
IBM Safer Payments Manual

This manual describes the IBM Safer Payments software product. It has been generated automatically from within the software itself.

The manual and its contents are confidential and may only be used by the
IBM Safer Payments licensee to operate IBM Safer Payments within the
scope of the license agreement.

Licensed Materials - Property of IBM.
© Copyright IBM Corp. 2010, 2019
All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

Licensees of this program who wish to have information about it for the
purpose of enabling:
(i) the exchange of information between independently created programs
and other programs (including this one) and
(ii) the mutual use of the information which has been exchanged, should
contact

IBM Germany
Intellectual Property Department
IBM-Allee 1
D-71137 Ehningen
Germany.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

Contents

1. Introduction

1.1 Quick Facts

1.2 IBM Safer Payments User Access

2. Ticker

2.1 Ticker

2.2 New ticker entry

3. Dashboard

3.1 Status Alarm Indicators

3.2 Key Performance Indicators Online Help

4. Report

4.1 Case Class Reports

4.1.1 Case Class Report Definition

4.1.2 Case Class Report

4.2 Investigation Reports

4.2.1 Investigation Report Definition

4.2.2 Daily Investigation Report

4.2.3 Hourly Investigation Report

4.3 Missed Cases Reports

4.3.1 Missed Cases Report Definition

4.3.2 Missed Cases Report

4.4 Investigator Reports

4.4.1 Investigator Report Definition

4.4.2 Investigator Report

4.5 Message Report

5. Investigation

5.1 Case Investigation Workflow

5.1.1 Case Selection

5.1.2 Investigation Cases

5.1.3 Case Search

http://sphost1.fyre.ibm.com:8005/#level1.
http://sphost1.fyre.ibm.com:8005/#level1.
http://sphost1.fyre.ibm.com:8005/#level1.1
http://sphost1.fyre.ibm.com:8005/#level1.1
http://sphost1.fyre.ibm.com:8005/#level1.2
http://sphost1.fyre.ibm.com:8005/#level1.2
http://sphost1.fyre.ibm.com:8005/#level2.
http://sphost1.fyre.ibm.com:8005/#level2.
http://sphost1.fyre.ibm.com:8005/#level2.1
http://sphost1.fyre.ibm.com:8005/#level2.1
http://sphost1.fyre.ibm.com:8005/#level2.2
http://sphost1.fyre.ibm.com:8005/#level2.2
http://sphost1.fyre.ibm.com:8005/#level3.
http://sphost1.fyre.ibm.com:8005/#level3.
http://sphost1.fyre.ibm.com:8005/#level3.1
http://sphost1.fyre.ibm.com:8005/#level3.1
http://sphost1.fyre.ibm.com:8005/#level3.2
http://sphost1.fyre.ibm.com:8005/#level3.2
http://sphost1.fyre.ibm.com:8005/#level4.
http://sphost1.fyre.ibm.com:8005/#level4.
http://sphost1.fyre.ibm.com:8005/#level4.1
http://sphost1.fyre.ibm.com:8005/#level4.1
http://sphost1.fyre.ibm.com:8005/#level4.1.1
http://sphost1.fyre.ibm.com:8005/#level4.1.1
http://sphost1.fyre.ibm.com:8005/#level4.1.2
http://sphost1.fyre.ibm.com:8005/#level4.1.2
http://sphost1.fyre.ibm.com:8005/#level4.2
http://sphost1.fyre.ibm.com:8005/#level4.2
http://sphost1.fyre.ibm.com:8005/#level4.2.1
http://sphost1.fyre.ibm.com:8005/#level4.2.1
http://sphost1.fyre.ibm.com:8005/#level4.2.2
http://sphost1.fyre.ibm.com:8005/#level4.2.2
http://sphost1.fyre.ibm.com:8005/#level4.2.3
http://sphost1.fyre.ibm.com:8005/#level4.2.3
http://sphost1.fyre.ibm.com:8005/#level4.3
http://sphost1.fyre.ibm.com:8005/#level4.3
http://sphost1.fyre.ibm.com:8005/#level4.3.1
http://sphost1.fyre.ibm.com:8005/#level4.3.1
http://sphost1.fyre.ibm.com:8005/#level4.3.2
http://sphost1.fyre.ibm.com:8005/#level4.3.2
http://sphost1.fyre.ibm.com:8005/#level4.4
http://sphost1.fyre.ibm.com:8005/#level4.4
http://sphost1.fyre.ibm.com:8005/#level4.4.1
http://sphost1.fyre.ibm.com:8005/#level4.4.1
http://sphost1.fyre.ibm.com:8005/#level4.4.2
http://sphost1.fyre.ibm.com:8005/#level4.4.2
http://sphost1.fyre.ibm.com:8005/#level4.5
http://sphost1.fyre.ibm.com:8005/#level4.5
http://sphost1.fyre.ibm.com:8005/#level5.
http://sphost1.fyre.ibm.com:8005/#level5.
http://sphost1.fyre.ibm.com:8005/#level5.1
http://sphost1.fyre.ibm.com:8005/#level5.1
http://sphost1.fyre.ibm.com:8005/#level5.1.1
http://sphost1.fyre.ibm.com:8005/#level5.1.1
http://sphost1.fyre.ibm.com:8005/#level5.1.2
http://sphost1.fyre.ibm.com:8005/#level5.1.2
http://sphost1.fyre.ibm.com:8005/#level5.1.3
http://sphost1.fyre.ibm.com:8005/#level5.1.3

5.1.4 My Working Queues

5.2 CPPs

5.2.1 CPP

5.3 Queries

5.3.1 Investigation Query

5.3.2 Masterdata Query

5.4 Group By Queries

5.4.1 Group By Queries

5.5 Common Point Queries

6. Monitoring

6.1 Index Based Evaluations

6.1.1 Index Based Evaluation

6.1.2 Evaluate Multiple Values

6.1.3 Calendar Computations

6.1.4 Calendar Computation

6.2 Defined Risk Lists

6.2.1 Defined Risk List Definition

6.3 Defined Risk List Entries

6.3.1 Defined Risk List Entry Definition

6.3.2 Defined Risk List Import

6.4 Compliance Lists

6.4.1 Compliance List

6.4.2 Compliance Ad Hoc Check

6.4.3 Compliance Search

6.5 Merchant Monitoring Rules

6.5.1 Merchant Monitoring Rule

7. Model

7.1 Model Revision Selection

7.1.1 Mandator Selection

7.1.2 Revision Control

7.2 General Revision Settings

7.2.1 Inherited Inputs

7.2.2 Own Inputs

7.2.3 Inherited Outputs

7.2.4 Own Outputs

7.2.5 Input Attributes

7.2.6 Messages

7.2.7 Mappings

7.3 Modelling

7.3.1 Settings

7.3.2 Test

7.3.3 Simulation

7.3.4 Analyses

7.3.5 Automatic and Assisted Rule Generation

7.3.6 Rule Generation Settings

7.4 Lists

7.4.1 List

7.4.2 Conditions

7.4.3 List Attributes

7.5 Indexes

7.5.1 Index

7.5.2 Mergings

7.5.3 Masterdatas

7.5.4 Device Identification

7.5.5 Precedents

7.5.6 Calendar Profiles

7.5.7 Patterns

http://sphost1.fyre.ibm.com:8005/#level5.1.4
http://sphost1.fyre.ibm.com:8005/#level5.1.4
http://sphost1.fyre.ibm.com:8005/#level5.2
http://sphost1.fyre.ibm.com:8005/#level5.2
http://sphost1.fyre.ibm.com:8005/#level5.2.1
http://sphost1.fyre.ibm.com:8005/#level5.2.1
http://sphost1.fyre.ibm.com:8005/#level5.3
http://sphost1.fyre.ibm.com:8005/#level5.3
http://sphost1.fyre.ibm.com:8005/#level5.3.1
http://sphost1.fyre.ibm.com:8005/#level5.3.1
http://sphost1.fyre.ibm.com:8005/#level5.3.2
http://sphost1.fyre.ibm.com:8005/#level5.3.2
http://sphost1.fyre.ibm.com:8005/#level5.4
http://sphost1.fyre.ibm.com:8005/#level5.4
http://sphost1.fyre.ibm.com:8005/#level5.4.1
http://sphost1.fyre.ibm.com:8005/#level5.4.1
http://sphost1.fyre.ibm.com:8005/#level5.5
http://sphost1.fyre.ibm.com:8005/#level5.5
http://sphost1.fyre.ibm.com:8005/#level6.
http://sphost1.fyre.ibm.com:8005/#level6.
http://sphost1.fyre.ibm.com:8005/#level6.1
http://sphost1.fyre.ibm.com:8005/#level6.1
http://sphost1.fyre.ibm.com:8005/#level6.1.1
http://sphost1.fyre.ibm.com:8005/#level6.1.1
http://sphost1.fyre.ibm.com:8005/#level6.1.2
http://sphost1.fyre.ibm.com:8005/#level6.1.2
http://sphost1.fyre.ibm.com:8005/#level6.1.3
http://sphost1.fyre.ibm.com:8005/#level6.1.3
http://sphost1.fyre.ibm.com:8005/#level6.1.4
http://sphost1.fyre.ibm.com:8005/#level6.1.4
http://sphost1.fyre.ibm.com:8005/#level6.2
http://sphost1.fyre.ibm.com:8005/#level6.2
http://sphost1.fyre.ibm.com:8005/#level6.2.1
http://sphost1.fyre.ibm.com:8005/#level6.2.1
http://sphost1.fyre.ibm.com:8005/#level6.3
http://sphost1.fyre.ibm.com:8005/#level6.3
http://sphost1.fyre.ibm.com:8005/#level6.3.1
http://sphost1.fyre.ibm.com:8005/#level6.3.1
http://sphost1.fyre.ibm.com:8005/#level6.3.2
http://sphost1.fyre.ibm.com:8005/#level6.3.2
http://sphost1.fyre.ibm.com:8005/#level6.4
http://sphost1.fyre.ibm.com:8005/#level6.4
http://sphost1.fyre.ibm.com:8005/#level6.4.1
http://sphost1.fyre.ibm.com:8005/#level6.4.1
http://sphost1.fyre.ibm.com:8005/#level6.4.2
http://sphost1.fyre.ibm.com:8005/#level6.4.2
http://sphost1.fyre.ibm.com:8005/#level6.4.3
http://sphost1.fyre.ibm.com:8005/#level6.4.3
http://sphost1.fyre.ibm.com:8005/#level6.5
http://sphost1.fyre.ibm.com:8005/#level6.5
http://sphost1.fyre.ibm.com:8005/#level6.5.1
http://sphost1.fyre.ibm.com:8005/#level6.5.1
http://sphost1.fyre.ibm.com:8005/#level7.
http://sphost1.fyre.ibm.com:8005/#level7.
http://sphost1.fyre.ibm.com:8005/#level7.1
http://sphost1.fyre.ibm.com:8005/#level7.1
http://sphost1.fyre.ibm.com:8005/#level7.1.1
http://sphost1.fyre.ibm.com:8005/#level7.1.1
http://sphost1.fyre.ibm.com:8005/#level7.1.2
http://sphost1.fyre.ibm.com:8005/#level7.1.2
http://sphost1.fyre.ibm.com:8005/#level7.2
http://sphost1.fyre.ibm.com:8005/#level7.2
http://sphost1.fyre.ibm.com:8005/#level7.2.1
http://sphost1.fyre.ibm.com:8005/#level7.2.1
http://sphost1.fyre.ibm.com:8005/#level7.2.2
http://sphost1.fyre.ibm.com:8005/#level7.2.2
http://sphost1.fyre.ibm.com:8005/#level7.2.3
http://sphost1.fyre.ibm.com:8005/#level7.2.3
http://sphost1.fyre.ibm.com:8005/#level7.2.4
http://sphost1.fyre.ibm.com:8005/#level7.2.4
http://sphost1.fyre.ibm.com:8005/#level7.2.5
http://sphost1.fyre.ibm.com:8005/#level7.2.5
http://sphost1.fyre.ibm.com:8005/#level7.2.6
http://sphost1.fyre.ibm.com:8005/#level7.2.6
http://sphost1.fyre.ibm.com:8005/#level7.2.7
http://sphost1.fyre.ibm.com:8005/#level7.2.7
http://sphost1.fyre.ibm.com:8005/#level7.3
http://sphost1.fyre.ibm.com:8005/#level7.3
http://sphost1.fyre.ibm.com:8005/#level7.3.1
http://sphost1.fyre.ibm.com:8005/#level7.3.1
http://sphost1.fyre.ibm.com:8005/#level7.3.2
http://sphost1.fyre.ibm.com:8005/#level7.3.2
http://sphost1.fyre.ibm.com:8005/#level7.3.3
http://sphost1.fyre.ibm.com:8005/#level7.3.3
http://sphost1.fyre.ibm.com:8005/#level7.3.4
http://sphost1.fyre.ibm.com:8005/#level7.3.4
http://sphost1.fyre.ibm.com:8005/#level7.3.5
http://sphost1.fyre.ibm.com:8005/#level7.3.5
http://sphost1.fyre.ibm.com:8005/#level7.3.6
http://sphost1.fyre.ibm.com:8005/#level7.3.6
http://sphost1.fyre.ibm.com:8005/#level7.4
http://sphost1.fyre.ibm.com:8005/#level7.4
http://sphost1.fyre.ibm.com:8005/#level7.4.1
http://sphost1.fyre.ibm.com:8005/#level7.4.1
http://sphost1.fyre.ibm.com:8005/#level7.4.2
http://sphost1.fyre.ibm.com:8005/#level7.4.2
http://sphost1.fyre.ibm.com:8005/#level7.4.3
http://sphost1.fyre.ibm.com:8005/#level7.4.3
http://sphost1.fyre.ibm.com:8005/#level7.5
http://sphost1.fyre.ibm.com:8005/#level7.5
http://sphost1.fyre.ibm.com:8005/#level7.5.1
http://sphost1.fyre.ibm.com:8005/#level7.5.1
http://sphost1.fyre.ibm.com:8005/#level7.5.2
http://sphost1.fyre.ibm.com:8005/#level7.5.2
http://sphost1.fyre.ibm.com:8005/#level7.5.3
http://sphost1.fyre.ibm.com:8005/#level7.5.3
http://sphost1.fyre.ibm.com:8005/#level7.5.4
http://sphost1.fyre.ibm.com:8005/#level7.5.4
http://sphost1.fyre.ibm.com:8005/#level7.5.5
http://sphost1.fyre.ibm.com:8005/#level7.5.5
http://sphost1.fyre.ibm.com:8005/#level7.5.6
http://sphost1.fyre.ibm.com:8005/#level7.5.6
http://sphost1.fyre.ibm.com:8005/#level7.5.7
http://sphost1.fyre.ibm.com:8005/#level7.5.7

