

IBM Spectrum Scale™

Automation of storage services

Nils Haustein, Achim Christ | EMEA Storage Competence Center | Version: 1.6

© IBM Corporation 2018 Page 2

Contents
Introduction .. 3

Automation ... 4

Control component .. 5

Node selection .. 5

Node status ... 6

Assigning storage service .. 7

Logging ... 8

Running storage service .. 9

Event Notification based on return codes ... 9

Raising custom events .. 10

Backup component .. 13

Storage tiering component ... 14

Migration process ... 15

Pre-migration process ... 17

Scheduling ... 18

Using cron ... 19

Using systemd Timers ... 20

Using Spectrum Protect ... 21

Further considerations ... 22

Multiple file systems .. 22

Log rotation in Linux ... 23

Selecting different node ... 24

Appendix ... 27

References ... 27

Disclaimer .. 27

Acknowledgements

Thanks to Sven Zachoval (IBM TSS, Germany) for giving me the chance to develop

this framework in the context of a client project.

Thanks to Simon Lorenz, Mathias Dietz, Andreas Koeninger and Markus Rohwedder

from the Spectrum Scale development team for designing and implementing the

sending of custom events.

© IBM Corporation 2018 Page 3

Introduction
IBM Spectrum Scale™ is a software-defined scalable parallel file system providing a

comprehensive set of storage services. Some of the differentiating storage services

are the integrated backup function and storage tiering. These services typically run

in the background according to pre-defined schedules. This whitepaper presents a

flexible framework for automating Spectrum Scale storage services.

One may ask:

“Why having a framework for automating backup and the like? Just start it!”

Well it is not that trivial. For example, if you want to run backup in a cluster, on

which node do you schedule it? And what happens if this node happens to be down?

Will your backup run? And what happens if the file system is not available when the

backup is scheduled? How do you manage log files for processes running in the

background? All these questions and more are addressed in this framework. It is

extensible and may address even more challenges in the future.

This paper is intended for Spectrum Scale administrators who have experience with

administration, backup and storage tiering. The code snippets presented herein are

examples only. Some sample code is available in an open source repository [6].

© IBM Corporation 2018 Page 4

Automation
In this chapter we present a flexible framework for automating Spectrum Scale

storage services that typically run in the background in accordance to pre-defined

schedules. This framework is based on processes that can be implemented as script

programs and scheduled through standard scheduling services such as cron or

systemd Timers in Unix or Linux. Some sample code for this framework is stored in

an open source repository [6].

We focus on automating commonly used storage services such as backup (using

mmbackup) and storage tiering (using mmapplypolicy). The framework, however, is

not limited to these services and can easily be extended. Some storage services can

also be scheduled via the Spectrum Scale GUI (e.g. snapshots).

The framework relies on the following components:

 The control components selects the appropriate cluster node initiating the

storage service, starts the storage service if the node state is appropriate,

manages logging, log files and return codes. The control component is

typically invoked by the scheduler and the storage services being started

might be backup or storage tiering (see section Control component)

 The backup component performs the backup using the mmbackup-command

(see section Backup component)

 The storage tiering component performs pre-migration or migration using the

mmapplypolicy-command (see section Storage tiering component)

 The schedule invokes the control component according to pre-defined

schedules (see section Scheduling)

Figure 1 shows the relations and control flow between the components of the

automation framework.

Figure 1: General flow of automation framework

As shown in Figure 1, the scheduler invokes the control component that is

represented by the script launcher.sh. The schedule is implemented on at least all

nodes that have a manager role. The control component determines if it is the

cluster manager and if this is the case it starts the operation and redirects the

console output to the log file. The operation can be backup (backup.sh) or migrate

(migrate.sh) or re-migrate (premigrate.sh). Likewise the control component can

start other customized scripts.

The framework requires that all cluster nodes with a manager role assigned must be

able to run the automation components. These nodes must not necessarily be the

nodes performing the storage service operation (such as backup or migration).

© IBM Corporation 2018 Page 5

Control component
The control component (launcher.sh) is installed on every node that can become

cluster manager, i.e. on every quorum node. It is typically invoked by the scheduler

and performs the following steps:

 Checks if the local node is the cluster manager (see section Node selection)

 Checks the status of the local node and file system (see section Node status)

 Assigns the storage service (see section Assigning storage service)

 Manages log files (see section Logging)

 Starts the storage service (see section Running storage service)

 Checks return codes and sends notification (see section Notification based on

return codes)

These steps are explained in the subsequent sections. Section Further considerations

describes some additional enhancements.

Node selection
One of the first challenges with running storage services that have a cluster-wide

scope is the selection of the node where the operation is started. Most storage

services such as backup must be started only on one node. The method for the

selection of the cluster node must be reliable and tolerate that any node in the

cluster can be down.

The trick leveraged in the framework is to run the storage service on the cluster

manager. As long as the cluster is active there is exactly one cluster manager. The

cluster manager is elected among all quorum nodes. All quorum nodes run the

control component at the same time, but only the node with the cluster manager role

will actually continue the operation. All other quorum nodes that are not cluster

manager will terminate.

The following script snippet checks if the node is the cluster manager and only if this

is the case it will continue:

The following snippet is part of the script launcher.sh

#---

initialize the local node name

localNode=$(mmlsnode -N localhost | cut -d'.' -f1)

initialize the cluster manager name

clusterMgr=$(mmlsmgr -c | sed 's|.*(||' | sed 's|)||')

check if the local node is the cluster manager and if not exit 0

if ["$localNode" != "$clusterMgr"];

then

 echo "INFO: this node ($localNode) is not cluster manager

($clusterMgr), exiting."

