
IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

IIBBMM SSAAPP TTeecchhnniiccaall BBrriieeff

TTuunniinngg SSAAPP oonn DDBB22 ffoorr zz//OOSS

MMaarrkk GGoorrddoonn

IIBBMM SSoolluuttiioonnss AAddvvaanncceedd TTeecchhnniiccaall SSuuppppoorrtt

VVeerrssiioonn:: 22..33
DDaattee:: MMaarrcchh 3300,, 22001100

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 2

1. INTRODUCTION... 6

2. ACKNOWLEDGEMENTS ... 7

2.1. VERSION 2 ... 7
2.2. VERSION 1 ... 7

3. DISCLAIMERS .. 7

4. TRADEMARKS .. 8

5. FEEDBACK .. 8

6. VERSION UPDATES ... 8

7. SOLVING A PERFORMANCE PROBLEM FOR A SPECIFIC PROGRAM 10

7.1. CHECK STAT/STAD RECORDS FOR COMPONENTS OF SAP ELAPSED TIME .. 10
7.1.1. Description of STAT/STAD record time components ... 10
7.1.1.1. Description of STAT/STAD “missing time” ... 12
7.1.1.2. Description of STAT/STAD detailed database request time ... 13
7.1.1.3. Description of stat/tabrec and rsdb/stattime parameters ... 15

7.2. EXAMPLES OF PROBLEM INDICATORS IN STAT/STAD RECORDS ... 19
7.2.1. High DB request time example ... 19
7.2.2. High CPU time example ... 20
7.2.3. High RFC+CPIC time example .. 20
7.2.4. Response time .. 21
7.2.5. Wait for work process example ... 21
7.2.6. Processing time examples ... 24
7.2.7. High load time example .. 25
7.2.8. Roll (in+wait) time example ... 26
7.2.9. Enqueue examples ... 27

7.2.9.1. Enqueue processor constraint example ... 28
7.2.9.2. ENQBCK I/O constraint example .. 31

7.2.10. Frontend example ... 34
7.2.11. Missing time in STAT/STAD – suggested actions ... 35

7.2.11.1. Missing time – enqueue reject and retry ... 36
7.3. DSR STATISTICS FOR JAVA STACK ... 37
7.4. TYPES OF PROBLEMS CAUSING HIGH DB REQUEST TIME .. 43

7.4.1. Indexes do not support predicates .. 43
7.4.2. Misuse of SAP Data Model ... 44
7.4.3. SELECT in LOOP instead of FOR ALL ENTRIES ... 44
7.4.4. Data skew causes wrong access path to be chosen .. 44
7.4.5. REOPT(ONCE) impact ... 45
7.4.6. Impact of index column order with range predicates ... 45
7.4.7. Table is not clustered to support key business processes ... 45
7.4.8. Unnecessary SQL .. 46

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 3

7.4.8.1. Table could be buffered on application server but is not buffered ... 46
7.4.8.2. SAP instance buffers are too small ... 46
7.4.8.3. FOR ALL ENTRIES with empty internal table ... 46
7.4.8.4. Program retrieves rows that are not needed .. 46
7.4.8.5. Duplicate (or Identical) selects ... 46

7.5. TRANSACTION .. 47
7.5.1. Analysis process for transactions and batch jobs ... 47
7.5.2. Guidelines for making database changes ... 47
7.5.3. ZCR3 – indexes do not match local predicates ... 48
7.5.4. ZCR1 – can the SQL be avoided ... 54
7.5.5. ZLTRUCK – can the SQL be avoided ... 58
7.5.6. A071 – can the SQL be avoided .. 61
7.5.7. ZREF – can the SQL be avoided ... 62
7.5.8. Changing clustering sequence to optimize access times ... 64
7.5.9. Modify Program so that data retrieval matches clustering sequence .. 68
7.5.10. Analysis of multiple dialog steps with transaction SQLR ... 70

7.6. BATCH ... 73
7.6.1. Analysis process for batch .. 73
7.6.2. Using SE30 to determine cause of excessive CPU use ... 73
7.6.3. Sample of SQL cycle analysis in batch ... 82

8. CHECK FOR INEFFICIENT USE OF DB RESOURCES .. 87

8.1. DB2 ACCOUNTING DATA – DELAY ANALYSIS ... 87
8.1.1. Components of DB2 delay .. 89
8.1.2. Key indicators in DB2 Times .. 90
8.1.3. Actions to take for DB2 times indicators .. 90

8.2. DB2 DELAY ANALYSIS EXAMPLES ... 93
8.2.1. Good ST04 global times .. 93
8.2.2. Rather suspicious ST04 times ... 94
8.2.3. ST04 Times points to constraint on DB server ... 95

8.3. IMPACT OF DATA SKEW AND PARAMETER MARKERS ON PREPARE .. 96
8.3.1. REOPT(ONCE) as alternative to ABAP HINT ... 106

8.4. PROCESS FOR IDENTIFYING SLOW OR INEFFICIENT SQL ... 106
8.4.1. High getpages and low rows processed (per execution) .. 111
8.4.2. High rows examined and low rows processed (per execution)... 111
8.4.3. Long “average elapsed time” per execution .. 112

8.5. EXAMPLES OF ST04 STATEMENT CACHE ANALYSIS ... 114
8.5.1. Predicates do not match available indexes ... 114
8.5.2. Impact of REOPT(ONCE)... 122
8.5.3. Incorrect use of SAP data model .. 125
8.5.4. Index-only access .. 128
8.5.5. Column order with custom indexes ... 129

8.5.5.1. Considerations for column order of custom indexes .. 131
8.5.6. Logical row lock contention.. 132

9. HEALTH CHECK .. 135

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 4

9.1. CHECK FOR SAP INSTANCE-LEVEL OR SYSTEM-LEVEL PROBLEMS ... 135
9.1.1. Application server OS paging ... 135
9.1.2. Application server CPU constraint ... 135
9.1.3. SAP managed memory areas .. 135
9.1.4. Table buffering .. 136
9.1.5. Wait time ... 136
9.1.6. Number ranges .. 137

9.2. SAMPLE SAP INSTANCE-LEVEL AND SYSTEM-PROBLEMS ... 138
9.2.1. Application server paging ... 138
9.2.2. Application Server CPU constraint .. 139
9.2.3. Roll Area shortage .. 143
9.2.4. ST02 buffer area shortage .. 145
9.2.5. Find table buffering candidates .. 147
9.2.6. Table buffered with wrong attributes .. 149
9.2.7. Number range buffered by quantity that is too small ... 151

9.3. CHECK FOR NETWORK PERFORMANCE PROBLEMS .. 154
9.3.1. Lost packets indicators ... 154
9.3.2. Slow network indicators .. 155

9.4. SAMPLE NETWORK PERFORMANCE PROBLEMS ... 156
9.4.1. Slow network performance example ... 156

9.5. CHECK FOR GLOBAL DB SERVER PROBLEMS .. 158
9.5.1. CPU constraint ... 158
9.5.2. Bufferpool and hiperpool memory allocation ... 158

9.5.2.1. Hitrate goals .. 158
9.5.2.2. Bufferpool tuning .. 158
9.5.2.3. DB2 bufferpool memory with 31-bit real (up to OS/390 2.9) .. 159
9.5.2.4. DB2 buffer memory with 64-bit real (z/OS and OS/390 2.10) ... 159

9.5.3. DB2 sort .. 159
9.5.4. DB2 rid processing ... 160
9.5.5. DB2 EDM and local statement cache ... 162
9.5.6. Memory constraint on DB server .. 163
9.5.6.1. ES constraint ... 164
9.5.6.2. CS constraint ... 164

9.6. SAMPLE GLOBAL DB SERVER PROBLEMS ... 164
9.6.1. Example of ES constraint on DB server ... 164
9.6.2. Example of CS constraint on DB server ... 165
9.6.3. CPU constraint ... 166
9.6.4. I/O constraint .. 167

10. ESTIMATING THE IMPACT OF FIXING PROBLEMS .. 170

10.1. ST04 CACHE ANALYSIS .. 170
10.1.1. Estimating the opportunity for improvement in inefficient SQL ... 170

10.2. ST10 TABLE BUFFERING .. 171

11. FOUR GUIDELINES FOR AVOIDING PERFORMANCE PROBLEMS 172

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 5

11.1. USE THE SAP DATA MODEL ... 172
11.2. USE ARRAY OPERATIONS ON THE DATABASE .. 172
11.3. CHECK WHETHER THE DATABASE CALL CAN BE AVOIDED .. 172
11.4. WRITE ABAP PROGRAMS THAT ARE LINE-ITEM SCALABLE ... 172

12. HOW TO TELL WHEN YOU ARE MAKING PROGRESS .. 174

12.1. SAP ... 174
12.2. DB2 AND S/390 ... 174

13. APPENDIX 1: SUMMARY OF PERFORMANCE MONITORING TOOLS 175

13.1. SAP ... 175
13.1.1. DB02 Transaction ... 175
13.1.2. DBACOCKPIT Transaction.. 175
13.1.3. SE11 Transaction .. 175
13.1.4. SE30 Transaction .. 175
13.1.5. SM12 Transaction ... 175
13.1.6. SM50 Transaction ... 176
13.1.7. SM51 Transaction ... 176
13.1.8. SM66 Transaction ... 176
13.1.9. STAD Transaction ... 176
13.1.10. ST02 Transaction .. 176
13.1.11. ST03 Transaction .. 176
13.1.12. ST04 Transaction .. 177
13.1.13. ST05 Transaction .. 177
13.1.14. ST06 Transaction .. 177
13.1.15. ST06N .. 177
13.1.16. ST10 Transaction .. 177
13.1.17. ST12 .. 177
13.1.18. RSINCL00 Program .. 177
13.1.19. SQLR Transaction ... 177
13.1.20. RSTRC000 Program ... 178

13.2. Z/OS .. 178
13.2.1. RMF I .. 178
13.2.2. RMF II ... 178
13.2.3. RMF III ... 178

13.3. DB2 ... 178
13.3.1. DB2PM ... 178

14. APPENDIX 2: REFERENCE MATERIALS ... 180

14.1. SAP MANUALS .. 180
14.2. IBM MANUALS .. 180

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 6

1. Introduction
There are two intended audiences for this paper – DB2 DBAs and SAP BASIS administrators. Either may be
doing performance analysis on an SAP® system with DB2 for z/OS database. The goal of the paper is that each
can find a part of the material that is new and useful – an SAP BASIS administrator with experience on other
databases will see some of the DB2 specific tuning tools and techniques, and DB2 DBAs with experience in
traditional DB2 environments will see some SAP specific tools and techniques.

When doing performance monitoring for SAP on DB2 for z/OS, there are many different layers (SAP BASIS,
SAP functional, DB, OS, network) and a variety of tools involved. Some problems can be solved in one layer,
but some require monitoring and analysis in several layers. One of the goals of this paper is to show how to
follow a problem through the various layers to the source. If different people monitor every layer, it is hard to
have an integrated view of performance issues. While nobody can be an expert in all areas, if someone such as
a DBA or BASIS administrator has an end-to-end view, they can call on an expert in a specific area, when a
problem needs further investigation.

This paper has a process-based approach, where different goals are pursued via different processes and tools.

• To fix a problem reported for a specific program, we will perform elapsed time analysis of programs,
determine where time is spent, and optimize these long running parts. This includes interpretation of
STAT/STAD records, using ST05, SE30, SM50, SM51, SM66, etc. It will demonstrate how to drill-
through the SAP stats to obtain database performance statistics, identify I/O bottlenecks and SAP
problems, etc. The benefit of this approach is that it is focused on an area that has been identified as a
business problem.

• To check for inefficient use of DB resources and improve overall database server performance, we
will use ST04 statement cache analysis. The value of this approach is that it offers a very big potential
payoff in reducing resource usage and increasing system efficiency. The disadvantage is that one may
be finding and solving problems that no end-user cares about. For example, if we can improve the
elapsed time of a batch job from 2 hours to 10 minutes, but the job runs at 2:00 AM, and nobody needs
the output until 8:00 AM, it may not really be a problem. Even if it is not a business problem, it may still
be beneficial to address a problem of this type as part of optimizing resource consumption.

• To do a system health check, review OS paging, CPU usage, and ST04 times (delay analysis in DB),
SAP waits, ST10 and ST02 buffering. The operating environment needs to be running well for good
performance, but problems in these areas can be symptoms of other problems. For example, inefficient
SQL can cause high CPU usage or high I/O activity. A health check should be done together with
analysis of SQL.

This paper has many examples, and it describes what is good or bad in each example. There are not always
specific rules given on what is good or bad, such as “Database request time” over 40% of “elapsed time” is bad
and under 40% is good. Rather, this paper tries to focus on an opportunity-based approach, such as:

• Look for where a program (or the SAP and database system) spends time.
• Ask “If I fix a problem in this area, will people notice and care that it has been fixed?”

It will discuss how to estimate the impact of solving a problem. System wide performance analysis (such as a
statement of cache analysis, or ST03 analysis) will generally turn up several candidates. By estimating the
impact of fixing these problems, one can decide which to address first.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 7

When doing this analysis, it is important to identify and track specific issues. Often, a performance issue is not
important enough to merit a new index, or an ABAP change. In this case, we want to track that we have
analyzed it, and chosen not to do anything, so that we don’t waste time discovering it again next year.

This paper refers to a number of SAP Notes. An OSS userid, or userid that allows access to service.sap.com, is
a prerequisite for anyone doing performance analysis on an SAP system, whether the person is a DB2 DBA,
systems programmer, SAP BASIS Administrator, etc.

2. Acknowledgements

2.1. Version 2
There have been many changes to and improvements in SAP’s monitoring capabilities since the first version
of this paper, as well as many changes in DB2. Thank you to Terry Purcell for his guidance and teachings
on the workings of the DB2 optimizer, and for his suggestions on how to improve to the DB2 SQL analysis
sections of this paper. Thank you to Johannes Schuetzner, for his advice on the use of the ever-improving
SAP monitors and SAP management tools for DB2. Thank you to Joachim Rese and Georg Mayer for their
advice on understanding and exploiting SAP’s integration with DB2 for z/OS on BI systems.

2.2. Version 1
Thank you to Namik Hrle, who wrote and was the original instructor of the course “SAP R/3 on DB2 for
OS/390 Performance Workshop”, on which this white paper is based. My goal was to take his course
materials, which were designed to be taught by an instructor, and make them into a paper showing the
processes and tools for analyzing performance problems with SAP on a DB2 database for z/OS. I have
added examples of solving specific problems, to demonstrate the process for starting from SAP performance
indicators to drill-down to DB2 and z/OS indicators. Namik also reviewed this whitepaper, and offered
many suggestions for improvements.

Several other people also provided valuable contributions to the paper. Thank you to Johannes Schuetzner,
who advised me on the capabilities and usage of the new DB2 monitoring functions available with
RFCOSCOL and Explain. Thank you to Lynn Nagel, Phil Hardy and Don Geissler who edited or reviewed
the original version of this paper and made numerous suggestions for improvements. Thanks also to Mark
Keimig, who showed me the process for SQL analysis with catalog statistics, which can be used with
versions of SAP that do not have the enhanced explain described in note 535337. Thank you to Walter Orb,
who showed me how to interpret symptoms of many SAP and AIX performance problems.

3. Disclaimers
IBM has not formally reviewed this paper. While effort has been made to verify the information, this paper
may contain errors. IBM makes no warranties or representations with respect to the content hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. IBM
assumes no responsibility for any errors that may appear in this document. The information contained in this
document is subject to change without any notice. IBM reserves the right to make any such changes without

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 8

obligation to notify any person of such revision or changes. IBM makes no commitment to keep the information
contained herein up to date.

The paper contains examples from systems ranging from SAP R/3 Enterprise 4.7 with DB2 V7 up to ECC 6.0
with DB2 V8.

The processes and guidelines in this paper are the compilation of experiences analyzing performance on a
variety of SAP systems. Your results may vary in applying them to your system. Examples have been edited
to clarify points for the paper, and do not necessarily reflect the way the example problems ran on the systems
on which they were generated.

Sysplex performance issues, and z/OS 64-bit real performance issues are both out of the scope of this version of
the document, and are discussed only briefly.

4. Trademarks
SAP®, R/3® , and SAP NetWeaver® are registered trademarks of SAP A.G. in Germany and in several other
countries.
ABAP ™ is a trademark of SAP A.G. in Germany and in several other countries.
DB2®, MVS™, OS/390®, and z/OS® are trademarks or registered trademarks of IBM corporation.
Oracle® is a registered trademark of Oracle Corporation and/or its affiliates.

5. Feedback
Please send comments or suggestions for changes to mailto:gordonmr@us.ibm.com.

6. Version Updates
• Version 1.0 – initial version
• Version 1.1 – new sections

o DB procedure call information for APO systems
o New explain functions with ST05 trace (Section 7.5.2)
o SQLR example of merging STAT records and ST05 trace (Section 7.5.5)
o Sample batch analysis with SE30 (Section 7.6.2)
o ST04 enhancements with RFCOSCOL
o Impact of parameter markers on DB2 (Section 8.3)
o Updated packet loss problem example
o Reference to RSTRC000 program (Section 13.1.20)
o Updated section on RID processing with statement cache RID counters (Section 9.5.4)

• Version 2.0 – deleted old examples from 4.x systems, and added new sections based on ECC
o Categories of problems (Section 7.3 and all subsections)
o New transaction tracing examples (Sections 7.5.3 to 7.5.8)
o REOPT(ONCE) as alternative to ABAP HINTs (Section 8.3.1)
o New ST04 cache examples (Sections 8.5.2 to 8.5.5.1)
o New lost packet network example (Section 9.3.1)
o Rename document

mailto:gordonmr@us.ibm.com

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 9

• Version 2.1 – new sections
o Missing time enqueue retry – Section 7.2.11.1
o Identical selects – Section 7.4.8.5

• Version 2.2
o Added DSRs in Section 7.3

• Version 2.3
o Added modify program to match clustering sequence in Section 7.5.9.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 10

7. Solving a performance problem for a specific program

7.1. Check STAT/STAD records for components of SAP elapsed time
Each time a program, transaction dialog step, or RFC finishes, a statistics record is saved by SAP. These
statistics contain information about the components of elapsed time: CPU, database requests, etc. The
response time breakdown for dialog steps can be viewed via the STAT or STAD transactions. The detailed
statistics are periodically aggregated into the ST03 report. As described below in section 13.1.11, ST03 can
be used to search for transactions or batch jobs that may need improvement. Since some of the detailed
information in the STAT records is lost during ST03 aggregation, if a program is being investigated, the
statistics records should be extracted for evaluation soon after the program runs.

STAD is an enhanced version of the STAT transaction. It contains support for DBPROC time (in APO
systems) and also allows more flexibility in reporting time statistics.

If a performance problem has been reported for a program or transaction, one can use STAD data as a filter
to examine performance, and build an action plan for doing more detailed analysis via traces, or other tools.
STAD data shows symptoms of problems, and not causes.

7.1.1. Description of STAT/STAD record time components

Early releases of SAP (3.1, 4.0, 4.5) may not have all the statistics categories shown on the following
sample.

Figure 1: Sample STAT record

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 11

Figure 2: Sample STAD record

Following is a summary of the components of response time. See SAP note 8963 for a more detailed
description for SAP releases up to 4.5B, SAP note 364625 for SAP 4.6 interpretation.

• CPU time is CPU time used on the application server. On long running batch jobs, this counter
may wrap and be invalid. See SAP note 99584 for details.

• RFC+CPIC - time spent, as a client, waiting for RFC and CPIC calls.
• Time in workprocs is “response time” – “Wait for work process”. The time the dialog step is

queued waiting to be dispatched in a work process is not included.
• Response time elapsed time from start to end of dialog step
• Wait for work process is the time a dialog step was queued waiting to be dispatched in an SAP

work process.
• Processing time is “Response time” – “Database request time” – “Wait for work process” –

“Roll (in+wait) time” – “Load time” – “Generating time”. One can think of it as “application is
processing in the work process” time. “Processing time” is the time that SAP views the dialog
step as being in a work process, and not waiting for data or programs required for execution.
Since the counters for the component times used to calculate processing time can overflow on
long jobs, and GUI RFC may or may not be included in Roll Wait, this indicator should be
interpreted with care. See below for examples.

• Load time is time loading programs, screens, and CUA interfaces, which are individually broken
out on the right of the STAT report.

• Generating time is time required to generate the executable version of program. If any of the
components that make up a program have been changed since the last generation, then the
program will be regenerated before execution.

• Roll (in+wait) time: an SAP context switch moves a dialog step into or out of a work process.
This is called roll-in and roll-out. Roll wait is time spent when a dialog step is waiting for an
RFC response, and rolled out to make the work process available to another dialog step.

o Roll-in delay blocks a dialog step from running.
o Roll-out does not block the dialog step from finishing, but it blocks another dialog step

from using the work process.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 12

o Roll wait is a side effect of making an RFC call. Roll wait does not block subsequent
dialog steps from using the work process. If it is high, one can examine the performance
of the RFCs made by the dialog step. GUI RFC time is sometimes included, and
sometimes not included in roll wait.

• Database request time: database request time includes three elements
o time on the database server spent executing an SQL request
o time on the application server spent processing requests for buffered tables
o time spent on the network sending SQL to and getting replies from the database server.

On long running batch jobs, the “Database request time” counter often overflows and is invalid,
as can occur with CPU time above.

• Enqueue is time to process enqueues, which are SAP locks. Since an SAP Logical Unit of
Work (LUW) may span several DB LUWs, SAP uses enqueues to serialize access to SAP
objects, such as sales orders, customers, materials, etc.

• DB Procedure is time (on APO systems) to execute DBPROC calls to a Livecache DB server.
• GUI time is time to execute “GUI control RFCs” sent from application server to GUI.
• Net time is time sending GUI data across the network.

7.1.1.1. Description of STAT/STAD “missing time”
As described above, SAP gathers elapsed time information on many components of dialog step
elapsed time. In some cases, you will note that the components of elapsed time do not account for
all the elapsed time. The “processing time” field is a key in determining whether there is “missing
time” that was not captured in the SAP STAT/STAD record. Processing time is Response time –
Database request time – Wait for work process – Roll (in+wait) time – Load time – Generating time.
The main components of elapsed time that are left in processing time are CPU time on the
application server, enqueue time, and RFC/CPIC time (if not counted in roll wait).

On old releases where statistics counters can wrap, there can be delays that are not accounted for in
the STAT/STAD records. When you are examining the STAT/STAD data for long running jobs, it is
useful to compare processing time to the sum of (CPU time + Enqueue time + RFC/CPIC time). If
processing time is much greater than this sum, it indicates that the dialog step occupied the work
process, but was not doing activities in the SAP application layer. One of the following may be the
cause:

• The statistics of some components (usually Database request time or CPU time) have wrapped, and

the statistics are invalid. This happens with long running jobs and early versions of SAP (before 6.x
kernel).

• There is operating system paging problem on the application server.
• There is a CPU overload on the application server.
• The program being executed is doing I/O to a file on the application server, e.g. an interface program

that reads or writes UNIX files.
• The ABAP program is sorting a large internal table, and the sort has spilled over to sort on disk on

the application server. This is just a variant of the previous problem with writing to an application
server file, but is not under programmer control, but is done automatically by SAP.

• A batch job is using “Commit work and wait”.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 13

• A batch job is trying to acquire an enqueue for a locked object, failing to get the enqueue and
retrying. (If a transaction cannot acquire an enqueue, it usually issues an error message to the user.)

• A job that creates and dispatches other jobs (e.g. a driver using RFC processing of IDOCs) is
sleeping waiting for the end of the jobs it created.

7.1.1.2. Description of STAT/STAD detailed database request time
In addition to the time overview shown in Figure 1, one can display detailed database request
information in STAT/STAD. Depending on your release of SAP, this stanza will look like Figure 3,
where database time per request is reported, or Figure 4, where time per row is reported.

Figure 3: STAT database request with time per request

Figure 4: STAT database request time with time per row

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 14

• Direct read is data read via the ABAP “SELECT SINGLE” call. This should be fully qualified
primary index access. Direct reads may be returned from the SAP “single record” buffer on the
application server. At the DB2 level, this will be a fetch, if DB2 is called.

• Sequential read is data read via the ABAP SELECT call. Sequential reads may be returned from
the generic buffer on the application server. At the DB2 level, this will be a fetch, if DB2 is
called.

• Update, insert, and delete correspond to DB2 update, insert, delete.

If the system reports time per request, since a sequential read request can return many rows, it is
generally best to convert to time per row, in order to interpret sequential read performance. If many
calls are made which return no rows, the average per-row times may look high. Compare requests
and rows, to check for this situation. Evaluate performance using the per-request times, if rows are
seldom returned. If many calls return no rows, that may be a sign that there are database requests
against empty tables, or database requests which check for non-existent conditions. If empty tables
are buffered in the application server “generic” buffer, it will reduce the performance impact of
requests against the empty tables. If the table is and will remain empty, it may also be possible to
modify the ABAP to remove the call to retrieve rows from the table.

In general, on an SAP system with a fast network to the database server, such as Gigabit Ethernet,
SAP “direct read” times will be <2 ms per request, and SAP “sequential read” times will be <5 ms
per request. If the application does lots of SAP “sequential read” array operations (look in STAT for
database row count much greater than request count) then per-row sequential read times may be 1
ms or lower.

High per-call direct read times can be caused by:
• Lock contention on NRIV (since NRIV is selected with “select … for update”)
• Low bufferpool hit rates or I/O contention on DB server
• Program error where “select single” is used incorrectly. (Select single should be fully indexed

primary key, but an ABAPer can code select single for any select – ABAP does not know
whether the select single is correctly indexed).