7.5.8 Events

7.5.9 Counters

7.5.10 Collusions

7.6 Formulas

7.6.1 Formula

7.6.2 Formula Attributes

7.7 Model Components

7.7.1 Ruleset / Scorecard

7.7.2 Decision Tree

7.7.3 Neural Network

7.7.4 Random Forest

8. Administration

8.1 Mandators

8.1.1 Structural Configuration

8.1.2 Mandator

8.2 Roles

8.2.1 Role

8.3 User Accounts

8.3.1 User Account

8.4 Case Actions

8.4.1 Case Action

8.5 Administration

8.5.1 User Groups

8.5.2 Case States

8.5.3 Case Workflows

8.5.4 Case Close Codes

8.5.5 Case Classes

8.5.6 Working Queues

8.5.7 Case Groups

8.6 Notifications

8.6.1 Notification

8.7 Text Modules

8.7.1 Text Module

8.8 External Queries

8.8.1 External Query

8.9 Reminders

8.9.1 Reminder

8.10 Master Keys

8.10.1 Encryption Keys

8.10.2 Encryption Key

8.11 Job Schedule

8.11.1 Job

8.11.2 Encrypted Attributes Export

8.11.3 Importing encrypted job files

8.12 Password Safes

8.12.1 Password Safe

8.13 Status Alarm Indicators

8.13.1 Status Alarm Indicator

8.14 Charts

8.14.1 Chart

8.15 Key Performance Indicators

8.15.1 Key Performance Indicator

8.16 Messages

8.16.1 Message

8.16.2 Messages Report

8.17 Real-time Intercept Codes

8.17.1 Real-time Intercept Code

http://sphost1.fyre.ibm.com:8005/#level7.5.8
http://sphost1.fyre.ibm.com:8005/#level7.5.8
http://sphost1.fyre.ibm.com:8005/#level7.5.9
http://sphost1.fyre.ibm.com:8005/#level7.5.9
http://sphost1.fyre.ibm.com:8005/#level7.5.10
http://sphost1.fyre.ibm.com:8005/#level7.5.10
http://sphost1.fyre.ibm.com:8005/#level7.6
http://sphost1.fyre.ibm.com:8005/#level7.6
http://sphost1.fyre.ibm.com:8005/#level7.6.1
http://sphost1.fyre.ibm.com:8005/#level7.6.1
http://sphost1.fyre.ibm.com:8005/#level7.6.2
http://sphost1.fyre.ibm.com:8005/#level7.6.2
http://sphost1.fyre.ibm.com:8005/#level7.7
http://sphost1.fyre.ibm.com:8005/#level7.7
http://sphost1.fyre.ibm.com:8005/#level7.7.1
http://sphost1.fyre.ibm.com:8005/#level7.7.1
http://sphost1.fyre.ibm.com:8005/#level7.7.2
http://sphost1.fyre.ibm.com:8005/#level7.7.2
http://sphost1.fyre.ibm.com:8005/#level7.7.3
http://sphost1.fyre.ibm.com:8005/#level7.7.3
http://sphost1.fyre.ibm.com:8005/#level7.7.4
http://sphost1.fyre.ibm.com:8005/#level7.7.4
http://sphost1.fyre.ibm.com:8005/#level8.
http://sphost1.fyre.ibm.com:8005/#level8.
http://sphost1.fyre.ibm.com:8005/#level8.1
http://sphost1.fyre.ibm.com:8005/#level8.1
http://sphost1.fyre.ibm.com:8005/#level8.1.1
http://sphost1.fyre.ibm.com:8005/#level8.1.1
http://sphost1.fyre.ibm.com:8005/#level8.1.2
http://sphost1.fyre.ibm.com:8005/#level8.1.2
http://sphost1.fyre.ibm.com:8005/#level8.2
http://sphost1.fyre.ibm.com:8005/#level8.2
http://sphost1.fyre.ibm.com:8005/#level8.2.1
http://sphost1.fyre.ibm.com:8005/#level8.2.1
http://sphost1.fyre.ibm.com:8005/#level8.3
http://sphost1.fyre.ibm.com:8005/#level8.3
http://sphost1.fyre.ibm.com:8005/#level8.3.1
http://sphost1.fyre.ibm.com:8005/#level8.3.1
http://sphost1.fyre.ibm.com:8005/#level8.4
http://sphost1.fyre.ibm.com:8005/#level8.4
http://sphost1.fyre.ibm.com:8005/#level8.4.1
http://sphost1.fyre.ibm.com:8005/#level8.4.1
http://sphost1.fyre.ibm.com:8005/#level8.5
http://sphost1.fyre.ibm.com:8005/#level8.5
http://sphost1.fyre.ibm.com:8005/#level8.5.1
http://sphost1.fyre.ibm.com:8005/#level8.5.1
http://sphost1.fyre.ibm.com:8005/#level8.5.2
http://sphost1.fyre.ibm.com:8005/#level8.5.2
http://sphost1.fyre.ibm.com:8005/#level8.5.3
http://sphost1.fyre.ibm.com:8005/#level8.5.3
http://sphost1.fyre.ibm.com:8005/#level8.5.4
http://sphost1.fyre.ibm.com:8005/#level8.5.4
http://sphost1.fyre.ibm.com:8005/#level8.5.5
http://sphost1.fyre.ibm.com:8005/#level8.5.5
http://sphost1.fyre.ibm.com:8005/#level8.5.6
http://sphost1.fyre.ibm.com:8005/#level8.5.6
http://sphost1.fyre.ibm.com:8005/#level8.5.7
http://sphost1.fyre.ibm.com:8005/#level8.5.7
http://sphost1.fyre.ibm.com:8005/#level8.6
http://sphost1.fyre.ibm.com:8005/#level8.6
http://sphost1.fyre.ibm.com:8005/#level8.6.1
http://sphost1.fyre.ibm.com:8005/#level8.6.1
http://sphost1.fyre.ibm.com:8005/#level8.7
http://sphost1.fyre.ibm.com:8005/#level8.7
http://sphost1.fyre.ibm.com:8005/#level8.7.1
http://sphost1.fyre.ibm.com:8005/#level8.7.1
http://sphost1.fyre.ibm.com:8005/#level8.8
http://sphost1.fyre.ibm.com:8005/#level8.8
http://sphost1.fyre.ibm.com:8005/#level8.8.1
http://sphost1.fyre.ibm.com:8005/#level8.8.1
http://sphost1.fyre.ibm.com:8005/#level8.9
http://sphost1.fyre.ibm.com:8005/#level8.9
http://sphost1.fyre.ibm.com:8005/#level8.9.1
http://sphost1.fyre.ibm.com:8005/#level8.9.1
http://sphost1.fyre.ibm.com:8005/#level8.10
http://sphost1.fyre.ibm.com:8005/#level8.10
http://sphost1.fyre.ibm.com:8005/#level8.10.1
http://sphost1.fyre.ibm.com:8005/#level8.10.1
http://sphost1.fyre.ibm.com:8005/#level8.10.2
http://sphost1.fyre.ibm.com:8005/#level8.10.2
http://sphost1.fyre.ibm.com:8005/#level8.11
http://sphost1.fyre.ibm.com:8005/#level8.11
http://sphost1.fyre.ibm.com:8005/#level8.11.1
http://sphost1.fyre.ibm.com:8005/#level8.11.1
http://sphost1.fyre.ibm.com:8005/#level8.11.2
http://sphost1.fyre.ibm.com:8005/#level8.11.2
http://sphost1.fyre.ibm.com:8005/#level8.11.3
http://sphost1.fyre.ibm.com:8005/#level8.11.3
http://sphost1.fyre.ibm.com:8005/#level8.12
http://sphost1.fyre.ibm.com:8005/#level8.12
http://sphost1.fyre.ibm.com:8005/#level8.12.1
http://sphost1.fyre.ibm.com:8005/#level8.12.1
http://sphost1.fyre.ibm.com:8005/#level8.13
http://sphost1.fyre.ibm.com:8005/#level8.13
http://sphost1.fyre.ibm.com:8005/#level8.13.1
http://sphost1.fyre.ibm.com:8005/#level8.13.1
http://sphost1.fyre.ibm.com:8005/#level8.14
http://sphost1.fyre.ibm.com:8005/#level8.14
http://sphost1.fyre.ibm.com:8005/#level8.14.1
http://sphost1.fyre.ibm.com:8005/#level8.14.1
http://sphost1.fyre.ibm.com:8005/#level8.15
http://sphost1.fyre.ibm.com:8005/#level8.15
http://sphost1.fyre.ibm.com:8005/#level8.15.1
http://sphost1.fyre.ibm.com:8005/#level8.15.1
http://sphost1.fyre.ibm.com:8005/#level8.16
http://sphost1.fyre.ibm.com:8005/#level8.16
http://sphost1.fyre.ibm.com:8005/#level8.16.1
http://sphost1.fyre.ibm.com:8005/#level8.16.1
http://sphost1.fyre.ibm.com:8005/#level8.16.2
http://sphost1.fyre.ibm.com:8005/#level8.16.2
http://sphost1.fyre.ibm.com:8005/#level8.17
http://sphost1.fyre.ibm.com:8005/#level8.17
http://sphost1.fyre.ibm.com:8005/#level8.17.1
http://sphost1.fyre.ibm.com:8005/#level8.17.1

8.18 Event Logging

8.18.1 Configuration

8.18.2 Browsing

8.19 Memory Control

8.20 System Configuration

8.20.1 Main Memory Sizing

8.20.2 Authentication Settings

8.20.3 Deferred Writing

8.20.4 Case Investigation

8.20.5 SNMP Settings

8.20.6 Query

9. Cluster

9.1 Cluster Settings

9.1.1 FastLink Status

9.1.2 Cluster Instance

9.2 Cluster Management

9.2.1 Cluster Settings

9.2.2 Operational Cluster Control

9.2.3 Add Instance

9.2.4 Shutdown

9.2.5 Detach Instance

9.2.6 Delete Instance

9.2.7 Restore

9.2.8 Backup

9.2.9 Cluster Golive

9.2.10 URID Replication

9.3 Remote Operation of IBM Safer Payments

10. Appendix

10.1 IBM Safer Payments Architecture and Integration

10.1.1 Interfaces Overview

10.1.2 SSL Settings

10.1.3 Storage Architecture

10.2 Python Code Execution

10.3 Encryption and PCI DSS Compliant Operations

10.3.1 IBM Safer Payments Security

10.3.2 PCI DSS Encryption

10.4 Maintenance Functions

10.4.1 Rebuild Index

10.4.2 Rewrite Element to Disk

10.4.3 Cleanout Revision

10.5 Miscellaneous

10.5.1 Conditions

10.5.2 Conclusions

10.5.3 Case Variable Conditions

10.5.4 Message Computation

10.5.5 Time Representation

10.5.6 Benchmarking Prevention Performance

10.5.7 Online Help

10.5.8 Levenshtein

10.6 Definitions

10.6.1 Service Consumer

1. Introduction

This chapter contains all you need to quickly get familiar with IBM Safer Payments.