 # exit with good return code because this is not an error

 exit 0

fi

… perform the next steps …

© IBM Corporation 2018 Page 6

The above code will exit with return code 0 (good status, see section Return codes) if

the node is not the cluster manager. Otherwise the script will go on to the next

steps.

Node status
The next challenge is to make sure that the node initiating the storage service

operation has the proper status. This node must be active and it must have the file

system mounted. Even though the cluster manager is always active – otherwise the

cluster would be offline – checking for the node to be active is used to identify

transitions of the cluster manager role.

The following script snippet shows the logic for checking the node and file system

status:

The following snippet is part of the script launcher.sh

#---

define the file system name

fsName=myfs

check if this node is active

state=””

state=$(mmgetstate -Y | grep -v ":HEADER:" | cut -d':' -f 9)

if [[! "$state" == "active"]];

then

 echo "ERROR: node $localNode is not active (state=$state), exiting."

 exit 2

fi

check if file system is mounted on the local node

mounted=0

mounted=$(mmlsmount $fsName -L | grep "$localNode" | wc -l)

if ((mounted == 0));

then

 echo "ERROR: file system $fsName is not mounted on node $localNode,

exiting."

 exit 2

fi

… perform the next steps …

The name of the local nodes ($localNode) was defined in the previous step (see

section Node selection). The name of the file system is pre-defined, but can also be

given as a parameter to this components (see section Multiple file systems).

The above code will exit with return code 2 (error status, see section Return codes) if

the node is not in status active or if the file system is not mounted. The consequence

of this condition is that the storage service operation cannot be performed at this

time. Otherwise the script will carry on with the next steps.

© IBM Corporation 2018 Page 7

Assigning storage service
The control component can start a variety of storage service processes. Each storage

service process might be represented by a unique script or unique parameter of a

common script. In order to decide which storage service process to be started the

control component obtains the name of the storage service from the caller (the caller

can be an administrator using the CLI or a scheduler such as cron or systemd

Timers).

The following snippet shows the assignment of the storage service script in

accordance to the parameter given to the control component:

The following snippet is part of the script launcher.sh

#---

assign parameter, check parameter and assign script

scriptPath="~/myscripts"

op=$1

case $op in

"backup")

 # runs Backup

 cmd=$scriptPath"/backup.sh";;

“migrate")

 # runs migration (scheduled)

 cmd=$scriptPath"/migrate.sh";;

“premigrate")

 # runs premigration (scheduled)

 cmd=$scriptPath"/premigrate.sh";;

*) echo "ERROR: wrong operation code: $op"

 echo "Syntax: $0 <operation> <filesystem-name>"

 echo "Operation can be: backup, migrate or premigrate"

 exit 2;;

esac

… perform the next steps …

According to the example above, the following parameters are defined:

 backup: assigns the backup script (backup.sh) and runs it

 migrate: assigns the migration script (migrate.sh) and runs it

 premigrate: assigns the premigration script (premigrate.sh) and runs it.

Consequently the control component is invoked with one of this parameters, for

example:

launcher.sh backup

This approach can be flexibly expanded by adding new storage service scripts and

parameters to the above code.

If there are multiple file systems in the cluster the file system name can be given as

another parameter to the control component (see section Multiple file systems).

© IBM Corporation 2018 Page 8

Logging
One of the key requirement for running automated processes in the background is

proper logging. Each process should create its own log file and a certain number of

log files should be kept. Log files are typically node local, i.e. each node writes its

own log file.

The assignment of the log file name can be integrated to the control component

because it also invokes the storage service script and can redirect its output to the

proper log files. Version management can either be performed by the control

component as shown in the example below or by leveraging the ‘logrotate’ service of

the Linux operating system (see section Log rotation in Linux).

The following snippet shows the assignment of a log file name according to the

storage service names (see Assigning storage service) and the current date and

manages the versioning:

The following snippet is part of the script launcher.sh

#---

directory for log files

logDir="/var/adm/ras/storageservice"

number of log file versions to be kept, including this run

verKeep=3

additional log file versions to be kept in compressed format

verComp=3

current date will be part of the log file name

curDate="$(date +%Y%m%d%H%M%S)"

assing logfile name

logF=$logDir"/"$op"_"$curDate".log"

delete and compress older logfiles prior to logging anything

lFiles=$(ls -r $logDir/$op*)

i=1

#echo "DEBUG: files=$lFiles"

for f in $lFiles;

do

 if ((i > verKeep));

 then

 if ((i > (verComp+verKeep)));

 then

 rm -f $f >> $logF 2>&1

 else

 gzip $f >> $logF 2>&1

 fi

 fi

 ((i=i+1))

done

… perform the next steps …

© IBM Corporation 2018 Page 9

At the end of this example there is a unique log file according to the storage service

process and previous log files are managed according to their age. More precisely,

this code will keep 6 log files (including the one for the current process), the 3 oldest

are compressed. As mentioned before the log files are node local, i.e. each node

writes its own log files.

Running storage service
When the control component has determined that this node is cluster manager and

that it is active with the file system mounted it has assigned the storage services

script and log file name and can now run the operation:

The following snippet is part of the script launcher.sh

#---

run the script and log stdout and errout to file $logF

eval $cmd >> $logF 2>&1

rc=$?

analyze return code and notify the admin when required…

The assigned storage script ($cmd, see section Assigning storage service) is run by

the eval-command and the return code is checked. In addition the output of the

script is logged to a log file ($logF).

Important hint: Certain operations such as backup and migration require certain

software to be installed on the node where this operation is started. For example a

node running mmbackup requires the B/A client to be installed and configured.

Likewise the mmapplypolicy command for hierarchical storage management with

IBM Spectrum Protect or IBM Spectrum Archive requires the HSM client to be

installed on the node running this command. If the control component starts the

storage service on the cluster manager then each quorum node must have the

appropriate software installed. This is because each quorum node can become cluster

manager. Alternatively, the control component can delegate running the storage

service on a different node (see section Selecting different node).

