgreSQL only)

Specifies the limit of open connections on each thread.

Cache connections per thread
(Oracle, DB2, PostgreSQL only)

Specifies the number of cache connections for each thread.

Idle Timeout (seconds) (Redis
only

Specifies the amount of time, in seconds, after which an established
connection is discarded as idle. The default is 1800 seconds.

IO Timeout (seconds) (Redis
only)

Specifies the amount of time, in seconds, that the client waits for a
response from the server, after an established connection, before it
is discarded as idle.

Point of contact profiles
Use the local management interface to work with your point of contact profiles.

You can perform the following point of contact profile tasks:

• “Creating a point of contact profile” on page 376
• “Updating or viewing a point of contact profile” on page 377
• “Deleting a point of contact profile” on page 377
• “Setting a current point of contact profile” on page 378

Creating a point of contact profile
Create a point of contact server profile to capture the information needed for the runtime to communicate
with the point of contact server.

About this task
You can create point of contact profiles with the Federation module or the Advanced Access Control
module.

Three point of contact profiles provided by Security Verify Access are ready for use.

When you want to create your own profile that is similar to an existing one, use Create Like to save time.
If you do not want to reuse any of the existing specifications, create a brand new one with Create. The
details are in the following procedure.

Procedure
1. From the local management interface, select Federation or AAC. Then, Global Settings > Point of

Contact.
A list of point of contact server profiles displays. The list includes three preconfigured profiles and any
other custom profiles that you created.

2. Take one of the following actions:

• Click Create to create a custom point of contact profile.
• Select a profile from the list and click Create Like to start with values similar to an existing profile.

3. On the Profile Name page, enter the name of the profile. The first character of the profile name must be
alphanumeric. The maximum number of characters is 200.

4. Optional: Enter a description.
5. Specify the parameter information:

• Enter the information on each tabbed page, and click Next.

376 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

• In the Callback Parameters section on each page, click Create to open a window to add a set of
parameter name and value pairs. Click Save when complete.

• Add as many parameters as you need. The Value field might be empty for some parameters.
• To delete a parameter name from the list, select the parameter and click Delete.

6. At the Summary page, if everything is correct, click Finish.
7. Deploy the pending changes.

What to do next
• See “Callback parameters and values” on page 378 for descriptions.
• You might want to change the current point of contact profile. See “Setting a current point of contact
profile” on page 378.

Updating or viewing a point of contact profile
Update or view a point of contact server profile.

About this task
You cannot update the preconfigured point of contact profiles.

Procedure
1. From the local management interface, select Federation or AAC. Then, Global Settings > Point of

Contact.
A list of point of contact server profiles displays.

2. Perform one of the following actions:

• Update

a. Select a profile from the list that is not a preconfigured profile and click Update to change the
configuration details.

b. Click Next to see each page and make updates if necessary.
c. On the Summary page, click Finish to save your changes.
d. Deploy the changes

• View

a. Select a profile from the list and click Properties to look at the configuration details without
making updates.

b. Click on each tab to see the information.
c. Click OK when finished.

What to do next
See “Callback parameters and values” on page 378 for more information about the properties.

Deleting a point of contact profile
Use the local management interface to remove a point of contact profile.

About this task
You cannot delete the following profiles:

• A preconfigured point of contact profile.
• A profile that is set as the current profile. Select another profile as the current one, if necessary.

Chapter 18. Global settings 377

See “Setting a current point of contact profile” on page 378.

Procedure
1. From the local management interface, select Federation > Global Settings > Point of Contact or AAC

> Global Settings > Point of Contact.
A list of point of contact server profiles displays.

2. Select a profile from the list, that is not a preconfigured profile, and click Delete.
The details of the selected profile display.

3. Review the profile to ensure that it is the one you want to delete.
4. Click Finish.
5. Click OK to confirm.
6. Deploy the change.

Setting a current point of contact profile
Set a point of contact profile as the current one so that the federation runtime communicates with the
point of contact server using the correct set of specifications.

Procedure
1. From the local management interface, select Federation > Global Settings > Point of Contact or

select AAC > Global Settings > Point of Contact.
A list of point of contact server profiles displays. The list includes three preconfigured profiles and any
other custom profiles that you created. The green dot indicates the current profile.

2. To change the current profile, select the profile you want to use as the current one and click Set As
Current.
The current profile indicator displays next to the profile you selected.