http://sphost1.fyre.ibm.com:8005/#level8.18
http://sphost1.fyre.ibm.com:8005/#level8.18
http://sphost1.fyre.ibm.com:8005/#level8.18.1
http://sphost1.fyre.ibm.com:8005/#level8.18.1
http://sphost1.fyre.ibm.com:8005/#level8.18.2
http://sphost1.fyre.ibm.com:8005/#level8.18.2
http://sphost1.fyre.ibm.com:8005/#level8.19
http://sphost1.fyre.ibm.com:8005/#level8.19
http://sphost1.fyre.ibm.com:8005/#level8.20
http://sphost1.fyre.ibm.com:8005/#level8.20
http://sphost1.fyre.ibm.com:8005/#level8.20.1
http://sphost1.fyre.ibm.com:8005/#level8.20.1
http://sphost1.fyre.ibm.com:8005/#level8.20.2
http://sphost1.fyre.ibm.com:8005/#level8.20.2
http://sphost1.fyre.ibm.com:8005/#level8.20.3
http://sphost1.fyre.ibm.com:8005/#level8.20.3
http://sphost1.fyre.ibm.com:8005/#level8.20.4
http://sphost1.fyre.ibm.com:8005/#level8.20.4
http://sphost1.fyre.ibm.com:8005/#level8.20.5
http://sphost1.fyre.ibm.com:8005/#level8.20.5
http://sphost1.fyre.ibm.com:8005/#level8.20.6
http://sphost1.fyre.ibm.com:8005/#level8.20.6
http://sphost1.fyre.ibm.com:8005/#level9.
http://sphost1.fyre.ibm.com:8005/#level9.
http://sphost1.fyre.ibm.com:8005/#level9.1
http://sphost1.fyre.ibm.com:8005/#level9.1
http://sphost1.fyre.ibm.com:8005/#level9.1.1
http://sphost1.fyre.ibm.com:8005/#level9.1.1
http://sphost1.fyre.ibm.com:8005/#level9.1.2
http://sphost1.fyre.ibm.com:8005/#level9.1.2
http://sphost1.fyre.ibm.com:8005/#level9.2
http://sphost1.fyre.ibm.com:8005/#level9.2
http://sphost1.fyre.ibm.com:8005/#level9.2.1
http://sphost1.fyre.ibm.com:8005/#level9.2.1
http://sphost1.fyre.ibm.com:8005/#level9.2.2
http://sphost1.fyre.ibm.com:8005/#level9.2.2
http://sphost1.fyre.ibm.com:8005/#level9.2.3
http://sphost1.fyre.ibm.com:8005/#level9.2.3
http://sphost1.fyre.ibm.com:8005/#level9.2.4
http://sphost1.fyre.ibm.com:8005/#level9.2.4
http://sphost1.fyre.ibm.com:8005/#level9.2.5
http://sphost1.fyre.ibm.com:8005/#level9.2.5
http://sphost1.fyre.ibm.com:8005/#level9.2.6
http://sphost1.fyre.ibm.com:8005/#level9.2.6
http://sphost1.fyre.ibm.com:8005/#level9.2.7
http://sphost1.fyre.ibm.com:8005/#level9.2.7
http://sphost1.fyre.ibm.com:8005/#level9.2.8
http://sphost1.fyre.ibm.com:8005/#level9.2.8
http://sphost1.fyre.ibm.com:8005/#level9.2.9
http://sphost1.fyre.ibm.com:8005/#level9.2.9
http://sphost1.fyre.ibm.com:8005/#level9.2.10
http://sphost1.fyre.ibm.com:8005/#level9.2.10
http://sphost1.fyre.ibm.com:8005/#level9.3
http://sphost1.fyre.ibm.com:8005/#level9.3
http://sphost1.fyre.ibm.com:8005/#level10.
http://sphost1.fyre.ibm.com:8005/#level10.
http://sphost1.fyre.ibm.com:8005/#level10.1
http://sphost1.fyre.ibm.com:8005/#level10.1
http://sphost1.fyre.ibm.com:8005/#level10.1.1
http://sphost1.fyre.ibm.com:8005/#level10.1.1
http://sphost1.fyre.ibm.com:8005/#level10.1.2
http://sphost1.fyre.ibm.com:8005/#level10.1.2
http://sphost1.fyre.ibm.com:8005/#level10.1.3
http://sphost1.fyre.ibm.com:8005/#level10.1.3
http://sphost1.fyre.ibm.com:8005/#level10.2
http://sphost1.fyre.ibm.com:8005/#level10.2
http://sphost1.fyre.ibm.com:8005/#level10.3
http://sphost1.fyre.ibm.com:8005/#level10.3
http://sphost1.fyre.ibm.com:8005/#level10.3.1
http://sphost1.fyre.ibm.com:8005/#level10.3.1
http://sphost1.fyre.ibm.com:8005/#level10.3.2
http://sphost1.fyre.ibm.com:8005/#level10.3.2
http://sphost1.fyre.ibm.com:8005/#level10.4
http://sphost1.fyre.ibm.com:8005/#level10.4
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.2
http://sphost1.fyre.ibm.com:8005/#level10.4.2
http://sphost1.fyre.ibm.com:8005/#level10.4.3
http://sphost1.fyre.ibm.com:8005/#level10.4.3
http://sphost1.fyre.ibm.com:8005/#level10.5
http://sphost1.fyre.ibm.com:8005/#level10.5
http://sphost1.fyre.ibm.com:8005/#level10.5.1
http://sphost1.fyre.ibm.com:8005/#level10.5.1
http://sphost1.fyre.ibm.com:8005/#level10.5.2
http://sphost1.fyre.ibm.com:8005/#level10.5.2
http://sphost1.fyre.ibm.com:8005/#level10.5.3
http://sphost1.fyre.ibm.com:8005/#level10.5.3
http://sphost1.fyre.ibm.com:8005/#level10.5.4
http://sphost1.fyre.ibm.com:8005/#level10.5.4
http://sphost1.fyre.ibm.com:8005/#level10.5.5
http://sphost1.fyre.ibm.com:8005/#level10.5.5
http://sphost1.fyre.ibm.com:8005/#level10.5.6
http://sphost1.fyre.ibm.com:8005/#level10.5.6
http://sphost1.fyre.ibm.com:8005/#level10.5.7
http://sphost1.fyre.ibm.com:8005/#level10.5.7
http://sphost1.fyre.ibm.com:8005/#level10.5.8
http://sphost1.fyre.ibm.com:8005/#level10.5.8
http://sphost1.fyre.ibm.com:8005/#level10.6
http://sphost1.fyre.ibm.com:8005/#level10.6
http://sphost1.fyre.ibm.com:8005/#level10.6.1
http://sphost1.fyre.ibm.com:8005/#level10.6.1

back to top

1.1 Quick Facts

Some basics to introduce IBM Safer Payments:

What is IBM Safer Payments?

• IBM Safer Payments prevents fraud in cashless payment systems – such as credit cards – by analyzing transaction streams and
intercepting high-risk transactions before they are completed.

• To detect fraud in transaction patterns and to differentiate fraudulent from legitimate payment behaviour, IBM Safer Payments
analyses transaction sequences and uses "if-then" rules to conclude for each transaction whether or not to recommend
authorization.

• IBM Safer Payments is a software program that runs at the authorization center of banks and payment processors, or at switches.
It is tied to the existing authorization and card management systems and payment gateways.

What kind of software is it?

• IBM Safer Payments runs on Red Hat Linux.

• IBM Safer Payments runs as a "server" component (daemon process).

• IBM Safer Payments is self-contained. Its database and application server are embedded. To run IBM Safer Payments, you need
hardware and an operating system.

• The IBM Safer Payments user access interface is any standard web browser supporting JavaScript.

• Other systems connect to IBM Safer Payments either via IP messages (real-time) or batch files.

• For high-availability needs, IBM Safer Payments can be installed in a clustered configuration.

What is the architecture of the IBM Safer Payments software?

IBM Safer Payments combines the advantages of a number of proven IT architecture patterns:

• Internally IBM Safer Payments is based on a service oriented architecture where each task to be performed is spun off as a
separate service. Some of these services are further split into multiple threads to support parallel computation.

• Interfacing with other systems, IBM Safer Payments supports a service-provider / service-consumer type interface pattern (similar
to the SOAP standard).

• Interfacing to users, IBM Safer Payments supports a lightweight, JavaScript/AJAX based browser client that is based on the Model
View Controller architecture pattern.

What is there to an IBM Safer Payments installation?

• The IBM Safer Payments main server component is installed on a server computer.

• The IBM Safer Payments client does not require any installation.

back to top

1.2 IBM Safer Payments User Access

IBM Safer Payments user access is designed for productivity. While it follows general accepted look&feel and usage metaphors of web
technology based user interaction, there are a few "extras" that IBM Safer Payments features, which can greatly enhance productivity.

Top horizontal navigation bar

IBM Safer Payments is structured in five main functions:

• Dashboard
Quick overview on IBM Safer Payments vital functions.

• Report
Define and execute IBM Safer Payments standard reports.

• Investigation
Working cases and querying data.

• Model
Drill-down analysis of data and IBM Safer Payments performance. Creation of model revisions.

• Administration
Configuration, settings, and administration functionality.

These functions can directly be navigated to by clicking on one of the five tabs located at the left of the top navigation bar. Most
functions, once selected, display a second vertical navigation menu on the left side of the page. Navigation choices are highlighted when
the mouse pointer moves over them.

There are three more functions displayed as tabs on the right side of the top navigation bar:

• New

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Opens a new tab/window. See below for details.

• Help
Help on specific topics and generation of full IBM Safer Payments user manual.

• Logout
Ends a session. Notice that while IBM Safer Payments logs you out after a certain period of inactivity, some functions, such as
automatic rule generation will keep a session alive indefinitively. It is thus important to use the logout function once you completed
your work in IBM Safer Payments.

Multiple windows

For certain actions, you may prefer to view multiple aspects of IBM Safer Payments, or work on multiple elements at once. For this, IBM
Safer Payments supports opening any number of tabs or browser windows on your computer, sharing the same user session. To
facilitate this process, the top navigation bar offers the "New" tab that opens another browser tab or window (depending on your
browser settings) using the same session. IBM Safer Payments is designed that you may work in multiple tabs/windows in parallel.

Feedback

Most user actions that are executed on the IBM Safer Payments server return a "feedback status". The statuses are:

• OK
Confirmations of successfully executed actions are indicated by a short (green) text in the rightmost corner of the web page above
the horizontal navigation bar.

• Warning
Warnings are indicated by a short (orange) text in the rightmost corner of the web page above the horizontal navigation bar. IBM
Safer Payments issues warnings when it needs to alert the user to circumstances relating to the action executed, even though the
action had been executed.

• Error
If the action could not be executed for reasons the user can change, IBM Safer Payments responds with a dialog explaining the
error. The dialog must be closed before the user can continue.

• Fatal Error
The action could also not be executed, but IBM Safer Payments considers that the user cannot change the circumstances for this
error to occur. In most cases, a fatal error indicates a software related problem that can only be resolved with assistance from the
manufacturer of IBM Safer Payments.

Notice that the "OK" and "warning" feedbacks are only displayed for a few seconds. To see the last feedbacks, just click right at the
position the feedbacks usually appear to open a list of the past feedbacks.

Sections and toolbars

Each IBM Safer Payments page features one or more so-called sections. A section is a rounded-edge frame with a title/toolbar tab. The
toolbar icons display a rectangular frame once the mouse pointer hovers over it to visualize when they are in focus. After stopping the
mouse pointer over a toolbar icon, a tooltip-style pop-up explanation text of the toolbar action appears.

Some toolbar actions are "one-off" triggers of a certain activity (for instance, "save" actions); others are "toggles" and have an
activated and a deactivated state. The active state of a toggle is indicated by a "green light" type indicator within the icon.

Tables

The IBM Safer Payments data tables are used on nearly every IBM Safer Payments page. They have a number of productivity features:

1. The width of each column can be changed by dragging the separator between the column headers. Note this behaviour with tables
that display a two-line icon when hovering over the header borders.

2. The sequence of columns in a table (for most tables) can be changed by dragging columns (header field) with the mouse. A red
insert marker indicates the "drop zone" for the column.

3. Each table has a maximum row size. If there are fewer rows than this size, the table is displayed in full. Once the number of table
rows exceeds the number of maximum rows, the table is displayed in "paged" mode, where page selectors automatically appear at
the bottom of the table. In paged mode, the maximum row size can be adapted by dragging the horizontal line at the lower frame
of the table.

4. You may sort the table by any column by simply clicking on the column head. Clicking again toggles between ascending and
descending order. Multi-criteria sort is accomplished by subsequentially sorting different columns. To reset sort settings,
pagination, and column width and sequence, click right on the column header and select "reset table preferences" from the pop-up
menu.

5. In most tables, you may highlight rows using a single left mouse click. In some tables, you may highlight multiple consecutive
rows by holding the [Shift] key pressed and then clicking the start and end row subsequently. Non-consecutive rows can be
highlighted by holding the [Ctrl] key and clicking the individual rows. Depending on the table, a right click on one of the
highlighted rows opens a context menu that provides direct access to possible operations on the element represented in this row.
On certain tables, the actions for multiple vs. single highlighted rows are different.

All settings listed above are stored as "preferences" with the user account. Once you get back to the same table, the last settings you
have chosen are restored. Notice that you may reset all preferences at once from the "my account page" and that you may reset the
preferences of just one table by clicking with the right mouse button on a column header.

Keyboard shortcuts/accelerators

While IBM Safer Payments in using a web browser interface that is optimized for mouse usage, IBM Safer Payments also offers a
number of keyboard shortcuts. Depending on the browser, shortcuts use the [Ctrl] key held and then a keyboard letter pressed and/or
the [Ctrl]-[Alt] key combination held (press both) and a letter key:

• On most pages displaying a table of elements, the keyboard shortcut [Ctrl]-[N] creates a new element. (When using the Chrome-
Browser the shortcut variant [Ctrl]-[Alt]-[N] has to be used)

• On most pages displaying an entry form, the keyboard shortcut [Ctrl]-[S] saves the contents of the form and closes the form.

• On most pages displaying an entry form, the keyboard shortcut [Ctrl]-[D] deletes the opened element (confirmation dialog).

• On most pages displaying a condition/conclusion entry form, the keyboard shortcut [Ctrl]-[Shift]-[I] creates a new
condition/conclusion as long as the focus is on any entry field of the condition form .

Notice that you may use the tab key and shift-tab key combination to navigate the fields of a form.

Useful hints

• The IBM Safer Payments user interface uses both modal and modeless "dialog boxes" (windows that open within the browser
window). A modal dialog box requires the user to supply information, or cancel the dialog box, before allowing the application to
continue. A modeless dialog box allows the user to supply information and return to the previous task without closing the dialog
box. IBM Safer Payments uses modeless dialog boxes for instances with hyperlink query results and for exploring attribute values
in counter/rule generation. Notice that a quick way to close such dialogs is to use the [Esc] key on your keyboard.

Remarks

• If for whatever reasons, the UI behaves "funny", refresh the page (e.g. hit the [F5] key). Refreshing causes a complete restart and
reload of the UI without losing the user session. You may, however, lose data entered on the form that is not yet saved.

back to top

2. Ticker

This chapter provides information about the ticker.

back to top

2.1 Ticker

The ticker is a fast and easy way to inform colleagues about important events. It displays text messages that were created by other
users - so called ticker entries - and offers the possibility to write text messages yourself.

Every ticker entry has at least a title, but can also contain additional information within a note.

Ticker entries are assigned to a mandator. All users having the ticker view privilege for the respective mandator are able to view this
entry. Users having the delete privilege for the respective mandator, are able to delete ticker entries. In addition to the belonging
mandator, submandators can be selected from the "Display in" menu when creating an entry. Users that do not have the ticker view
privilege for the ticker entry's mandator, but for one of the "Display in" mandators, are able to view the entry (but cannot delete it). This
allows you to address colleagues of submandators, too.

Saved ticker entries are sorted chronologically (new entries on top). Entries that were added since your last log out are displayed in bold
until you close the ticker. Ticker entries that were created recently are displayed in bold, too. The settings for the time a ticker entry is
considered as new and thus printed in bold can be changed in "My Account" ("Ticker entry highlight interval"). To load new ticker entries
that were created since you opened the ticker you can refresh the ticker manually by clicking on its refresh button. In "My account"
there is a setting for an automatic refresh interval as well ("Ticker refresh interval").

The ticker can be opened and closed at any time. It is possible to open multiple tickers at a time by clicking the tab several times.

Once deleted, ticker entries cannot be restored. Deleting a ticker entry will not only delete the ticker entry for yourself but for all other
users as well. If a certain number of overall ticker entries is reached, the oldest entry will be deleted. This number can be defined in
system configuration.