High per-row sequential read times may be caused by

• Inefficient SQL or bad access path used to access table (see section 0)
• Low bufferpool hit rates or I/O constraint on DB server

High per-row times for update and delete may be caused by

• Inefficient SQL or bad access path used to access table
• Application level locking contention (this is the most common cause)
• Low bufferpool hit rates or I/O constraint on DB server

High per-row insert times may be caused by

• Low bufferpool hit rates or I/O constraint on DB server
• DB2 page latch contention (in rare cases with very high insert rate)

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 15

System-wide DB server problems (CPU constraint, paging, network, etc) would cause all database
calls to be slow.

7.1.1.3. Description of stat/tabrec and rsdb/stattime parameters
One can gather additional table access data by enabling the SAP profile parameter stat/tabrec and
rsdb/stattime. Stat/tabrec records information in the STAT record about tables with the longest
access time. Rsdb/stattime records table access times, which can be viewed in ST10. These
parameters will increase CPU utilization on the application server, and are generally enabled for a
short time so that one can determine which tables are causing delays in long running jobs. Since
these STAT records are only available after a job finishes, one can review the STAT data and filter
the problem based on the symptoms that are shown for the top tables after the problem jobs
complete. Setting these parameters might be particularly useful when gathering initial performance
data for jobs that run overnight, or when doing detailed workload analysis in a stress test.

After using stat/tabrec to find the tables causing the most delay, one can use ST05 to trace accesses
to the table, or search the DBACOCKPIT (ST04) statement cache for the problem statement.

The following example is stat/tabrec data in STAT showing long change time on GLT0 – three
seconds per change (6,130 ms / 2 updates). Performance on other tables such as CIF_IMOD, VBBE,
and MSEG is ok, so the problem is not a system-wide problem, such as CPU constraint, paging,
network, etc. We would need to investigate further to determine where the constraint is. The
likeliest candidates for slow changes would be row locks, I/O bottleneck, or page latches.

Figure 5: stat/tabrec data

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 16

Stat/tabrec enabled STAT table times for an individual dialog step. In order to see table times for
the entire SAP system, enable rsdb/stattime and use ST10 table statistics. Here, we see that overall
update times for GLT0 are about 125 ms per update (4,452,028 ms / 35,035 updates). This is very
high, and Figure 6 points to a pervasive problem with updates on this table. In normal
circumstances, updates would take just a few ms each.

Figure 6: rsdb/stattime time statistics in ST10

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 17

Actions from STAT/STAD record analysis

This is the overall process to follow is to determine the major components of response time, evaluate
whether they are candidates for improvement, and how they might be improved. Detailed examples of
the activities listed in this section are contained in subsequent sections. This is a list showing how one
might break down and approach a problem.

• If CPU time is low (e.g. less than 5-10% of elapsed time):
o Check other response time components for delay

• If CPU time is high (e.g. over 70-80% of elapsed time):
o Use SE30 to profile the transaction.
o Look at routines with high time consumption as candidates for improvement.

• If CPIC+RFC time is high:
o Trace the transaction with ST05 RFC trace.
o Evaluate performance of RFCs to determine which RFC server is the source of the delay.
o Go to that server and evaluate the performance of the RFCs as they are executed, to find

source of delay in RFC code.
• If “wait for work process” time is high:

o First look at this as a symptom of dialog steps staying too long in the work process, and
look for problems in this or other concurrently running dialog steps for the cause.

o If the performance of the concurrently running system workload OK, add more work
processes.

• If the processing time is much greater than CPU time:
o Check statistics and evaluate whether components might have wrapped. This may have

happened on long running jobs.
o If the stats have wrapped, and it is not clear what the real components of response time

are, use the elapsed time analysis process in section 7.6.1.
o Use ST06(N) (or OS tools) to check for CPU or I/O constraints on the application server.
o Use SM50 or SQL trace (look for time gaps in the trace summary after commit work) to

check for “commit work and wait”
o Use ST05 enqueue trace to check for enqueue retries. SM12 statistics also show enqueue

rejects, which occur when the requested object is already locked.
o Use SM66 or SM50 to see whether the program is sleeping.

• If load time is high:
o Check ST02 for swaps and database accesses on program, screen, and CUA buffers.

Increase the size of buffer, if necessary
o Check program logic to determine whether it uses “CALL TRANSACTION”, in which

case high load times are normal
• If generating time is high:

o Check whether transports are being made frequently, or SAP data dictionary objects are
being changed frequently.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 18

• If roll (in+wait) is high:
o Determine whether the problems is from roll-in or roll-wait by checking STAT for front-

end and GUI times
o If roll-in, use ST02 to check roll-area to determine if the amount used is greater than roll

memory area
o If roll-wait, examine the performance of GUI RFCs. See SAP note 51373 and 161053

for ways to minimize impact of GUI RFC calls.
• If DBPROC time is high:

o Examine performance of the livecache DB server and the COM routines being called.
o Examine performance of the network between APO systems and Livecache DB server.

• If database request time is high:
o Evaluate time per request and time per row as discussed in section 7.1.1.2.
o Gather additional information (via ST05 trace or stat/tabrec and rsdb/stattime) to

determine where SQL is slow.
o Check for inefficient SQL. See section 8.4 for examples of inefficient SQL.
o Check for I/O constraints (using RMF III DEV, DELAY, etc) on active volumes and

files.
o Check bufferpool random hit-rates.
o If change SQL is slow

 Check the application to determine if changes are batched together into internal
arrays in the program and performed just before commit, to reduce the time that
row locks are held in DB2.

 Check for lock contention. Lock contention can be confirmed with ST04
statement cache times, ST04 thread details, or DB2 trace with IFCID
44,45,226,227 (for SAP systems which do not have thread suspension times).

 If application cannot be changed, or does not need to be changed, evaluate the
impact of the lock suspensions

• Lock suspensions in UP2 processes are not very important; UP2 is
designed to de-couple statistics table updates from business table updates
and process changes to statistics after changes to business tables.

• Lock suspensions in UPD processes are more important, but not usually a
critical problem, since UPD is asynchronous from user dialog processing.

• Lock suspensions in DIA processes are most important, since the lock
suspension is part of the end-user response time.

 Evaluate controlling the level of parallelism in batch and update processes, to
minimize lock contention. In systems with lock contention, there is generally an
optimal level of parallelism for throughput, where fewer or more work processes
give less throughput.

• If enqueue time is high
o Calculate average time per enqueue.
o If time per enqueue is good (1-3 ms), check application with ST05 enqueue trace to

determine whether the application is making extraneous enqueues.
o If time per enqueue is slow, check for enqueue constraints as shown in section 7.2.9.

• If GUI time is high
o See SAP notes 161053 and 51373 regarding ways to improve performance of GUI RFC.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 19

• If Net time is high
o Examine the performance of the network between application servers and GUI.

7.2. Examples of problem indicators in STAT/STAD records
One important caveat when interpreting STAT statistics is that STAT data tends to be less than completely
reliable. The counters may have missing time, or they may add up to more than the elapsed time. Time can
be put in different categories, as when GUI time may or may not be included in Roll wait. When a
performance problem has been reported for a program or transaction, don’t use a single unusual STAT
record to plan the investigation. Look for a pattern, to avoid wasting time working on a transient condition,
or a problem in SAP statistics gathering. Use aggregated ST03 statistics for the transaction or program to
confirm the “average” behavior of the program

7.2.1. High DB request time example
High DB request time is often a symptom of inefficient SQL or another DB performance problem.

If DB time is a very high percentage of elapsed time, consider checking for inefficient SQL. Here
CPU time is only 1% of elapsed time and the DB request time is about 99%, which is generally a
strong indicator of inefficient SQL. If the DB time is > 75%-80% of elapsed time, inefficient SQL
is often the cause.

Figure 7: STAT record with low CPU time

Use ST05 to trace and explain slow SQL statements. See section 7.3 and section 8.4 for examples of
examining slow and inefficient SQL.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 20

7.2.2. High CPU time example
If the dialog step spends most of its elapsed time using CPU on the application server, then one
must look at where the time is spent.

Examine the program both when it is processing a few items and also many items, in order to
search for issues in code scalability, such as inefficient access to internal tables.

In SAP, one can use the SE30 transaction to trace the program. See Section 7.6.2 for examples of
running SE30. In the formatted ABAP trace, note which routines consume the most CPU, and
examine the ABAP code for efficient programming.

If observations show much of the time is being spent in the SAP kernel, or operating system kernel,
then open an OSS message. In this case, more detailed analysis of the SAP or OS kernels may be
required.

In Figure 8, elapsed time is 586 seconds, with 505 seconds of CPU time. CPU time is 86% of
elapsed time. This could be a sign of inefficient coding in the ABAP.

Figure 8: STAT record with high CPU time

7.2.3. High RFC+CPIC time example
The detailed RFC data in the STAT record can help to determine whether the problem is specific to
a system or an RFC. If a dialog step makes several calls to different RFCs, they are reported
separately.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 21

In addition to this historical RFC information, one can see the response times of RFCs during
program execution by using the ST05 RFC trace. You must then go to the server for the slow RFC,
and examine the cause of slow performance of the RFC.

Figure 9: STAT RFC detail

7.2.4. Response time
High response time, in itself, is not a problem that can be fixed. Review the components of
response time, to find out where the time is spent, and where the opportunities for improvement
are.

7.2.5. Wait for work process example
Wait for work process means that SAP could not dispatch a dialog step in a work process, as all
work processes were busy.

Wait for work process is often a symptom of another problem, where the root problem causes the
dialog step to run slowly and keep the work process occupied for longer than optimal. This could be
caused by CPU overload on the application server, OS paging on the application server, SAP buffer
configuration, inefficient SQL, etc. Look at the components of response time to find where the time
is spent, and work to improve performance in these areas.

If after looking for a root cause, none has been found, then add more work processes, or reduce the
number of users on that application server. If the workload on a system grows, and additional work
processes are not added to the SAP instances, “wait for work process” can result.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 22

Figure 10: STAT wait for work process – symptom of SAP roll area overflow

In Figure 10, note that wait for work process is about 60% of response time – 632 ms of 1093 ms.
When we look for a root cause in the other indicators, this example shows that Roll-In and Roll-out
are unusually large. With transactions, “roll in” and “roll out” are generally a few ms. In this
example, a dialog step that should normally take about 150 ms (the CPU time) in a work process,
occupied the work process for about 600 ms (65 + 150 + 398). See section 9.2.3 for an example of
how to use ST02 to determine if the SAP roll-area is too small and causing the problem.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 23

In Figure 11, the dialog step has some “wait for work process” time (2799 ms of 105,122 ms
response time), but when checking the other components of response time, the database request
time is the largest time component. Checking database request time, the insert time is very slow –
36 ms per inserted row. While wait time is not a large part of the elapsed time, this example shows
again how wait time can be a symptom of another problem. If the database performance problem
is solved (check for I/O constraints and DB2 lock/latch suspensions, etc) then the “wait for work
process” time will likely go away, as the work processes (in general) will be occupied for a shorter
time. (Improving DB performance of a dialog step does not help wait time for that dialog step, but
reduces wait time for other dialog steps, which in the aggregate will reduce wait time.)

Figure 11: STAT slow insert causes wait time

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 24

7.2.6
blem when it is not consistent with other statistics. In

the simplest case, such as Figure 12, where there are no RFC and GUI calls, processing time should
be very close to CPU time. In Figure 12, there is no “missing time”, as can be seen by processing
time and CPU time being nearly the same.

. Processing time examples
High processing time is a symptom of a pro

Figure 12: STAT record with CPU corresponding to Processing time

In cases where there is a “missing time” problem, as described in section 7.1.1.1, processing time
will be much larger than CPU time (plus RFC and enqueue if applicable). Note in Figure 13 that

PU time is 11,047 ms, while processing time is 91,747. In this case the dialog step was in the
work process, but was not using SAP resources. This is a “missing time” indicator, and it will need
to be evaluated while the program when it is running in order to determine the cause.

C

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 25

Figure 13: Processing time shows missing time in SAP

7.2.7. High load time example
Load time is generally a trivial percentage of response time. In the case of programs that call other
programs (e.g. BDCs or custom programs using CALL TRANSACTION), it is normal to have load
time be a high percentage of response time.

If the program buffer is too small and there are many swaps, then load time will affect programs
when the executables are loaded.

In Figure 14, load time is about ¼ of response time – 3,522,789 of 14,907,321 ms. Database
request time is also about ¼ of elapsed time.

ance, one might have to completely re-write the program, using, for

ANSACTION. The effort of making the changes could

In order to improve the perform
example, a BAPI instead of CALL TR
outweigh the benefit from the improved performance.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 26

Figure 14: STAT high load time

7.2.8
ge

memory-resident of roll area on the application server, and roll-wait is RFC wait on GUI calls.
These categories are broken down on the right side of the statistics, under “Roll time”.

In Figure 15, roll (in+wait) shows that the performance issue for this dialog step is GUI time (roll-
wait), not an application server ST02 ROLL area problem, which would be counted under roll-in
time.

. Roll (in+wait) time example
Roll (in+wait) groups together two different kinds of wait. Roll-in delay is caused by a shorta

Figure 15: STAT roll (in+wait) GUI time

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 27

In Figure 16, roll in points to overflow of the memory roll area to disk on the application server.
Use ST02 to follow up and review the roll area memory usage, as discussed in section 9.1.3.

Figure 16: STAT roll-in

7.2.9. Enqueue examples
Enqueue performance problems are generally seen only on very large systems, such as systems with
undreds of concurrent users, or many concurrent batch jobs. h

Enqueue times should normally be very short. They are usually around one ms per enqueue. If enq
rocessing is a significant percentage of

ueue
 time in the dialog step statistics, and the time per enqueue is

r/threading constraint, the ENQ process on the central
stance is active all the time, and is constrained by the number of ENQ processes or constrained by the

e central instance,
ing the rdisp/wp_no_enq SAP parameter. Tests done by IBM have shown that performance of

p
high, there are three different causes:

• Central instance OS constraint (CPU or paging)
• Number of ENQ processes (a processor/threading constraint)
• I/O bottleneck on the ENQBCK file.

In the first case, where the central instance is overloaded from an OS level, other work processes on the
CI (central instance) are using too much CPU or there is excessive paging, and the enqueue process
cannot get enough CPU time to process requests.

se ST06(N) (or programs such as vmstat) to check for CPU or paging problem. U

The solution for this kind of problem is to move work processes off the central instance. For example,

pdates and UP2 work processes could be moved to other instances, batch processes could be defined as u
Class A, so that user jobs could not run there, and the SMLG definitions of login groups would direct
users to login to other instances.

n the second case, where there is a processoI

in
speed of the processors running ENQ.

e solutioTh
us

n for this type of problem is to define more than one ENQ processes on th

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 28

enq
enq

If a
alle

The third type of ENQ performance problems is an I/O bottleneck on the ENQBCK file. At the end of
an SAP transaction, ABAP programs issue an SAP “commit work” command. The “commit work”
signals that the transaction is finished, and its update can be processed. Because SAP uses enqueues to
serialize access to SAP objects, and these enqueues cannot be released until the update is complete, the
“commit work” causes the ENQ process to write the state of the enqueues to disk. This ensures that the
enqueues for the committed transaction will not be lost if the system crashes between “commit work”
and update processing. This information is written to a file called ENQBCK, which is on the central
instance. In situations where many “commit work” commands are being executed, the write activity to
this file can become a bottleneck. See the SAP parameter enque/backup_file for the location.

The symptom of this problem is also long ENQ times. However, the ENQ process will generally not be
running 100% of the time, and there will be very high I/O rates to the disk containing the ENQBCK file.

The solution to this problem is to place the ENQBCK file in a filesystem that resides on write-cached
disk. In addition, it may be necessary to use a striped (either LV or disk striped) filesystem, to increase
the I/O bandwidth of the ENQBCK file.

 of
wait (when monitoring an SAP instance is not the

entral instance) or waiting on semaphore 26 (when monitoring the central instance). SM51 queue

ueue increases for up to 3 enqueue processes on the CI. We have heard of systems with more
ueue processes defined, but do not have the performance data to recommend this configuration.

 system with faster processors is available, running the central instance on this system will help
viate an ENQ processor constraint.

7.2.9.1. Enqueue processor constraint example

The symptom of this problem is long ENQ times seen in ST03 or STAT/STAD. Additionally, when
one checks ST06(N) “top processes”, one sees that the ENQ processes is using CPU nearly 100%
the time. SM50 will show processes in ENQ
c
statistics on the Central Instance will show long ENQ request queues.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 29

Figure 17: ST06 > detail analysis > top CPU - showing processor constraint

portant note: Recent releases show CPU utilization in ST06 top processes adjusted by number
of processors on the system. For example, on an 8-way system, 12% “CPU util” in ST06 “top
processes” means that the work process is using 100% of one of the processors (100/8 = 12). The
original way of reporting, where 100% meant 100% of a processor, was easier to interpret when
looking for processor constraint problems.

To determine which reporting method is used, compare the CPU time used by a work process with
the utilization reported over an interval, or use an OS level tool (such as tprof) that will display
process utilization as a percent of a processor.

Im

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 30

Figure 18: SM50 showing ENQ wait

In Figure 18, there are many processes showing “stopped ENQ”, which means waiting for enqueue.
aphore wait. This instance is not the central instance. On the CI, enqueue wait is reported as sem

See Figure 22.

Figure 19: SM51 > Goto > queue information - display of queues on SAP central instance

In Figure 19, the enqueue process was 288 requests behind at one point. While it is not unusual to
see small queues on enqueue, if the queue gets to 50, 100, or above, one should look at the causes.

ince enqueue wait problems occur only at times of high enqueue activity, ST03 daily statistics will

act.

S
average them out and make them look less important than they are. Check periods of high activity,
and look at the STAT records of jobs that run in those periods, to better evaluate the imp

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 31

he problem reported is slow batch performance. ST03N shows that SAP lock time (enqueue time)
is a large percentage of background and update time.

7.2.9.2. ENQBCK I/O constraint example
T

Figure 20: ST03N with high lock (SAP enqueue) time

We can also look at STAT records to evaluate the components of elapsed time. Following screen
shots are same type of problem as in Figure 20, but from another system.

Figure 21: STAT long total and average enqueue times

 Figure 21, enqueue time is over 1/3 of the Response time, with an average enqueue call time of
over 600 ms. This is very unusual. Enqueues should normally take just a few ms each.

In

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 32

Monitor the job while it is running, to look for the cause of the slow enqueues.

Figure 22: SM50 display on central instance showing Sem 26 (ENQ) wait

In Figure 22, there are many processes in enqueue wait. This is the central instance. On the CI,
enqueue wait is displayed in SM50 as semaphore 26 wait.

Figure 23: ST06 > detail analysis > top CPU - no processor constraint

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 33

But, unlike the previous example, the ST06 “top processes” shows there is no engine constraint on
the enqueue process – the process using the most CPU is using 26% (of 100% possible in this
release) of the time.

ST05 enqueue trace shows that some of the enqueue calls take a very long time, in particular after
“COMMIT WORK”. In Figure 24, the DEQ call takes 389 ms, where it should normally take 1-2
ms.

Figure 24: ST05 ENQ trace

Since I/O on enqbck is another possible cause, check I/O activity with ST06.

Figure 25: ST06 > detail analysis > disk - high I/O activity on UNIX disk

on, to confirm what is causing the activity on disk.

ote that hdisk2 is at 99% utilization. Now, check the LVs that are defined on the disk (lspv –l in N

AIX), or run a tool such as filem

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 34

Figure 26: filemon displays active filesystems

Since the files stanza of filemon generally does not report correctly on open files, use the LV stanza

lling

rite-cache enabled, and

S.

to

of the filemon report to find the active filesystem. Compare this to the SAP parameters contro
the location of the ENQBCK file.

For best performance, the ENQBCK file should be located on a disk with w
in a filesystem with read caching.

If running enqueue server under USS on z/OS, ZFS should be used for the ENQBCK file, not HF

7.2.10. Frontend example
With GUI controls in a WAN environment the time to process RFC calls from the application server
the GUI can make a significant contribution to the elapsed time of a dialog step. On the other hand, the
GUI control RFCs make it possible to reduce the number of screens on some transactions.

In 4.6, the ST03 workload summary DIALOG stanza includes average Frontend time.

When looking at a running system, SM50 or SM66 will show “stopped GUI” for each dialog step
waiting for a GUI RFC. ST05 RFC trace can be used to trace the RFC calls to the GUI.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 35

 2Figure

In this example in Figure 27, note that GUI calls make up 3,780 ms of the 4,059 ms response time.
Network data transfer time was 1,212 m

7: STAT with long GUI time

s.

SAP no ne
can disable SAPGUI_PROGRESS_INDICATOR to reduce the number of calls to the GUI.
Additionally, one can choose “classic gui”, or set the login for “low speed connection” in order to
reduce the amount of communication between the presentation and application servers.

Net time is a function of the speed and latency of the network between the application server and
frontend. If net time is slow, one must investigate it with network monitoring tools.

7.2.11. Missing time in STAT/STAD – suggested actions
• The statistics of some component (usually Database request time or CPU time) have

wrapped, and the statistics are invalid. Monitor the running job using ST04 thread analysis,
ST05, and SE30 to determine the components of elapsed time as described below in Batch
Elapsed time analysis

• There is operating system paging on the application server. Use ST06(N) or an OS program
such as vmstat to check for paging.

• There is a CPU overload on the application server. Use ST06(N) or OS program such as

•

•
 such

on to check for I/O activity in this location.

GUI time can be influenced by the speed of the frontend (PC), and by SAPGUI settings.

tes 51373 and 161053 describe ways to optimize the performance of the GUI over a WAN. O

vmstat to check for CPU overload.
The program being executed is doing I/O to a file, e.g. an interface program that reads or
writes UNIX files. Use ST06(N) or OS program such as iostat or filemon to check or I/O
activity.
The ABAP program is sorting a large internal table and the sort has spilled over to sort on

isk. Check location of DIR_SORTTMP in SAP parameters, and use ST06 or OS programd
as iostat or filem

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 36

• A batch job is using “Commit work and wait”. When the program is running, watch it using
SM50 or SM66. Check whether the job is often in the state “wait UPD”, which means that it is
waiting for “Commit work and wait” to complete. Check (via STAT records or ST05) that the
updates are being processed efficiently. If so, investigate whether the program could be changed
to do “commit work” so that updates are processed in parallel with the batch job. If the job must
get a return code from “commit work and wait” in order to take error recovery action, then it
would not be possible to change to use “commit work”.

• ject locked by another process. It

usive material block) can be
enabled. It will reduce this enqueue contention, an increase parallelism in sales processing, but
also increases the load on the enqueue server on the central instance. When enabling OMJI,
monitor the CI to confirm that it can support the increased load.

• A batch job is sleeping, waiting for dispatched work to finish. Use SM50 or SM66, and look
for a status of SLEEP.

7.2.11.1. Missing time – enqueue reject and retry
As mentioned in Section 7.2.11, one of the causes of missing time is when ABAP programs wait
to acquire an enqueue. This can be analyzed with either ST05, or SE30, or with both using

A batch job is trying to acquire an enqueue for an ob
fails to get the enqueue, waits and tries again. When the user program is running, check
SM50 or SM66 and look for SAPLSENA in the program name. Use ST05 enqueue trace to
confirm the problem. Look for repeated enqueues against the same object, where the return code
(RC) is 2, which denotes that the enqueue could not be acquired. If these enqueues are being
acquired as part of sales processing, check if OMJI (late excl

ST12.

Figure 28: Missing time stat record – enqueue retry example

In Figure 28, note that there is almost 40 ms that cannot be accounted for – the processing time is
much higher than CPU time. If we trace the application with ST12 to gather SE30 ABAP trace
and ST05 SQL and enqueue traces, we see that SE30 APAB trace shows over 30 seconds calling
enqueue function, though the STAT record showed less than one second of enqueue time.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 37

Figure 29: Missing time ABAP trace – enqueue retry example

If we compare the ABAP trace with the ST05 trace of SQL and enqueue, we see the reason for
the difference. Each time the program fails to get the enqueue (RC=2), it waits for one second,
then tries again. This time waiting is not externalized in any of the time categories of STAT, but
is part of the missing time.

Figure 30: Missing time ST05 trace – enqueue retry

Wait for enqueue is an application issue. If the ABAP is SAP code, one would contact SAP to
determine whether there are configuration changes that can be used to reduce the time that the
enqueues are held, in order to reduce contention. If the ABAP is custom, then one would work
with the developers on how to reduce the time the enqueues are held.

7.3 cs for Java Stack

ATTRACE (for individual DSRs) or ST03G
(for aggregated DSRs). The configuration is described in the SAP “Monitoring Setup Guide”.

As with STAT records, the DSR is used to evaluate the components of response time in an action, in
order to determine which detailed traces might be needed to analyze performance. The DSRs are used
in filtering problems, and do not generally point to a specific solution.

In the following example, a dual-stack nw04s system (BI with BI Java and EP) is used to demonstrate
the integration of the DSR data with STAT records, to find out why a BI query runs slowly when run via
the Java stack. We use the transaction STATTRACE, to evaluate the DSRs and STAT records.

. DSR statisti
DSR (Distributed Statistics Records) statistics are the Java analogue of ABAP STAT records – DSRs
record the response time components for actions performed in the Java workload. Analysis of the
DSR records is done in the ABAP stack, using either the ST

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 38

Figure 31: STATTRACE to select DSR and STAT records

Enter the time and other restrictions.