3. Deploy the changes.

Callback parameters and values
Specify the callback parameters and values when you define a point of contact profile.

Sign In callbacks
fim.user.request.header.name

The name of the header that contains the user name of the user.

Data type: String

Example: iv-user

fim.attributes.response.header.name
The name of the header that contains the attributes of the user.

Data type: String

Example: am-fim-eai-xattrs

fim.groups.response.header.name
The name of the header that contains the groups of the user.

Data type: String

Example: fim.groups

fim.server.response.header.name
The name of the header that contains the hostname that authenticates the user.

378 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Data type: String

Example: fim.server

fim.target.response.header.name
The name of the header that contains the redirect URL.

Data type: String

Example: am-fim-eai-redir-url

fim.user.response.header.name
The name of the header that contains the user name of the user.

Data type: String

Example: am-fim-eai-user-id

fim.user.session.id.response.header.name
The name of the header that contains the reverse proxy session ID of the user.

Data type: String

Example: user_session_id

fim.cred.response.header.name
The name of the header that contains the IVCred of the user.

Data type: String

Example: am-fim-eai-pac

url.encoding.enabled
Indicates whether the EAI header names and values are URL encoded. The default setting for this
property is false. The EAI header names and values are not URL encoded.

Data type: Boolean

Example: false

Sign Out callbacks
fim.user.session.id.request.header.name

The name of the header that contains the reverse proxy session ID of the user.

Data type: String

Example: user_session_id

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

Example: iv-user

Local ID
fim.attributes.request.header.name

The name of the header that contains the attributes of the user.

Data type: String

Example: fim.attributes

fim.cred.request.header.name
The header that contains the IVCred of the user.

Data type: String

Example: iv-creds

Chapter 18. Global settings 379

fim.groups.request.header.name
The name of the header that contains the groups of the user.

Data type: String

Example: iv-groups

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

Example: iv-user

Authenticate
fim.user.request.header.name

The name of the header that contains the user name.

Data type: String

Example: iv-user

authentication.macros
A list of macros that defines contextual information to pass to the web reverse proxy login page. The
macros you specify can customize an authentication login page for a specific service provider. For
more information, see Customizing the SAML 2.0 login form.

Data type: String

Example: If an identity provider wants to display the provider ID and target URL of a partner, specify
the following macros:

%PARTNERID%,%TARGET%

Runtime monitoring using Prometheus
Runtime can be configured to provide a /metrics REST interface from which you can access all metrics
that are emitted by the Runtime. The default format for responses to requests to /metrics is a text
format that is compatible with Prometheus.

This is controlled by the advance tuning parameter runtime_profile.enable.monitor.
To enable, set the parameter to true and deploy pending changes. To disable, set the
runtime_profile.enable.monitor to false

The monitoring endpoint is unprotected. If the service needs to be protected, it needs to be done with a
WebSEAL junction.

Use /metrics to access the monitoring data.

Managing Cleanup and Archive Tasks
Use the Cleanup Tasks page in the Local Management Interface (LMI) to configure the Advanced Access
Control and Federation cleanup and archive tasks through their own UI page.

About this task
Multiple components use cleanup and archive background tasks to remove expired or otherwise
nonrequired data from the related persistence stores:

• User sessions
• Mobile multi-factor authentication (MMFA)
• OAuth 2.0

380 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

• Device registration
• Distributed map

The cleanup and archive tasks that are managed here are for Advanced Access Control and Federation
only.

Note: Changes made to Managing advanced configuration might affect the settings in cleanup and
archive. Each page shows the advanced configuration items that control the cleanup and archive settings.

Procedure
1. Select one of the following menu entries for your licensing level:

• If you are using an Advanced Access Control license, select AAC > Global Settings > Advanced
Configuration.

• If you are using a Federation license, select Federation > Global Settings > Advanced
Configuration.

Note: If both licenses are activated, either of the menu items open the same page.
2. Select the Advanced Configuration Groups menu and click the Archive and Cleanup entry.

Note: Clicking Save on any of the tabs on the page saves the property values from all tabs.
3. To manage the User Session properties, follow these steps:

a) Select the User Session tab.
b) Update the property values as required. As the fields are changed, the Advanced Configuration

Properties table shows the new settings for the related properties.

Note: If the user session storage property authsvc.stateMgmt.store is not set to Memory, the
fields on this tab are readonly. The cleanup tasks are only related to an in memory store.

c) Click Save.
d) Deploy the changes.