As an example use the ticker to inform about new CPPs. If the ticker title and a CPP name are identical, there will be a hyperlink to the
list of cases connected with the CPP. You can insert the name of a CPP manually or use the functionality within the CPP table context
menu to add the name.

back to top

2.2 New ticker entry

Create a new ticker entry by filling in this form. Click save to add it to the ticker.

• Title
This is the title of the ticker entry. Use it as only message of the entry or add a note.

• Note
Additional information can be added here.

• Mandator
This is the mandator the ticker entry you are creating will belong to. Users with the ticker view/delete privilege for this mandator

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

are able to view or delete this entry.

• Display in
If you want the entry to be visible in submandators of the chosen mandator additionally, you can add these submandators here.
Users of this submandators can view the entry but cannot delete it.

back to top

3. Dashboard

The IBM Safer Payments dashboard provides a quick overview on IBM Safer Payments operations.

back to top

3.1 Status Alarm Indicators

Status alarm indicators (SAI) constantly monitor operational parameters. The traffic light coding, green for "OK", yellow for "warning",
and red for "error" in particular provide a one-glance overview on IBM Safer Payments' operational health.

SAI are configured individually for each mandator. Their display on the dashboard page consists of the colour icon and a brief
explanation text, typically containing the value of the SAI. Typically an extended explanation text with more data is available as tooltip
when the mouse pointer rests over the short text. Depending on the SAI's configuration, a state change from "OK" to "warning" or
"error" may have triggered the generation of an email or mobile text.

Multiple IBM Safer Payments instance installation

Most IBM Safer Payments installations involve multiple IBM Safer Payments instances in a cluster. Since in such a setup, only one IBM
Safer Payments instance serves user access, SAI for all instances are accessible from each of the IBM Safer Payments instances.

Notice that there are SAI that monitor parameters that are the same on all instances (e.g. "open cases"), while there are others (e.g.
"transaction messages processed") that are different for each instance. For the latter, a separate SAI is shown for each IBM Safer
Payments instance. The ID of the respective instance is shown in square brackets with the brief explanation text.

Filter

The "filter" drop list box located in the header lets you restrict the SAI shown:

• All
Shows SAI of any status and any cluster instance.

• Errors
Shows only SAI of "error" status for all cluster instances.

• Warnings
Shows only SAI of "warning" status for all cluster instances.

• W + E
Shows SAI of "error" and "warning" status for all cluster instances.

• IBM Safer Payments n
Shows SAI of any status only for cluster instance n.

Remarks

• Each SAI can only be a "warning" or an "error". If for a certain parameter, both warning and error (with different thresholds) shall
be displayed, they are defined as two separate SAI.

back to top

3.2 Key Performance Indicators Online Help

Key performance indicators (KPI) constantly supervise operational performance and plot them over time in one or more charts.

KPI are configured individually for each mandator. Their display on the dashboard page consists of a curve and an entry in the legend
right of the respective chart. The exact values can be viewed when the mouse pointer rests over the chart. In this case, the chart shows
a red vertical line as time cursor, and the exact values of the KPIs are shown in the legend. Notice that if there are different time points
for the KPIs, the legend value shows the data point nearest to the cursor.

Multiple IBM Safer Payments instance installation

Most IBM Safer Payments installations involve multiple IBM Safer Payments instances in a cluster. Since in such a setup, only one IBM
Safer Payments instance serves user access, KPIs for all instances are accessible from each of the IBM Safer Payments instances.

Notice that there are KPIs that monitor parameters that are the same on all instances (e.g. "open cases"), while there are others (e.g.
"transaction messages processed") that are different for each instance. For the latter, a separate KPI is shown for each IBM Safer
Payments instance. The ID of the respective instance is shown in square brackets with the legend text.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

back to top

4. Report

This chapter covers the report function of IBM Safer Payments.

back to top

4.1 Case Class Reports

The table below lists all defined case class reports. Case class reports summarise case investigation activities on a per case class basis.

back to top

4.1.1 Case Class Report Definition

Case class reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has several submandators.

• Data range
Lets you specify the reporting time period.

• Case Conditions
You may further restrict the cases to those whose reporting attributes and data satisfy certain criteria by defining conditions here.
If no conditions are defined, all cases satisfying the general settings (above) are included in the case class report.

back to top

4.1.2 Case Class Report

The case class reports provides a comparison of the individual case class performance with respect to a number of key performance
indicators (KPIs). While delivering basis data to optimise case investigation operations, it also provides valuable feedback to the fraud
analysts that maintain the rules generating cases. The report lists a row for every case class for which cases are found in IBM Safer
Payments. For each case class, the columns provide different types of information:

Current state

The columns summarise for each case class how many cases currently exist in IBM Safer Payments that were generated within the
reporting period in the respective case state.

Summary

In addition to case state statistics, the following information is provided:

• Due cases
Cases that have been postponed/forwarded that are due as of now.

• Bulk transitioned cases
Cases that were last processed using the bulk transition function.

• Not closed
Cases that have not been closed (sum of cases that are not closed).

• Total cases
Total of cases in IBM Safer Payments in reporting period (sum of cases in all states).

Created cases

Number of cases that were generated during the reporting period in this case class (if the case class changed because of alarm
aggregation the case is reported in the last assigned case class).

Closed cases

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Number of cases that were closed during the reporting period (regardless of their generation date). The numbers are shown according
to sub-criteria and total columns:

• Fraud
Number of cases closed with a close code classified as "fraudulent"

• Genuine
Number of cases closed with a close code classified as "genuine"

• Unknown
Number of cases closed with a close code classified as "unknown.

• Total closed
Total number of cases closed (sum of the three previous columns)

Key Performance Indicators

The columns provide key performance indicators for fraud prevention performance on cases generated during the reporting period:

• Investigation rate
Ratio of cases that could be closed with a close code classified as either "fraudulent" or "genuine" (not "unknown"). A high
investigation rate indicates that investigators can successfully determine whether or not generated cases are fraudulent.

• Hit rate
Ratio of cases that have been closed with a close code classified as "fraudulent" versus all cases closed. It thus states what fraction
of the cases generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine" divided by the number of cases closed as "fraudulent".

Timing

The columns provide key statistical benchmark data on the response speed of investigation operations (based on cases generated during
the reporting period):

• Lead
Average time between case generation and first investigation (indicator of how quickly investigators picks up on cases).

• Work
Average time between first investigation of a case and its closing

• Open
Average time between generation of a case and its closing

• Open fraud
is the same indicator as "open" but only considers cases that were later identified as "fraudulent".

back to top

4.2 Investigation Reports

The table below lists all defined investigation reports. Investigation reports summarise case investigation activities on a daily or hourly
basis, respectively.
back to top

4.2.1 Investigation Report Definition

Investigation reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has several submandators.

• Type
Lets you select which type of report to be generated:

◦ Investigation daily/hourly report
This report provides an overview on case generation and case investigation (closing) performance. Depending on the selected
type IBM Safer Payments shows one line per hour or one line per day.

• Reference parameter
Lets you specify whether the results should refer to generated cases or to closed cases.

• Data range
Lets you specify the reporting time period.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Case Conditions
You may further restrict the cases to those whose reporting attributes and data satisfy certain criteria by defining conditions here.
If no conditions are defined, all cases satisfying the general settings (above) are included in the case class report.

back to top

4.2.2 Daily Investigation Report

The daily investigation report provides a quick overview on daily operations for all calendar days in the report period defined. Each day
of the reporting time period is printed as a row of the report. For each day, the following information is provided:

Created cases

Number of cases that were generated on that date

First investigated cases

Number of cases that were first investigated on that date

Not closed cases

Number of cases that were generated on that date but not yet closed as of now. For each case state, the number of cases is shown in
the respective column. In addition to case state statistics, the last column presents summary of the previous columns.

Closed cases

Number of cases that were generated on that date and are closed as of now. The numbers are shown according to sub-criteria and total
columns:

• Fraud
Number of cases closed with a close code classified as "fraudulent"

• Genuine
Number of cases closed with a close code classified as "genuine"

• Unknown
Number of cases closed with a close code classified as "unknown"

• Total
Total number of cases closed (sum of the previous three columns)

• Total bulk closed
Total of cases closed using bulk close functionality (part of the total sum, includes all close code classifications)

Key Performance Indicators

The columns provide key performance indicators on fraud prevention performance on cases generated on date:

• Investigation rate
Ratio of cases that could be closed with a close code classified as either "fraudulent" or "genuine" (not "unknown"). A high
investigation rate indicates that investigators can successfully determine whether or not generated cases are fraudulent.

• Hit rate
Ratio of cases that was closed with a close code classified as "fraudulent" versus all cases closed. It thus states what fraction of the
cases generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine" divided by the number of cases closed as "fraudulent".

Timing

The columns provide key statistical benchmark data on the response speed of investigation operations (based on cases generated on
date):

• Lead
Average time between case generation and first investigation (indicator of how quickly investigators picks up on cases)

• Work
Average time between first investigation of a case and its closing

• Open
Average time between generation of a case and its closing

• Open fraud
is the same indicator as "open" but only considers cases that were later identified as "fraudulent"

back to top

4.2.3 Hourly Investigation Report

The hourly investigation report provides a quick overview on daily operations for all full hours in the report period defined. Each hour of
the reporting time period is printed as a row of the report. For each hour, the following information is provided:

Created cases

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Number of cases that were generated during that hour on that date.

First investigated cases

Number of cases that were first investigated during that hour on that date.

Not closed cases

Number of cases that were generated during that hour but not yet closed as of now. For each case state, the number of cases is shown
in the respective column. In addition to case state statistics, the last column presents summary of the previous columns.

Closed cases

Number of cases that were generated during that hour on that date and are closed as of now. The numbers are shown according to sub-
criteria and total columns:

• Fraud
Number of cases closed with a close code classified as "fraudulent".

• Genuine
Number of cases closed with a close code classified as "genuine".

• Unknown
Number of cases closed with a close code classified as "unknown".

• Total
Total number of cases closed (sum of the previous three columns).

• Total bulk closed
Total of cases closed using bulk close functionality (part of the total sum, includes all close code classifications).

Key Performance Indicators

The columns provide key performance indicators on fraud prevention performance on cases generated during that hour on that date:

• Investigation rate
Ratio of cases that could be closed with a close code classified as either "fraudulent" or "genuine" (not "unknown"). A high
investigation rate indicates that investigators can successfully determine whether or not generated cases are fraudulent.

• Hit rate
Ratio of cases that were closed with a close code classified as "fraudulent" versus "genuine" or "unknown". It thus states what
fraction of the cases generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine" divided by the number of cases closed as "fraudulent".

Timing

The columns provide key statistical benchmark data on the response speed of investigation operations (based on cases generated during
that hour on that date):

• Lead
Average time between case generation and first investigation (indicator of how quickly investigation picks up on cases).

• Work
Average time between a case was first investigated and its closing.

• Open
Average time between a case was generated and its closing.

• Open fraud
is the same indicator as "open" but only considers cases that later are identified as "fraudulent".

back to top

4.3 Missed Cases Reports

The table lists all missed cases reports that are defined and for which you have access privileges. A missed cases report provides
information about wrong decisions when closing a case.

The report will return a case if the following is fulfilled:

The case class of the case has an aggregation attribute that is used in an index with a sequence, for example the aggregation attribute
is PAN and there is an account index defined on PAN which has a sequence. The case was closed as genuine or unknown, for example on
2021-05-01 12:00:00. There exists at least one fraud transaction in the sequence of the index and the value of the meta attribute
timestamp of this fraudulent transaction is within the defined time horizon when this time is compared to the close date of the case. For
example, if the transaction's timestamp is 2021-05-01 18:00:00 and the horizon is defined as 10 hours before and after, this would
return the case that was closed on 2021-05-01 12:00:00. If the fraudulent transaction would have a timestamp 2021-05-01 23:00:00,
the case would not be returned as this is not within the time horizon.

The reference parameter plus data range lets you define which cases should potentially be included in the report. For example, if you
choose “generated cases” it will only return cases generated during the defined data range.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

4.3.1 Missed Cases Report Definition

Missed cases reports have the following settings:

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has several submandators.

• Reference parameter
Lets you specify whether the results should refer to generated cases or to closed cases.

• Data range
Lets you specify the reporting time period.

• Case Classes
Only cases from the selected case classes will be included in this report.

• User accounts
Only cases closed by the selected user accounts will be included in this report.

• Time horizon before
A case is considered "missed fraud" (and thus included in this report), if a fraudulent transaction occurred within this time period
before it was closed "genuine" or "unknown".

• Time horizon after
A case is considered "missed fraud" (and thus included in this report), if a fraudulent transaction occurred within this time period
after it was closed "genuine" or "unknown".

• Report Attribute Conditions
You may further restrict the cases to those whose reporting attributes satisfy certain criteria by defining conditions here. If no
conditions are defined, all cases satisfying the general settings (above) are included in the case class report.

back to top

4.3.2 Missed Cases Report

The missed cases reports provides information about wrong decisions when closing a case. In order to learn from such wrong decisions
the report lists all the cases that had been closed as "genuine" or "unknown" but fraud is later on reported on the account. The columns
provide the following information:

• Case ID
Unique ID of a case

• Case Class
Case Class where the case was closed from

• Fraud Status
Status the case was closed with like "genuine" or "unknown"

• Closed on
Date when case was closed

• Closed by
User who closed the case

• Fraud on
Date of fraud

Each line refers to one case and a hyperlink function leads to the appropriate case details.

back to top

4.4 Investigator Reports

The table lists all investigator reports that are defined and for which you have access privileges. Investigator reports summarise case
investigation activities on a per user and per case class basis.

back to top

4.4.1 Investigator Report Definition

Investigator reports have the following settings:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Enabled
Lets you temporarily display or hide reports.

• Name
Name of report

• Comment
Description of report

• Mandator
Each report belongs to one mandator.

• Use data from
Lets you select which data source to use in case that one mandator has several submandators.

• Users
Lets you restrict the report to a certain amount of users being displayed.

• Case Classes
Lets you restrict the report to a certain amount of case classes being displayed.

• Data range
Lets you specify the reporting time period.