Event Notification based on return codes
Because the control component launches the storage services scripts (e.g. backup.sh

or migrate.sh) it is important to provide consistent return codes within these scripts.

The control component can evaluate the consistent return codes and trigger

appropriate alerts. To keep it, simple 3 return codes are defined and exported, as

shown in the example below:

The following snippet is part of the script launcher.sh

#---

#define return codes

export rcGood=0 # successful run

export rcWarn=1 # run was ok, some warnings however

© IBM Corporation 2018 Page 10

export rcErr=2 # failed

Exporting the return code definitions makes these available to the storage services

scripts started by the control component. These script can now use consistent return

codes.

Based on the return code definition alerts can be issued based upon Warnings

(return code 1) and errors (return code 2). There are several ways to issue alerts

such as sending an email to the administrator or creating a custom event that it

surfaced by the Spectrum Scale event monitor and the GUI (see section Raising

custom events)

Raising custom events

With Spectrum Scale version 4.2.3 and above there is a way to define and raise

custom events. Custom events have to be defined on each node that can become

cluster manager (all quorum nodes, see section Node selection) and on all GUI

nodes. The nodes that can become cluster manager run the launcher script

(launcher.sh) which will raise events when required. The GUI nodes need to know

about all defined events regardless if they run the launcher script or not.

The event definitions are stored in JSON files in directory

/usr/lpp/mmfs/lib/mmsysmon/. There is one JSON file for each component. In order

to define custom event a new file has to be create and name custom.json in this

path.

Attention: Do not edit any other event definition file.

On all quorum and GUI nodes create the file

/usr/lpp/mmfs/lib/mmsysmon/custom.json with the following content:

{

"automation_warning":{

 "cause":"An automated process ended with warnings.",

 "user_action":"Check the log files to determine the root cause. Run

the process again.",

 "entity_type":"FILESYSTEM",

 "scope":"NODE",

 "code":"888332",

 "description":"An automated process ended with warnings, check the

message section.",

 "event_type":"INFO_EXTERNAL",

 "message":"Process {1} for file system {0} ended with WARNINGS on

node {2}. See log-file {3}. Run this process again and observe the

results.",

 "severity":"WARNING",

 "require_unique": true

},

"automation_error":{

 "cause":"An automation process failed.",

 "user_action":"Check the log files to determine the root cause.

Correct the problem and run the process again.",

© IBM Corporation 2018 Page 11

 "entity_type":"FILESYSTEM",

 "scope":"NODE",

 "code":"888333",

 "description":"An automation failed, check the message section.",

 "event_type":"INFO_EXTERNAL",

 "message":"Process {1} for file system {0} ended with ERRORS on node

{2}. See log-file {3} and determine the root cause before running the

process again",

 "severity":"ERROR",

 "require_unique": true

}

}

The first event definition is for warning events. The event code for this event is

888332. The second event definition is for an error event and has event code

888333.

Attention: ensure that the event code you are using is not used by any other event

in any of the other event definition files.

In order to prevent this file to be removed during a Spectrum Scale software update

it is recommended to move this file to a persistent path (e.g. /var/mmfs/) and

create a logical link outside of this directory:
ln -s /var/mmfs/custom.json /usr/lpp/mmfs/lib/mmsysmon/custom.json

Subsequently restart the system monitor on each node where the new event

definition file was created:
mmsysmoncontrol restart

And restart the GUI on all nodes running the GUI:
systemctl restart gui

Once the custom event definition has been created, test sending events on all

quorum nodes that can potentially become cluster manager and run the launcher

script. According to the example provided above, there are two events that can be

sent. The first event definition with event code 888332 is for warning events. The

second event with code 888333 is for error messages.

The event message defines parameters that can be given during runtime. For

example, the following message includes 4 parameters:

"message":"Process {1} for file system {0} ended with ERRORS on node

{2}. See log-file {3} and determine the root cause before running the

process again"

The first parameter {0} is the file system name. The second parameter {1} is the

name of the process. The third parameter {2} is the node name and the fourth

parameter {3} is the name of the log file. These parameters can be set when the

event is raised using the command:
mmsysmonc event filesystem code fsname

“fsname,processname,nodename,logfilename”

© IBM Corporation 2018 Page 12

For example to send an event for file system gpfs1 signaling a WARNING message

during backup on node name node1 with the log file being backup.log use the

following command:
mmsysmonc event filesystem 888332 gpfs1

"gpfs1,backup,node1,backup.log"

Likewise in order to raise an ERROR event for the above process use the command:
mmsysmonc event filesystem 888332 gpfs1

"gpfs1,backup,node1,backup.log"

To check the events use the following command for the node where the event has

been raised. It might take a couple of minutes before the event is surfaced in the

node event log:
mmhealth node eventlog --hour [-N nodename]

Check the event log in the GUI for the event. It might take a couple of minutes until

the event is surfaced in the GUI. An event in the GUI may look like this:

In order to send custom events as event notification via email or SNMP the custom

event type has to be selected in the event notification setup dialog of the Spectrum

Scale GUI.

Now, raising custom events can be integrated into the control component, namely

the launcher script (launcher.sh), as shown in the following example:

The following snippet is part of the script launcher.sh

#---

run the script and log stdout and errout to file $logF

eval $cmd >> $logF 2>&1

rc=$?

send event notification based on the definition in file

/usr/lpp/mmfs/bin/mmsysmon/custom.json

echo "INFO: Raising appropriate Event for return code $rc" >> $logF

if ((rc == 1));

then

 # send warning event

 mmsysmonc event filesystem 888332 $fsName

"$fsName,$op,$localNode,$logF" >> $logF

elif ((rc > 1));

then

 # send error event

 mmsysmonc event filesystem 888333 $fsName

"$fsName,$op,$localNode,$logF" >> $logF

fi

exit $rc

© IBM Corporation 2018 Page 13

Backup component
The backup component is represented by a script (backup.sh) that performs backup

using the mmbackup-command [1]. This script is invoked by the control component

(see sections Assigning storage service and Running storage service).

