

IBM Content Manager OnDemand

Using the XML Indexer

2/12/2021

Brian Hoyt

Senior Software Engineer - Content Manager OnDemand

Page 2 of 14

Table of Contents
Overview ...3

Loading XML input files ..3

Step 1. Create the Content Manager OnDemand application group/application/folder5

Step 2. Create a transformation file ...6

Step 3. Run the transformation process ..8

Step 4. Create a resource file (optional)...9

Step 5. Run the ARSLOAD program or Add Report (ADDRPTOND) command .. 10

Advanced topics .. 10

Cascading style sheets – additional details ... 10

XML indexer schema file.. 11

Loading various files by using the Generic XML Index File Format (GXIFF) .. 12

Generic indexer example ... 12

XML indexer example .. 12

Page 3 of 14

Overview
There are two ways to use the Content Manager OnDemand XML indexer. Both methods are covered in this
document.

The first method is to use the XML indexer to index and load your XML files into Content Manager OnDemand.
These XML files might contain hundreds of individual documents (such as bank account statements) or
thousands of individual transactions (such as SEPA financial transactions). You must indicate to the XML indexer
how to identify the individual documents or transactions within the input file, and how to identify the index
values you wish to associate with the documents or transactions. This is accomplished by transforming your
XML input into an interim format, and then loading it into Content Manager OnDemand.

The second method is to use the Generic XML Index File Format (GXIFF) for the input index file, which provides
the same basic functions as the Content Manager OnDemand Generic indexer, but it uses XML for the index file
instead of a text file. This method provides an easy alternative to the Generic indexer for loading a variety of
input files such as .jpg, .tif, and so on.

Loading XML input files
The XML indexer requires up to five file types for processing:

Input files to the transformation processor (such as Saxon or Xalan):

1) .xml file – your input XML file to be loaded into Content Manager OnDemand
2) .xslt file – the transformation file that you create, which is used to identify the individual documents or

transactions and the index values to be loaded into Content Manager OnDemand

Optional resource files:

3) .css, .jpg… (or other file type) files – your resource files, such as cascading style sheet(s) and images, that
you wish to load along with your XML. These files are used in the presentation of your XML, typically in a
browser, and are packaged as a zip file with a file extension of .in.res file (described in #4)

4) .in.res file – a zip file that contains your resource files (described in #3) that you wish to load along with
your XML

Input file to the ARSLOAD program or Add Report (ADDRPTOND) command:

5) .in – the output file from the transformation processor (such as Saxon or Xalan)

All five file types are further described below in the list of steps for XML indexer processing. Instructions for
creating the required files are included in this document.

XML indexing involves up to five steps:

1) Create the Content Manager OnDemand application group, application, and folder.
2) Create a transformation file (file extension of .xslt) that is used in step 3 to identify the individual

documents or transactions within your input XML file (file extension of .xml) and map the elements
within your input XML file to the index fields defined in your Content Manager OnDemand application
group.

Page 4 of 14

3) Run the transformation (by using processors such as Saxon or Xalan), using your input XML file (file
extension of .xml) and your transformation file (file extension of .xslt) as input. The transformation
creates an output file (file extension of .in) that will be used as input in step 5.

4) Create a resource file (file extension of .in.res) that contains any resources you need to load along with
your XML. These resources might include files such as cascading style sheets (file extension of .css) or
images. These files are used in the presentation of your XML, typically in a browser, and are packaged as
a zip file. This step is optional.

5) Run the ARSLOAD program or Add Report (ADDRPTOND) command (on IBM i) to load the XML and any
related resources. The input to ARSLOAD or ADDRPTOND is the transformed file (file extension of .in)
that was created in step 3 and the optional resource file (file extension of .in.res) that was created in
step 4.

The relationships between the five file types and the five steps are shown below:

This document provides an example based on bank account statements from Bamboo Bank for the input XML
file. The fully composed account statements look like this:

Page 5 of 14

Details of the steps required to define and load the Bamboo Bank account statements are as follows.