• Case Conditions
You may further restrict the cases to those whose reporting attributes and data satisfy certain criteria by defining conditions here.
If no conditions are defined, all cases satisfying the general settings (above) are included in the case class report.

back to top

4.4.2 Investigator Report

The investigator user report provides a comparison of the individual performance of investigators. The report lists each user with an
investigation privilege as one row. For a user that had activity with cases generated in the time period, a subsequent row is shown for
any case class that had activity. These rows are indented and the case class name is displayed in the left column to provide a detailed
breakdown of a user's activity. For each user, different types of information are provided:

Investigation actions

Number of investigation actions per case state taken by the user within the reporting period. For the case class detail rows, if the case
class has changed because of alarm aggregation, the case is reported in the last assigned case class. Notice that each action is counted
separately, that is, if a user opened a case in one state, and changed the state by executing a transition, these actions will be reflected
in both state columns.

Investigation results

The columns detail the user's performance within the reporting period for closed cases by the categories:

• Fraud
Number of cases closed as "fraudulent"

• Genuine
Number of cases closed as "genuine"

• Unknown
Number of cases closed as "unknown"

Key performance indicators

The columns provide key performance indicators derived from the investigation results (shown in the columns to the left):

• Investigation rate
Ratio of cases that could be closed with a close code classified as either "fraudulent" or "genuine" (not "unknown"). A high
investigation rate indicates that investigator could successfully determine whether or not generated cases are fraudulent.

• Hit rate
Ratio of cases that was closed with a close code classified as "fraudulent" versus "genuine" or "unknown". It thus states what
fraction of the cases generated actually turned out to be fraud.

• False positives
Ratio of cases that could be closed with a close code classified as "genuine" divided by the number of cases closed as "fraudulent".

back to top

4.5 Message Report

The table lists the volume of all messages of the different MTIDs by the time period in which they were processed by IBM Safer
Payments. It contains a column for each MTID that was processed, and a row for each time period.

Integration with IBM License Metric Tool

IBM Safer Payments generates IBM Software License Metric Tag (SLMT) files. Versions of IBM License Metric Tool that support IBM
Software License Metric Tag can generate License Consumption Reports. Read this section to interpret these reports for IBM Safer
Payments.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Each instance of a running IBM Safer Payments environment generates an IBM Software License Metric Tag file. As there is no master
instance, the same SLMT file is created for each instance.

Customer has to select one SLMT file and ignore the others, as the data provided in there is identical and each file covers the whole
environment.

The metric type monitored is RVU. The value is refreshed at least once a day within the end of day job.

About the RVU metric

The metric RVU has different subtypes.

• Subtype transactions
The value reported for this metric is the number of all transactions of all instances per month. The counter resets at the beginning
of every month. This means, that even the time period of a single SLMT file is just one day, transactions are counted from the
beginning of the month.

• Subtype accounts
This subtype is currently not measured with IBM Safer Payments and therefore no SLMT file is created for accounts.

The IBM Software License Metric Tag file is in the /rep directory of each instance configuration.

back to top

5. Investigation

This chapter covers the investigation function of IBM Safer Payments.

back to top

5.1 Case Investigation Workflow

This chapter covers the case investigation workflow of IBM Safer Payments.

back to top

5.1.1 Case Selection

This section enables a quick definition of selection criteria for investigation cases to be displayed in the section below.

• Mandators
Defines which mandators' cases are to be displayed. This selection is only shown when you have the privileges to see cases from
multiple mandators.

• Case classes
Defines which case classes' cases are to be displayed. This selection is only shown when you have the privileges to see cases from
multiple case classes.

• Generation date
Restricts investigation cases shown to a specific generation date (time) interval. Leaving an entry field empty implies no restriction
on the generation date.

• Case states
Restricts display of cases to certain states.

• Investigators
Defines which investigators' cases are to be displayed. Notice that not assigned cases are always displayed. To change this, use the
case state selection criteria. Notice that this checkbox only appears if more than one user is defined for this mandator.

• Working queues
Restricts display of cases to certain working queues. Cases that are not associated with any working queue are always displayed.
You can uncheck all working queues to see not associated cases. Notice that this selection criteria only appears if there are working
queues defined for this mandator. Working queues are defined on the page Administration -> Case management -> Working
queues.

• Case score
Restricts investigation cases shown to a specific case score interval. Leaving an entry field empty implies no restriction on the case
score.

• Case selection conditions
Restricts investigation cases shown to all cases that satisfy the defined conditions. All reporting attributes that belong to the
selected case classes and case variables can be used in case selection conditions.

Remarks

• Notice that with each choice, the investigation case table shown in the section below is reloaded with the updated cases.

• Depending on the "auto-refresh" settings ("administration" tab, "system configuration" page), this page reloads periodically to

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

update with potentially new cases.

• For all selections in this section, you will be presented either with a check box list or a drop down multi-select box, depending on
the number of choices. You can define the number of choices above which the drop down multi-select box is shown rather than the
check box list as user preference on the "my account" page.

• If you change the case class selection all previous defined conditions are removed.

back to top

5.1.2 Investigation Cases

The table shows all cases according to the selection criteria.

The following columns are always shown:

• Case ID
This is an internal identification number in IBM Safer Payments. Each case will be assigned a unique value, a higher number always
indicates a later generation, although the numbers are not sequential. The main use of this number is to provide a unique
identification of a case.

• Case class
Name of the case class to which this case belongs.

• Mandator
Name of the mandator to which this case belongs (if there are multiple mandators).

• Working queue
Name of the working queue this case is associated with.

• Investigator
Name of the investigating user to whom this case is assigned.

• Generated on
System timestamp of first alarm that is consolidated in this case.

• Last action on
System timestamp of the last action performed to this case.

• Case score
Highest case score meta attribute value of the alarms consolidated in this case.

• Hits
Number of alarms consolidated in this case.

• Case state
Name of the current state of the case as defined per case workflow settings.

• Last case state
Name of the last state of the case.

• Memo
Free text memo containing information about the case which is edited by the investigating user.

• Case close code
For cases that has been closed this column shows the case close code which was used by the fraud investigator. Case close codes
are defined on the page Administration -> Case close codes.

• Fraud status
Each case close code is mapped to one of the principal fraud statuses "fraudulent", "genuine", or "unknown". When a case is closed
the respective fraud status of the case close code is shown in this column.

The remaining columns are the reporting attribute values of all case classes to which cases in this table belong.

To work on a case, you can either double click on a row to open a full investigation page, or you can click the right mouse button on a
row to list all actions for which you have privilege to execute. Depending on your privilages, the following actions are available:

• Investigator actions

◦ View
Same as double clicking, but opens the investigation page in "view-only" mode.

◦ Investigate case
Opens the investigation page (same as double clicking).

• Supervisor actions

◦ Take over case
Takes over a case that is currently in a follow up queue for a different user. This action can be executed on a single case at a
time.

◦ Interrupt case
Interrupts a case that is currently being investigated by a different user. Interrupted cases are taken from their investigators
and automatically set to state "New". This action can be executed on multiple cases at once.

◦ Execute case transitions
You may click on rows using the pressed [Shift] or [Ctrl] keys to select multiple rows individually or sequentially. When
multiple rows are selected, you may right click on one of the selected rows to list available bulk transitions that can be
executed on all selected cases in one step.

Remarks

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Notice that you can sort the investigation table by clicking on column headers. To sort for more than one column, simply click the
columns in sequence (the former "inner" sorting will remain). Sorting preferences are stored with your user's account.

• The maximum number of cases shown on this table is limited by the general IBM Safer Payments setting. You can change this
setting from the system configuration page.

back to top

5.1.3 Case Search

The case search page lets you quickly find a case based on the value of one of its reporting attributes. Simply select the reporting
attribute from the drop down menu, and enter the value in the entry field right of the drop down menu. Formatting characters like digit
group separator and decimal separators will be removed automatically. The only exception here is when you are searching by case id.
The hyphen in case ids is mandatory.

back to top

5.1.4 My Working Queues

This section provides statistical information about cases of the selected working queues.

The following information is provided:

• Number of cases
Number of cases contained in the selected working queues.

• Oldest open case
The age of the oldest case in days contained in the selected working queues.

• Average age
Average age of cases in days contained in the selected working queues.

• Included case classes
Names of different case classes whose cases are included in the selected working queues.

• Included case states
Names of different case states that are included in the selected working queues.

back to top

5.2 CPPs

The table shows all CPPs according to the selection criteria defined in the selection above.

The following columns are always shown:

• Case group
Name of the case group the CPP belongs to.

• Mandator
Name of the mandator to which this CPP belongs (Mandator is determined by case group).

• Name
Name of the CPP.

• Comment
Comment of the CPP.

• Status
Current status of the CPP:

◦ New
CPP has not been opened.

◦ Investigated
CPP is currently being worked on.

◦ Follow up
CPP has been postponed for later follow up.

◦ Due
CPP has been postponed for follow up and is due to be re-opened now, or is overdue.

◦ Closed
CPP has been closed.

• Active
Indicates, if CPP is active or inactive.

• Inherit to submandators
Indicates, if case group of CPP inherits to submandators. If this is the case, submandators of the listed mandator are able to view
this CPP and create CPPs for its case group.

• Created by
User that created the CPP.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Created on
System timestamp of date the CPP was created.

• Created by
Last user that has edited the CPP.

• Created on
System timestamp of date the CPP was last edited.

• Associated cases
Amount of cases that are associated with the CPP.

• Closed as fraudulent
Amount of cases that are associated with the CPP and were closed with fraud status "fraudulent" .

• Closed as genuine
Amount of cases that are associated with the CPP and were closed with fraud status "genuine" .

• False alarms
Rate, that indicates how many associated cases have been closed with fraud status "genuine" in proportion to cases the CPP is
assigned to.

• Sum of evaluation attribute
In the case group definition of the CPP is an attribute specified as evaluation attribute. This value refers to the sum of all values of
this attribute that occurred in associated cases that were closed as "fraudulent".

Remarks

• Additional columns are shown, if CPPs contain values for reporting attributes.

• Queries can be executed from within the table by clicking respective index attributes.

• CPPs must be active to be used.

• Notice that you can sort the investigation table by clicking on column headers. To sort for more than one column, simply click the
columns in sequence (the former "inner" sorting will remain). Sorting preferences are stored with your user's account.

back to top

5.2.1 CPP

The configuration of CPPs

• Active
A CPP can be active or inactive. Inactive CPPs cannot be assigned to cases.

• Name
The name of the CPP.

• Case group
The case group the CPP belongs to. The mandator belonging of the CPP is determined by the case group. Please note that the case
group cannot be changed afterwards.

• Status
The status of the CPP

• Comment
A comment which is added to the CPP. Comments do not influence computation and are informational only.

• Reporting attributes
CPPs can have multiple reporting attributes. You can choose the attributes you would like to assign and fill in values for each
attribute in the appended form fields. Please note that you have to choose a case group first.

back to top

5.3 Queries

The table lists all queries that are defined for which you have access privileges.

Queries allow you to create any kind of extraction on transaction data stored in IBM Safer Payments. Queries defined here can be used
in other parts of IBM Safer Payments, for instance to show past transaction records in case investigation.

back to top

5.3.1 Investigation Query

Investigation queries have the following settings:

• Enabled
Lets you temporarily display or hide a query (notice that disabled queries are not shown on other pages where queries can be
selected; they are still shown in the table below).

• Mandator

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Each query belongs to one mandator. Once created, mandator ownership does not change.

• Query type
IBM Safer Payments supports different types of queries:

◦ Ad hoc
This is the standard query type that returns all transaction records that satisfy the criteria defined. In spite of its name, the
"ad hoc" query is always stored for future use when executed and must explicitly be deleted if not wanted anymore.

◦ Index
The "index" query type in addition takes the value of an indexed attribute as a parameter. It is typically used to define a
transaction table for case investigation where the parameter would be the cardholder number or the merchant id. If you
execute an "index" query from this page, IBM Safer Payments prompts you for the parameter value; if you execute such a
query from another part of IBM Safer Payments, the value is automatically provided.

◦ Hyperlink
This type of query is similar to an "index" query. It is automatically executed when you click on an index value in a query
result table.

• Index
For "index" and "hyperlink" type queries, this references the index to be used.

• Name
Name that will be shown with the query results.

• Comment
Used to describe the query. The comment is displayed to users at various places and may thus contain further explanations.

• Number of records
Limits the maximum number of records to be displayed to avoid excessive query computation length. Also notice that depending
on your network infrastructure, the type of browser and computer used by the end user, the amounts of data generated by IBM
Safer Payments could be overwhelming. If you have set IBM Safer Payments to use more than one thread to compute a query, the
final number of records shown may actually be larger than this number.

• Include DDC
If enabled, the query will also use DDC, not just MDC. This may severely impede query computational performance.

• Hide summary statistics
The summary statistics for the query table can be disabled by checking this option.

• Highlight CPP attributes
If enabled, attribute values that occur in CPPs will be highlighted in the query result table.

Query data selection

The data selection for queries allows for both choosing an interval and additional conditions. Refer to the section help pages for more
information.

Select columns / column sequence

Allows to select which columns are to be displayed with the result of the query and how they should be arranged.

Extract template

Allows to define how the transaction data is put together in a string when a user is using the context menu function "extract data" on
the query result table. Within the template fixed strings can be combined with variable attribute values.

example:

Arcot | {Amount} | {Merchant Name}

This template appends the transaction amount and the merchant name to a fixed string "Arcot", each separated by |.

A user could now select one or more rows in the query result table. By clicking on the context menu function "extract data" a new dialog
is opened and displays a string in which the variable attributes of the template are filled with the respective transaction data. This string
can now be copied to the clipboard [Ctrl]-[C].