The node running the mmbackup-command must be a backup node with IBM

Spectrum Protect Backup / Archive client installed and configured. Since the backup

component is invoked by the node selection component which must run on a

manager node, the B/A client has to be installed and configured on all manager

nodes. Alternatively the node selection component can select another node for

running the backup (see section Selecting different node)

Backup can be performed for file systems or file sets. Furthermore, it can be

performed from snapshots. In the example below the backup for a pre-defined file

system is being performed using the mmbackup-command:

The following snippet is part of the script backup.sh

#---

file system name

fsName="myfs"

name of TSM server

tsmServ="myTSM"

directory for temp files for policies and mmbackup

workDir="/myFs/.mmbackupTmp"

************************** MAIN ***************************

#start mmbackup

echo "$(date) BACKUP: Starting mmbackup"

mmbackup $fsName --tsm-servers $tsmServ -N nsdNodes -v --max-backup-

count 4096 --max-backup-size 80M --backup-threads 1 --expire-threads 1

-s $workDir

rc=$?

exit according to the return code definition

echo "$(date) BACKUP: operation ended on $(hostname) with rc=$rc."

if ((rc == 0));

then

 exit $rcGood

elif ((rc == 1));

then

 exit $rcWarn

else

 exit $rcErr

fi

The script example above writes messages to STDOUT. Because this script is started

by the control component with all output redirected to the log file, all messages will

appear in the log file initialized by the control component (see section Logging).

© IBM Corporation 2018 Page 14

This script also leverages the return codes exported by the control component (see

section Return codes) by ending with a pre-defined return code. This return code can

be used by the control component to trigger an alert.

The mmbackup command example above includes a number of parameters that have

to be adjusted. The name of the file system ($fsName) and the TSM server (--

tsmServers $tsmServ) are predefined at the beginning. The nodes executing the

backup operation are all NSD server (-N nsdNodes). The command also uses a

special directory for temporary files (parameter –s $workDir) that is located in the

file system to be backed up. This directory must exist. Using a special directory is

recommended if there is a large number of files in the file system to be inspected

and to be backed up.

To support multiple file systems the file system name ($fsName) can be passed to

the backup components as an additional parameter (see section Multiple file

systems).

Note, mmbackup should be run with the –q options periodically in order to keep the

shadow file in sync. For example, to run the backup with the –q option

approximately every Sunday the following logic can be implemented:

The following snippet is part of the script backup.sh

#---

#run mmbackup with -q every other day

rebuild=""

d=$(date +%u)

if ((d == 7));

then

 rebuild="-q"

fi

… add $rebuild to the mmbackup command …

Storage tiering component
Storage tiering allows moving data from one file system storage pool to another. A

file system storage pool can be represented by disk (internal pool) or by tape

storage (external pool). A tape storage pool can be implemented with IBM Spectrum

Archive (LTFS EE) or IBM Spectrum Protect for Space Management (TSM HSM).

While storage pool migration can be triggered by thresholds encoded in an active

policy, it is recommended to run scheduled migration jobs periodically. Such

scheduled migration jobs can be automated with this framework.

In this example we elaborate on pre-migration and migration from an internal

system pool to the Spectrum Protect server using TSM HSM. The migration

component is represented by a script (migrate.sh, see section Migration process)

that performs migration according to a pre-defined policy using the Spectrum Scale

command mmapplypolicy. The pre-migration component is represented by a script

© IBM Corporation 2018 Page 15

(premigrate.sh, see section Pre-migration process) that performs pre-migration of

all files in the subject file system. These scripts are invoked by the control

component (see sections Assigning storage service and Running storage service).

Migration and pre-migration is initiated by the mmapplypolicy-command [2].

The node running the mmapplypolicy-command must be a HSM node with HSM

client installed and configured. Since the storage tiering component is invoked by the

node selection component which must run on a manager node, the HSM client has to

be installed and configured on all manager nodes. Alternatively the node selection

component can select another node for running the backup (see section Selecting

different node)

Migration process
The migration process migrates files from the system pool of the subject file system

to the Spectrum Protect server that are older than 30 days. The migration policy

looks like this:

/* define macros */

define(is_migrated, (MISC_ATTRIBUTES LIKE '%V%'))

define(is_empty,(FILE_SIZE=0))

define(access_age_days, (DAYS(CURRENT_TIMESTAMP) - DAYS(ACCESS_TIME)))

/* define exclude rule */

RULE 'exclude' EXCLUDE WHERE (PATH_NAME LIKE '%/.SpaceMan/%'

 OR NAME LIKE '%dsmerror.log%'

 OR NAME LIKE '%.mmbackup%'

 OR NAME LIKE '%mmbackup%'

 OR PATH_NAME LIKE '%/.snapshots/%'

 OR PATH_NAME LIKE '%/.mmbackupTmp/%')

/* Define hsm storage manager as an external pool */

RULE EXTERNAL POOL 'hsm' EXEC '/var/mmfs/etc/mmpolicyExec-hsm.mig' OPTS

'-v'

/* Rule migrate */

RULE 'MigrateData' MIGRATE FROM POOL 'system' TO POOL 'hsm'

 WHERE (access_age_days > 30) AND NOT (is_migrated) AND NOT (is_empty)

Certain files and directories are excluded using EXCLUDE rules. Please note the

external pool script is named /var/mmfs/etc/mmpolicyExec-hsm.mig. This is an

exact copy of the sample script located in

/usr/lpp/mmfs/samples/ilm/mmpolicyExec-hsm.sample. This new instance of the

script is used to distinguish from the external pool script used for pre-migration.