Figure 32: STATTRACE

In STATTRACE, DSR and STAT records with the same SAP Transaction ID are grouped together.
Select one row, and press “Expand All” to see the details.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 39

Figure 33: STATTRACE expanded

The response time column can give misleading information about response time in the summary line --
ions are summed, the total response time will be longer than the
mple, the longest DSR (16,988 ms) spends most of its time in

timestamps show this. In the example in Figure 33, examine
the DSRs to determine why the step runs over 16 seconds.

when the response time of concurrent act
elapsed time of all the actions. In this exa
RFC calls, so the RFC STAT records (e.g. l7,450 ms) are actually concurrently running in ABAP while
the DSR’s actions are active in Java. The

Figure 34: 16 second DSR

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 40

Drill in on the long DSR in Figure 34, and there are options for displaying the different components of
response time.

igure 35: STATTRACE detail DSR analysis

ponent in Figure 34, select “Call Records”
in Figure 35, then sort the result by time.

F

Since Call time (RFC calls) is the longest response time com

Figure 36: STATTRACE Call Records

The long call time is caused by one client RFC call to the BW7 (ABAP stack) system. Now, we need to
look at the STAT records for this Transaction ID, to see what causes the long response time in the BW7.
We can also drill into the STAT record from the STATTRACE transaction.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 41

Figure 37: STATTRACE RFC STAT record

This is probably the STAT record (it is long enough), but we can check that it is the RFC call made from
Java. Note that about 2/3 of response time is DB call time.

Drill into the timestamp, and the STAT record is displayed.

Figure 38: STATTRACE RFC STAT detail

Choose “RFC Single Records Server”, to see RFC calls for this STAT record. The
BICS_PROV_GET_RESULT_SET server took 16 seconds.

Figure 39: STATTRACE RFC Single Records

It is the same RFC call. STATTRACE uses Transaction Ids to group the steps, and you can also display
the transaction ID for DSR or STAT record.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 42

Figure 40: STATTRACE Transaction ID

The RFC calls in DSR and STAT can be traced with ST05 RFC trace.

Figure 41: ST05 RFC trace matches RFC data in DSR and STAT

This trace was made during execution of the query that is being analyzed, and you can see that the RFC
times on BW7 correspond to the RFC statistics in the DSR and STAT records.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 43

component of time for the Java step is RFC call time to BW7.
And
use S
long.

So, from Figure 34 we know that the main
we saw in Figure 37 that about 2/3 of the RFC time in BW7 was DB time. At this point, we can
T05 to do an SQL trace of the query when it runs in BW7, to determine why the DB time is so

Figure 42: ST05 SQL and RFC trace of query

The t
up 10 uld then examine this (using techniques
discussed below) to optimize it.

7.4. h DB request time

7.4.1

dex, then DB2 must read
e table to check whether the row contains the value which is sought.

QL. Nested Loop Join is the
table

race in Figure 42 shows that there is one SQL statement, a select on /BIC/FFIAR_2006 that makes
 seconds of DB time in the 16 second RFC. We wo

Types of problems causing hig

. Indexes do not support predicates
Local predicates are the “column operator value” clauses in SQL. In order to execute these
efficiently, the column must be in an index. If the column is not in an in
th

Join predicates are the table1.columnA = table2.columnB clauses in S
most common join method used with SAP, and in order to process an efficient NLJ, the inner
must have an index containing the columns in the join predicates.

There is an example of this in Section 7.5.3.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 44

7.4.2
ight
r.

es are indexed by order
ber and wants to retrieve the associated

. But, if the program selects from the delivery table
index for order number and the select is slow. If the program
e is an index and the select is fast.

se of

7.4.3
 an ABAP program has a list of keys in an internal table, there are two ways to use the table to

. Misuse of SAP Data Model
SAP often stores data redundantly in more than one table. For example, a delivery document m
contain the order number. And an order document might contain the associated delivery numbe
But, the delivery tables are indexed by delivery number, and order tabl
number, so if a program has the value of an order num
delivery, the program could use either table
using order number, there is no
selects from the order table, ther

There are three SAP notes (185530, 191492, and 187906) that describe common errors in u
the data model and how to fix them.

There is an example of this problem in Section 8.5.3.

. SELECT in LOOP instead of FOR ALL ENTRIES
If
select rows from the database:

LOOP AT internal_table
SELECT … from DB_TABLE where COLUMN = internal_table-column
ENDLOOP

Figure 43: LOOP with select

ELECT … from DB_TABLE for all entries in internal_table

TRIES will group

7.4.4

urn 10 rows.

Each SELECT call in the LOOP will make a call between the application server, and the database
server. Instead, an array operation should be used:

S
WHERE COLUMN=internal_table-column

The LOOP AT will make one call to the DB for each value, the FOR ALL EN
the values together, and SAP will create an IN list (there is one column=value in the WHERE) or
an OR (if there is more than one column=value clause in the WHERE.

. Data skew causes wrong access path to be chosen
When DB2 estimates the number of rows that will be returned on a select, it uses the column
cardinality and table cardinality to estimate the number of rows with each column value. For
example if a column AUFNR has 1,000 distinct values, and its table has 10,000 rows, then DB2
assumes that each value specified for AUFNR will ret

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 45

ntain a single value, then the data is skewed -- that is the distribution of
values in rows is not uniform. If data is skewed, DB2 requires additional RUNSTATS

, in
or

Th

7.4.5.
The default method of preparing statements with parameter markers can cause access path

 in section 8.3. To address, the
R l
sh
if of the normal
ex s path.

7.4.6.
If
pr
in ss on all three columns in the index.

If olumn2) then DB2 could only do index

 right of a range predicate can’t be
 index screening, which is less

ef

at will have equal predicates (column = value) as
th
la

Th

7.4.7. esses
When a table is clustered by an index, rows in the table are in the same order as the index. This
m
the table. When doing array fetch operations, where many rows are retrieved in one call to the
database, clustering the rows will reduce I/O delay, and increase the speed of the SQL.

Since there can only be one clustering index, if you change the clustering index from the default
delivered by SAP, they you are choosing to optimize access via a different access than usual. This
will help performance of programs that use clustering index, but slow performance of programs
that read the table using the former clustering index.

An example of changing clustering sequence is in Section 7.4.7.

However, if many rows co

FREQVAL statistics, combined with either ABAP HINTs or REOPT(ONCE) BIND option
der to use execution values to determine the skew.

ere is an example of this in Section 8.3

REOPT(ONCE) impact

problems in some situations, as shown in the example
EOPT(ONCE) option was created, which allows a statement to be prepared with values, but stil
ared by all dialog steps that execute the SQL, regardless of the runtime parameters. However,

e values used for the first execution of the statement are not representativeth
ecution, this can cause DB2 to choose the wrong acces

This is described in Section 8.5.2

Impact of index column order with range predicates
 an index has n columns, such as (column1, column2, column3) and an SQL statement has local
edicates column1 = value1 and column2 = value2 and column3 GT value3, then DB2 can use
ex matching acced

 the index columns were ordered (column1, column3, c
matching access on two columns, since any index columns to the
used for index matching access. They can, however, be used for

ficient.

When creating custom indexes, place columns th

e first columns, and place columns that will be used for range predicates (gt, lt, between) as the
ter columns.

ere is an example of this issue in Section 8.5.5.

Table is not clustered to support key business proc

eans that rows that are close together in the index will be close together (if REORGS are done) in

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 46

7.4.8. Unnecessary SQL

7.4.8.1. Table could be buffered on application server but is not buffered
Tables that are seldom changed, and where the application can tolerate a small interval between
when rows are changed, and the changes are available on all application servers can be buffered
on the SAP application server to offload the database.

There is an example of this issue in Section 7.5.7

7.4.8.2. SAP instance buffers are too small
If the SAP generic or single record buffers are too small, then tables that could be buffered on
the application cannot fit into buffer, and must be read from the DB server.

There is an example of this problem in Section 7.5.6.

7.4.8.3. FOR ALL ENTRIES with empty internal table
The ABAP FOR ALL ENTRIES statement uses an internal table with a list of keys to be
retrieved for a column or columns. If the internal table is empty, the local predicates on the
columns are not generated in the SQL, which generally causes the program to retrieve rows that
it does not need.

There is an example of this problem in Section 7.5.5.

7.4.8.4. Program retrieves rows that are not needed
There is an example of this problem in Section 7.5.4

7.4 selects
e analyzed for duplicate selects, where the same rows are repeatedly read.

sign issue, and cannot be fixed with DB optimization. Check the trace
to determine whether the analysis contains multiple commit points. If there are multiple units of

urrent values from the tables.

.8.5. Duplicate (or Identical)
SAP ST05 traces can b
This is an application de

work, then it would be reasonable for each UOW to retrieve the c
If the trace contains a single UOW, and there are many duplicate selects, then it may be possible
to change the structure of the program to retrieve the data once.

Depending on the SAP version, ST05 calls this either “Duplicate selects” or “Identical selects”.

Figure 44: ST05 Display identical selects

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 47

Figure 45: ST05 Identical selects analysis

 the case where there is a performance problem with a specific program or transaction, there are two

 profile the transaction, and determine where the time is
spent. Otherwise, start with ST05, which can be used to evaluate database calls, enqueue activity, and
RFC activity.

7.5.2. Guidelines for making database changes
In general, we use this matrix of inputs, when deciding how to address SQL performance problems.

Sometimes, specific business processes require new indexes on tables. Here are some guidelines on
how to approach the problem when you find a program where the predicates do not match the indexes:
ABAP Creator Table Creator Action when predicates do not match indexes

7.5. Transaction

7.5.1. Analysis process for transactions and batch jobs
In
different paths to take, depending on where the transaction spends its time. If most of the time is spent
in CPU on the application server, use SE30 to

SAP SAP • Check data dictionary for SAP indexes which are
defined in DDIC but not active in DB

• Check OSS notes
• Open OSS message to SAP

Custom Custom • Rewrite program if possible
• Evaluate table access patterns, whether table can

be buffered
• Create index

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 48

Custom SAP • Check data dictionary for SAP indexes that are
defined in DDIC but not active in DB

• Review use of data model (will generally fix
problem)

• Change program
• Create index (should very seldom be necessary)

7.5.3. ZCR3 – indexes do not match local predicates
This is an example of a program where the local predicates do not match the available indexes. This
type of problem is described in Section

Performance problem has been reported on transaction ZCR3. Reviewing ST03N, we see that that the
majority of CPU time is DB request tim

7.3.

e.

Figure 46: ZCR3 ST03N time components

The average response time is about four seconds and the ratio of DB to CPU is about 3/1, which does
not seem to indicate a big DB performance problem. We can look at the detailed statistics records to
see whether the averages reflect the transaction performance.

We can also check the statistics records with the STAD transaction, where we see the response time
components for individual dialog steps. Note that in Figure 47, the DB request time is about seven
times as large as the CPU time, which often is a symptom of a problem in the SQL or database. Since

ery fast, the long running dialog steps were not visible the averages. some of the dialog steps are v

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 49

Figure 47: ZCR3 statistics records

Run ST05, then press “activate trace with filter”. Enter the filters (username or transaction) for the
trace. ST05 traces on a single SAP application server instance.

Figure 48: ST05 trace with filter

After the trace is done, run ST05 – “deactivate trace”, and then “display trace”. In Figure 49, the
Duration is microseconds, and the “Recs” column on the FETCH line shows rows returned from

 DB2.
This example is 60 ms for 0 rows, which is slow. Fetching a row (or determining that no rows qualify)
usually takes 1-2 ms.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 50

Figure 49: ZCR3 ST05 trace

Click “Trace List > Summarize trace by SQL statement” to group SQL, and sum the time for each
statement.

Figure 50: ZCR3 Summarized by SQL Statement

This summary has several useful pieces of information – which statements have (in total) the longest
time, whether tables are buffered or not (BfTp), average time per execution and average time per row.
With this information, one can distinguish whether a statement takes a lot of time because there are
many rows retrieved, or whether retrieving an individual row is slow.

If both “Time/exec” and “AvgTime/R.” (time per row) are slow, the SQL retrieves rows slowly. Here,
each call to ZCA0_SUBASM_ASSN averages over 250 ms, and retrieving one row averages 89ms,
since there is more than one row on each call to DB2. This is very slow. In contrast, each call to
MAKT averages about 4 ms, and retrieving one row averages 434 microseconds, which is ok.

In Figure 50, we see that the largest component of DB request time is selects on the
ZCA0_SUBASSM_ASSGN table. If we go back (green arrow) to the screen in Figure 49, and then
search for ZCA0_SUBASSM_ASSGN table in the trace, we see repeated slow selects on the table –
each call takes several hundred milliseconds to return 5-10 rows.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 51

Figure 51: ZCR3 ZCA0_SUBASM_ASSGN

Place the cursor on an OPEN or PREPARE line, and select “Goto > Display ABAP source” to see the
ABAP source code. The program name starts with Z, so is custom ABAP.

Figure 52: ZCR3 - ABAP source

Again from the SQL trace in Figure 49, to see the statement and values of parameters, place the cursor
on an OPEN line, and click the clipboard (Replace placeholder in SQL statement) button.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 52

Figure 53: ZCR3 statement with variables

In the SQL statement, there are local predicates (column operation value) on MANDT=,
EAD_AUFNR IN, and WERKS=. To execute this stL atement most efficiently in the database, one

would need an index where the first three columns of the index contain MANDT, WERKS, and
LEAD_AUFNR.

To explain the SQL, going back to the trace displayed in Figure 51, place the cursor on one of the OPEN
or PREPARE rows, and press “Explain”.

Figure 54: ZCR3 Explain

The explain shows that only two index columns (of the three local predicate columns) are matched.
e can display the indexes and index columns with the “Index information” tab. W

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 53

Figure 55: ZCR3 Index display

MANDT and WERKS are the first two index columns, so DB2 can do index matching access on only
these two columns. Since there are other index columns between WERKS and LEAD_AUFNR, DB
does index screening for the LEAD_AUFNR IN local predicate. Index screening is processed in the

dex, but is not as efficient as m

2

atching index access.

values) of the columns, to see whether adding a new

_ASSGN” table, and
press “Col. Card”.

There are over 40K distinct values of LEAD_AUFNR in the 70K (inFigure 56) rows of the table.

in

We can check the cardinality (number of distinct
index (MANDT, WERKS, LEAD_AUFNR) looks like a good choice. (Actually, from the trace in
Figure 49, we already know that together the local predicates are filtering, since each call returns just a
few rows). Press the “Table information” tab, then select the “ZCA0_SUBASM

Figure 56: ZCR3 Table information

When the local predicates do not match the indexes, there are several possible ways to approach the
7.5.2.

lems

problem. See our guidelines in Section

• Do nothing – if the issue is not critical to the business, and is not causing CPU or I/O prob
that impact the system and other users, one may leave it alone. Creating too many custom
indexes on a table can impact performance of other programs that update the table

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 54

uld be added to the selection conditions
(e.g. factory_top eq xxx) in the ABAP, then DB2 would have local predicates on all the index
columns, which would give efficient access. Whenever this is possible, it is a better choice than
adding a new index.

• Last, one can add an index - in Figure 56, we see that there are 70K rows in the table, and over

40K distinct values of LEAD_AUFNR. On the average, there will be less than two rows for
each value of LEAD_AUFNR, so our select statement with the IN list with ten values will return
on average less than 20 rows. With an index containing MANDT, WERKS, and
LEAD_AUFNR, one would usually expect to be able to retrieve 20 rows in less than 20 ms

ndex will give a substantial improvement in
the summary in Figure 50

time by about 25%.

7.5.4. ZCR1 – can the SQL be avoided
This is an example of the type of problem where SQL can be avoided, as is described in Section 7.4.8.
We’ve been asked to investigate the performance of the ZCR1 transaction.

• Modify the ABAP to match the indexes – in this case, if the program already has the values for
FACTORY_TOP and COMP_MATNR, so that they co

(assuming reasonable hit rates), so adding a new i
performance. Based on , the new index would probably reduce DB

Figure 57: ZCR1 - ST03N statistics

ST03N shows that the transaction is one of the highest impact, in terms of total DB time, and the
average DB time (0 DB time – over 5000 ms) is about 20 times as long as average CPU time (0 CPU
Time – about 250 ms). Such a large difference between DB time and CPU time is often a sign of a
performance problem in retrieving data from the DB server.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 55

Using the STAD transaction, we retrieve some detailed SAP statistics records on the system. We see
that some dialog steps run quickly, and that some are slow.

Figure 58: ZCR1 statistics records

Figure 59: ZCR1 ST05 trace

e trace with ST05, and the initial screen of the formatted report looks fine – averagW e times of a few

In addition to the “Summarize trace by SQL statement” shown in Figure 50, one can format a trace by
selecting “Trace list > Summarize trace by tables”.

ms.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 56

Figure 60: ZCR1 - summarized trace

Click on “Access time”, and then press the “Sort in descending order” (inverted pyramid) button. The
longest SQL statement in the trace (Figure 61) took 21 seconds.

Figure 61: ZCR1 SQL sorted by time

54K rows in 21 seconds is less than ½ ms per row, which is OK. So, we are not going to make the
program go faster by speeding up the SQL. We need to look at the ABAP program, so see whether this
might be a problem where the program is retrieving more data than it needs.

In the SQL trace, we find the long select on QMEL.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 57

Figure 62: ZCR1 ST05 QMEL

Note that the values being retrieved are M
00000000. Perhaps the program needs to retrieve all rows that do not have a serial number assigned.

In the trace in Figure 62, place the cursor on the PREPARE or OPEN line, and select “Goto > Display
ABAP source”.

ANDT = 410, SERIALNR = ‘ ‘ (space) and QMDAB =

Figure 63: ZCR1 FORM ABAP source

Here, note that the last statement before the SELECT FOR ALL ENTRIES is to delete duplicate entries
in the internal table (get_quote) that is used in the FOR ALL ENTRIES. This implies that the internal
table should hold values for serialnr, since the program is looking for distinct numbers.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 58

Next, check the source code that calls this FORM in Figure 64. We see the FORM called (PERFORM
collect_qnotes), then there is a loop where the quote_tab table is used. But, before quote_tab is read, the
program checks that serialnr is NOT INITIAL, that is blank. So, all the rows that were read for
SERIALNR = ‘ ‘ are not processed.

e 64: ZCR1 main program ABAP sourcFigur e

At this point, we contact the developers to discuss the program logic, and whether this is a logic error
that needs to be fixed, in order to avoid the SQL on QMEL when there are no SERIALNRs to be
selected. The internal table is not empty, but contains a value (spaces) that will never match rows that
are needed.

7.5.5. ZLTRUCK – can the SQL be avoided
As in Section 7.5.4, this is an example of a situation when the problem is not slow SQL, but SQL
that is not needed.

We’re investigating the performance of the transaction ZLTRUCK, where the majority of dialog

In this STAT record, the response time is 115 seconds, of which step elapsed time is DB time.
102 seconds is DB request time.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 59

Figure 65: ZLTRUCK statistics record

Here, DB request time is 102 seconds, while CPU time is 16 seconds. But interestingly, there are
over 5 million rows read, which is unusual for a dialog transaction.

Stat/tabrec is enabled, press the “Table” button in Figure 65 and we see that LTAP is the table from
which 5 million rows are fetched.

Figure 66: ZLTRUCK stat/tabrec

Now we can run ZLTRUCK, and trace it with ST05, to find the calls to LTAP, and determine why
it is selecting so many rows. As in the previous examples, trace and explain the SQL with ST05.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 60

Figure 67: ZLTRUCK LTAP explain

We see that the only local predicate is MANDT=, which is unusual. Normally, a program will
specify some subset of the data to be retrieved with where clauses on columns.

When we display the APAB, we see the cause of the problem. The program does a SELECT FOR
ALL ENTRIES, which uses an internal table to list the keys of the rows to be retrieved. But, if the
internal table is empty, SAP creates the SQL on the table without local predicates on the columns
using the internal table for the selection value. Put another way, FOR ALL ENTRIES restricts the
list of rows, and with an empty table, there are no restrictions.

Figure 68: ZLTRUCK ABAP

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 61

In Figure 68, lgnum, tanum, tapos get their values from the internal table t_conf, so are not
included in the SQL if the table is empty. This leaves MANDT=, which is implicity added to the
SQL by ABAP.

The result is that the SQL sent to DB2 has =, even though the
program did not specify any rows to retrieve in th

The cure for this problem is to add a check in the ABAP for whether the internal table is empty or
not. If it is not empty, then the SQL can be executed, otherwise, skip the SELECT FOR ALL
ENTRIES.

7.5.6 the SQL be avoided

one local predicate, MANDT
e internal table.

. A071 – can
We have been asked to review performance of a program which has a large percentage of DB
equest time. We have traced it with ST05, and summarized the trace. r

Figure 69: A071 summarized SQL trace

In Figure 69, note that the third entry (A071) is set to be buffered (BfTp = Ful), but the program is
making calls to the DB server to retrieve rows. Normally, buffered tables should be a very small
percent of DB time, since the data is usually already in the SAP buffers.

DB calls to buffered tables can happen if the generic buffers on the application server are too small,
such that the table does not fit in memory on the application server. We run ST02 to display the
buffer activity.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 62

Figure 70: ST02

 ST02 shown in Figure 70, note that there are many DB calls for data that is in the generic buffer.

See section 9.2.4 for information on using ST02 to check if the generic buffer is too small.

If the generic buffer area is too small, then tables that should be buffered cannot fit in buffer
memory on the application server, and this will cause performance problems, and excessive DB
calls.

There can also be DB calls for buffered tables if the ABAP uses “BYPASSING BUFFER” option.
Display the ABAP from the ST05 trace, to check if BYPASSING BUFFER is specified.

7.5.7. ZREF – can the SQL be avoided
estigate the performance of a program. We trace and summarize the SQL,

Z table which accounts for about 15% of the DB request time.

In

We’ve been asked to inv
and see that there is a

Figure 71: ZREF ST05 summary

In Figure 71, note that the table ZREF accounts for a bit more than 15% of the DB request time,
and it is not set to be buffered. Since it is a custom table, it may be that the buffering was not set
correctly.

Check the table accesses with ST10, to see whether it might also be a system-wide candidate for
buffering. For more information on buffering tables in SAP, see Section 9.2.5.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 63

Figure 72: ZREF ST10

The majority of selects are via select single (direct read) but about 20% are select. Generic
buffering would support both select single and select, single record buffer would only support the
select single.

Use DB05, to check the size of the table and its key columns for generic buffering.

Figure 73: ZREF DB05

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 64

Figure 74: ZREF DB05 data

The table has few rows, and would only require 140K for full buffering. It is not currently
buffered, but it looks like a good candidate for buffering – it is relatively small and seldom
changed. One could buffer it generic on two columns (mandt, werks), or fully buffer the table to
offload the DB requests to the application server.

One would need to discuss with the application developer whether this table meets the third
criterion for buffering – can the application tolerate a short interval where the data is out of sync on
the app servers. When buffered tables are changed, it takes minute or so (depending on the SAP
parameter settings) to propagate the change to all app servers. For customization data, it is usually

rval when the data is not the same.

For business data like stock on hand of a material or an account balance, one cannot have different

7.5.8. Changing clustering sequence to optimize access times
In this example, the index supports all the local predicates, but SQL is still slow.

DB2 can cluster a table, which means that it places the rows in the table in order based on the
values in a column or columns. SAP delivers the system with clustering defined on the ~0 index

ize a specific business process, the clustering sequence may

ses the
d be changed only after

valuating the performance constraints of a business process, and considering the impact on
programs that will lose the benefit of the original clustering sequence.

OK to have this small inte

information on different app servers, and these types of data would not be buffered in SAP.

of each table, but in order to optim
need to be changed.

Please note that when the clustering sequence is changed, programs that have SQL that u
former clustering index will probably run slower. Clustering shoul
e

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 65

In this example, we have traced a program and found that the largest part of DB delay is selects on
the MDSB view (RESB table), where each row takes about 6 ms to retrieve. 6 ms per row is rather
long.

Figure 75: Slow selects on MDSB

When we explain the statement, we see that the RESB~M index is being used to access the data,
with five columns in the index.

Figure 76: RESB~M explain

nd checking the index statistics, we see that the cluster ratio of the RESB~M index is low, wh

ich A
means that it is not likely that sequential rows in the index are near to each other in the table.

Figure 77: RESB clustering

With the data we have so far, we know the statement is slow (6 ms per row), but we cannot see
what the impact is of I/O delay on the statement. The ST05 trace shows statement elapsed time, but
not the components (CPU, I/O, locks, network, etc) of the elapsed time. To see the time
components, we need to use ST04 and find the statement in cache.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 66

Figure 78: RESB time per execution

Each execution averages about 150 ms, and almost all is synchronous I/O delay.

When you compare an ST05 trace and ST04 statement statistics, the elapsed times will be different,
since ST04 is an average of all executions since the statement was prepared, and ST05 is a subset
of DB calls.

Figure 79: RESB statistics per exec

Note that rows examined and rows processed are the same, which is good. This means that none of
the local predicates are applied on the table, they are all applied in the index. But, there are 18
synch I/Os for each execution, and the statement has a hit rate of (26.18-18.05)/26.18 = 31%.

This is a secondary index with low cluster ratio, so rows that are sequential in the index are not
sequential in the table. This wide distribution of data causes I/O on the table when rows are read
for the result.