Step 1. Create the Content Manager OnDemand application
group/application/folder

To use the XML indexer, you need to create your Content Manager OnDemand application definition with the
following:

• Data Type = XML
• Indexer = XML

All other fields within the application group, application and folder definitions can be set as needed for your
requirements.

Page 6 of 14

Step 2. Create a transformation file

The next step is to create a transformation file (file extension of .xslt) that is used to identify the individual
documents or transactions and the index fields and values that you want to use when you load your XML file
into Content Manager OnDemand. The transformation can be done using tools such as XSLT and XQuery. In this
example, we use XSLT. While there are many processor implementations of XSLT, Saxon and Xalan are two of
the more popular open source versions.

When you run the transformation process, the original XML file is not changed, rather, a new XML file is created
based on the content of the original file. The new XML file becomes the input to the ARSLOAD program or Add
Report (ADDRPTOND) command (on IBM i).

Below is a listing of the input XML file to be loaded into Content Manager OnDemand with the XML indexer. In
this example, this file name is Bbank.xml.

Figure 1. Bamboo Bank Customer Statement XML (Bbank.xml)

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet type="text/xsl" href="bamboo.xsl"?>

<statements>
 <statement>
 <clientinfo>
 <acctnumber>98209956113</acctnumber>
 <sdate>January 31, 2014</sdate>
 <fromdate>12/01/13</fromdate>
 <todate>12/31/13</todate>
 <begbalance>1503.52</begbalance>
 <endbalance>275.45</endbalance>
 <client>Denny Gunawan</client>
 <addr1>221 Queen St</addr1>
 <addr2>Point View Apartments</addr2>
 <addr3>Bldg 1, Apt 34</addr3>
 <city>Melbourne</city>
 <state>GA</state>
 <zip>30506</zip>
 </clientinfo>
 <transaction>
 <tdate>12/02/2013</tdate>
 <ttype>Debit Card</ttype>
 <tdesc>WalMart Gainesville, GA – fishing gear</tdesc>
 <tdebit>27.98-</tdebit>
 <tsub>1475.54</tsub>
 </transaction>
 …
 …
 </statement>
 <statement>
 <clientinfo>
 …
 </clientinfo>
 <transaction>
 …
 </transaction>
 …
 …
 </statement>
 …
</statements>

Page 7 of 14

As you can see in Figure 1, the statement definition is straightforward. The <clientinfo> element contains
customer and statement information. Following the <clientinfo> element are the customer transactions
for the statement period. There can be zero or more of these with each one identifying the date, type,
description, transaction amount, and subtotal.

In the example, the first customer statement is defined between the first pair of <statement> and
</statement> tags. A second statement follows the first one, with its own pair of <statement> and
</statement> tags. In fact, many statements could be included in this input XML file, all located within the
one pair of <statements> and </statements> tags.

Below is a listing of an XSLT transformation file (file extension of .xslt) that was created in order to transform the
input .xml file into the format required by the XML indexer. In this example, this file name is Bbank.xslt.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
<xsl:output method="xml" cdata-section-elements="COVER" omit-xml-declaration="no" indent="yes" />

<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()" />
 </xsl:copy>
</xsl:template>

<xsl:template match="/statements">
 <odidx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:apply-templates select="/statements/statement" />
</odidx>
</xsl:template>

<xsl:template match="/statements/statement">
<oddoc>
 <odxmldata>
 <xsl:copy-of select="."></xsl:copy-of>
 </odxmldata>
 <odindex>
 <xsl:attribute name="field">acctno</xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="clientinfo/acctnumber" />
 </xsl:attribute>
 </odindex>
 <odindex>
 <xsl:attribute name="field">client</xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="clientinfo/client" />
 </xsl:attribute>
 </odindex>
 <odindex>
 <xsl:attribute name="field">sdate</xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="clientinfo/sdate" />
 </xsl:attribute>
 </odindex>
 <odindex>
 <xsl:attribute name="field">begbalance</xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="clientinfo/begbalance" />
 </xsl:attribute>
 </odindex>
 <odindex>
 <xsl:attribute name="field">endbalance</xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="clientinfo/endbalance" />
 </xsl:attribute>
 </odindex>
</oddoc>
</xsl:template>