Also note in the policy above that files with a size of 0 are not selected for migration,

because typically these files generate error messages during migration.

The policy above is stored in file policy_mig.txt. This policy is invoked by the

migration script (migrate.sh) shown below:

The following snippet is part of the script migrate.sh

© IBM Corporation 2018 Page 16

#---

file system name

fsName="myfs"

policy file name for premigrate

polName="myfs/.work/scripts/policy_mig.txt"

directory for temp files for policies and mmbackup

workDir="/myfs/.mmbackupTmp"

#************************* Main ***************************

#start selective migration

echo "$(date) MIGRATE: Starting selective migration"

mmapplypolicy $fsName -P $polName -N nsdNodes -m 1 -B 256 -s $workDir

rc=$?

exit according to the return code definition

echo "$(date) MIGRATE: operation ended on $(hostname) with rc=$rc."

if ((rc == 0));

then

 exit $rcGood

elif ((rc == 1));

then

 exit $rcWarn

else

 exit $rcErr

fi

The script example above writes messages to STDOUT. Because this script is started

by the control component with all output redirected to the log file, all messages will

appear in the log file initialized by the control component (see section Logging).

This script also leverages the return codes exported by the control component (see

section Return codes) by exiting with a pre-defined return code. This return code can

be used by the control component to trigger an alert.

The mmapplypolicy-command example above uses a number of parameters that

have to be adjusted. The file system name ($fsName) and the name of the policy-file

are defined at the beginning. The nodes executing the migrate operation are all NSD

servers (-N nsdNodes). The command also uses a special directory for temporary

files (parameter –s $workDir) that is located in the file system to be backed up. This

directory must exist. Using a special directory is recommended if there is a large

number of files in the file system to be inspected and to be migrated. Note, the TSM

server name cannot be given with the mmapplypolicy-command. It is assumed that

either there is only one TSM server used with its name defined in the dsm.opt file or

that the name of the TSM server has been given when the file system has been

added for space management (dsmmigfs add –Server=<tsm-server>).

To support multiple file systems the file system name ($fsName) can be passed to

the migration components as an additional parameter (see section Multiple file

systems).

© IBM Corporation 2018 Page 17

Pre-migration process
In contrast to migration, pre-migration creates a copy of files in the Spectrum

Protect server. Thus a pre-migrated file is dual resident, in the internal file system

pool and in TSM HSM.

In this example the goal of the pre-migration is to pre-migrate all files from the pool

system to TSM HSM. The following policy can accomplish this:

/* define macros */

define(is_resident,(MISC_ATTRIBUTES NOT LIKE '%M%'))

define(is_empty,(FILE_SIZE=0))

/* Define the exclude list and migrated / premigrated */

RULE 'exclude' EXCLUDE WHERE (PATH_NAME LIKE '%/.SpaceMan/%'

 OR NAME LIKE '%dsmerror.log%'

 OR NAME LIKE '%.mmbackup%'

 OR NAME LIKE '%mmbackup%'

 OR PATH_NAME LIKE '%/.snapshots/%'

 OR PATH_NAME LIKE '%/.mmbackupTmp/%')

/* Define hsm storage manager as an external pool */

RULE EXTERNAL POOL 'hsm' EXEC '/var/mmfs/etc/mmpolicyExec-hsm.pmig'

OPTS '-v'

/* Rule Premigrate all */

RULE 'PremigrateData' MIGRATE FROM POOL 'system' TO POOL 'hsm'

 WHERE (is_resident) AND NOT (is_empty)

Please note the external pool script is named /var/mmfs/etc/mmpolicyExec-

hsm.pmig. This is an adjusted version of the sample script located in

/usr/lpp/mmfs/samples/ilm/mmpolicyExec-hsm.sample. The adjustment in this

script ensures that files are pre-migrated and comprises one change in the source

script:

insert the parameter –premigrate to the $MigrateFormat

 $MigrateFormat = "%s %s -premigrate -filelist=%s";

With this adjustment any invocation of this external pool script with a migration rule

will pre-migrate the files. Note, this script has to be adjusted all nodes running TM

HSM.

The policy above is stored in file policy_pmig.txt. This policy is invoked by the pre-

migration script (premigrate.sh) shown below:

The following snippet is part of the script launcher.sh

#---

file system name

fsName="myfs"

policy file name for premigrate

polName="myfs/.work/scripts/policy_pmig.txt"

© IBM Corporation 2018 Page 18

directory for temp files for policies

workDir="/myfs/.mmbackupTmp"

#************************* Main ***************************

#start pre-migration

echo "$(date) PREMIGRATE: Starting pre-migration"

mmapplypolicy $fsName -P $polName -N nsdNodes -m 1 -B 256 -s $workDir

rc=$?

exit according to the return code definition

echo "$(date) PREMIGRATE: operation ended on $(hostname) with rc=$rc."

if ((rc == 0));

then

 exit $rcGood

elif ((rc == 1));

then

 exit $rcWarn

else

 exit $rcErr

fi

The script example above writes messages to STDOUT. Because this script is started

by the control component with all output redirected to the log file, all messages will

appear in the log file initialized by the control component (see section Logging).

The parameters given with the mmapplypolicy command in this example require

some adjustment, see section Migration process. To support multiple file systems the

file system name ($fsName) can be passed to the backup components as an

additional parameter (see section Multiple file systems).