Synchronous I/O can also be caused by reading rows with indirect references, which is when rows
have been updated and the update could not be saved in the original location. SAP’s use of DB2
RTS detects when REORG is needed due to indirect references. The DB2 NEARINDREF and
FARINDREF display the number of near and far indirect references. Check whether REORG is
needed, before evaluating changes in clustering sequence.

In order to speed up the statement, we can change clustering sequence so that all the rows are
clustered by the RESB~M index, and there will be fewer getpages, as well as fewer I/Os per
execution.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 67

s

Here is an example of statement times for a select using RESB~M, when RESB is clustered on thi
index. Note that the statement hit rate is much higher than in Figure 79.

Figure 80: access by RESB~M after clustering on ~M

Now the statement hit rate is over 90% (98 getpages – 5 synch reads) / 98 getpages. So, with the
rows clustered on the ~M index, there are fewer I/O operations per execution, and the DB calls will
retrieve the rows more quickly.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 68

7.5.9. Modify Program so that data retrieval matches clustering sequence
We’ve been asked to review performance of a reporting program. The STAT record times are in
Figure 81.

Figure 81: Financial report STAT times

he STAT record DB statistics show that each row takes on

t have a problem with individual calls being
extremely long. (Note that we need to calculate call time, since the STAT records show time per
row, which is not the same as time per call.)

The majority of time is DB time. T
average 2.7 ms, and if using the data in Figure 82 we divide DB calls (107,190) into DB time
(280,294), each call takes about 2.7 ms. So, we do no

Figure 82: Financial report STAT DB times

Since the majority of time is DB time, we use ST05 to trace the program when it is running. Note
ues on the calls (they jump up and down). We will determine the
, and compare the data access pattern to that.

the progression of BELNR val
table clustering sequence later

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 69

Figure 83: Financial report ST05

l
e explain the statement, and find that it matches the first four columns of the

FBLG~0 index.

As expected from the STAT records in Figure 82, each call retrieves one row per call, and each cal
lasts about 2.5 ms. W
R

Figure 84: Financial report access path

Usually the ~0 index is also the DB2 clustering index, but as shown in Section 7.5.8, that can be
changed. We check the index information in explain.

Figure 85: Financial report display index

Since RFBLG~0 is the clustering index, this means that for fixed values of MANDT, the BUKRS
e will be in ascending order, and for fixed values of MANDT and BUKRS (e.g. 300 and 3010 in th

trace in Figure 83) the BELNR values will be in ascending order. But, we saw in the trace that the
BELNR is not being fetched in ascending sequence.

Figure 86: Financial report ST04

We find the statement in the SQL cache as shown in Figure 86, and note that Synch I/O is about ¾
of the statement elapsed time.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 70

When we access the rows without following the clustering sequence, this can increase I/O, since
out-of-order access lessens the likelihood of finding the requested row in DB2 buffer pool memory.

In this case, we ask the programmers to review how the data is retrieved. For instance, if the keys
for rows to be fetched from RFBLG are stored in an internal table, the internal table could be
sorted to match the clustering sequence.

Compare the response time in Figure 86 with the following statement in Figure 87, where there is
almost no wait time.

Figure 87: Financial report - RFBLG for ordered select

This statement in Figure 87 comes from a program doing the same select on RFBLG, but where the
keys to be selected were ordered in the program internal table to match the clustering sequence.

Figure 88: Financial report ordered rows

Since each select is retrieving a single row, it may also be possible to further optimize this program
with array select. But regardless of whether array or single row selects are used, retrieving the
rows in a way that matches the clustering sequence will generally help reduce DB request time.

7.5.1 ltiple dialog steps with transaction SQLR

T records, in order to match SQL operations
 their dialog step, as one would need to do when analyzing a trace from a business process made

up of several dialog steps.

Since one goal in improving performance is to find problems that have a significant affect on
performance, by comparing the length of the SQL operations with the amount of database request
time for the dialog step, one can estimate the possible improvement available.

In this example, there was a complaint about the performance of VA01. The ST05 trace has
already been made while a user ran all the dialog steps of the slow the VA01 transaction. Now we
are going to re-process the ST05 trace with SQLR.

0. Analysis of mu
The SQLR transaction (also named SQLR0001 or /SQLR/0001 program, depending on SAP
version) can be used to merge an ST05 trace with STA
to

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 71

Figure 89: SQLR initial screen

Just as with ST05 trace list function, in Figure 89 one fills in the start and end times, along with the
name of the user to be analyzed, selected tables, etc.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 72

Figure 90: SQLR formatted trace

ace.

The formatted trace is similar to an ST05 trace, containing duration in microseconds, table name,
and time of day. In addition, the STAT record is assigned a number, which is displayed in the
“ST” column.

Press the “stat. record” button on Figure 90 to display the STAT records that cover the ST05 tr

Figure 91: SQLR STAT record display

 this example, we would review the formatted trace in Figure 90 for SQL related to dialog step
ID 13, since that is the dialog step with the longest DB request time, and thus the greatest
opportunity for improvement.

In

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 73

7.6. Batch

7.6.1. Analysis process for batch
As with transaction analysis, the two main tools are ST05 and SE30. Use ST05 to find inefficient
SQL, and determine what activities take the most database request time. SE30 is used to profile the
time running on the application server.

Since batch jobs are long running, one can gather additional information on the job, using ST04
thread information and ST06 CPU information, to get an end-to-end profile of elapsed time that
includes CPU on the application server, CPU on the database server, delay on the database server,
and “overall not accounted” time, which includes network time and STAT “missing” time. The
sources of delay in DB2 are discussed in more detail in section 8.1.

If the job is long running and the statistics for a counter have wrapped, then the STAT records are
not helpful in filtering the problem source – whether it is excessive database request time, etc.

alysis of the job while it is running is required.

Even if the STAT counters have wrapped, the data recorded in stat/tabrec may still be valid, so
stat/tabrec and rsdb/stattime can be helpful in gathering data about performance issues in long
running batch jobs. These two SAP parameters should not be enabled all the time, just during
detailed problem analysis.

7.6.2
SE30 can be used to determine the components of response time for batch jobs or transactions.
When the problem is high CPU use on the application server, SE30 will show which ABAP
routines take the most time. One can then focus on these problem areas. When running SE30 for a
transaction, start the transaction from within SE30. When tracing a batch job, trace the job in
parallel with SE30, as in this example.

For this example, assume that we have already reviewed the STAT/STAD or ST03 statistics for
this next job, and have determined that the majority of elapsed time is CPU on the application
server.

An

. Using SE30 to determine cause of excessive CPU use

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 74

Figure 92: SE30 initial screen

To run SE30 using customized traces, select the TMP variant, then press the change button.

Temp
Variant

Change

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 75

Figure 93: SE30 Statement options

To trace activity on internal tables (this cannot be traced with ST05) select the Read and Chan
operations at the bottom left. This can make the trace grow very quickly. Inefficient read from
internal tables is a common scalability problem in ABAP programming.

ge

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 76

Figure 94: SE30 set duration and aggregation

The aggregation radio button controls how the trace is summarized. If “None” is selected, then you
will be able to see the response time of each DB operation, each internal table read, etc. Full
aggregation summarizes all the calls into a single total time. One can calculate the average time
from count and total time, but one cannot see if there is a skew in the call times.

Save and go back to the initial SE30 screen (Figure 92) and press the “Enable/Disable” button
under “in parallel session”.

Limits can be placed on the trace time, or size of trace file.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 77

Figure 95: SE30 process list

Select the process to be traced, and press the activate button (4th button from left).

Figure 96: SE30 activated trace

Run the trace for a while. Then deactivate it. This brings you back to the main SE30 panel again.
Press Analyze.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 78

Figure 97: SE30 analyze

one, you get an overview of time during the trace interval. After the analysis is d

Figure 98: SE30 Runtime Analysis Overview

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 79

In Figure 98, 100% of 20 seconds elapsed time (units are micro-seconds) is in ABAP time. This
contains CPU processing, as well as RFC and other time on the application server. Press the ‘Hit
List” button on the top left.

Figure 99: SE30 hit list

Then sort by Net time to determine the routine where the most time is spent. This is net as in
Net/Gross, not network.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 80

Figure 100: SE30 sorted by Net time

Drill in to the long-running Read Table.

Figure 101: SE30 long reads from internal table

early 5 ms., which is very long. In general, internal table read
will be just a few microseconds. Press “display source code” on the bottom row.
Each read from an internal table is n

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 81

Figure 102: SE30 cursor positioned after offending line

The cursor will be positioned after the slow statement. Page up to see the statement.

Figure 103: SE30 slow statement found

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 82

 an Now we have found the statement, what is the problem? Since this is SAP code, we could open
OSS message. SE30 has a Tips and tricks section, with common problems. This is the ‘linear
search vs binary search’ example.

Figure 104: SE30 Tips and tricks – linear search vs binary search

So, in our example above, the fix (from SAP) would be to change the ABAP to use the “BINARY
SEARCH” option on the “READ TABLE” operation.

7.6.3. Sample of SQL cycle analysis in batch
ehavior of the job, so that analysis of

the SQL can be performed through at least a full cycle. Analyzing and aggregating several cycles
is preferable, in order to average out the impact of transient conditions.

When tracing a batch job, it is important to find the cyclical b

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 83

marized trace, look for the
markers of a cycle. First, look for the “commit work” statements. There may be several cycles
within a single commit work, there may also be one cycle per commit work, or there may be
several commit works per cycle. In this case, choose the update to TST01 as the marker for a
cycle. Select the starting line, then “edit > select beginning”.

Start, list, and summarize an ST05 trace of the batch job. In the sum

Figure 105: TST01 - Select starting point in summarized ST05 trace

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 84

Then, use “find” to locate additional markers of the cycle – TST01.

Figure 106: ST05 cycle marker example

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 85

efore the TST01 update.
Select the end of the cycle: “edit > select end”. Here, the selected range ends with the
ARFDSDATA insert b

Figure 107: ST05 select end

terpret the result, if you look at this a month from now.

Use “edit > set tcode” to put an identifier into the trace. ST05 does not care what is entered, so
make it something that will help to in

Figure 108: ST05 set tcode

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 86

e SAP versions) to compress the trace, Press the summarize button (also labeled compress in som
and then sort by time.

Figure 109: ST05 summarized and sorted

Now evaluate the summary and look for slow tables. The time units are microseconds. At the top
of the figure, 102 VBAP rows are read in 908 ms (908,005 microseconds), for an average of almost
9 ms per row, which is a bit slow.

Since the top table is only 14% of DB time, unlike the transaction trace in section 7.5.2, there is not
a big problem on any of the tables. The purpose of this section is to demonstrate a process for
analyzing SQL for batch jobs.

If there were a problem, use ST05 to explain long running SQL statements, check whether a better
index is available, of if a new index might be needed, or if the program should be changed.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 87

8.

ting data – delay analysis

,

e
e DB2, e.g. time in the ICLI.

• Class 1 elapsed time is the time a thread is allocated. This is not a useful performance metric with

ot
.

r, etc.

Check for inefficient use of DB resources

8.1. DB2 accoun
DB2 accounting data can be used to determine where time is spent processing in DB2. Time is gathered on
ach DB2 thread, and is broken down into “class 1”, “class 2”, and “class 3” time. e
• Class 3 suspend time is when the thread is suspended, and waiting for a DB2 action (commit, I/O

row lock, etc).
• Class 2 Elapsed time is when DB2 is processing a request – it contains the Class 3 delay time, as

well as CPU time in DB2 (class 2 CPU time).
• Class 1 CPU is time that a thread is processing SQL from SAP – it contains class 2 CPU, plus tim

processing on S/390 outsid

SAP.
• Not attributed time = Class 2 elapsed time – Class 2 CPU time – Class 3 suspension time. It is the

time that is left when all the time that DB2 can account for is removed from DB2 elapsed time. N
attributed time happens when DB2 considers a thread to be runnable, but the thread is not running
This might be caused by a CPU overload on the DB server, a paging problem on the DB serve
In some versions of SAP, this is reported as “Other” time in ST04 “times”.

thread allocate

1st SQL

2nd SQL

thread deallocate

Out of DB2 In DB2
Class 1
Elapsed
and CPU

Class 2
Elapsed
and CPU

Class 3
Suspensions

Figure 110: DB2 time categories

At a system-wide level, the ST04 “global times” function (or DB2PM accounting report) can be used to
display the main sources of delay in DB2. Since these delays are generally a symptom of another problem

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 88

(e.g. inefficient SQL causes excessive I/O which causes high I/O delay in DB2), ST04 “times” is best used
to get an overview of the system performance in DB2, and to get a feeling for the possible gains which can
be achieved from tuning.

ST04 (DBACOCKPIT) statement cache display can be used to examine the delays of individual statements.

ST04 “global times” data is calculated from active threads. Since SAP DB2 threads may terminate and
restart over the course of a day, one should evaluate ST04 “times” at different times of the day, or aggregate
the thread accounting history with DB2PM, in order to see the overall impact of delays in DB2. Long
running threads, such as threads for monitoring programs, can skew the “global times” data. Check the
ST04 thread display, and sort the threads by time, to determine if ther are long-running threads that are
skewing the “global times” data.

A ratio of about 50% delay in DB2 and 50% CPU in DB2, is very good for a productive SAP system. If the
inefficient SQL has been removed, and the DB2 subystem is achieving 50% CPU in “global times”, then
there is probably little opportunity for improvement. Ratios of up to 75% delay and 25% CPU are very
often seen in normal productive systems. If, however, the system has a ratio of 80% (or higher) delay to
20% (or lower) CPU, and you want to improve overall DB server performance, then some additional
analysis can show if this is a sign of a system-wide performance problem (inefficient SQL, slow I/O
performance, etc) that needs to be addressed. In general, the bigger the delay, the larger the opportunity for
improvement, and the easier it is to get improvement.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 89

Figure

8.1.1.
The DB2 adm
de

•
other

g for a DB2 page to be written.

111: ST04 global times

 Components of DB2 delay
inistration guide (SC26-9003) describes the “class 3” delays in detail. The most common

lays seen with SAP systems are:
• I/O suspension, which is synchronous read by a DB2 thread. Synchronous I/O is executed by the

thread running application SQL.
Phase II commit, which is wait for commit processing, which includes logging.

read by an• Other read suspension, which is wait for prefetch read, or wait for synchronous
thre . ad Unlike synchronous I/O, prefetch is not done by the DB2 thread running application
SQL, but by prefetch processes.

read is waitin• Other write suspension, where the DB2 th
• Lock/Latch suspension, which is logical (row level) lock suspension, as well as DB2 internal

latch delay, and latch suspensions in IRLM.
• Page latch suspension, which is DB2 page contention. Since only one thread at a time can be

changing a page, if several different threads simultaneously try to change different rows in the
same page, there will be page latch contention. Also, in tables with very high insert activity,

 contention. DB2 space mapping pages may have
• Open/Close suspension, which is dataset open and close.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 90

8.1.2.

 as I/O, locks, etc.

,

e may

, it

8.1.3.
•

uce I/O.

o

• Global lock suspension, which is data sharing locking suspension.

 Key indicators in DB2 Times
nd in DB2 high - (class 3 / Class 2 elapsed) – when this is high (e.g. over 75-80%), DB2 • Suspe

cut on is often blocked while DB2 waits for events suchexe i
• Not attributed (or “Other”) high – when this is high (e.g. over 20-25%), DB2 execution is

blocked due to an operating system issue such as CPU overload, workload prioritization, paging
etc.

me high - (Class 2 CPU / Class 2 elapsed) – if this is high (e.g. over 60-70%), ther• CPU ti
be problems with inefficient SQL, such as tablescans on moderate sized memory resident tables.
It may be a sign of a well-tuned system (high hit rates, short suspend times), though in general

sual to see a sysis unu tem with Class 2 CPU greater than Class 2 Elapsed.
• Length of individual suspensions – long average duration for I/O suspension, other read I/O,

rite I/O, and commit can be indicators of I/O performance problemother w s.

 Actions to take for DB2 times indicators
High CPU time:

o Look at ST04 statement cache for inefficient SQL.
o Check DB2 trace settings

• High “I/O suspension” time (also called “synchronous read and write”):
o Generally the largest source of delay in DB2
o Check for inefficient SQL, see section 0. Inefficient SQL will reference more pages than

necessary, which makes it difficult for DB2 to keep necessary data in bufferpools and
hiperpools.

o After checking SQL, if average suspension time is good (e.g. < 10 ms) and total I/O
suspension time is high, then the DB2 bufferpool hitrates are probably low. See SAP
manual 51014418 “SAP on DB2 UDB for OS/390 and z/OS: Database Administration

ls. Guide” regarding buffer pool isolation, and evaluating size of bufferpools and hiperpoo
o If average suspension time is bad, look for I/O contention with z/OS tools such as RMF

Monitor III and RMF Monitor I.
o Analyze frequently accessed tables that might be candidates for DB2 hardware

lication tables compress well. Hardware compression will compression. Many SAP app
store more rows per page, which generally helps increase hitrates and red

• High “Commit phase II” time (formerly captured under “service task switch”):
o Not a frequent problem. This occurs on very large change intensive systems, or when the

log datasets have been configured incorrectly.
o Check performance of I/O to logs
o Check configuration of logs – they should be configured with logs on different disks to

minimize I/O contention between logging and archiving
o Review implementing compression of tables with high change frequency, to reduce data

written to log. (Compression can exacerbate a page latch contention problem, since each
page contains more rows when the data is compressed.)

• High “Other read suspension” time:
 Usually the second largest source of delay in DB2

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 91

se

tch.
aint using RMF III and RMF I

ion” time:

rite

gical (row) locking, which is fundamentally an application or data

mber ranges that are

mpanies without RFCOSCOL ST04 may do this with

lock suspension trace (IFCID 44,45), or by reviewing ST04 statement cache and looking
for change SQL with long total elapsed time.

o Find the programs causing the suspensions, using ST04 cache analysis, if necessary
followed by SE11 “where used”.

o Investigate SAP settings that may help. As examples, we have seen locking problems
with RSNAST00 resolved by program options, and locking problems in financial
postings resolved by using “posting block” and making process changes. These changes
are business process specific, and would need to be researched in OSS after the table and
program with the locking problem are found.

o Review possible application changes, such as grouping changes in SAP internal tables to
be processed together just before commit, to reduce the time that locks are held in DB2.

o Control level of parallelism of batch jobs and update processes, to maximize throughput.
o (The above assumes that the system design is set, and cannot be changed to alleviate a

locking constraint. System design would include issues such as the number of ledger
entries and number of entries in statistics tables. Fewer statistics or ledger rows will lead
to more lock contention, since more information is being aggregated into a few rows.)

• High “Page latch suspension” time:
o This is not seen often. It occurs on very large change intensive systems.
o Concurrent updates to a page by different threads will cause page latch contention on data

pages.
o High insert activity can also cause page latch contention on spacemap pages.
o Run page latch suspension trace (IFCID 226,227) to confirm whether data pages or

spacemap pages are causing suspension.
o If the problem is not space map pages, but updates to different rows in same page,

consider reducing MAXROWS on the table. This will increase I/O activity and reduce
bufferpool hitrates, while reducing page latch contention.

o If the problem is high activity on spacemap pages, consider partitioning to distribute the
insert activity to different partitions or consider using the MEMBER CLUSTER option

o Check for inefficient SQL – if the SQL predicates and table indexes are not well
matched, DB2 often chooses an access path (table scan, hybrid join, etc) that will u
prefetch. If the SQL problem is fixed, the inefficient access path is often replaced with
an indexed access path, which references fewer pages, and does not have to use prefe

o Check for I/O constr
• High “Other write suspens

o This is not seen often. It occurs on change intensive batch workoads
o Check disk write performance – check I/O contention, and I/O indicators, such as w

activity and write cache misses with tools such as RMF I, RMF III, or ESS Expert
• High “Lock/latch suspension” time:

o Is almost always lo
design issue.

o Check for row lock contention on un-buffered number ranges, or nu
buffered using only a small block of numbers. See section 9.2.7.

o Find the tables causing the suspensions. With recent versions of SAP, this can be done
with ST04 statement cache. Co

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 92

R will reduce the number of pages mapped by each
index to become disorganized faster.

ustering sequence on the table, to spread activity through the
table. Verify that this will not cause performance problems for other programs that
reference the table.

• High “Open/Close” time:
o This occurs when the number of frequently accessed datasets in an SAP system is larger

than maximum open datasets, which is controlled by the DB2 DSMAX parameter
o Increase DSMAX, after evaluating the impact on DBM1 VSTOR using SAPnote 162293.
o Confirm that the catalog for the datasets in the DB2 database is cached in VLF

• High “Global lock” time:
o This occurs with DB2 data sharing, which is beyond the scope of this paper.

• High “Not attributed” time (displayed as “Other” in some SAP versions):
o Check OS paging and CPU utilization on DB server – RMF I, II, and III
o Check WLM priorities of DB2 and other address spaces, to confirm that the ICLI and

DB2 have the correct priority.

on the table. MEMBER CLUSTE
spacemap page. It will cause the clustering

o Consider changing the cl

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 93

8.2.1. Good ST04 global times

8.2. DB2 delay analysis examples

Figure 112: Good ST04 times

In Figure 112, the CPU time in DB2 (processing time) is over 50% of the time in DB2. This is our first
filter for good DB2 performance. The average times for synchronous read and write are good – under
10 ms. “Other agent read” prefetch time is very good at 10 ms. As is often the case, “Synchronous read

ion” in some versions) is the largest component of delay.

and write” (also reported as “I/O suspens

The one indicator that is somewhat high is “Other” (Not attributed) at nearly 14%. This is often under
10%. If z/OS is usually running at high utilizations (80% and up), ST04 times will often show “other”
or “not attributed” time of 10% to 20%. You should expect that “Not attributed” or “Other” time would
run a bit higher if the DB server often runs at high CPU utilization.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 94

8.2.2. Rather suspicious ST04 times

Figure 113: ST04 with long total suspensions

nt read (10 ms)
ate, rather than slow I/O. We need to check the SQL

In Figure 113, the delay time is about 82% (74.6+8.2) with CPU about 17%, which is at the high end of
normal delay in DB2. Average read times for synchronous read (4.4 ms) and other age
are both ok, so the problem is likely a low hit r
cache, and look for inefficient SQL (Section 8.4).

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 95

.2.3. ST04 Times points to constraint on DB server 8

Figure 114: ST04 times with high “Other in DB2”

ST04 times shows “Other” time is very high – 57%. This points to a problem on the database server --
usually a storage or CPU constraint. From SAP, we could use OS07 to get a snapshot of activity, to see
if the problem is still occurring. (Since “thread times” is historical information, we may need to go back
to performance history statistics, using RMF I, to check the problem)

 this occurs often
• Check SQL cache for inefficient SQL

Next actions would be to:

• Review historical CPU statistics in RMF I, to verify whether

• Evaluate operational changes such as limits on batch
• Review changing LPAR CPU weights to give the LPAR more CPU
• Etc.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 96

8.3. Impact of data skew and parameter markers on prepare
The access path chosen by DB2 can in some cases be different when the statement is prepared with
parameter markers (the original SAP R/3 way) or with parameter values (via ABAP hint described in SAP
note 162034) or REOPT(ONCE) bind option.

When you are evaluating a statement, and want to check whether it will choose a different access path with
values or markers, you can use a process such as the one outlined in this section. It is a way to test the
impact of prepare with literals on a productive system, or other system, without having to modify the ABAP
source code.

As a first step, trace the statement execution with ST05. This example is run on a system that is not using
the REOPT(ONCE) BIND option.

Figure 115: Slow join on AKFO

Performance is not good. Each call takes 120-150 seconds (Duration is in micro-seconds and if the number
is too large, digits on the right are lost) and returns no rows (Rec is 0).

If you select the ‘REPOPEN’ line, and press explain, explain will be done with parameter markers.
Statements prepared with parameter markers cannot make use of DB2 frequency distribution statistics.
Prepare with markers is the normal way statements are prepared, without REOPT(ONCE) or an ABAP
HINT.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 97

Figure 116: AFKO explained with parameter markers

The driving table of the join is AUFK, using index AUFK~E. The join order is AUFK, AFKO, AFPO.
Since each call shown in ST05 took 120 to 150 seconds, and returned no rows, we know this was not a good
choice. A three-way join that is well indexed should take just a few ms per row.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 98

s to available indexes.
Select the “Index information” tab to display all indexes on all tables. This information will be used to
compare predicate

Figure 117: AFKO join - index display

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 99

values filled in.

The local predicates are MANDT (on all three tables), AFKO.MAUFNR, AUFK.LOEKZ, and
AUFK.PKOSA. If any of these has an uneven distribution of values, then prepare with literals may allow
DB2 to choose a different, and better, access path.

From the SQL trace in Figure 115, use the ‘replace var’ button to view the statement with all parameter

Figure 118: AFKO statement with replaced variables

Copy the statement to the windows clipboard with the GUI cut and paste, or download to a file using the
%PC OK code or the “system > list > download” menu path. We will use this later to explain the statement

ith values.

ing the local predicates with the indexes, we see that
• AUFK~E (MANDT, PROCNR, PKOSA)
• AFKO~5 (MANDT, MAUFNR, PRODNET)

Both support evaluating local predicates on an index. AUFK.LOEKZ is not in any index, so DB2 must
read the table row to determine whether the row satisfies the local predicate LOEKZ=’ ‘.

w

Compar

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 100

As shown earlier, in the Table Information tab, one can select a table and display column cardinalities.