</xsl:stylesheet>

Page 8 of 14

Figure 2. Bamboo Bank statement XSLT (Bbank.xslt)

At a high level, the .xslt transformation file in Figure 2 states that we are to do the following three things to the
input XML file:

1. The first template (in red) states to match all nodes (attribute, root and other) in the source document.
This will return all data in the document including processing instructions (stylesheets). The <xsl:copy>
within this first template states to output the node. If another template is defined to handle the node,
that template is called and the node will not be output by this directive. When you create your .xslt file,
you should leave all of the lines in the first template unchanged. Include them in your .xslt file, and do
not make any changes to these lines.

2. The second template (in blue) will handle all nodes matching <statements>. The "/" in front means
to only look at top level nodes. If found, output the <odidx> element and then call another template for
all <statement> nodes found underneath <statements>.

3. The third template (in green) is where the real work is performed. This template defines what to do for
each <statement> node that is found. Each <statement> that is found will become its own
Content Manager OnDemand document with metadata.

For each <statement> that is found, an <oddoc> node will be created to define a new document.
Next, all XML data within the <statement> (including the <statement> node itself) will be output
inside the <odxmldata> node. After this, five <odindex> nodes will be created, which define the
metadata to be associated with the document. In the example, the values of the account number, client
name, statement date, beginning balance, and ending balance nodes are collected, and five index nodes
are created that define the application group field (attribute called "field") to map to and the value to
store (attribute called "value").

Step 3. Run the transformation process

To run the transformation process, which creates the .in input file for the ARSLOAD program or ADDRPTOND
command, use the following command with the .xml and .xslt files as input:

The resulting output file (Bbank.xml.in), shown in Figure 3, is now ready for loading into Content Manager
OnDemand.

java –classpath c:\saxon\saxon9he.jar net.sf.saxon.Transform

 –s:BBank.xml

 –xsl:BBank.xslt
 –o:BBank.xml.in

Page 9 of 14

Figure 3. Bamboo Bank statement output from the transformation process; input to ARSLOAD or ADDRPTOND (Bbank.xml.in)

As you can see in Figure 3, the content of each document is included between the <odxmldata> tags (in
green) and the indexes for each document are defined in the <odindex> tags (in blue). Also note that the
<xml-stylesheet> processing instruction in the input .xml file, which is used to define how to display the data,
was also copied to the top of the .in document.

Step 4. Create a resource file (optional)

The resource file (file extension of .in.res; file name must match your .in file which was created during the
transformation process in step 3) is a zip file that contains any resources you need to load along with your XML.
These resources might include files such as cascading style sheets (.css), images, and any other files needed for
presentation.

For example, to create the zip file (file extension of .in.res) that contains your resources, run a command similar
to the following. Note that this is just an example of a zip command; it does not show a complete set of
resources for the Bamboo bank statement as shown previously in this document.