This script also leverages the return codes exported by the control component (see

section Return codes) by ending with a pre-defined return code. This return code can

be used by the control component to trigger an alert.

Scheduling
There are different methods to schedule storage services operations within a

Spectrum Scale cluster:

 Using the operating system scheduler (see section Using cron and Using

systemd Timers)

 Using the Spectrum Protect server scheduler (see section Using Spectrum

Protect)

The framework requires that all cluster nodes with a manager role assigned must be

able to run the automation components. This is because only the node that is cluster

manager initiates the operation. These nodes must not necessarily be the nodes

performing the storage service operation (such as backup or migration).

© IBM Corporation 2018 Page 19

Using cron
Cron is the traditional Unix / Linux daemon responsible for scheduling tasks in a

system. It is controlled by one or multiple configuration files (crontab), and can be

used to schedule storage service operations within a cluster. This requires that all

automation components are installed on those cluster nodes that participate in the

operation.

The participating nodes must be all nodes with a manager role defined, because

potentially any of these manager-nodes can become cluster manager. The

participating nodes must not necessarily be the nodes performing the storage

management operation such as backup. Performing nodes are denoted in the

mmbackup or mmapplypolicy-command via the –N parameter. In addition, the

crontab entry must be configured identically on all participating nodes.

The automation components can be installed on the local disk of all participating

nodes or in a Spectrum Scale file system that is accessible by all nodes. The latter

approach has the advantage that there is one version of all automation components

to be maintained and all nodes have instant access to it. The disadvantage is that if

this file system is not available no node can actually run the scripts.

The crontab entry essentially invokes the control component at the defined time with

the according parameter. The semantics of the crontab configuration file is the

following [3]:

 # ┌───────────── min (0 - 59)

 # │ ┌────────────── hour (0 - 23)

 # │ │ ┌─────────────── day of month (1 - 31)

 # │ │ │ ┌──────────────── month (1 - 12)

 # │ │ │ │ ┌───────────────── day of week (0 - 6) (0 to 6 are Sunday to

 # │ │ │ │ │ Saturday, or use names; 7 is also Sunday)

 # │ │ │ │ │

 # │ │ │ │ │

 # * * * * * command to execute

The example below starts backup at 6 AM in the morning:

PATH=/usr/bin:/usr/sbin:/usr/lpp/mmfs/bin

00 06 00 00 00 /path-to-scripts/launcher.sh backup

This crontab entry is configured on all participating nodes which causes the control

component (launcher.sh) to be started at 6 AM on each of these nodes with the

parameter “backup”. At first each node will check if it is the cluster manager (see

Node selection) and since there is only one cluster manager at any given point in

time only one node will continue to run the launcher-script.

Note, if Spectrum Scale sudo wrappers are activated then the launcher script must

be started by a non-root user who has sudo permissions to administer the Spectrum

Scale cluster. A simple change in the crontab entry above can accommodate this:

PATH=/usr/bin:/usr/sbin:/usr/lpp/mmfs/bin

© IBM Corporation 2018 Page 20

00 06 00 00 00 gpfsadmin /bin/sudo /path-to-scripts/launcher.sh backup

This entry assumes that the user gpfsadmin has permissions to administer the

cluster using sudo wrapper.

Using systemd Timers
A modern alternative to the traditional cron daemon are systemd timer units. As

most Linux distributions have transitioned to the systemd system and service

manager, tasks can be scheduled and automated within this framework. Since

systemd keeps track of running services and events it maintains a very detailed state

of the entire system including network connectivity and mounted file systems. This

allows for starting certain tasks when certain conditions are met, such as when

certain filesystems are mounted.

The system timer unit can be used to start the control components, find below a

simple example for such unit definition:

[Unit]

Description=A simple launcher to automate backup tasks in the cluster

After=gpfs.service

[Service]

ExecStart=/path-to-scripts/launcher.sh backup

This unit definition is stored in a file within the system unit directory, such as

/etc/systemd/system/launcher.service. It can be manually started for testing

with the command systemctl start launcher. Because systemd tracks the state

and return code of the tasks it starts the status of the launcher task can be queried

with the command: systemctl status launcher. The line ‘After=’ in the unit

definition above ensures that the control component is only run after Spectrum Scale

was started.

To automatically run the control component encapsulated in a systemd unit

“launcher” at predefined time intervals a timer unit file can be created in file

/etc/systemd/system/launcher.timer:

[Unit]

Description=A simple launcher to automate backup tasks in the cluster

[Timer]

OnCalendar=23:00

OnUnitActiveSec=24h

Persistent=true

Unit=launcher.service

[Install]

WantedBy=timers.target

After enabling this timer with systemctl enable launcher.timer and starting it

with systemctl start launcher.timer you can verify when the timer has last run,

© IBM Corporation 2018 Page 21

when it will run the next time, and what the result of the last run was with the

command systemctl list-timers. The above example will run the launcher task at

23:00h every day, or after 24 hours if this moment was missed. Note that systemd

timers are flexible and can be scheduled in many different ways - e.g. after certain

events or after another task has ended - the above is only a minimal example [4].

Using Spectrum Protect
The Spectrum Protect server scheduler in combination with client schedules can be

used to schedule the storage services operation, leveraging the automation

components presented above.

Important, this requires that all nodes with the manager role must have installed

the TSM client and enabled the client acceptor daemon. This is because the control

component will only execute the operation on the cluster manager at the time.

As mentioned before the automation components must be installed on all cluster

nodes with manager role. In addition the TSM client acceptor daemon must be

configure on of these nodes. The nodes executing the operations can be different and

are specified with the –N parameter in the mmbackup- and mmapplypolicy command

of the appropriate component.

Important, in the control component (launcher.sh) the necessary PATH

environment must be exported:
EXPORT PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/lpp/mmfs/bin

First install the TSM backup client on all manager nodes (and others when required)

and start the client acceptor daemon.