Figure 119: AUFK Column Cardinalities

The cardinalities for this example are (not all are displayed here)
• PKOSA – 51
• LOEKZ – 2
• MAUFNR – 8

DB2 then estimates how many rows will be retrieved using the ratio of the cardinality of the column and the
number of rows in the table. For instance, if there are 51 values of PKOSA and 90,000 rows in AUFK, then
on the average “PKOSA =” will retrieve 90,000/51 rows, that is 1764 rows. Likewise MAUFNR IN is
estimated to retrieve 8/90000 rows for each IN list element. So in this case, DB2 considers that MAUFNR
IN will retrieve many values – that it is not filtering.

But if the values are not distributed uniformly in all rows, then it could be that PKOSA=xxx retrieves many
more values than PKOSA=yyy, or that the number of rows matching MAUFNR IN is far fewer than the
estimate of 8/90000.

In a case where we know that the SQL is being executed inefficiently, we need to check whether there might
be skew (non-uniform distribution) that is causing DB2 to estimate incorrectly and choose the wrong access
path. (In this example, it could also be the case that the filtering local predicate is on LOEKZ, which is not
indexed.

To find out if there is skew, use a query “select column, count(*) from table group by column order by 2
desc;”.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 101

Figure 120: Query to check for skew

In Figure 120, we see that there is not a uniform distribution of rows in all values, and that “spaces” is the
value that occurs in almost all rows. Since our SQL in Figure 118 includes numbers for MAUFNR, we
know that if the number is found, very few rows are returned. So, MAUFNR IN is a filtering local predicate
when the value is not spaces.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 102

Perform RUNSTATS on the tables using FREQVAL on the MAUFNR column, to gather column
distribution information. See SAP note 1008334 for examples of the syntax. Here, the statistics after the
RUNSTATS are displayed via the ST04 explain ‘Col dist.’ Button in the ‘Table information’ tab.

Figure 121: SKEWED data distribution in MAUFNR column

in 99% of the cases it is not a number, so the local
predicate MAUFNR IN (number1, number2, number3) should help to eliminate extraneous rows, since it is
searching for rows with numbers.

Next, we explain the statement with literals. Either use the ST05 “Explain one statement” button, or from
an SQL trace as shown in Figure 115, press the “Editor” button (second from right). Paste or upload the
saved statement with parameters. You may need to edit the text to quote literals, or remove trailing blanks
from lines.

Note the uneven distribution in the values of MAUFNR –

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 103

Figure 122: AFKO statement with variables

Pressing ‘Explain’ will now explain this statement with values. This prepare with values allows DB2 to u
column distribution information to prepare the statement.

se

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 104

Figure 123: AFKO explain with variables chooses different access path

Now, the driving table is AFKO using index AFKO~5, which is MANDT, MAUFNR, PRODNET. The

er with the statement values tell DB2 that the
th the new join order will

In addition to the count SQL in Figure 120, one can also use SE16, with the parameter values, to determine
whether the predicates on AFKO filter well. Here, run SE16, and fill in the values taken from the SQL
‘replace vars’ above.

join order is AFKO, AUFK, AFPO.

DB2 used the frequency distribution for MAUFNR (shown in Figure 121) to determine that this index
would be a good choice. The FREQVAL statistics togeth
statement is looking for values that seldom occur in MAUFNR, so this index wi
eliminate many candidate rows when the first table in the join is accessed.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 105

Figure 124: SE16 to test predicate filtering

Press ‘number of entries’.

Figure 125: SE16 filtering test number of entries

The SE16 test shows that for this sample, the MANDT and MAUFNR column alone will eliminate
(MANDT is implicitly used by SE16). Thus, if DB2 chooses the join order shown in Figure 123, it will b
more efficient than the current access path.

 all rows.
e

t this point, we know that the solution requires that we make DB2 aware of the skew:
l be

A
• We need to modify the ABAP source (SAP note 162034), to add a hint so that the statement wil

re-optimized with values at execution time, and
• RUNSTATS with FREQVAL should be done on the AFKO table, and
• If DB13 is used for RUNSTATS, exclude AFKO from DB13 runstats.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 106

of the statement has

 system. An ABAP HINT affects only a single program.

ndividual program, but when the statement is prepared, the

8.3 were to be solved using REOPT(ONCE), the solution would be:

AP with REOPT(ONCE) (which affects the entire system)

 of the SQL

The SAP DBACOCKPIT (ST04) transaction is used to examine the DB2 statement cache, in order to
review the SQL that is currently executing, or was recently executed, on the DB server. In a DB2
datasharing environment, this statement cache is specific to each active datasharing member, and can be
separately reviewed on each DB2 subsystem, or can be merged in ST04 by selecting ALL for the DB2
datasharing member.

By default, statement performance statistics are not accumulated in DB2. In order to enable statement
counters, the command “START TRACE(P) CLASS(30) IFCID(318) DEST(SMF)” can be used. Any of

s does not actually write data to SMF, but enables
gathering statement statistics in memory in DB2. Enabling IFCID 318 uses a small amount of CPU, but
without it, it is nearly impossible do to performance analysis on an SAP system on DB2 for z/OS. If you are
not doing performance analysis, and need to conserve CPU, IFCID 318 can be turned off.

The statement cache counters are accumulated for each statements in the statement cache. Statements that
are not executed for a while can be pushed out of cache, at which time their statistics are lost. Statements
that are executed relatively frequently can stay in cache for days or weeks. This means that if IFCIF 318 is
always running, we don’t have a known starting point for statement statistics, and without a known starting

8.3.1. REOPT(ONCE) as alternative to ABAP HINT
As an alternative to using ABAP HINTS, with DB2 V8 there is now a new bind option REOPT(ONCE)
that can also help DB2 to prepare statements with values. With REOPT(ONCE), the first time a
statement is prepared, it is prepared using the values, but the cached version
markers, so it can be executed for different input values. If there are DB2 frequency statistics on
columns with skew, REOPT(ONCE) allows DB2 to determine the skew while still sharing the
statement. REOPT(ONCE) affects the entire

An ABAP HINT can be used to fix an i
parameter values will be in the cached statement, so the statement cannot be shared for executions with
different parameter values.

See SAP note 1008334 for more information on REOPT(ONCE).

If the problem in section

• Gather FREQVAL statistics on MAUFNR in AFKO table
• Bind the DB2 plans for S
• Do not add HINT to ABAP.

8.4. Process for identifying slow or inefficient SQL
hen starting performance analysis from the DB server, the first step is to check the efficiencyW

issued by the SAP programs. That is, check that the SQL matches the available indexes, and so does not
have to search too many data and index pages to return a result. Many DB and OS performance problems
(low bufferpool hit rates, high CPU utilization, I/O bottlenecks, etc) can by symptoms of inefficient SQL.
Before trying to alleviate problems in these areas, it is best to check whether the root cause is inefficient
SQL.

the user classes (30, 31, 32) can be specified. Thi

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 107

point it is difficult to compare the impact of different statements. It is helpful to stop and re-start IFCID 318
periodically when doing statement cache analysis. This does not affect the statements in the cache, but it
resets all the statement counters. For instance, one could stop and start IFCID 318 in the morning, and then
view the statistics during the day, to examine SQL that is run during the day.

This section describes and has examples of the indicators of inefficient SQL. Possible solutions to
inefficient SQL are presented in a later section.

The key indicators of inefficient SQL are:

• High rows examined and low rows processed – this is a sign that DB2 is evaluating local predicates
on the table rows, and not in the indexes.

• High getpages and low rows processed – this usually is a sign that DB2 cannot do matching index
access, as when the local predicate columns are not all in the leading columns of the index, and DB2

or clustering, indirect references, or data

 time where the
SQL is being executed on the DB server. This is different from SAP “database request time”, which
contains DB server time, as well as time communicating with the DB server over the network.

When searching the statement cache for inefficient SQL, it is helpful to sort the statement entries by total
getpages, total rows processed, total elapsed time, or total CPU time and then use the three key indicators
above (high rows examined/getpages and low rows processed, long average elapsed time) to find individual
problem statements. The sort presents the high impact statements on the top of the list.

must do index screening. It can also be caused by po
fragmentation.

• Long statement average elapsed time – this can be a symptom of I/O constraints, row lock
contention, or other delays.

The elapsed times of statements in ST04 statement cache do not include network time. It is

Figure 126: DBACOCKPIT to display statement cache

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 108

Figure 127: ST04 cached statement statistics sorted by elapsed time

Select a statement and press “Details” to see the statement, as well as execution statistics.

In the example in Figure 127, the highlighted statement on ADRVP has high “getpages/processed row”,
which is a sign of inefficient processing.

Figure 128: ST04 details - statement text

The statement text displays the local predicates (where column = value clauses) that can be matched to the
ges/processed rows” is high. indexes, to determine why the ratio of “getpa

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 109

Figure 129: ST04 details - time per execution

Figure 129 shows that each execution runs nearly one second, and uses about ½ second of CPU.

Figure 130: ST04 details – statistics per execution

But Figure 130 shows that each execution on the average returns no rows (Rows proc/execs). In general, a
statement that returns no rows and which can effectively use indexes would use a fraction of one ms of
CPU, and have an elapsed less than one ms, so the actual one second elapsed time and ½ second CPU per
execution are high.

High rows examined per row processed in Figure 130 means that local predicates are being evaluated on
table rows.

8, one can press explain to view the execution plan.

From the “statement text” tab in Figure 12

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 110

If it is available, explain will retrieve the actual access path in use in DB2. When you see the “Cached
access path” is checked (see Figure 132), you know you are looking at the real access path used by DB2.

If cached access path flag is not checked, it is possible that explain plan for explain with parameter markers
is not showing the actual access path that was used by DB2. One example of when this can occur is when
REOPT(ONCE) is the b nd option – in this case, DB2 will prepare the statement with parameter values, but
the statement cache will not have the values. If there is skew in the data, then when the statement is
prepared with markers from the cache the access path will be different.

If the cached access path is not available, you will see a popup:

i

Figure 131: Turn on parallelism popup

Press “No”, except if explaining query SQL on BI InfoProviders (Cubes, ODSes, DSOs, etc).

Figu

If yo
predicates.

re 132: Explain Hierarchical Access Path

 press the “Index Information” tab, the indexes are displayed, and can be compared with the local u

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 111

Figure 133: Explain Index Information

The local predicates in the statement are CLIENT=, PERSNUMBER=, and OWNER=. But the inde
only supports CLIENT= and PERSNUMBER=. OWNER is not in an index. In order to improve the
performance of this statement, a new index on ADRVP would be needed. Since this is SAP code and
an SAP table, o

x

ne would search for SAP notes, and if none were found, open a message to SAP.

r index page, in order to check the contents of the page.
al CPU, and contribute to pressure on the buffer pools. The

 seen are:
• Predicates contain columns which are not indexed, or not in the index used to access the table

mn
ening rather than index matching

• Index screening, when there is an index column with no local predicate, but index columns on its

here a statement never returns a result, “Getpages/processed” in “Avg statistics per
exec” is reported in ST04 as 0, since the quantity (getpages / 0) is undefined. If you see a high
impact statement (high total rows, high total getpages, or long elapsed time) where
“Getpages/processed” is 0, check the “Avg. statistics per execution” tab, and look at “Avg.
getpages”, which is a per-execution counter.

8.4.2. High rows examined and low rows processed (per execution)
A row is examined when DB2 checks a row in a table to determine if a row satisfies the predicates, or to
return a row. If a row can be disqualified based on predicates that can be processed via index access,
this does not count as a “row examined”. When DB2 must read the rows in a table (rather than just the
index) to determine whether a row satisfies the predicates, then “rows examined per row processed” can

pens are when:
s the table

After finding a statement with high “rows examined per row processed”, one should also check the
average number of rows examined and rows processed, to confirm that the statement is inefficient.

8.4.1. High getpages and low rows processed (per execution)
A getpage is when DB2 references a table o
Examining many pages will use addition
situations where high “getpages per row processed” indicator will be

• Predicates contain range predicates, which causes columns in the index to the right of the colu
with the range predicate to be evaluated with index scre

lef and right with local predicates on the columns

In cases w

be high. Situations where this commonly hap
• Predicates contain columns which are not indexed, or not in the index used to acces

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 112

In cases where a statement never returns a result, “Examined/processed” in “Avg statistics per
exec” is reported in ST04 as 0, since the quantity (rows examined / 0) is undefined. If you see a
high impact statement (high total rows, getpages, or long elapsed time) where
“Examined/processed” is 0, check the “execution statistics”, and look at “Avg. rows examined”,
which is a per-execution counter.

When index-only access is used, rows examined per execution will be 0, so “Examined/processed”
will also be 0, regardless of how many rows are returned. Check “Getpages/processed” to
evaluate if the statement is executed efficiently.

8.4.3. Long “average elapsed time” per execution
There are a number of reasons why one execution of a statement may take a long time. In the case
where the statement fetches, inserts, or changes hundreds or thousands of rows, it is normal. Check
“Avg rows processed” to see the number of rows returned per execution. In the situation where only
few rows are processed on each execution, or the time per row processed is long, it could point to one of
several things:

• DB2 contention on page latches
• Indirect references or disorganized data cause excessive I/O

The Statement Cache “Avg. time dist per exec” tab will point out what the likely problem is, since it
separates lock, I/O, and other waits into separate categories.

Figure 134 shows the statement cache sorted by total elapsed time. Individual statements can be
reviewed, to find those that have long average elapsed time (Avg. elap. time).

• I/O constraint on disk where the table or index resides
• Logical row lock contention, which is seen with change SQL and “select for update”.
• Inefficient SQL as described above

Figure 134: ST04 statement cache slow statement

Each statement takes nearly half a second (0.4039), and most of the time is wait (0.4036).

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 113

Figure 135: Slow SQL with few getpages

Figure 135 shows few getpages per execution (3.97) and little I/O per execution (0.32), so the long sql is
not caused by processing lots of data, we can check time distribution.

Figure 136: ST04 time distribution

Figure 136 shows It is lock and latch wait, which is almost always an application issue.

Figure 137: ST04 statement

The ABAP and the run processes for the application needs to be examined to determine why there are so
many concurrent processes updating the same row in the database, or whether they hold the locks for too
long.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 114

8.5.

8.5.1. Predicates do not match available indexes
SAP ECC, as a transaction processing system, generally uses simple SQL that can be executed
using index access on a single table, or nested loop join on multiple tables.

The most common problem with inefficient SQL is when the local predicates (selection criteria in
the SQL) do not match the available indexes well. In this case, DB2 will choose the best access
path it can find for the predicates in the SQL. This access path may still be rather inefficient.

An SQL statement scanning a small in-memory table will often be indicated as a CPU usage
problem, rather than having long total response time. Here, the statement cache has been sorted by
CPU, and we look for statements with high ‘Avg. CPU time’.

Examples of ST04 statement cache analysis

Figure 138: FEBEP - ST04 sorted by CPU

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 115

ther it is efficiently coded, or if it can
e improved.

After sorting the ST04 statement cache by CPU, the statement accessing FEBEP shown in Figure
139 was near the top of the list. We want to determine whe
b

Figure 139: “details” display of FEBEP statement from ST04 cached statement

Make note of the local predicates (MANDT=, NBBLN=, and GJAHR=) for later reference.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 116

 statement.

In the “details” display, select the “Avg. statistics per exec” tab to check the per-execution statistics
for the statement, and see that it is performing 17,886 getpages per execution, and it processes
(returns) less than one row (0.62) per execution. An efficiently indexed R/3 statement usually
needs at most a few getpages per row processed. “Rows exam/exec” is very high, so we know
local predicates are being applied on table rows.

In Figure 138, the statement accessing FEBEP uses almost 500 ms CPU per execution, which is
very high. It could be normal for a statement that retrieves many rows. Select the statement, and
press Details to see more information about the

Figure 140: ST04 cache “details” display of execution statistics

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 117

ath
 used. All rows were read from the table,

and all local predicates applied on table rows.

Next, from the “statement text” tab in “details”, explain the statement to check the access p
being used. The explain shows that tablespace scan is

Figure 141: Explained statement from ST04 cached statement details

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 118

Use the explain ‘Index information’ tab to check to see if the local predicates (MANDT=,
NBBLN= and GJAHR=) are in an index on FEBEP.

Figure 142: FEBEP - ST04 Index information

In Figure 142, note that neither NBBLN nor GJAHR is in the one index, so the index will not be
used to access the table. MANDT is in the index, but has cardinality 1, so it probably does not
filter.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 119

Now check if either predicate column has high cardinality. Cardinality is the number of unique
values. If either column has high cardinality, it would make a more efficient way to access the table
with an index. (The exception being when the data is unevenly distributed, as shown in Section
8.3.)

Figure 143: FEBEP - Table information

Choose the table, and press the ‘Col card.’ button, to see column cardinality statistics.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 120

Figure 144: FEBEP column cardinality statistics

In Figure 144 we see that NBBLN has 110,682 unique values, so it will filter well, as Figure 143
owed 110,682 rows in the table. Each row has a different NBBLN value.

sh

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 121

P button in Figure 138 to display the ABAP source code. Next, find the culprit. Use the ABA

Please see Section 7.5.2 regarding the process for evaluating when to add new indexes. Since the
program is a custom program (Z*), the first action is always to investigate whether the program
could be modified to match the available index. The next action would be to review if this is a
problem of misuse of the data model. The last action would be to add a new index that matches the
statement.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 122

As described in Section 8.3, the default method of preparing statements with parameter markers can
cause access path problems in some situations, such as when there is data skew, and filtering depends on
the values used in the SQL.

To address this issue, the REOPT(ONCE) option was created, which allows a statement to be prepared
with values, but still shared by all dialog steps that execute the SQL, regardless of the runtime
parameters. However, if the parameters used with first execution of the statement are not
representative of the normal execution, this can cause DB2 to choose the wrong access path.

8.5.2. Impact of REOPT(ONCE)

Figure 145: SRRELROLES

In Figure 145, we have sorted the cache by elapsed time, to find the statements with the most impact on

Select the statement, and press the “Details” button.

response time. Each select on SRRELROLES takes 155 ms, of which 145 ms is wait. We need to
look at the statement details to see why there is so much delay.

Figure 146: SRRELROLES statement text

Local predicates are CLIENT=, OBJKEY=, OBJTYPE=.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 123

Press the “Avg statistics per exec” tab.

Figure 147: SRRELROLES statistics

Figure 147 shows each execution processes over 331K rows, to return less than one row. Local
predicates are not being evaluated in the index, but on the table (high Examined/processed).

Go back to the “statement text” tab, and press “Explain”, then press “Hierarchical Access Path” tab.

Figure 148: SRRELROLES Hierarchical Access Path

~003. There could be index screening on other

Press the “Table information” tab, then select the table and press “Col card”, to display the column
cardinalities, which we will need for index evaluation.

Access is one matching column in index SRRELROLES
columns, we need to check the indexes.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 124

Figure 149: SRRELROLES table column cardinality

One can also display the column distribution information (i.e. DB2. FREQVAL) by selecting the table,
nd pressing “Col dist.”. a

Figure 150: SRRELROLES column distribution

Press the “Index information” tab to see the indexes.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 125

Figure 151: SRRELROLES indexes

And now we see something surprising. The index that is being used (SRRELROLES~003) matches
only CLIENT, while there is an index (SRRELROLES~000) that matches CLIENT, OBJKEY, and
OBJTYPE. And, from Figure 149, we know that OBJKEY cardinality is over 2 million, so the
OBJKEY= local predicate is strongly filtering.

Why did DB2 choose the ~003 index? The clue is in the cardinality of client, which is 1, and the only

 is not run from the productive client, and if DB2 is configured with
the

st

olumn provides no filtering, and all the table

There are two clients (000 and 001) delivered with an SAP system, and other clients are created as part
of the customization process. SAP programs that can run in 000 or 001 or in the productive client can
encounter this problem.

SAP note 1008334 describes the situations where REOPT(ONCE) can cause access path problems, and
how to fix them.

As a short term fix, one can use the ST04 statement cache “invalidate SQL” button (see Figure 145) to
invalidate the statement so that it is re-optimized when next run, or one can execute ‘RUNSTATS
REPORT NO UPDATE NONE’ on the table if using a version of SAP that does not have ‘invalidate

bles, in
order to optimize performance. When we have a custom APAB program using SAP tables in a way that
is not supported by indexes, our first approach in analyzing the problem is to determine whether the
program is looking in the wrong place for the data. At first glance, a situation where the data model is

value is “410”. If this statement
REOPT(ONCE), then the values passed to the DB2 will include CLIENT=xxx, where xxx is not
productive client (410). Using this, DB2 will check the CLIENT value passed from SAP (xxx) again
the catalog statistics (410), and determine that matching the column CLIENT alone provides all the
filtering needed. And, whenever the statement is run from client xxx, this is correct. But if the
tatement is later run from client 410, then the CLIENT cs

rows must be read.

SQL’ in ST04.

8.5.3. Incorrect use of SAP data model
As mentioned in Section 7.4.2, data is often de-normalized and redundantly stored in SAP ta

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 126

not being used correctly may appear to require a new index to optimize the program, but there is a
different and better way to solve the performance problem which we will see below.

Figure 152: LIPS Statement Cache

Here, we have ordered the statement cache by elapsed time, to find high impact statement. The
statement on LIPS stands out – it has high “getpages/proc row” and high “examined/proc row”. This
means that DB2 must search many pages for the result (getpages/row) and that DB2 must apply local
predicates on the table (rows examined/row processed).

Select the line and press “Details” to see the statement.

Figure 153: LIPS statement

ent has local predicates MANDT= and VGBEL IN. It looks normal so far. Statem

Press the “ABAP” button tab to see the program. We need to check if it is SAP or custom.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 127

Figure 154: LIPS program

Program starts with a Z, so it is custom. One can also display the program attributes to see whether SAP
or some other user created it.

We need to explain it to see what DB2 is doing. Press the “Explain” button in Figure 153.

igure 155: LIPS explain F

Figure 155 shows DB2 is scanning the entire table. We press “Index Information” to check indexes and
compare them to local predicates.

Figure 156: LIPS Index

ndex. The only other local predicate is MANDT=, and we see in

Check the chart in Section 7.5.2. Note that when we have custom code and SAP tables, we need to
check the use of the data model.

VGBEL does not appear in any i
Figure 156 that MANDT has cardinality of one (1st key card), so MANDT= probably will not filter.
DB2 reads the entire table.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 128

SAP note 185530 describes this problem, and proposes the change to ABAP to use the SAP tables and
indexes correctly.

Figure 157: NOTE 185530

At this point, we send the program back to development, so they can change the program as suggested in
e SAP note. The change will allow the program to read LIPS using an index, rather than scanning the

8.5.4. Index-only access
 with SAP on DB2 for z/OS. The statement

oc”
ee whether the

th
entire table.

As of DB2 V8, it is possible to have index-only access
statistics in this case can be a bit misleading.

Since there are no rows examined (DB2 never had to read the table), the the ratio “Examined/rows pr
is 0. With index-only access, one has to check the “Getpages/proc row” ratio to s
statement is efficient or not, as shown in Figure 158.

Figure 158: ST04 index-only access

But, since “Examined/proc rows” can also be zero if there are no rows processed, we also need to check
the number of rows processed per execution, to confirm whether this is a statement that returns no rows,
or is index-only access. This is show in Figure 159.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 129

Figure 159: ST04 index-only statistics per exec

x only access. “Rows proc/execs” is 1, so one row is returned

nt access. This statement does almost 200 getpages
per row, which is high. With all predicates evaluated in an index, a single row fetch might be 4-5
getpages/exec, and a two table join might be 8-10 getpages per exec.

Even though this is index-only, we would explain the statement, and evaluate the access path and
indexes, as shown in Sections 8.5.1 and 8.5.3.

8.5.5. Column order with custom indexes
When creating a custom index to support a business process, the order of the columns in the index can

(GT, GE, LT, LE, BETWEEN, LIKE) on some of the index columns, and

 time.

“Rows exam/execs” is 0, so this is inde
on each execution.

But note that index-only is not enough to be efficie

be important. There are two key issues:
• Range predicates
• Non-uniform distribution of data (skew) on one or more of the columns.

Here is an example of a statement that is frequently run, and one of the top statements in elapsed
Each execution takes 177 ms. (This is from a 6.40 system where the time units in ST04 are seconds).

Figure 160: EDIDC many getpages per row

26K), Select the statement and press details (Figure 161), and we see that getpages per row is high (over
because there is seldom a row returned (0.03 per exec), but there are 797 getpages per execution, which

 high. is

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 130

Figure 161: EDIDC statistics per execution

We explain the statement and check the access path and statement text. There are local predicates on
nd CRETIME. MANDT, STATUS, MESTYP, a

Figure 162: EDIDC explain

Press the “Index information” tab, to check the indexes in Figure 163, we see the problem. The column
with the range predicate (CRETIM BETWEEN) is the second column in the index (MESTYP,
CRETIM, STATUS). DB2 cannot do index matching access for STATUS, or for any index column on
the right of a column with a range predicate. DB2 is doing index screening, which is more efficient than

 it evaluating the local predicates in the table, but less efficient than matching index access. (We can tell
is index screening, since rows examined per exec is the same as rows processed per exec – no local
predicates were evaluated on the table).

Figure 163: EDIDC indexes

If the order of the index columns were (STATUS, MESTYP, CRETIM) or (MESTYP, STATUS,
tching access. CRETIM) then DB2 would be able to do three column ma

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 131

nly on the first column of an index, so if one puts a column with skewed data as the first column, then
there is not a need for custom RUNSTATS. The default RUNSTATS, together with ABAP HINTs or
REOPT(ONCE) BIND option will enable DB2 to determine that there is skew, and choose an

With the current index column order, DB2 does index screening on STATUS, which is more efficient
than examining the table rows, but less efficient than index matching access.