zip Bbank.xml.in.res Bamboo.css Bbank1.jpg Bbank2.jpg

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="bamboo.xsl"?>
<odidx xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance>
 <oddoc>
 <odxmldata>
 <statement>
 <clientinfo>
 <acctnumber>98209956113</acctnumber>
 <sdate>January 31, 2014</sdate>
 <fromdate>12/01/13</fromdate>
 <todate>12/31/13</todate>
 <begbalance>1503.52</begbalance>
 <endbalance>275.45</endbalance>
 <client>Denny Gunawan</client>
 …
 </clientinfo>
 <item>
 <tdate>12/02/2013</tdate>
 <ttype>Debit Card</ttype>
 <tdesc>WalMart Gainesville, Ga - fishing gear</tdesc>
 <tdebit>27.98-</tdebit>
 <tsub>1475.54</tsub>
 </item>
 …
 </statement>
 </odxmldata>
 <odindex field="account_number" value="98209956113"/>
 <odindex field="client_name" value="Denny Gunawan"/>
 <odindex field="statement_date" value="January 31, 2014"/>
 <odindex field="beg_balance" value="1503.52"/>
 <odindex field="end_balance" value="275.45"/>
 </oddoc>
 <oddoc>
 …
 </oddoc>
 …
</odidx>

http://www.w3.org/2001/XMLSchema-instance

Page 10 of 14

Remember that the name of the zip file (with the extension of .in.res) must match the name of your .in file
which was created during the transformation process in step 3. For example, if the .in file name is Bbank.xml.in,
the resource file name must be Bbank.xml.in.res.

Step 5. Run the ARSLOAD program or Add Report (ADDRPTOND) command

To run the XML indexer, run the ARSLOAD program or the Add Report (ADDRPTOND) command (on IBM i) with
all the usual options and specify the .in file for the input. For example:

or (on IBM i):

Advanced topics

Cascading style sheets – additional details

Cascading style sheets (CSS) are XML stylesheets which are used to describe the look and formatting of the
document. Multiple CSS files can be defined per XML document. One such use of multiple stylesheets would be
to define the formatting of the document for multiple end user devices, such as phone, tablet or desktop.
Stylesheet files can reside locally or remotely. The XML indexer will only archive those stylesheets specified as
local files. This means that if you want to view your documents via the web, the http reference in the stylesheet
definition will point back to your web server where the stylesheet(s) reside.

For locally specified stylesheets, which are stylesheets prefixed with "file:", these stylesheets will be archived
into a single zip file and stored as a resource for the Content Manager OnDemand application in which the XML
documents are being stored.

Only a single level of stylesheets will be archived. If a specified stylesheet references images, for example, these
images will not automatically be archived along with the stylesheet. You must manually add them to your
resource zip file (file extension of .in.res). In other words, if you reference a CSS file in your XML file, Content
Manager OnDemand will archive that CSS file for you, along with your XML. But if that CSS file has a reference
to another file, Content Manager OnDemand does not parse the original CSS file to find the additional files.

arsload -f -g Bbank-statements -I myinstance -n -u myuser -p arsload.stash -v
..\Bbank.xml.in

ADDRPTOND APPGRP('Bbank-statements') INPUT(*STMF) STMF('..\Bbank.xml.in ')
INSTANCE(myinstance)

Page 11 of 14

Therefore, you must manually add any required files to the resource zip file (file extension of .in.res) for loading
into Content Manager OnDemand.

XML indexer schema file

A schema file named odxmlidx.xsd, which ships with Content Manager OnDemand, defines the format of the file
(file extension of .in) that is output from the transformation process and input to the ARSLOAD
program/ADDRPTOND command. All input to the XML indexer has to follow this schema definition. Failure to
comply with this format will result in parsing errors. If you need to review the schema file, it can be found in the
following locations (where V10.5 or V10R5M0 is the server version of Content Manager OnDemand you are
running):

AIX: /opt/IBM/ondemand/V10.5/xml/odxmlidx.xsd
Linux: /opt/ibm/ondemand/V10.5/xml/odxmlidx.xsd
Windows: \Program Files\IBM\ondemand\V10.5\xml\odxmlidx.xsd
z/OS: /usr/lpp/ars/V10R5M0/bin/xml/odxmlidx.xsd
IBM i: /QIBM/ProdData/OnDemand/xml/odxmlidx.xsd

Page 12 of 14

Loading various files by using the Generic XML Index File Format (GXIFF)

The Generic XML Index File Format (GXIFF) provides a method for specifying the indexes in XML for any data
type to be stored into Content Manager OnDemand. GXIFF provides the same basic functions as the Content
Manager OnDemand Generic indexer, but uses XML for the index file instead of a text file that the Generic
indexer uses.