Now you can define a server schedule for the backup process. Use the parameters

Action=command and Objects=<script-path-name>. The following example

schedules the backup process every day at 6 AM:

DEFine SCHedule domain_name gpfs_backup Type=Client ACTion=Command

 OBJects='/path-to-scripts/launcher.sh backup'

 STARTDate=today

 STARTTime=06:00:00

 Active=yes

Now you have to associate the client schedule with the Spectrum Scale nodes that

have manager role and the TSM acceptor daemon installed. Use the real TSM node

names not the proxy nodes. For example, if you have three nodes in your cluster

(g1_node1, g1_node2, g1_node3) that are bound to one proxy-node (g1_proxy) in

domain g1_dom, use the normal node names:

DEFine ASSOCiation g1_dom gpfs_backup g1_node1, g1_node2, g1_node3

Finally check if the schedule works properly.

© IBM Corporation 2018 Page 22

Further considerations
This section summarizes some further consideration taking into account that multiple

file systems might have to be processed (see section Multiple file systems). It also

elaborates on the use of the log-rotation function in Linux (see section Log rotation

in Linux)

Multiple file systems
In the example of the automation framework the file system name is hard-coded in

the scripts. This framework can be extended to allow the storage service operation

for different file systems by not hard-coding the file system name but passing the file

system name as parameter to the control component. Find below some basic

guidance how to enable this.

The control component (launcher.sh) is extended to require a second parameter

which must be the file system name. The control component is invoked like so:

launcher.sh <operation> <filesystem>

Within the control component (launcher.sh)the file system is assigned to the

parameter $fsName:

The following snippet can be part of the script launcher.sh

#---

fsName=$2

if [[-z $fsName]];

then

 echo “ERROR: file system name not specified, exiting”

 exit $rcErr

else

 export $fsName

fi

The file system name is later used in the control component to check the file system

status. If the file system was miss-spelled then the script will terminate.

Furthermore, the file system name is exported and can be used by scripts that are

called by the control component (e.g. backup.sh).

Alternatively, the file system name can be explicitly passed to the other components.

This allows for explicitly running these scripts from the command line for testing

purposes without the control component. Here is an example to accomplish this

according to the example in section Assigning storage service:

The following snippet is part of the script launcher.sh

#---

file system name has been assigned before

© IBM Corporation 2018 Page 23

assign parameter, check parameter and assign script

scriptPath="~/myscripts"

op=$1

case $op in

"backup")

 # runs Backup

 cmd=$scriptPath"/backup.sh $fsName”;;

“migrate")

 # runs migration (scheduled)

 cmd=$scriptPath"/migrate.sh $fsName”;;

“premigrate")

 # runs premigration (scheduled)

 cmd=$scriptPath"/premigrate.sh $fsName”;;

*) echo "ERROR: wrong operation code: $op"

 echo "Syntax: $0 <operation> <filesystem-name>"

 echo "Operation can be: backup, migrate or premigrate"

 exit 2;;

esac

As shown above the script performing the storage service operation will be invoked

with the file system name. Consequently these scripts (backup.sh, migrate.sh and

premigrate.sh) must be adjusted to use this parameter. The adjustment is done at

the beginning of these scripts where the parameter fsName is defined:

fsName=$2

if [[-z $fsName]];

then

 echo “ERROR: file system name not specified, exiting”

 exit $rcErr

else

 export $fsName

fi

With this approach multiple file systems can be scheduled for storage services

operations such as backup and migration.

Log rotation in Linux
In section Logging we discussed a simple version management of log files that can

be easily integrated into the control component script. However, the Linux operating

system has a flexible framework for this exact purpose: logrotate. The logrotate

service provides various options for managing log files by means of automatic

rotation, compression and email delivery.

The logrotate function is typically controlled with the configuration files

/etc/logrotate.conf or with supplemental configuration files stored in

/etc/logrotate.d/. A minimal sample configuration file could be implemented like

this:

/path-to-logfiles/*.log {

 daily

 rotate 6

© IBM Corporation 2018 Page 24

 compress

}

Store this configuration in file /etc/logrotate.conf or create a supplemental

configuration file such as /etc/logrotate.d/launcher.rotate. This configuration

will rotate the log files daily and keep 6 versions of the files matching the path and

file name pattern /path-to-logfiles/*.log. Each log file will get a timestamp

added to the file name, and will be compressed using gzip.

With this mechanism it is also possible to keep more or less log files for certain

operations by adjusting the log file name. For example the log files for the backup

operations may be named backup* and log files for the migrate operation may be

named migrate*. So using the syntax above there could be more version of backup

log files (by using the filename /path-to-logfiles/backup*.log) than migrate log

files (by using the filename /path-to-logfiles/migrate*.log). There are plenty of

additional options available [5].

Logrotate is invoked with the system scheduler such as cron. Typically logrotate is

preconfigured in cron to run daily. Check the cron configuration (directory

/etc/cron.daily) and when required add logrotate to run daily.

Selecting different node
The control component (launcher.sh) starts the appropriate storage service script

(such as backup.sh or migrate.sh) on the local node on which it runs. This means

that all Spectrum Scale nodes with quorum (and manager) role are candidate for

being selected as launcher node, and that all these nodes need to be able to run e.g.

backup and migration tasks (see section Node selection). As a consequence, all

quorum nodes may need a backup client package installed – which might not always

be appropriate. For this reason, we present an alternative approach for running the

storage service on a different node than the launcher node itself. In the example

below we focus on the backup task.

Let’s assume a cluster with dedicated nodes running the backup process (mmbackup).