Now we need to make the choice of whether to make the index (STATUS, MESTYP, CRETIME) or
(MESTYP, STATUS, CRETIME). By default, DB2 collects column distribution (FREQVAL) data
o

appropriate access path.

If there is a column with data skew that is not the first column in the index, then COLGROUP
FREQVAL statistics must be gathered.

In order to evaluate if there is skew, we use SPUFI with a query like:

Figure 164: query to check for skew

And we will get an answer like:

Figure 165: STATUS counts

There are only two values of STATUS, and one occurs much more frequently than the other. The data
is skewed. When a statement is executed with WHERE STATUS = ‘ ‘, then the STATUS column will
filter well. But if a statement is executed with WHERE STATUS = ‘X’, then the STATUS column is
not useful for filtering. By having this information, DB2 can make a better choice which index to use.

So, we will create the index as (STATUS, MESTYP, CRETIM). Putting STATUS first in the index
does not make the SQL execution more efficient, but it makes it easier to manage the table, since custom
RUNSTATS are not needed to gather the FREQVAL data, DB2 will gather FREQVAL by default.

 column order of custom indexes
Since index processing is affected by the type of local predicates, if you need to add a new index,

WEEN, etc)
• Other predicates (second IN, or range, or NE)

8.5.5.1. Considerations for

please use the following general order:
• Filtering columns with equals predicates
• Filtering IN predicate or a filtering OR predicate
• Filtering range predicates (GT, LT, BET

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 132

fter we change the column order to (STATUS, MESTYP, CRETIM) then the statement runs much
n in Figure 160.

Here we are having an exception to these suggestions (placing column with IN before =), in order to
gather the statistics on the skewed STATUS column without custom runstats.

A
more quickly – 6 ms per execution in Figure 166, compared with 177 ms per executio

Figure 166: EDIDC wth new index

Keep in mind that even a statement with an elapsed time of 100 or 200 ms can have a significant impact
on response time, if it is executed frequently enough. This is a summarized trace of the IDOC
rocessing with the original indp ex design, and you can see that the selects on EDIDC were about 60% of

the total DB time, so fixing the problem would reduce the DB request time by over 50%.

Figure 167: EDIDC in summarized trace

 issue, which usually

This is common on statistics tables and ledger (e.g. general, special) tables. These are tables containing
rows where information is being consolidated or aggregated. Lock contention is caused by the design of

8.5.6. Logical row lock contention
Row lock contention (lock/latch wait in ST04) is almost invariably an application
cannot be fixed at the DB level. When you encounter timeouts or deadlocks, one should open a
message to SAP so they can investigate the cause.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 133

the application and the business data. For instance, if all sales were posted to a single “cost of goods
sold” account, then that row would become a constraint in the database when the transaction volume
reaches a certain level. Below the critical level, it is not a problem.

Depending on the root cause, the actions required to fix row lock contention may be

• changes to SAP settings (“late exclusive material block”, “posting block”, etc) ,
• ABAP coding (perform change SQL just before commit work),
• business structure in SAP tables (e.g. more granularity in chart of accounts),
• sorting or grouping input rows to avoid contention during processing.

st to determine the level of parallelism that gives the
s level,

he two system indicators for lock contention are ST04 “lock/latch” time being high, and change SQL

If it cannot be fixed in one of these ways, then te
maximum throughput (batch, updates, etc) and configure the system to keep parallelism under thi
to manage locking contention.

T
statements in the ST04 statement cache with long elapsed time. In order to prove that it is a lock
problem, one would need further information.

Figure 168: STAT record with long GLT0 change times

While the job is running, one can use ST04 Subsystem activity to display currently held locks.
Section 8.4.3 showed an example of using ST04 statement suspension times in diagnosing locking
problems.

For systems which do not have RFCOSCOL ST04 with its suspension time breakdown, here is a
DB2PM “LOCKING REPORT LEVEL(SUSPENSION LOCKOUT)
ORDER(DATABASE-PAGESET)” report processing an IFCID 44,45 trace and showing row lock
contention on rows in GLT0. Lock contention is counted in the “LOCAL” counter for an object.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 134

rFigu

In th
ck (LOCAL) contention. One could

tage of time in DB2.

Assum
leve

e 169: DB2PM LOCKING REPORT for GLT0

is report, note that in 7 minutes elapsed time, there were 202 seconds (1291 * 0.15 seconds)
reported delay. Almost all events (1111 or 1291 total) were row lo
check ST04 “global times” to review the delay as a percen

ing that no change to the ledger definitions in GLT0 is possible then one would test to find the
l of parallelism with the maximum total throughput.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 135

9. Hea

9.1. or system-level problems

9.1.1.

hat are memory hogs, and ensure that they are efficiently coded. For
ram may be building an internal table, where not all columns in the table

s on the system

n

s,
derate

ins per active CPU second” in the low single

uld be

 application server.
• Add more application servers.

ged memory areas
 generic buffer, program buffer, or EM are overloaded, it

he generic buffer fills, then tables which should be buffered in SAP memory will not be
formance of transactions

that use these tables.
• If the program buffer fills, then programs must be loaded from the database server, which

increases load time in SAP.

lth Check

Check for SAP instance-level

 Application server OS paging
When application server paging occurs, there are several possible actions to alleviate it:

• Check for jobs t
example, a prog
are needed. ST02 can be used to find running jobs that use lots of memory: ST02 > drill
into Extended Memory > press “mode list”. STAT records also display memory usage.

• Reduce the number of work processe
• Add more memory to the application server
• If you can’t get rid of paging, manage workload and live with paging. As shown in sectio

9.2.1, one can calculate “page-ins per active CPU second”: (page-ins per second /
processors / CPU utilization). If there is good performance on I/O to pagefiles (that i
there are several pagefiles on write-cached disk) one can probably live with some mo
paging. Configure the system to keep “page-
digits.

9.1.2. Application server CPU constraint
When there is a CPU constraint on the application server:

• Review program activity (STAT, STAD, ST03) on the system at peak CPU times to see if
this might be a symptom of programs that are inefficient and using too much CPU. Check
for programs that spend the vast majority of their time doing CPU processing on the
application server – they may be coded inefficiently. Use SE30 to profile and analyze
activity in the ABAP.

• If there is an unusually high amount of operating system kernel CPU time, then it co
an indication of a problem in the OS, or in the way that the SAP kernel calls OS kernel
services. This is rare, but happens on occasion. Open an OSS message.

• Configure fewer work processes on the

9.1.3. SAP mana
When SAP managed areas, such as roll,
will impact SAP performance:

• If the roll memory area fills, then SAP will roll to disk on that application server, causing
long roll-in and roll-out times.

• If t
buffered. This increases the load on the DB server, and impacts per

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 136

• If Extended Memory (EM) fills, all work processes on the instance will start to allocate
ork process private area. When a dialog step allocates memory from the

use “wait

ividual dialog step is in PRIV mode, and cannot be rolled out until it is finished. If this

accessed via “select single”, or by sets of rows in the generic buffer,
elect single”.

 account the way that the table is accessed. For
stance, if the table is buffered in ranges based on the first three key columns, but is read in ranges

t be

sion,

• Tables can be buffered in the wrong category. The ABAP “select” statement reads only from the
generic buffer, but does not read from the single record buffer. The ABAP “select single” can
read from the generic buffer or single record buffer. Use ST10 statistics to check whether select
or select single is generally used with a table.

• The SAP buffer is too small to hold all the tables that should be buffered, as described in section
9.1.2

• A table is changed frequently, and should not be buffered. Buffered tables have to be re-
synchronized when changed, which causes additional load on the DB server and application
server, if the changes occur too frequently.

9.1.5. Wait time
This was discussed above in section 7.1.1:

• It can be a symptom of other problems. A performance problem that elongates the time required
for the dialog step to finish (CPU overload on application server, DB server performance
problems, roll-in and roll-out, etc) can cause all the work processes to fill up and then cause wait
time.

• It can be problem itself, where too few work processes are configured.

memory out of w
work process private area, the dialog step cannot roll out until finished. This can ca
for work process” delays.

• It is less serious when an individual process expands past its EM quota. In this case, the
ind
happens with only a couple work processes, it will probably not impact the instance.

9.1.4. Table buffering
SAPnote 47239 describes the behavior of buffered tables. Tables can be buffered in individual rows in
the single record buffer, which is
which is accessed by “select” or “s

When buffering a table in the generic buffer, take into
in
based on the first two key columns, then the table cannot be read from buffer. The table mus
accessed with as many or more columns as were specified in the generic buffering configuration.

There are four common problems related to buffering:

• A table is not buffered, but should be. If a table has a moderate size, is generally read only, and
the application can tolerate small time intervals where the buffered copy is not the latest ver
then the table is a candidate for buffering.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 137

e numbers for documents. Number ranges can be:
• umber

uential by time, and no numbers are
lost.

• Configured with NRIV_LOKAL, where each application server or work process can have its
own row in NRIV for the number range. In this case, sequence numbers may be out of time
sequence, but no numbers are lost.

• Buffered in SAP. In this case, sequence numbers may be out of time sequence, and numbers
may be lost.

The choice between the three is made based on business and legal requirements for document sequence
numbers.

Number range buffering problems are often found during stress tests, or early after go-live:

• If the problem is contention for a non-buffered number range, the symptom is long “direct read”
times on NRIV. NRIV is the table that contains number ranges, and it is read with “select for
update”. Using SM50 or SM66, look for “direct read” NRIV.

• If the problem is contention on buffered row in NRIV, where buffering quantity is too small, the
problem can also be seen in SM50 or SM66 where work processes are “stopped NUM” or
waiting on semaphore 8 waiting for the buffered numbers to be replenished.

9.1.6. Number ranges
SAP uses number ranges to create sequenc

 Not buffered, where each number range is a single row in the table NRIV. In this case, n
range sequence numbers given to the application are seq

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 138

9.2.

9.2.1. Application server paging
ory - display the screen where one can see
onstraints.

Sample SAP instance-level and system-problems

ST06 > detailed analysis > previous hours mem
historical statistics, to look for paging or CPU c

Figure 170: ST06 > detail analysis > previous hours memory - high paging

In the above example, the peak page-in rate is 363,431 per hour. There were several periods with
paging rates over 100K per second.

tics for this period (not shown in this document) and use the
ge-ins per active CPU second”. The system in this example was a

 = 10.5 “page ins per active CPU second”, which is too high, compared to our rule-of-
thumb in section 9.1.1.

During the interval 14:00 to 15:00, the CPU utilization averaged 30%. 134,325 / 3600 / 24 / 0.30 =
5.1, which is at the high end of our ROT.

One can gather CPU utilization statis
information to calculate the “pa
24-way. During the interval 13:00 to 14:00, the CPU utilization averaged 40%. (These screens are
not included here.) 363,431 page in per hour / 3600 seconds per hour / 24 processors / 0 .40
utilization

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 139

Since paging problems will impact all users on the system, with paging being moderate to high
during 5 hours of the day (9, 11, 13, 14, 16), this problem should be addressed.

9.2.2. Application Server CPU constraint
This is a problem that is relatively simple to see, either via ST06(N) history or ST06(N) current
statistics. In the ST06(N) main panel, there is a current utilization display. ST06 > “detail
analysis“ can be used to display hourly averages for the previous days. Figure 171 is the current
utilization display.

Figure 171: ST06 CPU constraint

ST06 does not report CPU use correctly for AIX systems running with SPLPAR configuration. If
the SAP application server is on an SPLPAR AIX system, then install SAP note 994025, and use
ST06N.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 140

Figure 172: ST06N with SPLPAR statistics

As shown in Figure 172, the SPLPAR-aware ST06N can report on SPLPAR statistics such as
shared pool use, entitled capacity, etc.

With ST06N, one can drill directly into the history for the CPU, memory, etc.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 141

rt on smaller
intervals than one hour (e.g. vmstat, iostat, sar) would show more detail on CPU utilization.

One can also display the hourly average CPU statistics. If hourly averages are high (over 75% or
so) it is very likely that there are peak times of 100% utilization. Tools that repo

Figure 173: ST06 > detail analysis > previous hours CPU - CPU constraint

Since the hourly averages will not show short periods when the CPU usage goes to 100%, other
monitoring tools would be needed to detect shorter periods of CPU constraint.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 142

tion 7.2.11 on missing time, the symptom in STAD of a CPU overload As mentioned earlier in Sec
on the application server is that processing time is much larger than CPU time.

Figure 174: STAD from system with CPU overload

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 143

9.2.3. Roll Area shortage

s that SAP is
rolling to disk at the time of this screen shot. ST03 and STAT/STAD will show information on the
length of delay this causes for dialog steps. The SAP parameter rdisp/ROLL_SHM controls roll area
memory allocation.

When the roll area is too small, it will delay dialogs steps on roll-in and roll out. Note that in Figure 175
Roll area “Max use” is larger than “In memory”. This shows that SAP has filled the memory roll area,
and was rolling to disk. Roll area “current use” is larger than “in memory”, which show

Figure 175: ST02 roll area over-committed

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 144

g

When monitoring a running system that has a roll-area shortage, you would see many processes waitin
on the action “roll in” and “roll out”. In this SM66 display, the central instance has run out of roll area,
and the other instances that make CPIC or enqueue calls to the CI are delayed in turn.

Figure 176: SM66 roll in and roll out

When SAP is rolling to disk, ST06 will show high I/O activity to the disk with the roll area. SAP

e directory where the disk roll file is located. parameter DIR_ROLL specifies th

Figure 177: ST06 > detail analysis > disk - high I/O activity on ROLL area

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 145

r impact on
a specific program or programs (the ones which use the table which does not fit in buffer) than on the
system overall.

The “Database accesses” counter is a better indicator than “swaps” for this problem. If a table cannot be
buffered due to undersized buffers on the application server, it may cause thousands of unneeded
database calls.

Here, generic key has millions of DB calls.

9.2.4. ST02 buffer area shortage
In this example, the generic area is too small for all the buffer-able tables to be buffered. This causes
swaps, and extra database requests. This kind of problem will generally have a much greate

Figure 178: Generic buffer swapping

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 146

ne can look at this problem in more detail by drilling into the “generic key” line in ST02, and then
selecting “buffered objects”. This will display the state of tables in the buffer, and the count of calls for

to pull the problems to the top of the list.

O

each table. Last, sort by calls or “rows affected”

Figure 179: ST02 > drill into generic key > buffered objects

After sorting the list by calls we see a number of tables with the state “error”, which generally means
that the table would not fit into the buffer. See SAP Note 3501 for information on how to interpret the
state of tables in ST02.

Figure 179, drill into a line to see the details on a table, such as how much space it needs to be

In
buffered.

Figure 180: ST02 table details

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 147

ates for buffering. Sort the ST10 list by
DB calls. Use weekly ST10 statistics, to average out the impact of daily differences.

9.2.5. Find table buffering candidates
Check ST10 “not buffered” tables, to see if there are any candid

Figure 181: ST10 > not buffered, previous week, all servers > sort by calls

Here, note that the top entry has no changes. “Read only (for the most part)” is our first criteria for a
candidate.
Now, check how large the table is. One can use SE16.

Figure 182: SE16 for counts

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 148

nter the tablename, press execute, then press “number of entries”. This information can also be found
more efficiently by checking catalog statistics with DB02, or ST04 DB2 catalog browser. They read

e table.

E

the catalog statistics, rather than counting the rows in th

Figure 183: SE16 counts part two

Figure 184: SE16 count result

 There are 26 rows, so it meets the second criteria, moderate size.

To evaluate whether the application can tolerate small time intervals when the buffered data is out of
synch with the database, contact an application expert for this area. Use the name of the creator of the
table (in SE11) as a starting point to find the expert.

Since the table is usually read by select single, it can be buffered in single record buffer. Since select
single can read from the generic buffer, and the table is very small, it can also be put in generic buffer,
fully buffered.

The three tests for buffering were:

• Read only (for the most part)
• Moderate size (up to a few MB, larger for very critical tables)

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 149

• Application can tolerate data being inconsistent for short periods of time

9.2.6. Table buffered with wrong attributes
In this case, examine the tables buffered in single record buffer, to search for tables that are generally
read with select. ABAL “select” does not read from the single record buffer, so tables set this way will
not be read from buffer.

Figure 185: single record buffering on table accessed via select

In Figure 185 the table that is second by calls, IDOCREL, is single record buffered, and only read with
select. Since select does not access the single record buffer, the buffering in ineffective. (Actually,

OCREL has another problem too – it is frequently changed. It should not be buffered.) ID

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 150

Figure 186: ST10 table details

rill into the table in ST10, and we see that it is not present in the buffer (state is loadable). If we want
is table to be buffered, the “technical settings” would need to be set to generic buffering, if an

e technical settings.

D
th
appropriate generic key could be determined, and if it were changed less frequently.

Since this is an SAP table, we would check SAP Notes, and open an OSS message regarding changing
th

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 151

hile getting a sequence number from a
number range. If the number range was buffered with a buffer quantity that is too small, SAP has to
replenish the buffered number range frequently, and this causes lock contention in the database for rows
in the table NRIV. (The quantity of sequence numbers in a buffered set is an option in SNRO.)

9.2.7. Number range buffered by quantity that is too small
When reviewing a running system with SM50, note processes “stopped NUM” and waiting for
semaphore 8. These are symptoms of a performance problem w

Figure 187: SM50 “stopped NUM” and Sem 8

This problem can also be seen in the statement cache -- note the long “select for update” times on the
table NRIV. Here the average elapsed time (old format of ST04 statement cache – see second column
from right) for each select is 36 ms, which is rather long. Normally one might expect a few ms, at most.

Figure 188: NRIV row-lock contention on 4.0 ST04 statement cache

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 152

mple),

With the 4.6 format statement cache (a screen shot from a different system than the rest of this exa
look at the Timers tab in ST04 statement cache statistics, and sort by “elapsed time”. See the last row in
Figure 189, where NRIV updates take 56 ms, on the average.

Figure 189: NRIV row-lock contention on 4.6 ST04 statement cache

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 153

ers when

me). Note that most of the times to
replenish the buffered number ranges (server times) are very high. It often takes over 100 ms to update
a single row in NRIV. When number range performance is good, the counters should be clustered
toward the left of both “buffer times” and “server times”.

As confirmation of the problem, in ST02 (detail analysis > number ranges> statistics) look at the
statistics of number range performance, broken down into the time it takes a program to get a buffered
number range (buffer time), and the time the <no buffer> server takes to get a new set of numb
all the numbers buffered in memory have been given out (server ti

Figure 190: ST02 > detail analysis > number ranges - number range statistics

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 154

Another way to see the impact of this problem is with ST02 (detail analysis > semaphores). In order to
interpret these statistics, take note of the time when the collection started, to calculate the delay time
over the interval. See SAP note 33873 for information on this display. Remember to turn the
semaphore statistics off (settings > monitoring off) after viewing.

Figure 191: ST02 >detail analysis > semaphores - semaphore statistics

Since the number range was already buffered, we need to find the number range causing the problem,
and increase its buffered quantity. Run a ST05 trace (selecting only NRIV table) to determine the
number range which is causing the problem, then go to SNRO and increase the size of the buffered set
size for this number range.

9.3. Check for network performance problems
The SAP planning guides for DB2 have information regarding configuration of network parameters for
the SAP application. SAP note 1263782 has parameter settings for hipersockets networks.

9.3.1. Lost packets indicators
lems such as dropped or lost packets. ST03 or

STAT/STAD might point to this problem, if they show slow database request times while the

of lost packet problems is that the average SQL times are very
ce, most calls have good response times, with an occasional

High DB request time can be caused by network prob

internal database server indicators (ST04 times, ST04 statement cache elapsed times, etc) show
good performance.

The most distinctive characteristic
bad, but when one runs an ST05 tra
very long call.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 155

Figure 192: ST05 summary with long average times

In Figure 192, average DB request times range from 5 ms to over 20 ms. This is very slow.

When we look at the un-summarized SQL trace, we see that most calls are very fast, but there is an
occasional call that takes over one second.

Figure 193: ST05 trace with symptom of network problem

While the SAP indicators can hint at a problem with lost packets, the problem must be pinpointed
with OS and network tools. Switch and router settings, hardware problems, and operating system
parameters can each cause lost packet problems.

9.3.2. Slow network indicators
The time required to make an SQL call from application server to database server varies with the

 Viewed with ST05, Escon based networks will type of network and network adapters used.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 156

enerally have median SQL call times of 4-8 ms, OSA-2 based networks (FDDI and Fast Ethernet)
ets connections have

 Networks, or network adapters, that are overloaded will not
ress Gigabit Ethernet adapters

s.

an ST05 SQL trace, summarize (ST05 > list trace >
ary), sort by time, and pull the slider bar on the right to the middle. If the median time

ng

se keep in mind that “network statistics” includes time on the physical network as
lication server and DB server, so system-wide

problems such as CPU overload, paging, errors in workload prioritization can create long
“network” times in the “network statistics”.

9.4. Sample network performance problems

9.4.1. Slow network performance example
The example is an examination of the performance of APO CIF. Start by examining the STAT
records, and note that all the DB calls seem slow. Average update, insert, and deletes times are

g
generally 3-6 ms, OSA Express Gigabit Ethernet generally 1-2ms. Hipersock
call times of 400-800 microseconds.
be able to achieve these times. Problems with overloaded OSA Exp
are rare, due to the very high capacity of OSA Expres

tA simple tes
oto >summ

 of network performance is to run
g
is much higher than you would expect for your type of network, and the DB2 internal performance
indicators (ST04 times, ST04 statement cache) look good, then there may be a network
performance problem. Examine the CPU and paging activity on the DB server, to confirm that
neither CPU overload nor paging is the cause of the consistently slow SQL. If the CPU and pagi
re OK, it increases the odds that it is a network problem. a

For more detailed information on network performance, with a slight system overhead from

acing, the ST04 “ICLI trace” has an option to collect “network statistics”. This computes average tr
time in the network. This trace subtracts the DB2 time from the SQL request time, and can give a
very accurate indication of network performance when the DB server has a CPU or paging
onstraint. Pleac

well as the TCP/IP protocol stack on both app

over 15 ms per DB call, which is slow.

Figure 194: STAT record with slow change SQL

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 157

ty or configuration problems

Use the ST04 ICLI “network statistics” trace, to determine the network time for database requests.

pent in the network protocol

g data. Gathering these statistics
places an additional load on the DB server and application server.

ST11 or SM50.

Since all calls to the DB server are slow, there are several possible causes –

• CPU overload on DB server
• Incorrect configuration of priorities in WLM on DB server
• Network capaci
• Incorrect TCP/IP routing configuration
• Etc.

The ICLI network statistics remove the time in DB2 from the request time for each database
request sent from the SAP application server. What is left is time s
stack on application server and DB server, and time moving data across the network.

Be sure to turn the ICLI “network statistics” off after gatherin

The ICLI “network statistics” are saved in the developer trace files, which can be viewed by AL11,

Figure 195: ST11 > display - ICLI network statistics in developer trace

In Figure 195, there are two things to check. First the average time on the network for each

3 ms. Average times vary with the type of network connectivity.
kets sent and received, OSA Express Gigabit Ethernet is generally

ging activity on the DB

server, checking WLM priority settings on the DB server, checking physical network settings and
performance.

database call is very long – 17.55
For database calls with small pac
1-3 ms, OSA-2 is generally 2-5 ms, and Escon generally 3-7 ms. 17ms is very long for any
network type. Second, look at the distribution the packet sizes sent and received. If most of the
packets are very large, then average times will be longer than these ROTs, because the large
packets have to be broken down to network MTU size for sending. In this case, almost all packets
are less than 512 bytes, so they will fit into the MTU.

Since average times are long, and small packet times are also long, there seems to be a problem in
network performance. Follow-up actions would be checking CPU and pa

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 158

9.5.
The DB
Follow

 addition, there
re

con

RM
PRO

Ine
of t

9.5.2. Bufferpool and hiperpool memory allocation

/(random getpages), and is
 hitrate for most bufferpools should be in the high 90s.

ential

In order to match bufferpool attributes to the way tables are referenced, SAP and IBM provide
guidelines for allocating tables to DB2 bufferpools. DB2 can allocate many bufferpools that are

erent access patterns. SAP manual 51014418 “SAP on DB2 UDB for OS/390 and

Check for global DB server problems
2 administration guide (SC26-9003) contains detailed guidance for performance tuning with DB2.

ing is a quick summary of key performance indicators on the database server.

9.5.1. CPU constraint
S monitoring tools, such as RMF monitor I and monitor III, will report this problem. InO

a indicators in DB2, such as high “not attributed” time in ST04 “times”, that can point to a CPU
straint on the database server.

F III, with the PROC command, can indicate the extent to which DB2 is delayed. The higher the
C delay, the more DB2 can benefit from additional CPU resources.

fficient SQL can elevate CPU usage on the DB server, so the SQL cache should be examined as part
he action plan when a CPU constraint is seen on the DB server.

9.5.2.1. Hitrate goals
In SAP, each dialog step makes many database calls. In order to provide good dialog step response
times, we want to achieve very high hitrates in the bufferpools. Since most R/3 transaction SQL is
processed by DB2 as random getpages, the key indicator is “random hitrate” for most bufferpools.

his is defined as 100* (random getpages – synchronous read random)T
reported by ST04 and DB2PM. The random

For some bufferpools, such as BP1 (sorts) or bufferpools containing tables with primarily sequ
access, random hitrate is not important. These bufferpools generally use prefetch I/O to access the
data. Since random hitrate is not important here, but I/O throughput is, confirm that there are not I/O
constraints on the disks, when examining the performance of bufferpools with primarily sequential
access.