4. To manage the MMFA properties, follow these steps:
a) Select the Mobile Multi-factor Authentication tab.
b) Update the property values as required. As the fields are changed, the Advanced Configuration

Properties table shows the new settings for the related properties.
c) Click Save.
d) Deploy the changes.

5. To manage the OAuth 2.0 properties, follow these steps:
a) Select the OAuth 2.0 tab.
b) Update the property values as required. As the fields are changed, the Advanced Configuration

Properties table shows the new settings for the related properties.
c) Click Save.
d) Deploy the changes.

6. To manage the Device Registration properties, follow these steps:
a) Select the Device Registration tab.
b) Update the property values as required. As the fields are changed, the Advanced Configuration

Properties table shows the new settings for the related properties.
c) Click Save.
d) Deploy the changes.

7. To manage the Distributed Map properties, follow these steps:
a) Select the Distributed Map tab.

Chapter 18. Global settings 381

b) Update the property values as required. As the fields are changed, the Advanced Configuration
Properties table shows the new settings for the related properties.

c) Click Save.
d) Deploy the changes.

382 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Chapter 19. Choose a synchronization mode
You can choose synchronization mode types for the IBM Security Verify Access Advanced Access Control
component.

Feature Recommended
Replication Mode

Comment

Context/Risk-based access NEARSYNC Context/risk-based access usage data,
device fingerprint, and obligation data are
used in authentication decision making
and requires to be replicated in a failover
scenario.

Mobile Multi Factor
Authentication (MMFA)

MMFA authenticators required to be
presents at standby node during failover.

User Self Care (USC)

Overall recommendation: NEARSYNC within datacenter. In case of cross data center replication where
network latency is significant , it is advised use Superasync as HADR mode to get optimal performance.

For more information on synchronization mode types for the IBM Security Verify Access Federation
component, see Choose a synchronization mode for the Federation component.

384 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

Index

A
Advanced Access Control

point of contact profile 376
advanced configuration

category filter 239
property descriptions 239

API protection
client 146, 148
definition 142

API protection client
managing 148
registering 146

API protection definition
creating 141
managing 142
PreTokenGeneration mapping rule update 6

appliances
clusters 370

application interface
manage 11

attribute IDs
version 7.0

usage 19
attributes

oauthScope 151
authentication

client 126
configuring 34

authentication mechanism
configuring

end user license agreement 55
configuring consent to device registration 54
configuring HTTP redirect 53

authentication policy
importing authentication policy 76

authentication service
configuration 31

B
backward compatibility mode

one-time password 5

C
callback parameters

point of contact profile 378
certificate authentication 17
certificates

client, See client certificates
client

managing API protection 148
registering API protection 146

client authentication
OAuth 2.0 token endpoint 126
types 126

client certificate authentication 17
cluster

cluster configuration management page
LMI 96

configuration 96
master nodes

configure 96
registration 96
unregistration 96

cluster signature file
export 96
import 96

clusters
Distributed Session Cache 370

compliance
NIST SP800-131a 23

configuration
advanced 238
Knowledge Questions authentication mechanism 66

Consent to Federate Page
customization 327
description 327

D
database configuration

upgrade 1
DB2 database

upgrade 3
definition

creating API protection 141
managing API protection 142

deploying changes 227
device fingerprints

managing 176
distributed session cache 229
Distributed Session Cache (DSC)

managing 370
DSC 229

E
endpoints

OAuth
definitions 114
URLs 114

event pages
customization overview 318
overview 318

F
federation

OAuth 2.0
endpoint definitions 114
naming 114

Index 385

federation (continued)
OAuth 2.0 (continued)

URIs 114
OAuth configuration 141
point of contact profile 376

H
HTML pages

SAML 2.0 319

I
identity mapping

SAML 2.0 token, local user 356
identity provider mapping

SAML 2.0 token, local user 354
isamcfg

command line reference 98
overview 93
WebSEAL point of contact 95

isamcfg tool
external machine 94
reverse proxy instance 94
WebSEAL configuration 101

isamcfg worksheet
WebSEAL 101

L
listening interfaces 21
LMI

cluster configuration management page 96
local user identity mapping

from 354
to 356

login form
customizing (overview) 318

M
macros

HTML pages for SAML 2.0 319
mapping rules

customizing for context data 84, 341
managing 79, 337
OTPDeliver 82, 340
OTPGenerate 82, 339
OTPGetMethods 81, 338
OTPVerify 83, 340
PostTokenGeneration 163, 344
PreTokenGeneration 6
SAML 2.0 token to local identity 354