Result set display

The results of a query when executed from this page are shown on a new page. If a query is used in another part of IBM Safer
Payments ("embedded query"), the result table is shown as part of this page. In both cases, you may define which columns and in
which sequence the columns are shown. The width of each column can be modified in the query result table.

back to top

5.3.1.1 Query Data Selection

Data selection lets you choose which mandator's data shall be included (if a choice from multiple mandators can be made) and lets you
define interval and additional conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Records relative (records from-to with respect to last inserted record)

• Server time absolute (from-to timestamp interval)

• Timestamp relative

Notice that the timestamps are taken from IBM Safer Payments server time at the time the record was created within IBM Safer

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Payments (meta attribute "System time"), which is when the originating transaction was received (either as transaction message via the
IBM Safer Payments message and command interface (MCI) or as file record processed via the IBM Safer Payments batch data interface
(BDI)). If the record was later changed, for instance as merging target, this record timestamp value is never changed. Notice that these
timestamps must thus not be the same as the time when the transaction actually was made (typically the "point of sales" type
timestamp, a separate meta attribute "Timestamp" in IBM Safer Payments), since the transaction may have been received by IBM Safer
Payments later (as in the case of batch data). If you instead require the "Timestamp" meta attribute to be used as a condition for your
data selection, you must define it as a condition below. In this case, you should still consider using (applicable) time limits for the meta
attribute "System time" as this allows IBM Safer Payments to sometimes significantly speed up the execution.

You may further restrict the records to be included using record specific attribute value conditions. Refer to their section help pages for
more information.

back to top

5.3.1.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

5.3.2 Masterdata Query

Masterdata query definitions have the following settings:

• Index attribute
Select the index dimension to which the masterdata element is associated.

• Value
Enter the value of the index attribute for which the masterdata should be displayed. Formatting characters like digit group
separator and decimal separators will be removed automatically

back to top

5.4 Group By Queries

The table in this section lists all group by queries that you can access.

Group by queries can be used to obtain statistical information about the indicators of a certain attribute. For each distinct value of the
defined attribute that is stored in IBM Safer Payments' data caches, a statistical summary will be created. It displays the number and
amount of genuine and fraudulent transactions as well as sums and averages. Additionally, it provides the possibility to analyse which
accounts were encountered for which distinct value.

Group by queries can also be used to evaluate the performance of your current models. You can do so by using the option "Rule
performance". This will collect the data of all rules that are defined with the setting "Performance report".

back to top

5.4.1 Group By Queries

On the upper part of the form, IBM Safer Payments provides a table of existing group by query results. You can access past query
results by clicking on the respective row. The number of entries is limited and can configured.

Group by queries have the following settings:

• Name
Name that will be shown with the query results.

• Comment
Used to describe the group by query. The comment is displayed to users at various places and may thus contain further
explanations.

• Mandator
Each group by query belongs to one mandator. Once created, mandator ownership does not change.

• Rule performance
If you would like to use this group by query to analyse the performance of your model revisions, you can do this by enabling this
setting. Enabling rule performance analysis will override your group by attribute settings as these are mutually exclusive. To select
a rule for performance analysis, you need to define the respective value on its definition form.

• Group by attribute
To analyse the fraud distribution among the values (categories) of any attribute, you can select this attribute here.

• Account analysis
Account analysis will prepare a breakdown which accounts had transactions containing the grouping value.

• Include DDC

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

If enabled, group by queries may access data that is available only on disk. Note that this might have severe impact on
performance and that it is thus not recommended to activate this setting.

• Show graph
If enabled, a graph will be appended to the result table. It is recommended not to use this setting for group by query results that
have more than 10 groupings.

Timing analysis

The timing analysis setting will provide trending analysis for group by queries. You can select both the timestamp attribute and the
resolution of the analysis:

• Timestamp criterion
This attribute will be used for the trending analysis. Typically, the meta attribute timestamp is used here.

• Resolution
Select which resolution will be used for the timing analysis. The resolution is calendar based, so if you select a daily resolution, all
records that took place on the same day will be treated identically.

Group by query data selection

The data selection for queries allows for both choosing an interval and additional conditions. Refer to the section help pages for more
information.

back to top

5.5 Common Point Queries

The table lists all common point queries that are defined for which you have access privileges.

Common point queries can be used to find equal values in transactions for certain index values.

Example:

There are three customer IDs 43211234, 12345678 and 87654321. The attribute CustomerID is indexed and has a sequence. The index
has five entries for 43211234, three entries for 12345678 and two entries for 87654321.

CustomerID Amount MerchantID Fraud

43211234 7.20 B3456 false

43211234 7.20 B3456 false

43211234 7.20 B3456 false

43211234 7.20 X1234 false

43211234 57.20 A7890 true

12345678 7.20 A4321 false

12345678 7.20 X1234 false

12345678 57.20 A2345 true

87654321 7.20 X1234 false

87654321 57.20 A6578 true

A common point query would find following common points for the common point attribute MerchantId:

MerchantID Common points Index values

X1234 3 3

B3456 3 1

A4321 1 1

A2345 1 1

A6578 1 1

A7890 1 1

X1234 was found in 3 transactions, it has 3 common points. All 3 common points had different customer ID, so this entry has 3 index
values.

B3456 was also found in 3 transactions, it has 3 common points too. But all transaction had the same customer ID, so there is only 1
index value for B3456.

All three customers have reported fraud for transactions with different merchants, but they all have one transaction with merchant
X1234 as common point. It could be possible, that this merchant has leaked payment information and was the root for the following
three fraudulent transactions.

back to top

6. Monitoring

This chapter covers the monitoring function of IBM Safer Payments.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

back to top

6.1 Index Based Evaluations

The table lists all index based evaluations that are defined. Whether or not you can view or change index based evaluations is
determined by the mandator roles you are granted.

Index based evaluations can be used to analyse historical data for each node of a given index and create alarms when certain conditions
are fulfilled. Typically the index either represents an account or a customer, so index based evaluations can be used to implement KYC /
AML procedures.

• An index based evaluation uses calendar profiles, events and masterdata to define alarm generation conditions.

• Calendar profiles are not used directly but via calendar computations defined within the index based evaluation.

• Index based evaluations also support multiple relations between two indexes e.g. between customers and accounts. In such a
setup the index based evaluation runs through each primary index node (e.g customer) but checks the alarm generation conditions
for each of their associated index nodes (e.g. accounts).

• Users who have the privilege can execute index based evaluations using a Job of type "Execute index based evaluation". A single
job can execute a number of index based evaluations. Each evaluation will run isolated from the others so there will be no
interaction between them.

◦ Each index based evaluation must reference a case class of type "index based evaluation".

◦ Created cases contain the result of each calendar computation defined in this index based evaluation at job execution time.

The following actions can be performed by using the context menu (right click)

• Open definition
Open the definition of an index based evaluation.

• Copy
Copy the definition of an index based evaluation to create a new index based evaluation with the same values.

• Delete
Delete selected index based evaluation. This can also be applied to multiple rows.

back to top

6.1.1 Index Based Evaluation

This page describes the configuration of an index based evaluation.

• Enabled
Only enabled index based evaluations will be executed by a job. Disabled evaluations will be skipped and can't be selected for new
jobs.

• Name
Name of the index based evaluation.

Note: The name must be unique.

• Comment
Comments are for documentational purposes only. It is advisable to comment the index based evaluation in a detailed way, so that
the decision logic remains easy to understand.

• Mandator
Each index based evaluation is assigned to a mandator.

• Alarm type
Defines if the index based evaluation should create cases, notifications or both.

• Case class
A case class of type "index based evaluation" must be selected to create cases.

• Case score
A case score greater than or equal to 0 must be entered to create cases.

• Notification
The notification to be sent. The available options depend on the selected mandator. Since index based evaluations are based on an
index node, the message template can only reference attributes (using {attribute name}) and masterdata (using [[masterdata
attribute name]]) belonging to the index or associated index (see section help for "Evaluate Multiple Values").

• Index
An index needs to be chosen. When not evaluating multiple values this index decides which masterdata, events and calendar
profiles are available.

• Evaluate Multiple Values
Enabling this allows you to evaluate multiple values for each node of the primary index. A typical example would be to evaluate all
customers and their associated accounts. Please see the section help for further information.

• Calendar Computations
You may define one or more calendar computations to be used in the conditions below. Calendar computations become available in
the conditions when all of their fields are filled with valid values.

• Alarm Generation Conditions

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

You may define one or more conditions that have to be met during execution of the index based evaluation to determine if an
alarm should be created or not. You can use masterdata, events and calendar computations belonging either to the index or, when
evaluating multiple values, the associated index.

back to top

6.1.2 Evaluate Multiple Values

Enabling this allows you to evaluate multiple values for each node of the primary index. A typical example would be to evaluate all
customers and their associated accounts. To do this you would select an index on the customers as the primary index and use the
additional options in this section to set up the associated data to evaluate.

• Multiple value masterdata
Here you select a multiple value masterdata defined on the primary index which stores the values you want to evaluate for each
node of the primary index. In our example you would select a masterdata containing all accounts for each customer.

• Associated index
To find calendar profiles, events and masterdata associated with the values stored in the multiple value masterdata, you need to
select an associated index to use. In our example this would be an index on the accounts. When selecting a multiple value
masterdata defined with an associated index this field will be automatically filled out if it has been empty before.

• Relationship Conditions
If the multiple value masterdata has relationship attributes you can define conditions on those to limit the associated index nodes
that are evaluated. In our example you could use this to evaluate only accounts the customer is actually the owner of. When no
relationship condition is defined, all associated index nodes belonging to the primary one will be evaluated.

Alarm Generation Conditions and Multiple Value Evaluation
When evaluating multiple values using the options above, alarm generation conditions will be evaluated for each associated index node
belonging to a given primary index node. In our example all accounts for each customer would be evaluated as long as they fulfill the
relationship conditions, if there are any. There are a few things to be noted:

• Calendar computations are calculated for each associated index node and then combined using the aggregation type defined.
Those final values are then used to evaluate the alarm generation conditions.

• Masterdata and event values are evaluated for each associated index node. An alarm generation condition is fullfilled when at least
one of those nodes matches it.

back to top

6.1.3 Calendar Computations

Calendar computations are intermediate values based on calendar profiles that can be used in the alarm generation conditions below.
They become available in the conditions once all fields have been filled with valid values. Use the button [New calendar computation] to
create new computations. Once created, each computation can be deleted using the [Delete] button in its top right corner.

back to top

6.1.4 Calendar Computation

Calendar computations are intermediate values calculated using a calendar profile. They can be used in the alarm generation conditions
after all fields are filled with valid values. They offer the following settings.

• Name
The name of the calendar computation.

Note: The name must be unique within this index based evaluation.

• Calendar profile
The calendar profile the computation uses. Only calendar profiles belonging to the index or the associated index (when evaluating
multiple values) are available.

• Period value
Calendar computations can either use the amount or the frequency stored in each period of the chosen calendar.

• Computation type
Defines how the values of different calendar periods are combined.

• Aggregation type
Only visible when evaluating multiple values. Defines how the computation results for each associated index node will be
combined.

• Past periods
The number of past periods this computation should use. Calendar periods are denoted by numbers: the value "0" corresponds to
the current period, the value "1" to the first past period, and the value "(n-1)" corresponds to the oldest period (n is the "number
of periods" as set in all calendar profiles' definitions). There are two ways you can define periods:

◦ n
If you just specify a single number, exactly this calendar period is used for the rule calculation.

◦ n~m
If you specify a number interval, all calendar periods of this interval are checked separately if they meet the rule. Notice that

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

this interval is inclusive, for instance, if you define "3~5", the calendar profiles' period settings is (are) "monthly" and the
most current transaction was in mid-December, the periods checked in the rule would include the past months July, August,
and September of this year.

back to top

6.2 Defined Risk Lists

The table lists all defined risk list definitions that are defined and for which you have access privileges.

Defined risk lists provide the possible to maintain attribute values (entities) that are either associated with high risk (block lists) or low
risk (allow lists). While they are similar to model lists, there are a number of substantial differences:

• Most importantly, defined risk lists are not bound to model revisions, their entries exist independently. As a consequence, adding
or deleting a defined risk list entry becomes effective immediately.

• Defined risk list entries are typically maintained by users that are involved in investigation tasks rather than by users that are
involved in model generation.

• While lists within the model provide multiple operators such as starts/ends with, contains, or close to, defined risk list entries are
only checked using the equal to operator. However, it is possible to define additional conditions which have to be satisified for each
entry individually.

• While model lists create a new model attribute, defined risk lists assign the "output attribute value" to the "output attribute". The
"output attribute" in this definition typically is another model "input" attribute.

• It is possible to easily add a start and an end date for each entry. With that it may be useful to have several entries with the same
value. During computation all entries of a list are evaluated.

• Each entry on a define risk list can be disabled/deleted individually.

• Defined risk lists are optimized for large sets of entries.

Whether or not a user can view/change entries in defined risk lists is determined by the mandator roles he is granted.

The following actions can be performed by using the context menu (right click)

• Open definition
Open the definition of a defined risk list at the below the table.

• Copy
Copy the definition of a defined risk list to create a new, similar defined risk list.

• Enable/Disable
Enable/Disable selected defined risk lists.

• Delete
Delete selected defined risk lists. This can also be applied to multiple rows. Please note that you can disable defined risk lists
instead of deleting them if you want to reuse them at a later time.

back to top

6.2.1 Defined Risk List Definition

The following settings are available to configure a defined risk list:

• Name
Name that will be shown to access this defined risk list in the left navigation menu of the monitoring section.

• Comment
Used to describe the defined risk list.

• Priority
Using priorities it is possible to control the sequence of defined risk lists within a mandator. Defined risk lists within a mandator are
evaluated in ascending order of the priorities. Possible priorities ranging from 1 to 10,000. Please note that first defined risk lists of
mandators on higher levels within the mandator hierarchy are evaluated. Priorities only influence the sequence of defined risk lists
within a mandator.

• Mandator
Each defined risk list belongs to one mandator. Once created mandator ownership cannot be change.

• Input attribute
Determines for which attribute the defined risk list is defined.

• Output attribute
Defines which attribute is set by the defined risk list. This is typically an overwritable input attribute to the model revision.

• Enable category selection
If the output attribute has categories, it is possible to choose the output attribute value per entry from the existing categories of
the output attribute by checking this checkbox . In this case the output attribute value that is selected for this risk list, will be used
as default output attribute value for new entries.

• Output attribute value
Defines the value which is assigned to the output attribute if a transaction matches the entry of the defined risk list.

• Expires
If enabled, each entry can be (optionally) configured together with an expiration date. Expiration dates can be configured for each

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

entry individually.