9.5.2.2. Bufferpool tuning

optimized to diff
z/OS: Database Administration Guide”, describes how to analyze the table reference patterns, and
place tables in bufferpools that have been created with attributes that match the access patterns. Use
these guidelines to move tables with special or disruptive access patterns, for example large tables
that have low re-reference rates like FI and CO tables used for reporting.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 159

l

dministration Guide.

Since storage in DBM1 is bounded by the 2GB address space VSTOR limit, and bufferpools are
r

ed are

h large tables used for

The It
is th

ng to
d having to do the I/O is not worth the savings gained on the few occasions when

it addressing limit, with 64-bit real support,
dataspaces can be used (instead of a bufferpool and hiperpool pair) for each bufferpool. This has the
advantage that DBM1 VSTOR constraint is alleviated, since the dataspace for the bufferpool resides
outside DBM1. DBM1 contains control structures to reference the dataspace, which take much less
memory than the size of the dataspace.

Unlike the bufferpool/hiperpool architecture, where hiperpools cannot contain dirty pages (changed
pages not yet written back to disk), dataspaces offer a single pool that is managed in the same way as
bufferpools. Dataspaces must be backed by real storage (CS), not ES, for good performance.

9.5.3. DB2 sort
Due to the nature of SQL used with SAP R/3, which is generally simple indexed SQL, sort performance
is very seldom a problem with R/3. With SAP R/3, monitor for the standard DB2 indicators – prefetch
reduced or DM critical threshold reached, which show that the space in the bufferpool is not sufficient to
satisfy demand. Check I/O performance on the volumes where the sortwk datasets are allocated, to
verif root cause.

If you have good database performance (low DB2 delay percentage, etc) with the default bufferpoo
layout configured at installation, then there is probably no need to do the additional bufferpool
tuning described in the SAP on DB2 UDB for OS/390 and z/OS: Database A

9.5.2.3. DB2 bufferpool memory with 31-bit real (up to OS/390 2.9)

allocated from DBM1, hiperpools can be used to make more buffer memory available to DB2 fo
SAP. Hiperpools reside in page-addressable Expanded Storage (ES) outside the DBM1 address
space. Since hiperpools cannot contain “dirty” pages (pages which have been changed, but not
written to disk), bufferpools containing tables that are re-referenced and not frequently chang
good candidates for backing by hiperpools. Changed pages are written to disk before the page is
written to hiperpool, and if pages in a table are seldom re-refererenced (as wit
reporting) then prefetch I/O is the most effective way to bring the tables to DB2.

 key indicator for determining if hiperpools are being effectively used is the re-reference ratio.
e percentage of pages written from bufferpool to the hiperpool that are later read back to the

bufferpool. This is reported in SAP bufferpool detail statistics as “Hiperpool efficiency”. A re-
reference ratio above one in 10 (reported as 0.10 in hiperpool efficiency) means that the hiperpool is
effective. If the re-reference ratio is lower, then the overhead of searching the hiperpool, faili
find the page, an
the page is found, and the hiperpool is not helping performance.

9.5.2.4. DB2 buffer memory with 64-bit real (z/OS and OS/390 2.10)
While DBM1 is currently still bounded by a 31-b

y that there is not an I/O constraint at the

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 160

DB2
can b erpool for SAP) may need to be enlarged, and many SORTWK
areas may be needed. SORTWK areas should be spread across several disks.

9.5.4. DB2 rid processing
RID processing is used by DB2 for prefetch processing (e.g. list prefetch, where non-contiguous pages
are read in a single I/O) and for SQL processing (e.g. hybrid join).

There are four different kinds of problems related to RID processing, they are reported by SAP as:

• RDS limit exceeded, where the number of rids qualifying exceeds 25% of the table size. This is
almost always the RID failure encountered with SAP, and is an indicator of a bad access path
choice. The scenario is as follows. DB2 chooses an access path with RID processing at
optimization. When executing the statement, DB2 recognizes that it is going to process more
than 25% of the table, gives up on rid processing, and does a tablescan.

o If this is causing an important performance problem, it can be addressed with
FREQVAL RUNSTATS and ABAP hint, as described in Section 8.3. With
RFCOSCOL-based ST04, RID failure statistics are available at the statement level.
With earlier versions of SAP, one must use DB2 traces with IFCID 125 to find the SQL.

• DM limit exceeded, where the number of rids qualifying exceeds 2 million. This is really a
variant of RDS limit exceeded, where RID processing of a huge table is being done. In this case,
DB2 hits the DM limit before getting to RDS limit. The action is the same as RDS limit
exceeded.

• Storage shortage, when the 2 GB VSTOR limit in DBM1 is hit. See SAPnote 162923 regarding
emand by tuning MAXKEEPD, EDM, bufferpools,

• ,

 sort can be a performance issue with BW systems, or APO systems, since the SQL for infocubes
e very complex. BP1 (the sort buff

VSTOR planning, and reduce the VSTOR d
etc.

 Process limit exceeded, when the “RID pool size” configured in DB2 is exceeded. In this case
one can increase the size of the RID pool.

Figure 196: ST04 statement with RID failure

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 161

In Figure 196, the highlighted statement has had four RID list failures. The statement details will
show the cause of the RID failure.

Figure 197: ST04 RID failure - statement statistics

Figure 197 shows that the RID failure was caused by “RID fails limit”, that is RDS limit exceeded,

ss path that DB2 originally chose.
and that every statement executes a tablespace scan. When the statement is explained in Figure
198, we will see the acce

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 162

Figure 198: ST04 RID failure - DB2 access path before RDS limit failure

So, when reviewing the access path in ST04 explain, check the RID failures, to confirm whether

9
ith dynamic SQL, the SQL is not bound in a plan, to be

xecuted at runtime. The SQL is prepared at runtime. When statements are prepared using DB2
tement is placed in the EDM pool. Preparing the

t is issued by another DB2 thread (for an SAP work process), then DB2 can re-use the

Each thread also has its own local copy of the statements that it is executing. The number of locally
cached statements is controlled by the DB2 parameter MAXKEEPD.

DB2 actually used a different access path.

If this is an important performance problem, add an ABAP hint, and collect FREQVAL runstats, as
described in Section 8.3

.5.5. DB2 EDM and local statement cache
AP uses DB2 dynamic SQL to access data. WS

e
dynamic SQL, a skeleton copy of the prepared sta
statement, and putting a skeleton copy in EDM is called a full prepare. The thread also gets an
executable copy of the statement in its local statement cache.

Once the statement had been prepared and placed in the EDM pool, if another request to prepare the
statemen
skeleton copy from EDM pool, and place an executable copy of the statement in the other thread’s
local statement cache. This is called a short prepare. Re-using a skeleton from the EDM pool takes
about 1% as much CPU as the original prepare.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 163

Th
ac

ent

en a
t is executed. When the MAXKEEPD limit is hit, DB2 will take away unused

statements from a thread’s local cache. If the thread then goes to use the statement which has
“implicitly prepare” the statement. If the global hit ratio is high, this

Fo
70

If
M
prepares are very efficien lem. In general, it is better to
keep MAXKEEPD at the default or below, and give VSTOR to DB2 buffers.

 DB2 on a system with 64-bit real hardware
M pool can be moved to a dataspace. This

 installation defaults (or something a bit smaller) are fine. Tests done several years ago by IBM
showed that 1,200 short prepares per minute increased CPU utilization by about 1%, compared to CPU
utilization with 25 short prepares per minute. 20,000 short prepares per minute increased CPU usage
by about 5%. These are samples based on older versions of SAP, and thus do not reflect real-world
results, but they show that a system can run rather high rates of short prepares without a serious
performance problem.

9.5.6. Memory constraint on DB server
The cardinal rule in allocating memory on the DB server is to adjust DB2 memory usage to avoid
operating system paging on the DB server. It is more efficient to let DB2 do page movement between
BP and HP than to have z/OS page between CS (central store) and ES (expanded store), or disk (aka aux
storage).

se the customary z/OS indicators in RMF, such as migration age (under 500-700) showing ES is
ercommitted, UIC (under 60) showing CS is overcommitted, and migration rate (over 100) showing
o much paging to disk.

e key indicators related to EDM and the statement cache are shown in ST04 “DB2 subsystem
tivity” as
• Global hit ratio, which is the hit ratio for finding statements from EDM pool when a statem

is prepared. Since the original prepare is expensive, this should be kept high – 97%-99%, if
possible.

• Local hit ratio, which is the hit ratio for finding statements in the local thread cache wh
statemen

just been stolen, DB2 will
implicit prepare will be quickly and efficiently done.

cus on keeping the “global hit ratio” very high. If the “local hit ratio” is lower, even down to 60%-
%, it is not usually a problem for performance, since short prepares are very efficient.

 the “local hit ratio” is low, and there is VSTOR available in DBM1, then one can increase
AXKEEPD to increase the limit on the number of statements in the local cache. Since short

t, a low “local hit ratio” is not generally a prob

If VSTOR in DBM1 is constrained, and you are running
and software with sufficient real storage (CS), then the ED
will reduce the demand for VSTOR in DBM1.

Low local cache hit ratio is not generally not a problem in tuning an SAP DB2 system. Usually, the
system

U

vo
to

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 164

f

S

constraint.

9.5.6.2. CS constraint
Without access to z/OS tools, one can see symptoms of CS constraint in DB2 indicators. High ST04
“not attributed” time, which is discussed in section 8.1, is an indicator of a possible CS constraint.
In addition, the bufferpool counters “page-ins required for read” and “page-ins required for write”
will indicate CS constraint. These should be very small, as a percentage of getpages – one percent at
most. The usual goal with SAP is to have bufferpool hitrates in the high 90s. If there are also a few
percent of getpages that have to be paged in, this in effect reduces the hitrate, and may decrease the
bufferpool hitrate below the recommended range.

9.6. Sample global DB server problems

9.6.1. Example of ES constraint on DB server
Here is an RMF I report. ES storage constraint is indicated by a low migration age (MIGR AGE). The
average is at the edge of our 500-700 ROT. MIGR AGE below this threshold shows over-commitment
of ES.

9.5.6.1. ES constraint
Even without access to the z/OS monitoring tools, one can see symptoms of ES over commitment in
DB2 indicators. See the “hpool read failed” and “hpool write failed” counters on the hiperpools. I
these are more than a few percent of hiperpool page reads or writes, then there is probably an ES
constraint that is causing z/OS to take ES pages from hiperpools. You can also see the impact of
z/OS taking hiperpool pages away from DB2 in the bufferpool counters “hiperpool buffers backed”
and “hiperpool buffers allocated”. If backed is less than allocated, it can also point to an E

Figure 199: RMF I Paging report – ES constraint

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 165

onstraint on DB server

nt on
S, since the ES migration age is high. Since is it more efficient for DB2 do page movement between

e hiperpools, or by reducing MAXKEEPD.

9.6.2. Example of CS c
In this example from an RMF I report, there is too little CS available on the database server, as shown
by the UIC being somewhat low (AVG 33, MIN 5, rule-of-thumb 60), while there is no constrai
E
CS and ES by moving between bufferpool and hiperpool, it would be preferable to reduce the overall
demand on CS and move storage demand to ES. One could do this by reducing the size of the size of
the DB2 bufferpools, and increasing the size of th

Figure 200: RMF I Paging report – CS constraint

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 166

One can use OS07 to view a snapshot of current CPU use in the LPAR on the DB server. OS07 shows
that at this moment the LPAR is using 100% of its available CPU on the system (z/OS CPU).

The system CPU shows the utilization of the logical processors (LPs) defined to the LPAR, but if an
LPAR has used all the CPU it is entitled to by its LPAR weighting,, then system CPU can show a lower
utilization, while z/OS CPU shows 100% usage.

9.6.3. CPU constraint

Figure 201: OS07 - overview of DB server performance metrics

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 167

One can use tools such as RMF I and RMF III to view recent periods, or longer periods.

Figure 202: RMF III SYSINFO of 900 second interval

Log into DB server, and use RMF III SYSINFO command, which here shows 99% CPU utilization over
a 900 second (“range”) period. “Avg. MVS CPU Util.” shows the utilization of CPU available to this
LPAR.

In this case, the CEC (physical zSeries box) was at 100% CPU utilization, so the LPAR was constrained

hough the LPs defined to the LPAR were only active

9.6.4. I/O constraint
In this example, there is a system constraint caused by a configuration problem. As on some of the other
examples, this is not a problem one would expect to find in real life, but the process shows how to go
from SAP performance indicators to z/OS statistics.

Start with an ST03 workload summary. Generally, ST03 is not helpful in showing performance
problems, but if the average times for sequential read, changes, or commit are exceptionally high, it can

by its CPU weighting relative to other LPARs, t
58% of the time.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 168

it time is over 50 ms, which is unusual.
It could be normal, where there are jobs that are making many changes before commit, or it could be a
sign of a problem.

point to a problem on the DB server. In this case, average comm

Figure 203: ST03 with long change and commit time

The ST04 times display is from a DB2 V5 system, where “service task switch” contains commit
processing. Here, class 2 is not gathered, but class 3 is. Note that the average “service task switch” is
93 ms, which is long. In DB2 V5, commit processing s part of “ServTaskSwitch” suspension.

Figure 204: ST04 times long service task switch

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 169

Now, go to z/OS RMF III. Check DEV to see device delays.

Figure 205: RMF III DEV report

There was one device, QAS001, causing the most I/O delay to DB2. The address space, QASAMSTR,
is a hint that this is not a problem with I/O to the tables and indexes in the DB2 database. RMF III
credits delay on tables and indexes to DBM1.

Next, look at the datasets on the QAS001 volume.

Figure 206: RMF III DSNV report

Note that the volume contains three log datasets. When a log switch occurs, DB2 is writing the log to
one dataset, and copying the log from another on the same disk.

This was a QA system, which had not been setup using the standard guidelines for productive systems.
On a productive system, logs should be on separate volumes. One would not expect to see this problem
on a productive system. The goal of the exercise was to link the SAP ST03 change and commit time
down to the z/OS cause.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 170

10. problems

tements with the largest impact on the system.

in

.

 a
ould take just a few

etpages per execution, and have an internal DB2 time of under 1 ms. We have seen many examples of

ufferpool hitrates, reduce I/O, and improve system response time.

The kinds of problems usually seen, and the order in which we suggest to address them is:
• Complaints of end-users.
• Frequently executed inefficient statements. Inefficient code in frequently run programs such as

transaction user exits can both slow transaction performance and impact system performance. These
statements might take tens to hundreds of milliseconds to run, and perform hundreds to thousands of
getpages per row processed. Either ABAP changes (hints or code changes) or new indexes are
justifiable in these cases.

• Periodically run very inefficient statements. For example, an interface or reporting program that
runs many times throughout the day. In cases such as these, there could be very inefficient sql
(hundreds or thousands of getpages per row). Fixing these can also reduce resource utilization.
These might be fixed via ABAP, but if an index can be created that is small, filters well, and is in a
reasonable location (e.g. on a header table rather than document table) then an index could be
justified, too. Here the benefit to the system is less than the benefit in fixing frequently executed
statements, so one should be more cautious about adding an index, in order to avoid index
proliferation and space usage.

• Really bad SQL (tens of thousands or hundreds of thousands of getpages per SQL) in jobs that run
just a few times a day or week. If these can be fixed with SQL changes, then the programmers can
prioritize the work, based on the impact of the fix, and the business need for better performance. If
the problem cannot be fixed by ABAP, and requires a new index, it is usually not worthwhile to
create a new index (given the tradeoff between disk space used and performance benefit gained),

Estimating the impact of fixing

10.1. ST04 cache analysis
Start cache analysis by using ST04 sorted by total getpages, rows examined, or elapsed time. In this
way, you can focus on sta

10.1.1. Estimating the opportunity for improvement in inefficient SQL

When evaluating inefficient statements in the SQL cache, one can estimate the potential improvement
resource usage and response time, by comparing the current resource usage with hypothetical good SQL
statement usage

For example, you have found a statement that does 500 getpages per row returned and takes 100 ms
internal DB2 time (ST04 average elapsed time). One can estimate that if the could be converted into
well indexed statement where all rows could be selected based on an index, that it w
g
how efficiently indexed SQL takes only a few getpages for each row returned. If an inefficient
statement runs thousands of times a day (see ST04 statement statistics for counters), then fixing the
problem would help overall system performance. Addressing problems of this sort will help to improve
b

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 171

unless there is a critical business need for better performance. In this case, though it is inefficient,

10
bles that are not buffered. As described above, bufferable

•
•
• se

Com rting
inte
buffering it.

The
Tha
SQL and inefficient SQL uses m

the
row

let DB2 and the operating system manage it.

.2. ST10 table buffering
The most common problem is bufferable ta
tables are tables that are

Mostly read-only
Moderate size
The application can tolerate a small interval where the buffered data is different than the databa

pare the calls and rows fetched by the candidate table to the total calls and rows for the repo
rval. If the table makes up more than 0.5% to 1% of total call or row activity, then we would suggest

 benefit of buffering a table is related to, but will not be the same as its percentage of calls or rows.
t is, buffering a table with 5% of calls will not offload 5% of the database server, since complex

uch more CPU per call than simple indexed SQL.

The most notable impact of changing table buffering will be on the transactions and programs that read

table. Buffered table reads usually take less than 0.1 ms per row. If a transaction is reading many
s from the table, then the benefit for the transaction will be proportional to the number of rows read.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 172

11. Fo
As

11.1. Use the SAP data model
If you’re evaluating the performance of custom code, and it runs slowly because the predicates don’t
match the indexes on SAP tables, the odds are very good that the program is looking for the data in
the wrong place. Most SAP business documents (e.g. sales order, purchase order, delivery note, etc)
can be found using the document number with a standard SAP table and standard SAP index.

In addition to the example in Section 8.5.3, See SAP notes 185530, 187906, and 191492 for
examples of incorrect and correct use of the SAP data model.

The symptom of this problem is in the ST04 SQL cache - high buffer gets per exec and high buffer
gets per row. This happens when the predicates on the SQL do not match the index columns on the
table and Oracle has to read many blocks of data to retrieve the result.

11.2. Use array operations on the database
If the program builds internal tables that contain keys for selects on other tables, evaluate whether an
array operation such as FOR ALL ENTRIES can be used to perform array selects, rather than using
LOOP AT with individual database calls.

The symptom of this problem is seen in ST05 traces, where a program makes frequent calls to a
table, and each call accesses few rows.

11.3. Check whether the database call can be avoided
There are several versions of this problem:

• A table is set as buffered, but the application server generic or single record buffers are too small to
hold the table rows. The cure for this is to increase the size of the SAP buffers.

• A table is not set to be buffered, but should be. In this case, the table is usually read-only, and the
application can tolerate a small interval when the data is not in synch on all the application servers.
In this case, the table attributes should be changed to buffered.

• A program is repeatedly fetching the same information from the database. This problem can be
detected by using the ‘duplicate selects’ function in ST05. The program needs to be examined to see
how it can be changed so that it does not have to repeatedly go back to the database for the same
information

11.4. Write ABAP programs that are line-item scalable
If the program will process many lines in a report:

• Use BINARY SEARCH on the “READ TABLE from itab” statements
• Evaluate whether internal tables need to be defined as SORTED

ur guidelines for avoiding performance problems
seen in the examples above, there are a few general rules for avoiding performance problems.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 173

The symptom of this problem is high CPU use for a program, where CPU use does not scale with
 but a 1000 line item report takes

ore than 100 seconds CPU.
ty problems get worse as the report lines increase.

additional line items – e.g. a 100 line report takes 1 second CPU,
more than 10 seconds CPU, and a 10,000 line report takes much m
These scalabili

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 174

Normally, it is best to view improvement from the application, by using STAT or ST03(N) to evaluate the
r SM39 can be used to track elapsed time for batch jobs by the batch job name, rather

than the name of the program executed.

psed
 more notable than overall improvements in section 12.2

12.2.
Using DB2 or z/OS indicators to measure progress is more challenging, due to the variable nature of the

oad run together. A batch job is counted as one
to

, without making a
significant change to dialog step counts. Thus, our preference for the application view – STAT records,

efficiency of SQL on the system, there will generally also

o

• C
• CPU

It’s gener
improve SQ
if the w

12. How to tell when you are making progress

12.1. SAP

elapsed time. SM37 o

Since the gains for an individual program can be very dramatic with tuning, the reduction gained in ela
time for programs will generally be much

DB2 and S/390

SAP workload, and the way that transaction and batch workl
dialog step, and may do thousands or millions of SQL operations. When this SQL activity is averaged in
DB server statistics, a few batch jobs can have a dramatic impact on CPU utilization

ST03, etc. If you are working on improving the
be reductions in
• CPU utilization
• I/O activity rates

Since the dialog steps per hour can vary widely from day to day, and improving SQL can change the amount
f CPU used by a statement, one can look at other ways to normalize work in terms of DB2 work

performed, such as reductions in
• Getpages per SQL DML (calculated from DB2PM) – with SQL improvements, DB2 searches fewer

pages to return the result
PU per dia log step – this is a “dialog step normalized” view of reduced CPU utilization

 per SQL DML operation – an “SQL normalized” view of reduced CPU utilization

ally simplest to stick to reduction in transaction elapsed time. If there has been a large effort to
L efficiency, then there should be reduced CPU utilization for the same number of dialog steps,

orkload mix does not change.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 175

13.

A quick summ

13.1.

 (DB02 > detail analysis)
er table name > drill into table >

DBACOCKPIT Transaction
actions. All the

o available from DBACOCKPIT.

 and

SE11 > enter table name > display > extras > database

ndexes).
s that are not active on the database.

.
e gotchas with “where used”:

 the statement is constructed at runtime by the ABAP, may

o Sites using DB2 V7 and SAP 6.20 do not need to use “where used”, since statements in
ame.

tigate
ram

Appendix 1: summary of performance monitoring tools

ary of key tools and their main functions in performance monitoring follows.

SAP

13.1.1. DB02 Transaction
DB02 is used to display information about tables and indexes in the database, such as space usage
trends, size of individual tables, etc.:

• Display all indexes defined on tables
• Check index and table cardinality (DB02 > detail analysis > ent

drill into index)

13.1.2.
DBACOCKPIT integrates the database storage and performance management trans
ST04 functions described in this paper are als

13.1.3. SE11 Transaction
SE11 is used to gather information about data dictionary and database definition of tables, indexes,
views:

• Display table columns and indexes (
objects > check)

• Display indexes defined in data dictionary (SE11 > enter table name > display > i
There may be data dictionary indexe

• Display view definitions
• Sites using DB2 V5 or V6 use “where used” to find programs that reference a table or view

There are som
o SAP Dynamic SQL, where

not be found in where used
o The SQL in ST04 cache may not match SQL in program. E.g. when the user can

optionally enter parameters for several predicates, only the predicates that are specified
will be in the executed SQL.

ST04 statement cache have a marker with the ABAP program n

13.1.4. SE30 Transaction
When STAT or ST03 shows that most of a program’s elapsed time is CPU, SE30 is used to inves
where CPU time is spent in an ABAP prog

13.1.5. SM12 Transaction
SM12 > extras > statistics can be used to view lock statistics:

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 176

 to

hese changes would be implemented with SAP functional experts.
• High counts of error can point to a problem where the enqueue table is too small. Compare

” and “granule entries” to check for the table filling.

SM50 is an overview of activity on an SAP instance. If many processes are doing the same thing (e.g.
n point to where further investigation is required.

ST03.
 a problem with enqueue performance.

Gives an overview of running programs on an SAP system. If many processes are doing the same thing
, CPIC, etc), this can point to where further investigation is required.

Is used to displays STAT records for an interval from all instances on an SAP system. It aggregates the
 STAT in finding problems with slow RFCs.

P managed buffer areas, such as program buffer, generic
buffer, roll, and EM.

 problems. Like RMF I, it is a tool which is mainly useful for
tracking historical activity. One can monitor average response times for individual transactions and for

g steps to use for trend analysis.

 As a filter for inefficient programs. Use the ST03 “transaction” profile, sort the list by elapsed time,
 little CPU relative to elapsed time, e.g. 10% or less of

es” profile, press the right arrow to go to the screen that displays

DB server.

• High percentages of rejects can point to a concurrency problem (multiple programs trying
enqueue the same SAP object) that may be solved via SAP settings such as “late exclusive
material block” in the OMJI transaction. There are different SAP settings for different parts of
the business processes, so t

“peak util” with “granule arguments

13.1.6. SM50 Transaction

access same table, ENQ, CPIC, etc), this ca

13.1.7. SM51 Transaction
SM51 can be used to check instance queues (goto > queue information)

• If there are queues for DIA, UPD, UP2, etc, there will be “wait for work process” in STAT and

• If there are queues for ENQ, there is

13.1.8. SM66 Transaction

(e.g. access same table, ENQ

13.1.9. STAD Transaction

RFC call information, so is not as useful as

13.1.10. ST02 Transaction
ST02 is used to monitor the activity in SA

13.1.11. ST03 Transaction
ST03 is not a tool for solving performance

the system as a whole, and get counts of dialo

There are a few limited ways that it might be used in performance monitoring:
•

and look for transactions which use very
elapsed time is CPU on the application server. These may have problems such as inefficient
database access, slow RFC calls, etc.