N
NIST SP800-131a compliance 23

O
OAuth

API protection client 146

OAuth (continued)
endpoints 114
federation configuration 141
reverse proxy configuration 135

OAuth 2.0
endpoint

definitions 114
URLs 114

state management 132
token endpoint client authentication 126
trusted clients management 133

Oauth support 111
oauth_20_pre_mapping.js mapping rule file 6
oauthScope attributes 151
OIDC

reverse proxy configuration 135
one-time password

backward compatibility mode 5
configuring an RSA mechanism 44
configuring delivery 47
configuring HOTP 35
configuring MAC 42
configuring OTP enrollment 40
configuring TOTP 37
delivery method 81, 163, 338, 344
managing mapping rules 79, 337

OTP
backward compatibility mode 5

OTPDeliver
usage 82, 340

OTPGenerate
usage 82, 339

OTPGetMethods
usage 81, 338

OTPVerify
usage 83, 340

P
page identifiers

HTML for SAML 2.0 319
pages, event

SAML 2.0 318
pending changes 227
point of contact

token endpoint 126
point of contact profile

callback parameters 378
creating 376
current 378
deleting 377
updating 377

PostTokenGeneration
usage 163, 344

PreTokenGeneration mapping rule 6

R
replica sets

management 370
reverse proxy

OAuth configuration 135
OIDC configuration 135

386 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

reverse proxy instance
isamcfg 95

runtime component
configure 13
manage 13

runtime listening interfaces 21
runtime security services

attribute ID changes 19
configure for client certificate authentication 17

S
SAML 2.0

Consent to Federate Page customization 327
event pages 318
local user mapping 354, 356
page identifiers 319
responses 327

scenarios
authentication configuration 32

scope attributes
OAuth 151

service provider mapping
SAML 2.0 token, local user 356

sessions
information 370

single sign-on
event pages 318
HTML pages 319

state management OAuth 2.0 132
step-up authentication

configuring 32

T
template files

macros 328
template pages

WAYF page 326
tool

isamcfg 93
trusted clients management

overview 133

U
upgrade

database configuration 1
DB2 database 3

user self-administration 176

V
version 7.0

attribute ID updates 19

W
WAYF page

template 326
WebSEAL

configuring 127
point of contact 127

WebSEAL (continued)
token endpoint 127
use 7.0 attribute IDs 19

WebSEAL policy enforcement point
isamcfg 95

Where Are You From (WAYF) page, See WAYF page

Index 387

388 IBM Security Verify Access Version 10.0.9 January 2025: Advanced Access Control Configuration topics

IBM®

	Contents
	Figures
	Tables
	Chapter 1. Upgrading configuration
	Upgrading external databases with the dbupdate tool (for appliance at version 9.0.0.0 and later)
	Upgrading a DB2 external runtime database (for appliance versions earlier than 9.0.0.0)
	Upgrading an Oracle external runtime database (for appliance versions earlier than 9.0.0.0)
	Setting backward compatibility mode for one-time password
	Updating template files
	Updating PreTokenGeneration to limit OAuth tokens
	Reviewing existing Web Reverse Proxy instance point of contact settings

	Chapter 2. Getting Started
	Chapter 3. Managing application interfaces
	Chapter 4. Managing runtime component
	Chapter 5. Managing user registries
	Chapter 6. Runtime security services external authorization service
	Configuring runtime security services for client certificate authentication
	Permitting access decisions when runtime security services cannot be contacted
	Retaining the version 7.0 attribute IDs in existing policies

	Chapter 7. Adding runtime listening interfaces
	Chapter 8. NIST compliance
	Chapter 9. Authentication
	Authentication Service configuration overview
	Authentication configuration scenarios
	Configuring step-up authentication
	Configuring authentication

	Configuring an HOTP one-time password mechanism
	Configuring a TOTP one-time password mechanism
	Configuring an OTP enrollment mechanism
	Configuring a MAC one-time password mechanism
	Configuring an RSA one-time password mechanism
	Configuring one-time password delivery methods
	Configuring username and password authentication
	Configuring an HTTP redirect authentication mechanism
	Configuring consent to device registration
	Configuring an End-User License Agreement authentication mechanism
	Configuring an Email Message mechanism
	HTML format for OTP email messages