• Default life time
If expiration dates are enabled, IBM Safer Payments provides the possibility to configure a default life time. If new entries are
added to a list, the default expiration date will be the current date plus the configured default life time.

• Starts at
If enabled, each entry can be (optionally) configured together with a starting date. Starting dates can be configured for each entry
individually.

• Explanation
The explanation text is displayed for users maintaining the defined risk list. You may thus use it to include specific instructions for
the defined risk list.

• Limit access
If enabled, the access to the entries of this risk list is limited to certain users.

• Access authorized users
These are the users who may access the entries of the defined risk, if limited access is enabled. The entries of the risk list are not
visible to users who are not selected here.

Enable for rule actions

Defined Risk lists can be enabled for rule actions. Using rule actions it is possible to automatically add entries to this defined risk list.
Rule actions can be defined for any rule configured in the model. The following settings are available for the generation of entries by rule
actions:

• Comment
A comment which is added to each generated entry.

• Label
A label which is added to each generated entry facilitates the identification for future search operations. (E.g. "Created by rule
action")

• Enabled
Defines whether entries created by rule actions are enabled or disabled. Disabled risk list entries are ignored during computation.
You can disable defined risk list entries instead of deleting them, if you need to re-use the entry at a later time.

• Replace existing entries
If this checkbox is enabled, existing entries with the same input attribute value as a newly generated entry will be deleted and
replaced by the new entry. If disabled, it is possible to have multiple entries with the same value.

• Filter criteria
Each entry of a defined risk list can be configured with additional conditions. Conditions that are defined in the section 'Filter
Criteria' apply to generated entries. If additional conditions are defined only transactions that match the value for the input
attribute and that satisfy all filter criteria are assigned with the configured output value.

Remark

In case "Expires" is enabled for this defined risk list, make sure that a proper default life time is defined since the default life time is
applied as the expiration date for all entries created by rule actions.

back to top

6.3 Defined Risk List Entries

This table lists the defined risk list entries.

Defined risk lists provide the possibility to maintain lists of attribute values (entities) that are either associated with high risk (block
lists) or low risk (allow lists). While they are similar to model lists, there are a number of substantial differences:

• Most importantly, defined risk lists are not bound to model revisions, their entries exist independently. As a consequence, adding
or deleting a defined risk list entry becomes effective immediately.

• Defined risk list entries are typically maintained by users that are involved in investigation tasks rather than by users that are
involved in model generation.

• While lists within the model provide multiple operators such as starts/ends with, contains, or close to, defined risk list entries are
only checked using the equal to operator. However, it is possible to define additional conditions which have to be satisified for each
entry individually.

• While model lists create a new model attribute, defined risk lists assign the "output attribute value" to the "output attribute". The
"output attribute" in this definition typically is another model "input" attribute.

• It is possible to easily add a start and an end date for each entry. With that it may be useful to have several entries with the same
value. During computation all entries of a list are evaluated.

• Each entry of a define risk list can be disabled/deleted individually.

• Defined risk lists are optimized for large sets of entries.

Defined risk lists offer several functions that are explained below:

• Import entries from a file
Importing alert lists provides the possibility to quickly add entries to a defined risk list without manually creating them.

• Add a new entry
You can add a new defined risk list entry manually.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Download table content as CSV-file
All entries that match the selection criteria of "Risk List Entries Selection" will be exported to a CSV-file. In case the selection
contains sensitive data the CSV-File will be exported as part of an encrypted zip archive.

• Delete all entries that are currently shown
All entries that match the selection criteria of "Risk List Entries Selection" will be deleted.

• (De)activate all entries that are currently shown
Allentries that match the selection criteria of "Risk List Entries Selection" will be (de)activated. Entries that are already
(de)activated will stay (de)activated.

• Audit trail
All changes made to a defined risk lists are stored within the audit trail. Access to the audit trail is controlled by the respective
mandator roles of users.

Whether or not a user can view/change entries in defined risk lists is determined by the mandator roles granted to users.

Remark:
The maximum number of rows which are displayed in the table is limited due to browser limitations. The maximum number of displayed
rows can be configured on the page "Administration > System configuration > Defined Risk Lists".

back to top

6.3.1 Defined Risk List Entry Definition

The configuration of defined risk list entries

• Value
The value of the defined risk list entry. Please note that you cannot change the value of an existing entry.

• Output attribute value
If the output attribute of the defined risk list has categories and category selection was enabled in the defined risk list's definition,
the output attribute value can be chosen from the output attribute's categories per entry. The preselected value is the default
output attribute value of the defined risk list.

• Comment
A comment which is added to the entry. Comments do not influence computation and are informational only.

• Label
A label which is added to the entry. Usually a label is used to provide additional information. (E.g. "Import August 2013")

• Enabled
A defined risk list entry can be enabled or disabled. Disabled risk lists entries are ignored during computation. You can disable
defined risk list entries instead of deleting them, if you want to re-use the entry at a later time.

• Starts at
In case the 'start at' option is enabled for the defined risk list, this field configures the starting date for the entry. The entry is valid
once the starting date is reached (inclusive). In case this field is empty, no starting date is applied.

• Expires at
In case the expiration of entries is enabled for the risk list, this field configures the expiration date for the entry. The entry is
expired once the expired date is reached (inclusive). In case this field is empty, no expiration date is applied.

• Filter criteria
Each entry of a defined risk list can be configured with additional conditions. If additional conditions are defined in the section
'Filter Criteria' only transactions that match the value for the input attribute and that satisfy all filter criteria are assigned with the
configured output value.

back to top

6.3.2 Defined Risk List Import

Importing risk lists provides the possibility to quickly add entries to a defined risk list without manually creating them. The import file is
expected to have one entry in every line and it has to be encoded in UTF-8. The input value has either to be followed by a line break /
space character or the value has to be encapsulated in quotes. In case it is followed by a space character all characters between the
space character and the line break are ignored. A header is not needed, in case a header exists it will be imported as a normal line.

• Label
A label which is added to each entry facilitates the identification for future search operations. (E.g. "Import August 2013")

• Comment
A Comment which is added to each entry.

• Enabled
A defined risk list entry can be enabled or disabled. Disabled risk list entries are ignored during computation. You can disable
defined risk list entries instead of deleting them, if you need to re-use the entry at a later time.

• Starts at
In case the start of entries is enabled for the risk list, this sets the starting date of the entries. The entry is valid once the starting
date is reached (inclusive).

• Expires at
In case the expiration of entries is enabled for the risk list, this sets the expiration date of the entries.The entry is expired once the
expiration date is reached (inclusive).

• Replace existing entries

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

If this option is activated, all existing entries with the same value will be removed and replaced by the new entry. If this option is
not activated, another entry is added. In this case importing an already existing value to the risk list will lead to multiple entries
with the same value.

A click on the save button opens a window where the file to import can be selected. Once the file is selected the import starts
automatically. It is therefore important to fill in all fields before you select the file.
back to top

6.4 Compliance Lists

IBM Safer Payments supports all five elements of AML/CTF detection relevant to a payment processor:

1. Service risk classification

2. Customer profiling: hidden link analysis and usage classification

3. Geographical analyses

4. Transaction behavior

5. Monitoring of sanction/terrorist lists andpolitically exposed persons

While 1.-4. are implemented using standard IBM Safer Payments functionality within the model itself, IBM Safer Payments provides a
specific functionality to monitor sanction and compliance lists. The details of this functionality are provided within this documentation.

Configuration process

To set up monitoring of sanction and compliance lists, the following steps have to be executed:

1. Activate monitoring: As a first step, monitoring has to be activated on the page System Configuration. IBM Safer Payments
supports the OFAC sanction list, european sanction list, global watch list, United Nations sanction list, russian sanction list and the
list of politically exposed persons. The mentioned lists can be activated individually. For more information refer to the online help of
the respective section on the page System Configuration.

2. Specify raw data location: To be able to import activated sanction lists, the local storage of the raw data has to be specified on the
page Cluster.

3. Configure user privileges: Privileges to view, add and edit compliance lists have to be granted to users. These settings are done on
the page Roles. Refer to the respective online documentation for further information.

4. Import raw data: Sanction lists are imported to IBM Safer Payments during each startup. In addition, they can be (re-)loaded
manually by clicking the respective button on this page.

5. Define compliance lists: After these preliminary steps, users with respective privileges are able to configure compliance lists both
for processing real-time transaction and compliance ad hoc checks. To add a new compliance list, click on the button [New
compliance list] to open a configuration form. Refer to the online documentation of this form for detailed information about the
configuration of compliance lists.

Integration

Checks against imported sanction and compliance lists can be integrated into the real-time computation of incoming messages (using
the BDI and/or MCI) or executed manually on demand by using the ad hoc check functionality. For both, automatic real-time checks and
ad hoc checks, it is possible to create cases to further investigate alarms. In addition, notifications can be used to send messages to
other systems or to create emails to be sent via SMTP in case matches are detected by IBM Safer Payments.

The workflow for automatic real-time checks is similar to defined risk lists. To integrate those checks into the real-time computation path
of incoming messages the respective xml elements (or csv columns) - such as name, passport number, etc - have to be mapped to IBM
Safer Payments input attributes. An additional attribute is needed to assign the computed score to. This attribute is then added to the
incoming transaction and can be used within models to create alarms, cases and notifications. Compliance lists are defined for a specific
mandator and can be restricted to types of messages by using computation conditions.

Compliance ad hoc checks are executed manually. This allows users to check people against sanction lists when this is needed. During
ad hoc check, all activated algorithms are executed and a final score is displayed in case of hits. Refer to the online documentation of
the page Compliance ad hoc checks for detailed information.

Compliance search also provides the possibility to manually search for sanction list entries. However, only the algorithm "starts-with" is
executed and no final score is computed. Refer to the online documentation of the page Compliance search for detailed information.

Scoring process

When compliance checks are executed, names are used as primary keys to search for entries matching the name. To find entries on
sanction lists matching the name sent within a message (or typed in manually for ad hoc checks) the following algorithms can be used.
Each algorithm is configured with a score. In case an entry is found with more than one algorithm, the highest score of all fired
algorithms is used:

• Direct
This algorithm is always executed and cannot be deactivated. It creates a hit when the incoming name matches a name on the
respective sanction list. The direct matching algorithm also uses some soft matching rules, e.g. double characters are reduced to
single characters ("ss"="s"), matching similar characters ("z"="s", "w"="v", "c"="k"). See Remarks section for additional matching
logic.

• Starts with
As an example consider the entry Chris Smith. This entry will result in a "starts-with" hit for both the input Christian Smith and
Chris Smither.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Metaphone
IBM Safer Payments provides the possibility to use a well known phonetic matching algorithm - Double Metaphone. Both names of
list entries and incoming names are translated to double metaphone keys. For example, both Christoph and result in the double
metaphone key KRST. Note that activating double metaphone algorithm can result in a huge amount of alarms. It is recommended
to only use double metaphone only in combination with other fields and to only create cases if other fields result in matches too.

• Levenshtein
The algorithm Levenshtein computes a similarity score based on the levenshtein distance. The computed similarity score ranges
from 0 (no similarity) to 100 (direct match).

Remarks:

• The order of names (first/middle/last names) does not affect the result for any of the activated algorithms. Hugo Christian Smith
and Christian Hugo Smith will result in a direct hit as well as Smith Christian Hugo. Names are splitted at white spaces and
activated algorithms are executed on each part of the name separately. Assume that lists contain complete names, incoming
names are considered a match when all parts of the incoming name result in a match for an entry. Consider the list entry Hugo
Christian Smith. All subsets of these three names, such as Hugo Smith and Christian Smith will result in direct hits, whereas Hugo
Christian Alexander Smith will not.

• Activating algorithms may influence the latency of the real-time process significantly. This depends mainly on the used algorithms
and the size of the raw lists.

• In case an entry is found by multiple algorithms, the highest score is used for further computations.

After list entries were found using names as a primary keys, additional fields are checked if they are configured to be used. In case of
matches for additional fields, such as passport number or date of birth, the configured score is added to the score which is computed
during the check of the names. This results in a final score for each matching entry. The final score of the compliance score, which is
assigned to the output attribute, is the maximum score of all matching entries. If a case is generated, all matching entries will be
displayed.

Transliteration

All cyrillic letters are transliterated to latin letters using the ICAO (2013) standard. This is done for both, entries on sanction lists and
incoming messages. This allows comparisons regardless whether cyrillic or latin letters are used.

Reload

During a reload of compliance lists, the raw data files (sanctions lists) for all configured compliance lists are imported and previously
imported lists are deleted. Make sure that the respective files are available on all instances and file paths are configured correctly on the
page 'Administration -> Cluster'. Note that a reload of compliance lists can take several minutes. Depending on your settings,
transaction processing might be interrupted during the reload process of compliance lists. Only users with the respective privileges for
compliance lists can trigger a reload of compliance lists. Reload of compliance lists is a global privilege that needs to be configured for
each user account.

back to top

6.4.1 Compliance List

This page describes the configuration of compliance lists. For more information about compliance lists and their integration in the IBM
Safer Payments computation process, open the general online help page Compliance.

• Enabled
Compliance lists can be enabled or disabled. Disabled compliance lists are not executed for incoming messages. However, they can
still be manually executed using ad hoc checks.

• Name
Name of compliance list.

• Comment
Comments are for documentational purposes only. It is advisable to comment the compliance list in a detailed way, so the decision
logic remains easy to understand.

• Priority
By using different priorities it is possible to control the execution sequence of compliance lists. Similar to rulesets and rules,
compliance lists are computed in ascending order within each mandator.

• Behaviour
Indicates whether it is online or offline. Offline compliance lists check the masterdata against the chosen sanction list and are run
through the job scheduling function.

• Entity type
Within sanction lists entities are separated in individual and legal entities.

• Mandator
Each compliance list is assigned to a mandator. Similar to rules and profilings compliance lists are only executed for messages
which satisfy the mandator conditions. In addition only attributes which are accessible by the chosen mandator can be used for
compliance checks.

• Threshold
An integer value is needed in case it is an offline compliance list. If the threshold is exceeded, a case will be created.

• Case Class
A case class is needed if it is an offline compliance list to create cases when threshold is exceeded.