In the example, we are loading two JPG files. The first example uses the Generic indexer with a .txt file to specify
the indexing information. The second example uses the XML indexer with a GXIFF .xml file to specify the
indexing information.

Generic indexer example

In the Content Manager OnDemand application definition, the Data Type is specified as JPG and the Indexer is
specified as Generic.

COMMENT:
CODEPAGE:1208
COMMENT:
GROUP_FIELD_NAME:customer_name
GROUP_FIELD_VALUE:Brian Hoyt
GROUP_FIELD_NAME:account_number
GROUP_FIELD_VALUE:345987
GROUP_FIELD_NAME:statement_date
GROUP_FIELD_VALUE:2021-02-12
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:image1.jpg
GROUP_FIELD_NAME:customer_name
GROUP_FIELD_VALUE:Darrell Bryant
GROUP_FIELD_NAME:account_number
GROUP_FIELD_VALUE:116590
GROUP_FIELD_NAME:statement_date
GROUP_FIELD_VALUE:2021-02-12
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:image2.jpg

XML indexer example

In the Content Manager OnDemand application definition, the Data Type is specified as JPG and the Indexer is
specified as XML.

Page 13 of 14

<?xml version="1.0" encoding="UTF-8" ?>
<odidx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="odxmlidx.xsd">
<oddoc>
<oddataref file="image1.jpg" offset="0" length="0"/>
<odindex field="customer_name" value="Brian Hoyt"/>
<odindex field="account_number" value="345987"/>
<odindex field="statement_date" value="2021-02-12"/>
</oddoc>
<oddoc>
<oddataref file="image2.jpg" offset="0" length="0"/>
<odindex field="customer_name" value="Darrell Bryant"/>
<odindex field="account_number" value="116590"/>
<odindex field="statement_date" value="2021-02-12"/>
</oddoc>
</odidx>

GXIFF also supports loading multiple index rows for a single document. The file name, offset, and length must be
the same, as shown in the following example. In the example, after the data is loaded, the image1.jpg file can be
found by using either “345987” or “210654” as account number search criteria.

<?xml version="1.0" encoding="UTF-8" ?>
<odidx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="odxmlidx.xsd">
<oddoc>
<oddataref file="image1.jpg" offset="0" length="0"/>
<odindex field="customer_name" value="Brian Hoyt"/>
<odindex field="account_number " value="345987"/>
<odindex field="statement_date " value="2021-02-12"/>
</oddoc>
<oddoc>
<oddataref file="image1.jpg" offset="0" length="0"/>
<odindex field="customer_name" value="Brian Hoyt"/>
<odindex field="account_number" value="210654"/>
<odindex field="statement_date" value="2021-02-12"/>
</oddoc>
</odidx>

To run the XML indexer for this example, run the ARSLOAD program or the Add Report (ADDRPTOND) command
(on IBM i) with all the usual options and specify the xml index file for the input. For example:

or (on IBM i):

arsload -f -g Statements -I myinstance -n -u myuser -p arsload.stash -v
..\ImageIndexes.xml

Page 14 of 14

ADDRPTOND APPGRP('Statements') INPUT(*STMF) STMF('..\ImageIndexes.xml)
INSTANCE(myinstance)

	Overview
	Loading XML input files
	Step 1. Create the Content Manager OnDemand application group/application/folder
	Step 2. Create a transformation file
	Step 3. Run the transformation process
	Step 4. Create a resource file (optional)
	Step 5. Run the ARSLOAD program or Add Report (ADDRPTOND) command
	Advanced topics
	Cascading style sheets – additional details
	XML indexer schema file

	Loading various files by using the Generic XML Index File Format (GXIFF)
	Generic indexer example
	XML indexer example