	Configuring the reCAPTCHA Verification authentication mechanism
	Configuring an Info Map authentication mechanism
	Embedding reCAPTCHA verification in an Info Map mechanism
	Available parameters in Info Map
	Embedded Cloud Identity API calls in an Info Map mechanism

	Configuring a Knowledge Questions authentication mechanism
	Configuring a FIDO Universal 2nd Factor authentication mechanism
	Configuring a FIDO2/WebAuthn authentication mechanism
	Configuring a QR Code authentication mechanism
	Configuring an RSA SecurID one-time password mechanism
	Configuring a FIDO2/WebAuthn registration mechanism
	Importing a bundled authentication policy
	Enabling or disabling authentication policies
	Managing mapping rules
	Authentication Service Credential mapping rule
	OTPGetMethods mapping rule
	OTPGenerate mapping rule
	OTPDeliver mapping rule
	OTPVerify mapping rule
	Customizing one-time password mapping rules to use access control context data

	One-time password and authentication template files
	Push notification registration
	Obtaining the required authentication credentials to configure push notification for IBM Security Verify

	Cloud Identity API Integration
	Cloud Identity JavaScript
	Authentication flow
	User Self Care flow

	Configuring the authentication and access module for cookieless operation
	Reverse Proxy Configuration with Authentication Services
	Configuring advanced access control authentication on a reverse proxy
	Using the isamcfg tool
	Configuring an appliance reverse proxy instance from the appliance
	Configuring an appliance reverse proxy instance from an external machine
	Configuring a WebSEAL instance
	Configuring WebSEAL in a highly available environment
	isamcfg reference
	isamcfg command line reference
	isamcfg Security Verify Access appliance configuration worksheet
	isamcfg WebSEAL configuration worksheet

	Using a response file

	Branching Authentication Policy
	Default-Mapping Rules

	Execute authentication service policies in an Info Map
	TOTP Example

	Chapter 10. OAuth 2.0 and OIDC support
	OAuth and OpenID Connect concepts
	OAuth 2.0 concepts
	OpenID Connect concepts

	IBM Security Verify Access OIDC Provider
	OAuth 2.0 endpoints
	OAuth 2.0 and OIDC workflows
	Client authentication considerations at the OAuth 2.0 token endpoint
	Configure authenticated token endpoint with WebSEAL as point of contact
	Token Exchange Implementation
	Validating the incoming tokens
	Extracting information
	Gathering information for new (requested) token
	Issuing of the new (requested) token

	OAuth state management
	Trusted clients management
	Proof Key for Code Exchange support
	Reverse proxy configuration for OAuth and OIDC provider
	Configuring reverse proxy for OAuth and OIDC provider
	Viewing a reverse proxy automated configuration log
	Example reverse proxy log for OAuth and OIDC configuration
	Removing reverse proxy configuration for OAuth and OIDC provider

	Configuring OAuth 2.0 API protection
	Creating an API protection definition
	Managing API protection definitions
	API Protection token management properties
	API Protection OpenID Connect Provider properties
	PIN policy
	Register an API protection client
	Managing registered API protection clients
	Managing policy attachments
	Using oauthScope attributes in an access control policy
	Uploading OAuth response files
	OAuth introspection
	OAuth revocation endpoint

	OIDC Claims customization
	Client authentication to /token through an incoming JSON Web Token
	Passing parameters through JWT in a request to /authorize
	Mapping rules for OAuth and OIDC
	Managing OAuth 2.0 and OIDC mapping rules
	OAuth 2.0 mapping rule methods
	OAuth and OIDC mapping rules files
	OAuth and OIDC mapping rules actions
	Customizing OAuth tokens by updating the sample PreTokenGeneration mapping rule
	OpenID Connect mapping rules
	OpenID Connect Provider mapping rules
	OpenID Connect Relying Party mapping rules
	Attribute sources
	Updating mapping rules when enabling OIDC

	Device flows verification_uri

	OAuth 2.0 template files
	OAuth 2.0 template page for consent to authorize
	Error responses
	User self-administration tasks for OAuth
	Managing OAuth 2.0 authorization grants
	APIs for managing OAuth 2.0 authorization grants