The first step is to create a node class and add all nodes to this class which can run

the backup task (i.e. have the TSM backup client installed and configured):

Check the defined node classes:
mmlsnodeclass --all

Create a new node class backupClients and add the nodes that have the backup

client installed and that can run the backup task:
mmcrnodeclass backupClients -N nodenames

Next, the control component needs to be adjusted to select an active node from this

node class for running the backup task. The node selected must be active and must

have the file system mounted. The local node is preferred, when it is part of the

node class. If no node class is defined, the storage service is run on the local node.

The following snipped is an extended part of launcher.sh

© IBM Corporation 2018 Page 25

select an active node of a node class

determine the node to run this command based on node class

if the local node is part of the node class, prefer this

nodeClass=backupClients

localNode=$(mmlsnode -N localhost | cut -d'.' -f1)

allNodes=""

sortNodes=""

if node class is set up determine node names in node class

if [[! -z $nodeClass]];

then

 allNodes=$(mmlsnodeclass $nodeClass -Y | grep -v HEADER | cut -d':'

-f 10 | sed 's|,| |g')

 if [[-z $allNodes]]

 then

 echo "CHECK: WARNING node class $nodeClass is empty, using local

node" >> $logF

 sortNodes=$localNode

 else

 # reorder allNodes to have localNode first, if it exists

 for n in $allNodes;

 do

 if [["$n" == "$localNode"]];

 then

 sortNodes=$localNode" "$sortNodes

 else

 sortNodes=$sortNodes" "$n

 fi

 done

 fi

else

 # if no node class is defined set the local node

 sortNodes=$localNode

fi

select the node to execute the command based on node and file system

states

echo "INFO: The following nodes are checked to run the operation:

$sortNodes" >> $logF

execNode=""

for n in $sortNodes;

do

 # determine node state

 state=$(mmgetstate -N $n -Y | grep -v ":HEADER:" | cut -d':' -f 9)

 if [["$state" == "active"]];

 then

 # determine file system state on node

 mNodes=$(mmlsmount $fsName -Y | grep -v HEADER | grep -E ":RW:" |

cut -d':' -f 12)

 for m in $mNodes;

 do

 if [["$m" == "$n"]];

 then

 execNode=$m

 fi

 done

© IBM Corporation 2018 Page 26

 # if we found a node then leave the loop

 if [[! -z "$execNode"]];

 then

 break

 fi

 fi

done

if we have not found a node that qualifies for the job then exit

if [[-z "$execNode"]];

then

 echo "$(date) CHECK: ERROR no node is in appropriate state to run the

job, exiting." >> $logF

 exit $rcErr

fi

Finally, the control component uses ssh to run the storage service on another node.

This requires that the node running the control component is an admin node (has

shared its ssh-key with all other nodes):

The following snippet is extended part of the script launcher.sh

#---

run the script on another node and log stdout and errout to $logF

ssh $selNode $cmd &> $logF

rc=$?

analyze return code and notify the admin when required…

Every time a new node performing the backup function is added to the cluster it

must be added to the dedicated node class (in this example backupClients).

© IBM Corporation 2018 Page 27

Appendix

References
[1] mmbackup command reference for Spectrum Scale version 4.2.1

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.s

cale.v5r00.doc/bl1adm_mmbackup.htm

[2] mmapplypolicy command reference for Spectrum Scale version 4.2.1

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.s

cale.v5r00.doc/bl1adm_mmapplypolicy.htm

[3] Explanation of cron

https://en.wikipedia.org/wiki/Cron

[4] Explanation of systemd Timers

https://www.freedesktop.org/software/systemd/man/systemd.timer.html

[5] logrotate - rotates, compresses, and mails system logs

https://linux.die.net/man/8/logrotate

[6] Link to open source repository (may only be accessible for IBM):

https://github.ibm.com/ESCC/Spectrum-Scale-Automation

Disclaimer
This document reflects the understanding of the author in regard to questions asked

about archiving solutions with IBM hardware and software. This document is

presented “As-Is” and IBM does not assume responsibility for the statements

expressed herein. It reflects the opinions of the author. These opinions are based on

several years of joint work with the IBM Systems group. If you have questions about

the contents of this document, please direct them to the Author

(nils_haustein@de.ibm.com).

The Techdocs information, tools and documentation ("Materials") are being provided

to IBM Business Partners to assist them with customer installations. Such Materials

are provided by IBM on an "as-is" basis. IBM makes no representations or

warranties regarding these Materials and does not provide any guarantee or

assurance that the use of such Materials will result in a successful customer

installation. These Materials may only be used by authorized IBM Business Partners

for installation of IBM products and otherwise in compliance with the IBM Business

Partner Agreement.”

The following terms are trademarks or registered trademarks of the IBM Corporation

in the United States or other countries or both: IBM, IBM Spectrum Scale and IBM

Spectrum Protect.

Linux is a registered trademark of Linus Torvalds

Other company, product, and service names may be trademarks or service marks of

others.

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_mmbackup.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_mmbackup.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_mmapplypolicy.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_mmapplypolicy.htm
https://en.wikipedia.org/wiki/Cron
https://www.freedesktop.org/software/systemd/man/systemd.timer.html
https://linux.die.net/man/8/logrotate
https://github.ibm.com/ESCC/Spectrum-Scale-Automation
mailto:nils_haustein@de.ibm.com

	Introduction
	Automation
	Control component
	Node selection
	Node status
	Assigning storage service
	Logging
	Running storage service
	Event Notification based on return codes
	Raising custom events

	Backup component
	Storage tiering component
	Migration process
	Pre-migration process

	Scheduling
	Using cron
	Using systemd Timers
	Using Spectrum Protect

	Further considerations
	Multiple file systems
	Log rotation in Linux
	Selecting different node

	Appendix
	References
	Disclaimer