• As a filter for problems that occur at a certain time of the day. Run ST03, and select “dialog”
process display. Use the ST03 “tim
average direct read, sequential read, and change times. Look for hours of the day when the average
time goes up. This could point to a time when there is an I/O constraint, or CPU constraint on the

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 177

oblems, in very limited circumstances. If average

4 Transaction
ST04 has many functions, the most important for performance are viewing the SQL cache, checking

ufferpool activity and monitoring DB2 threads.

FC, enqueue, and locally buffered table calls.

ction
ics

ect if the application is AIX SPLPAR.

6. ST10 Transaction
le buffering in SAP on the application server:

uffering in SAP

o that both DB and application server activity
er.

13.1.18. RSINCL00 Program
rce and include files, with cross-reference of table accesses. This is useful when

ction

saction SQLR, or program SQLR0001.

• Use as a filter for database performance pr
“sequential read” times are over 10 ms for dialog, and commit time is over 25-30 ms, there may be
some sort of database performance problem. Check SQL cache with ST04, look for I/O constraints
and other database problems.

13.1.12. ST0

DB2 delays, and monitoring b

13.1.13. ST05 Transaction
ST05 is one of the most important tools for SAP performance, among its functions are:
• Trace calls to database server to check for inefficient SQL when program is known.
• Compress and save SQL traces for regression testing and comparisons.
• Trace R

13.1.14. ST06 Transa
Display OS level stats for the application server – paging, CPU usage, and disk activity. The statist
displayed are incorr

13.1.15. ST06N
If using AIX application servers with SPLPAR, ST06N with the saposcol version in SAP note 994025
are required to monitor CPU use correctly.

13.1.1
ST10 is used to monitor table activity, and tab
• Check for tables that are candidates for b
• Check for incorrectly buffered tables

13.1.17. ST12
ST12 enables simultaneous ST05 and SE30 executions, s
for a transaction can be traced togeth

Expand ABAP sou
examining ABAP source, as it gives an overview of the whole program.

13.1.19. SQLR Transa
Merge an ST05 trace with STAT records, to determine which dialog step executed which statements.
This is useful when tracing a transaction made up of many dialog steps, to join the trace to the dialog
step that issued the problematic SQL.

Depending on the SAP version, this may be available as a tran

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 178

ce.

Is a tool for historical reporting, and is useful for tracking capacity planning related information, such as
CPU activity, and I/O activity. It can also be useful for trending and monitoring OS level constraints
such as CPU or memory. Since the disk information shows volume level activity, and there can be
many DB2 datasets on a volume, the DASD information needs to be augmented by RMF III (or some
other real-time analysis tool) to find the datasets causing delays, so that the SQL can be found and
analyzed.

13.2.2. RMF II
The RMF II SPAG command has a good summary of information related to paging, but it must be
gathered real-time.

13.2.3. RMF III
RMF III is a powerful tool that can be used for real-time analysis, as well as for reporting recent history.
Use it to determine the causes of DB2 delays (e.g., which volume is causing I/O delay) when drilling
down from SAP. Just a few functions are sufficient to diagnose the usual problems seen with SAP and
DB2:
• SYSINFO – CPU utilization information
• DELAY – summary of causes of delays
• DSNJ (for the DBM1 address space) – show datasets causing delays
• DEV – show devices causing delays
• DEVJ (for the DBM1 address space) show volumes causing delays
• DEVR – show I/O rates and average response times
• PROC – show processor delays
• STOR – show storage delays

13.3. DB2
The most important DB2 performance tool, statement cache analysis, is in SAP ST04 transaction.

13.3.1. DB2PM
• STATISTICS is focused on activity, and not delays. It often shows symptoms (e.g. low hit rate,

thresholds being exceeded), not causes (inefficient SQL or programs not committing). After SQL
has been addressed, then monitor the DB2 indicators of bufferpool hit rates, EDM pool activity, etc.
Note that the random hit rate is usually the key metric for DB2 buffer pool hit rate. Older versions
of DB2PM, such as V5, do not calculate random hit rate.

13.1.20. RSTRC000 Program
Lock a user mode into a work process. This is useful for doing traces (such as OS level or DB2 level
traces) where one needs to know the PID or Thread ID to establish the trace. Once the user is locked
into a work process, one can determine the PID and Thread ID, and use them to establish the tra

13.2. z/OS

13.2.1. RMF I

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 179

elay in DB2, but since there is no easy way to
any different SAP transactions will execute in the

e restarted periodically, it has limited use. One can aggregate the thread
 sources of DB2 delays, as the ST04 “times” transaction does.

ind lock,

o

• ACCOUNTING is focused on time in DB2 and d
correlate a DB2 thread to an SAP job, and since m
same thread, and threads ar
statistics to view the overall

• For systems which do not have RFCOSCOL ST04, IFCID traces may be needed to f
latch,and RID failure problems:

 Use IFCID 44,45,226, and 227 to investigate problems with lock and latch suspensions.
o Use IFCID 125 to investigate problems with RID failures.

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 180

14. Appendix 2: Reference Materials

14.1. SAP Manuals
51014418 “SAP on DB2 UDB for OS/390 and z/OS: Database Administration Guide”

SAP Planning Guide for SAP NetWeaver on IBM DB2 for z/OS (NW04)

SAP Planning Guide for SAP NetWeaver on IBM DB2 for z/OS (NW04S)

14.2. IBM manuals
Planning Guides, which contain detailed description of architecture of SAP to DB2 connection:

SC33-7961-02 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 3.1I”

SC33-7962-02 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.0B”

SC33-7962-03 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.0B SR 1”

SC33-7964-00 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.5A”

SC33-7964-01 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.5B”

SC33-7966-00 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6A”

SC33-7966-01 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6B”

SC33-7966-02 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6C”

SC33-7966-03 “SAP R/3 on DB2 for OS/390: Planning Guide SAP R/3 Release 4.6D”

SC33-7959-00 “SAP on DB2 UDB for OS/390 and z/OS: Planning Guide” (SAP Web AS 6.10)

SC33-7959-01 “SAP on DB2 UDB for OS/390 and z/OS: Planning Guide” (SAP Web AS 6.20)

DB2 Administration Guides, which contain detailed description of DB2 access paths, prefetch capabilities,
buffer pool parameters, and components of DB2 elapsed time:

SC26-8957-03 “DB2 for OS/390 Version 5: Administration Guide”

SC26-9003-02 “DB2 Universal Database for OS/390: Administration Guide” (DB2 V6)

SC26-9931-01 “DB2 Universal Database for OS/390 and z/OS: Administration Guide” (DB2 V7)

SC18-7413-05 “DB2 UDB for z/OS V8 Administration Guide”

SC18-9840 “DB2 Version 9.1 for z/OS Administration Guide”

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 181

Figure 1: Sample STAT record ... 10

Figure 2: Sample STAD record .. 11
 Figure 3: STAT database request with time per request ... 13
 Figure 4: STAT database request time with time per row .. 13
 Figure 5: stat/tabrec data ... 15
 Figure 6: rsdb/stattime time statistics in ST10 .. 16
 Figure 7: STAT record with low CPU time .. 19
 Figure 8: STAT record with high CPU time ... 20
 Figure 9: STAT RFC detail... 21
 Figure 10: STAT wait for work process – symptom of SAP roll area overflow .. 22
 Figure 11: STAT slow insert causes wait time ... 23
 Figure 12: STAT record with CPU corresponding to Processing time .. 24
 Figure 13: Processing time shows missing time in SAP... 25
 Figure 14: STAT high load time ... 26
 Figure 15: STAT roll (in+wait) GUI time .. 26
 Figure 16: STAT roll-in .. 27
 Figure 17: ST06 > detail analysis > top CPU - showing processor constraint .. 29
 Figure 18: SM50 showing ENQ wait.. 30
 Figure 19: SM51 > Goto > queue information - display of queues on SAP central instance 30
 Figure 20: ST03N with high lock (SAP enqueue) time .. 31
 Figure 21: STAT long total and average enqueue times... 31
 Figure 22: SM50 display on central instance showing Sem 26 (ENQ) wait .. 32
 Figure 23: ST06 > detail analysis > top CPU - no processor constraint ... 32
 Figure 24: ST05 ENQ trace .. 33
 Figure 25: ST06 > detail analysis > disk - high I/O activity on UNIX disk ... 33
 Figure 26: filemon displays active filesystems ... 34
 Figure 27: STAT with long GUI time... 35
 Figure 28: Missing time stat record – enqueue retry example .. 36
 Figure 29: Missing time ABAP trace – enqueue retry example ... 37
 Figure 30: Missing time ST05 trace – enqueue retry .. 37
 Figure 31: STATTRACE to select DSR and STAT records .. 38
 Figure 32: STATTRACE .. 38
 Figure 33: STATTRACE expanded .. 39
 Figure 34: 16 second DSR .. 39
 Figure 35: STATTRACE detail DSR analysis ... 40
 Figure 36: STATTRACE Call Records .. 40
 Figure 37: STATTRACE RFC STAT record ... 41
 Figure 38: STATTRACE RFC STAT detail .. 41
 Figure 39: STATTRACE RFC Single Records .. 41
 Figure 40: STATTRACE Transaction ID ... 42
 Figure 41: ST05 RFC trace matches RFC data in DSR and STAT .. 42
 Figure 42: ST05 SQL and RFC trace of query ... 43
 Figure 43: LOOP with select .. 44

Figure 44: ST05 Display identical selects .. 46

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 182

Figure 45: ST05 Identical selects analysis .. 47
Figure 46: ZCR3 ST03N time components .. 48
Figure 47: ZCR3 statistics records .. 49
Figure 48: ST05 trace with filter ... 49
Figure 49: ZCR3 ST05 trace ... 50
Figure 50: ZCR3 Summarized by SQL Statement ... 50
Figure 51: ZCR3 ZCA0_SUBASM_ASSGN ... 51
Figure 52: ZCR3 - ABAP source .. 51
Figure 53: ZCR3 statement with variables ... 52
Figure 54: ZCR3 Explain .. 52
Figure 55: ZCR3 Index display... 53
Figure 56: ZCR3 Table information ... 53
Figure 57: ZCR1 - ST03N statistics.. 54
Figure 58: ZCR1 statistics records .. 55
Figure 59: ZCR1 ST05 trace ... 55
Figure 60: ZCR1 - summarized trace .. 56
Figure 61: ZCR1 SQL sorted by time ... 56
Figure 62: ZCR1 ST05 QMEL ... 57
Figure 63: ZCR1 FORM ABAP source .. 57
Figure 64: ZCR1 main program ABAP source... 58
Figure 65: ZLTRUCK statistics record ... 59
Figure 66: ZLTRUCK stat/tabrec ... 59
Figure 67: ZLTRUCK LTAP explain ... 60
Figure 68: ZLTRUCK ABAP ... 60
Figure 69: A071 summarized SQL trace .. 61
Figure 70: ST02 .. 62
Figure 71: ZREF ST05 summary .. 62
Figure 72: ZREF ST10.. 63
Figure 73: ZREF DB05 ... 63
Figure 74: ZREF DB05 data ... 64
Figure 75: Slow selects on MDSB .. 65
Figure 76: RESB~M explain .. 65
Figure 77: RESB clustering .. 65
Figure 78: RESB time per execution .. 66
Figure 79: RESB statistics per exec .. 66
Figure 80: access by RESB~M after clustering on ~M .. 67
Figure 81: Financial report STAT times ... 68
Figure 82: Financial report STAT DB times .. 68
Figure 83: Financial report ST05 .. 69
Figure 84: Financial report access path .. 69
Figure 85: Financial report display index ... 69
Figure 86: Financial report ST04 .. 69
Figure 87: Financial report - RFBLG for ordered select .. 70
Figure 88: Financial report ordered rows .. 70
Figure 89: SQLR initial screen ... 71

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 183

Figure 90: SQLR formatted trace ... 72
Figure 91: SQLR STAT record display .. 72
Figure 92: SE30 initial screen ... 74
Figure 93: SE30 Statement options... 75
Figure 94: SE30 set duration and aggregation .. 76
Figure 95: SE30 process list ... 77
Figure 96: SE30 activated trace .. 77
Figure 97: SE30 analyze ... 78
Figure 98: SE30 Runtime Analysis Overview .. 78
Figure 99: SE30 hit list ... 79
Figure 100: SE30 sorted by Net time .. 80
Figure 101: SE30 long reads from internal table .. 80
Figure 102: SE30 cursor positioned after offending line .. 81
Figure 103: SE30 slow statement found ... 81
Figure 104: SE30 Tips and tricks – linear search vs binary search .. 82
Figure 105: TST01 - Select starting point in summarized ST05 trace ... 83
Figure 106: ST05 cycle marker example .. 84
Figure 107: ST05 select end ... 85
Figure 108: ST05 set tcode ... 85
Figure 109: ST05 summarized and sorted .. 86
Figure 110: DB2 time categories .. 87
Figure 111: ST04 global times .. 89
Figure 112: Good ST04 times ... 93
Figure 113: ST04 with long total suspensions .. 94
Figure 114: ST04 times with high “Other in DB2” .. 95
Figure 115: Slow join on AKFO ... 96
Figure 116: AFKO explained with parameter markers... 97
Figure 117: AFKO join - index display .. 98
Figure 118: AFKO statement with replaced variables .. 99
Figure 119: AUFK Column Cardinalities ... 100
Figure 120: Query to check for skew ... 101
Figure 121: SKEWED data distribution in MAUFNR column .. 102
Figure 122: AFKO statement with variables .. 103
Figure 123: AFKO explain with variables chooses different access path .. 104
Figure 124: SE16 to test predicate filtering .. 105
Figure 125: SE16 filtering test number of entries ... 105
Figure 126: DBACOCKPIT to display statement cache .. 107
Figure 127: ST04 cached statement statistics sorted by elapsed time .. 108
Figure 128: ST04 details - statement text ... 108
Figure 129: ST04 details - time per execution .. 109
Figure 130: ST04 details – statistics per execution .. 109
Figure 131: Turn on parallelism popup ... 110
Figure 132: Explain Hierarchical Access Path ... 110
Figure 133: Explain Index Information .. 111
Figure 134: ST04 statement cache slow statement ... 112

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 184

igure 162: EDIDC explain .. 130
igure 163: EDIDC indexes.. 130
igure 164: query to check for skew ... 131

Figure 165: STATUS counts .. 131
Figure 166: EDIDC wth new index .. 132
Figure 167: EDIDC in summarized trace ... 132
Figure 168: STAT record with long GLT0 change times ... 133
Figure 169: DB2PM LOCKING REPORT for GLT0 .. 134
Figure 170: ST06 > detail analysis > previous hours memory - high paging ... 138
Figure 171: ST06 CPU constraint ... 139
Figure 172: ST06N with SPLPAR statistics ... 140
Figure 173: ST06 > detail analysis > previous hours CPU - CPU constraint ... 141
Figure 174: STAD from system with CPU overload .. 142
Figure 175: ST02 roll area over-committed .. 143
Figure 176: SM66 roll in and roll out ... 144
Figure 177: ST06 > detail analysis > disk - high I/O activity on ROLL area .. 144
Figure 178: Generic buffer swapping ... 145
Figure 179: ST02 > drill into generic key > buffered objects .. 146

Figure 135: Slow SQL with few getpages .. 113
Figure 136: ST04 time distribution ... 113
Figure 137: ST04 statement .. 113
Figure 138: FEBEP - ST04 sorted by CPU .. 114
Figure 139: “details” display of FEBEP statement from ST04 cached statement .. 115
Figure 140: ST04 cache “details” display of execution statistics ... 116
Figure 141: Explained statement from ST04 cached statement details .. 117
Figure 142: FEBEP - ST04 Index information ... 118
Figure 143: FEBEP - Table information ... 119
Figure 144: FEBEP column cardinality statistics ... 120
Figure 145: SRRELROLES .. 122
Figure 146: SRRELROLES statement text ... 122
Figure 147: SRRELROLES statistics ... 123
Figure 148: SRRELROLES Hierarchical Access Path ... 123
Figure 149: SRRELROLES table column cardinality .. 124
Figure 150: SRRELROLES column distribution ... 124
Figure 151: SRRELROLES indexes ... 125
Figure 152: LIPS Statement Cache ... 126
Figure 153: LIPS statement .. 126
Figure 154: LIPS program .. 127
Figure 155: LIPS explain .. 127
Figure 156: LIPS Index ... 127
Figure 157: NOTE 185530 ... 128
Figure 158: ST04 index-only access ... 128
Figure 159: ST04 index-only statistics per exec ... 129
Figure 160: EDIDC many getpages per row ... 129
Figure 161: EDIDC statistics per execution ... 130
F
F
F

IBM Americas Advanced Technical Support

© Copyright IBM Corporation 2003 and 2008. All rights reserved.

Page 185

UFigure 180: ST02 table detailsU .. 146
UFigure 181: ST10 > not buffered, previous week, all servers > sort by callsU ... 147
UFigure 182: SE16 for countsU ... 147
UFigure 183: SE16 counts part two U ... 148
UFigure 184: SE16 count result U... 148
UFigure 185: single record buffering on table accessed via selectU .. 149
UFigure 186: ST10 table detailsU .. 150
UFigure 187: SM50 “stopped NUM” and Sem 8 U .. 151
UFigure 188: NRIV row-lock contention on 4.0 ST04 statement cacheU ... 151
UFigure 189: NRIV row-lock contention on 4.6 ST04 statement cacheU ... 152
UFigure 190: ST02 > detail analysis > number ranges - number range statisticsU ... 153
UFigure 191: ST02 >detail analysis > semaphores - semaphore statisticsU .. 154
UFigure 192: ST05 summary with long average times U ... 155
UFigure 193: ST05 trace with symptom of network problemU ... 155
UFigure 194: STAT record with slow change SQL U .. 156
UFigure 195: ST11 > display - ICLI network statistics in developer traceU ... 157
UFigure 196: ST04 statement with RID failureU ... 160
UFigure 197: ST04 RID failure - statement statisticsU .. 161
UFigure 198: ST04 RID failure - DB2 access path before RDS limit failureU ... 162
UFigure 199: RMF I Paging report – ES constraint U .. 164
UFigure 200: RMF I Paging report – CS constraint U .. 165
UFigure 201: OS07 - overview of DB server performance metricsU .. 166
UFigure 202: RMF III SYSINFO of 900 second intervalU ... 167
UFigure 203: ST03 with long change and commit time U .. 168
UFigure 204: ST04 times long service task switchU ... 168
UFigure 205: RMF III DEV reportU .. 169
UFigure 206: RMF III DSNV report U ... 169

	1. Introduction
	2. Acknowledgements
	2.1. Version 2
	2.2. Version 1

	3. Disclaimers
	4. Trademarks
	5. Feedback
	6. Version Updates
	7. Solving a performance problem for a specific program
	7.1. Check STAT/STAD records for components of SAP elapsed time
	7.1.1. Description of STAT/STAD record time components
	7.1.1.1. Description of STAT/STAD “missing time”
	7.1.1.2. Description of STAT/STAD detailed database request time
	7.1.1.3. Description of stat/tabrec and rsdb/stattime parameters

	7.2. Examples of problem indicators in STAT/STAD records
	7.2.1. High DB request time example
	7.2.2. High CPU time example
	7.2.3. High RFC+CPIC time example
	7.2.4. Response time
	7.2.5. Wait for work process example
	7.2.6. Processing time examples
	7.2.7. High load time example
	7.2.8. Roll (in+wait) time example
	7.2.9. Enqueue examples
	7.2.9.1. Enqueue processor constraint example
	7.2.9.2. ENQBCK I/O constraint example

	7.2.10. Frontend example
	7.2.11. Missing time in STAT/STAD – suggested actions
	7.2.11.1. Missing time – enqueue reject and retry

	7.3. DSR statistics for Java Stack
	7.4. Types of problems causing high DB request time
	7.4.1. Indexes do not support predicates
	7.4.2. Misuse of SAP Data Model
	7.4.3. SELECT in LOOP instead of FOR ALL ENTRIES
	7.4.4. Data skew causes wrong access path to be chosen
	7.4.5. REOPT(ONCE) impact
	7.4.6. Impact of index column order with range predicates
	7.4.7. Table is not clustered to support key business processes
	7.4.8. Unnecessary SQL
	7.4.8.1. Table could be buffered on application server but is not buffered
	7.4.8.2. SAP instance buffers are too small
	7.4.8.3. FOR ALL ENTRIES with empty internal table
	7.4.8.4. Program retrieves rows that are not needed
	7.4.8.5. Duplicate (or Identical) selects

	7.5. Transaction
	7.5.1. Analysis process for transactions and batch jobs
	7.5.2. Guidelines for making database changes
	7.5.3. ZCR3 – indexes do not match local predicates
	7.5.4. ZCR1 – can the SQL be avoided
	7.5.5. ZLTRUCK – can the SQL be avoided
	7.5.6. A071 – can the SQL be avoided
	7.5.7. ZREF – can the SQL be avoided
	7.5.8. Changing clustering sequence to optimize access times
	7.5.9. Modify Program so that data retrieval matches clustering sequence
	7.5.10. Analysis of multiple dialog steps with transaction SQLR

	7.6. Batch
	7.6.1. Analysis process for batch
	7.6.2. Using SE30 to determine cause of excessive CPU use
	7.6.3. Sample of SQL cycle analysis in batch

	8. Check for inefficient use of DB resources
	8.1. DB2 accounting data – delay analysis
	8.1.1. Components of DB2 delay
	8.1.2. Key indicators in DB2 Times
	8.1.3. Actions to take for DB2 times indicators

	8.2. DB2 delay analysis examples
	8.2.1. Good ST04 global times
	8.2.2. Rather suspicious ST04 times
	8.2.3. ST04 Times points to constraint on DB server

	8.3. Impact of data skew and parameter markers on prepare
	8.3.1. REOPT(ONCE) as alternative to ABAP HINT

	8.4. Process for identifying slow or inefficient SQL
	8.4.1. High getpages and low rows processed (per execution)
	8.4.2. High rows examined and low rows processed (per execution)
	8.4.3. Long “average elapsed time” per execution

	8.5. Examples of ST04 statement cache analysis
	8.5.1. Predicates do not match available indexes
	8.5.2. Impact of REOPT(ONCE)
	8.5.3. Incorrect use of SAP data model
	8.5.4. Index-only access
	8.5.5. Column order with custom indexes
	8.5.5.1. Considerations for column order of custom indexes

	8.5.6. Logical row lock contention

	9. Health Check
	9.1. Check for SAP instance-level or system-level problems
	9.1.1. Application server OS paging
	9.1.2. Application server CPU constraint
	9.1.3. SAP managed memory areas
	9.1.4. Table buffering
	9.1.5. Wait time
	9.1.6. Number ranges

	9.2. Sample SAP instance-level and system-problems
	9.2.1. Application server paging
	9.2.2. Application Server CPU constraint
	9.2.3. Roll Area shortage
	9.2.4. ST02 buffer area shortage
	9.2.5. Find table buffering candidates
	9.2.6. Table buffered with wrong attributes
	9.2.7. Number range buffered by quantity that is too small

	9.3. Check for network performance problems
	9.3.1. Lost packets indicators
	9.3.2. Slow network indicators

	9.4. Sample network performance problems
	9.4.1. Slow network performance example

	9.5. Check for global DB server problems
	9.5.1. CPU constraint
	9.5.2. Bufferpool and hiperpool memory allocation
	9.5.2.1. Hitrate goals
	9.5.2.2. Bufferpool tuning
	9.5.2.3. DB2 bufferpool memory with 31-bit real (up to OS/390 2.9)
	9.5.2.4. DB2 buffer memory with 64-bit real (z/OS and OS/390 2.10)

	9.5.3. DB2 sort
	9.5.4. DB2 rid processing
	9.5.5. DB2 EDM and local statement cache
	9.5.6. Memory constraint on DB server
	9.5.6.1. ES constraint
	9.5.6.2. CS constraint

	9.6. Sample global DB server problems
	9.6.1. Example of ES constraint on DB server
	9.6.2. Example of CS constraint on DB server
	9.6.3. CPU constraint
	9.6.4. I/O constraint

	10. Estimating the impact of fixing problems
	10.1. ST04 cache analysis
	10.1.1. Estimating the opportunity for improvement in inefficient SQL

	10.2. ST10 table buffering

	11. Four guidelines for avoiding performance problems
	11.1. Use the SAP data model
	11.2. Use array operations on the database
	11.3. Check whether the database call can be avoided
	11.4. Write ABAP programs that are line-item scalable

	12. How to tell when you are making progress
	12.1. SAP
	12.2. DB2 and S/390

	13. Appendix 1: summary of performance monitoring tools
	13.1. SAP
	13.1.1. DB02 Transaction
	13.1.2. DBACOCKPIT Transaction
	13.1.3. SE11 Transaction
	13.1.4. SE30 Transaction
	13.1.5. SM12 Transaction
	13.1.6. SM50 Transaction
	13.1.7. SM51 Transaction
	13.1.8. SM66 Transaction
	13.1.9. STAD Transaction
	13.1.10. ST02 Transaction
	13.1.11. ST03 Transaction
	13.1.12. ST04 Transaction
	13.1.13. ST05 Transaction
	13.1.14. ST06 Transaction
	13.1.15. ST06N
	13.1.16. ST10 Transaction
	13.1.17. ST12
	13.1.18. RSINCL00 Program
	13.1.19. SQLR Transaction
	13.1.20. RSTRC000 Program

	13.2. z/OS
	13.2.1. RMF I
	13.2.2. RMF II
	13.2.3. RMF III

	13.3. DB2
	13.3.1. DB2PM

	14. Appendix 2: Reference Materials
	14.1. SAP Manuals
	14.2. IBM manuals