	OAuth STS Interface for Authorization Enforcement Points
	API Protection form post response mode
	Access policy for OAuth or OIDC
	Making an OAuth or OIDC consent decision using access policy

	OIDC Dynamic Clients
	OIDC Dynamic Clients- Authentication and deployment
	OIDC Dynamic Clients- Register a client
	OIDC Dynamic Clients- Retrieve a dynamic client
	OIDC Dynamic Clients- Custom Identifiers
	OIDC Dynamic Clients- Update a client
	OIDC Dynamic Clients- Delete a client
	OIDC Dynamic Clients – Migrating client
	OIDC Dynamic Client - Updating URL format

	Chapter 11. Mobile Multi-Factor Authentication
	Authenticator registration
	Authentication method enrollment
	Configuring Mobile Multi-Factor Authentication
	Configuring a MMFA Authenticator Mechanism
	MMFA mapping rule methods

	Chapter 12. FIDO and WebAuthn Support
	FIDO2 Server Endpoints
	Concepts
	WebAuthn Ceremonies
	Attestation
	Public Key Algorithms
	Metadata

	Registration
	U2F Migration
	FIDO2 Configuration
	FIDO2 Mediation
	FIDO Client Manager
	Local FIDO Client

	Authentication Service Mechanism
	Metadata Services
	Adding a metadata service
	Modifying a metadata service
	Deleting a metadata service

	Limitations

	Chapter 13. Access control policies
	Defining a custom application for policy attachments
	Invoking the RTSS XACML engine
	ContextId JSON example
	ApplicationId JSON example
	resource-id JSON example

	Chapter 14. Defining a custom domain for policy attachments
	Chapter 15. Deploying pending changes
	Chapter 16. Options for handling session failover event
	No handling of failover events
	The Distributed Session Cache

	Chapter 17. Branching Authentication Policies
	Scenarios
	Decision
	Branches
	Steps

	Chapter 18. Global Settings
	Advanced Configuration
	Advanced configuration properties

	User Registry
	Runtime Parameters
	Template files
	Managing template files
	Customizing the consent page (OIDC)
	Template file scripting
	Template files reference
	Consent to register
	User self-care
	Authentication process
	Authentication mechanisms
	Authentication error
	OAuth
	SAML 2.0 pages
	Event pages
	SAML 2.0 page identifiers
	Template page for the WAYF page
	Customizing the Consent to Federate Page

	Template file macros
	Template File Locales
	Template Files and Content Security Policy
	Reverse Proxy Configuration for CSP Compliant Advanced Access Control (AAC) Templates
	Template Files Format

	Mapping Rules
	Managing JavaScript mapping rules
	Managing mapping rules
	Authentication Service Credential mapping rule
	OTPGetMethods mapping rule
	OTPGenerate mapping rule
	OTPDeliver mapping rule
	OTPVerify mapping rule
	Customizing one-time password mapping rules to use access control context data

	Managing OAuth 2.0 and OIDC mapping rules
	OAuth 2.0 mapping rule methods

	Mapping rules actions
	MMFA mapping rule methods
	XML Mapping Rules Method
	JavaScript allowlist
	Managing JavaScript mapping rules
	Customizing SAML identity mapping
	Mapping a local identity to a SAML 2.0 token
	Mapping a SAML 2.0 token to a local identity

	STSRequest and STSResponse access using a JavaScript mapping rule
	Mapping a base64 encoded JSON string to a SAML2 token example
	Mapping a SAML2 token to a base64 encoded JSON string example

	OpenID Connect mapping rules
	OpenID Connect Provider mapping rules
	OpenID Connect Relying Party mapping rules
	Attribute sources

	Import mapping rule from another mapping rule
	Auditing from Mapping Rules
	HTTP Claims
	HTTP Claims in OIDC, OAuth and SAML JavaScript Mapping Rules
	HTTP Claims in Authsvc and InfoMap JavaScript Mapping Rules
	HTTP Claims in FIDO2 Mediator JavaScript Mapping Rules

	Distributed Session Cache
	Server Connections
	Server connection properties

	Point of Contact
	Creating a point of contact profile
	Updating or viewing a point of contact profile
	Deleting a point of contact profile
	Setting a current point of contact profile
	Callback parameters and values

	Runtime monitoring using Prometheus
	Managing Cleanup and Archive Tasks

	Chapter 19. Choose a synchronization mode
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