• Score
A score for the case needs to be defined in case it is an offline compliance list.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Type
The type of list that will be used for sanction screening. Different types of lists can be configured under Administration -> System
configuration.

• Output attribute
Specify an attribute which is used as an output attribute for this compliance list. This attribute has to be defined in the model (as
an input attribute) and has to be accessible by the chosen mandator.

• Index
In case it is an offline compliance list, an index needs to be chosen to be able to get the associated masterdata.

• Maximum number of hits
To limit the time which is needed by compliance checks, a maximum number of hits can be defined. IBM Safer Payments will stop
the computation of compliance lists as soon as this number of hits is reached. Note that this can reduce the latency significantly
but it can lead to situations where some potential hits are not recognized.

• Additional matching algorithms
There are other algorithms available in addition to the default matching algorithm which is always executed and performs a string
comparison between the incoming (or typed in) names and names from the sanction lists. These algorithms provide a "softer"
matching for example to be able to detect entries with a slightly different spelling. Note that the activation of such algorithms has
a big influence on the latency. Thus, contact the IBM Safer Payments support before activating any additional algorithms:

◦ Levenshtein: A similarity score ranging from 0 (no similarity) to 100 (direct match) is computed using the levenshtein
distance. When activating Levenshtein, a similarity threshold has to be configured. Entries with a similarity greater than the
configured threshold are considered as hits.

◦ Metaphone: Double metaphone keys are computed both for names included in sanction lists and for incoming names. These
keys are used for comparison. Using (double) metaphone, it is possible to detect names used with different spellings such as
Chris and Kris. Note that metaphone should only be used together with additional fields to avoid a large number of (false)
alarms.

◦ Starts with: Names are compared using the starts with operator. Christian and Chris are considered to be a match when
"starts-with" is activated.

• Ignore weak akas
If enabled, akas which are flagged as "weak" are ignored. This setting is only available for the OFAC sanction list.

• Attributes
This section lets you define which attributes should be used as name, street, city, country, passport number, and date of birth.
Note that the attributes together with their mappings have to be defined before they can be used within compliance checks. Values
sent within these messages are used for checks against the respective fields of the sanction list. Note that only name is mandatory
for compliance checks. All other fields are optional.

• Score settings
Each activated algorithm is assigned with a score (an Integer number greater than 0). Usually the scores are descending with the
"softness" (or matching accuracy) of the algorithm. In case an entry was hit by multiple algorithms, the maximum score is used.
For each additional field (besides the field name) a score is defined. This score is added to the already computed score. In case an
incoming message matches multiple entries on a compliance list, the highest score of all matching compliance list entries is
assigned to the output attribute.

• Computation conditions
By using computation conditions, it is possible to restrict the execution of this compliance list to specific messages satisfying the
computation conditions. With that, different compliance checks can be used for different type of transactions.

back to top

6.4.2 Compliance Ad Hoc Check

You can execute ad hoc checks using compliance lists that are already defined and imported to IBM Safer Payments. Unlike the search
functionality ad hoc checks evaluate the entered values in the same way as if they were sent within a message. That includes the
processing of all enabled algorithms and the scoring logic. However, please note that the deactivation of compliance lists is ignored for
ad hoc checks as well as computation conditions. To execute an ad hoc check at least a name is required. All other fields are optional.

• Computed lists
Defines which lists should be computed. It is mandatory to select at least one list to execute ad hoc checks.

• Name
You can enter the entity name to be checked against the selected lists.

• All other fields
Except the name field all fields are optional. If a value is provided in an optional field it will be used for scoring and add to the
overall score if there is a match. Empty fields and fields that are not enabled in the compliance lists will be ignored during
computation.

back to top

6.4.3 Compliance Search

This page provides the possibility to search within the raw data of all loaded compliance lists. Unlike ad hoc checks the search
functionality does not require a name. For example, it is possible to search for all entries from a specific country or with a specific
passport number.

Compliance search always uses a starts with algorithm to find matching entries. In case you want to use other search algorithms such
as Levenshtein please use the ad hoc check functionality.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Include list for compliance search
Defines which lists should be used to search for entries. Before using a list for compliance search the respective list has to be
loaded to IBM Safer Payments.

• Entity type
Defines whether individual or a legal entities should be listed.

• All other fields
Using all other fields you can restrict the search results to entries that match the entered values. Leaving an entry field empty
implies no restriction.

back to top

6.5 Merchant Monitoring Rules

The table lists all merchant monitoring rules that are defined and for which you have access privileges.

Merchant monitoring rules can be used to analyse merchants or acquirers by means of certain rule criteria. An example would be to find
merchants which have been inactive (for which no transactions occured) during a certain number of consecutive calendar periods.

• A merchant monitoring rule in general uses calendar profiles or attributes, time ranges and thresholds to calculate whether one or
more merchants met the rule.

• A rule uses one of several rule templates, each with its own input settings and its own calculation logic.

• For rules that use calendar profiles, the rule calculation logic takes amounts and / or frequencies of calendar profiles into account.
For rules that use attributes, the rule calculation logic calculates along a sequence of records.

• Users who have the privilege can add merchant monitoring rules to "Administration/Jobs" when using "Generate report" as "Job
type". With such a job csv exports can be created for the merchant monitoring rule. This export then contains the merchant
monitoring report. Multiple rules can be added to a single job.

Whether or not a user can view/change entries in merchant monitoring rules is determined by the mandator roles he is granted.

The following actions can be performed by using the context menu (right click)

• Open definition
Open the definition of a merchant monitoring rule at the below table.

• Copy
Copy the definition of a merchant monitoring rule to create a new, similar merchant monitoring rule.

• Delete
Delete selected merchant monitoring rules. This can also be applied to multiple rows.

back to top

6.5.1 Merchant Monitoring Rule

The following settings are available to configure a merchant monitoring rule:

• Name
Name of the merchant monitoring rule. On csv export it will be shown as "<type of the rule>: <name>"

• Comment
Used to describe the merchant monitoring rule.

• Mandator
Each merchant monitoring rule belongs to one mandator. Once created mandator ownership cannot be change.

• Type

Select between several types of rules. Each type provides its own input settings and follows its own rule calculation logic. In the
rule types input settings you can select an acquirer index, time range(s) and the respective calendar profiles and thresholds or
attributes. See the specific type's help for details.

You can select between the following types:

{0}

back to top

7. Model

This chapter covers the case model revision maintenance functions of IBM Safer Payments.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.1 Model Revision Selection

This section explains how a model revision is selected.

back to top

7.1.1 Mandator Selection

The table below lists available mandators. Click on the respective row to access all model revisions of the respective mandator.

The details of IBM Safer Payments revision control is described on the help page of the model revision selection below.

back to top

7.1.2 Revision Control

In IBM Safer Payments, all settings dealing with how decisions are made are contained in a so-called "model". Therefore changes to the
model can have significant effect on IBM Safer Payments operations. In order to control this, model changes are "managed" by a
revision control system to ensure that changes can be audited and reverted. This section lets you perform actions on all model revisions
of this mandator.

Filter settings

Let you select which model revisions are to be shown in the table using the drop-down list box above. Typically the "Active" setting is
the most appropriate for everyday work as it hides all retired revisions.

Revision actions

To perform actions on a single model revision, click right on the respective row to open a context menu that offers (some of) the
following actions:

• View
Open revision in read-only mode.

• Edit
Open revision for edit (causes the revision to be automatically reserved for the user until shared).

• Share
Removes the reservation for this user.

• Copy
Creates a copy of this revision as challenger.

• Golive
Initiates the promotion of this revision into production.

• Delete
Permanently deletes revision

• Compare revisions
To compare two model revisions, hold the [Ctrl] key and select the revisions using left mouse clicks. Then click right to generate a
report on the differences.

You may also open a revision by left-clicking on the respective row. If this revision was reserved for you, it will open in edit mode.
Otherwise it will open in view mode.

Revision control

In most IBM Safer Payments applications, the model revision is constantly changed. Most changes are intended to counter emerging
fraud patterns; others can be for various reasons, such as changes in the data structure or policy changes.

Nearly all such changes involve multiple elements, for instance a new counter is defined, an existing calendar profile is adapted, and a
few new rules are inserted. If these changes were to come into effect immediately, there could be unwanted side effects during the time
that the changes are made, and there would be no way to study the performance of the changed model beforehand. For instance, a
model change to catch a new fraud pattern may in fact catch this fraud pattern well, but may generate an excessive number of false
alerts, if it cannot be changed in advance.

Therefore IBM Safer Payments allows users to "accumulate" the element changes within a so-called "challenger revision", and only
accept them together into productive usage once all changes are complete and – typically – tested against past data to ensure that the
challenger performs better than the champion.

Revision lifecycle

A new IBM Safer Payments installation is created with one (top) mandator and one champion revision of this mandator. With the
champion revision, an initial model revision is defined. To perform statistical analyses on sample data and to check the performance of
the model designed, IBM Safer Payments provides simulation capabilities directly in the model maintenance functionality.

Once the champion performs as desired, the so-called "golive" process is started. This process involves two steps. First IBM Safer
Payments creates a "todo" list of every change this golive involves. These changes, and a detailed description of their consequences, are
printed out as a report for the user. The user may now either accept and confirm the changes or cancel the golive process. If the
changes are confirmed, the challenger becomes the champion. If the process is canceled, the challenger remains the challenger.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

IBM Safer Payments always only executes the settings of the champion revision. If no champion revision exists, IBM Safer Payments
ignores this mandator. If a challenger revision exists, the golive of a challenger promotes this challenger to be the new champion, and
demotes the champion to be retired.

It is important to notice that if multiple challengers existed when one challenger was promoted to champion, the respective other
challengers are invalidated. This is because once new challengers are derived from the now new champion; these old challengers could
be inconsistent.

At any given time, there can be any number of challengers and any number of retired revisions per mandator, yet there can only be one
champion revision.

Only challenger revisions can be edited and simulated. Challengers can be considered "candidates" that would be promoted to
champions once they are considered to improve performance.

Challengers are created either automatically from scratch (with the addition of a new mandator), or as copies from champions or other
challengers.

Because challengers are "work in progress", they can also be deleted. Any revision that was ever in production (i.e. a champion) may
never be deleted, for auditing purposes.

The golive process in a cluster is described here.

Model inheritance

As pointed out in structural configuration, within a mandator structure, model revisions inherit all elements of their head mandators (i.e.
all mandators on the path to the top mandator). Since each mandator in a mandator structure, however, has its own revision sequence,
this has some implications:

• Mandator challengers only inherit elements of the champion revisions of their head mandators.

• In a challenger of a head mandator, an element can only be deleted if it is not used by any champion or challenger of its associated
mandators.

Notice that the inheritable elements are listed in the table of the respective element type.

Info bar

Once a revision is opened, a vertical navigation menu on the left side of the page enables direct access to all elements of a model
revision revision. While viewing or editing a revision, a horizontal info bar also appears directly under the main IBM Safer Payments
navigation bar showing:

 Edit|View [RevisionNumber] RevisionName of MandatorName

so that users are never in doubt on which revision they are working.

Revision numbers

Within each mandator, all revisions are automatically numbered. The numbers are generated sequentially for challengers at the time
when they are generated as copy of a champion or another challenger to ensure that users have an easy way to tell the sequence of
revisions generated.

Editing revisions

Each challenger can only be edited by one user at a time. For this, a user must explicitly set a challenger into "edit" mode. From then
on, the revision remains locked to this user until the moment the user releases the lock ("share"). The locking is stored on disk, thus
even a reboot of IBM Safer Payments will not release the lock. There is no explicit way to force unlock of a revision, however, the locked
revision can always be copied as a new challenger.

Import/export

Because of the complex relationships between mandator revisions, IBM Safer Payments does not provide import/export features for
revisions. To exchange an IBM Safer Payments configuration, you will need to copy the entire contents of the "cfg" directory.

Auditing

Each revision control action can be logged in the IBM Safer Payments audit logs, where it is stored chronologically. In addition to this,
the Revision section of the Model page for each revision shows when and by whom a revision:

• is currently being edited,

• was last changed,

• has been promoted to production ("golive"), and

• has been retired.

Challenger status

A challenger model revision is where all the analytical and model generation/adaptation takes place. Because of some major
computational steps behind these steps, there are a number of status and status changes considered with each challenger.

On IBM Safer Payments startup, all challenger revisions are put into Simulate status (the same is true for a challenger revision that is
generated as a copy of the champion revision). In Simulate status, the MDC values for all profiling output attributes are computed from
the data of the input and profiling output MDC of the current champion (notice that simulation is limited to MDC available data to ensure
that real-time performance is never compromised). This step is called "simulation" as it simulates a situation in which the respective
attribute had always been there.

The typical usage for this is for a fraud analyst to devise for instance a new counter, and via simulation, be able to perform analyses on
this counter output attribute value distribution, generate rules using this output attribute, and simulate performance of the model
revision including this new profiling item.

During simulation, the model revision is not available for editing to avoid user error based on incomplete data. Because simulation is
only performed in MDC, computation of simulation results is very fast.

If there are no profilings requiring simulations, the simulation step is skipped, and the revision status is set to Analyse. Here
distributions of all attributes as well as rule performance statistics are generated. Because of the IBM Safer Payments incremental
sample estimation technology, results are immediately available. Once the samples have reached 100%, the revision status is set to
Ready. In both statuses Analyse and Ready, the decision logic revision can be edited. Any change to the revision that could have
computational impact, however, restarts Analyses, or – if simulation is required – sets the status back to Simulate.

Once rule generation is started for a ruleset of a revision, the status is set to Generate Rules, and – with the exception of the generated
rules themselves, no part of the decision logic can be edited until rule generation is completed.

Once a challenger is retired or promoted to champion, all simulation and analyses results are automatically discarded.

Status bar

Whenever you work with a decision logic revision, the small dark gray horizontal line under the main menu bar tabs is widened and
provides quick information about the revision you are working with. These are the information parts for the various statuses:

• Performing simulation [n] RevisionName of Mandator
Computation of simulated attributes in progress, view only.

• Edit (analyzing) [n] RevisionName of Mandator
Computation of analyses in progress, editing possible.

• Edit [n] RevisionName of Mandator
Standard edit mode.

• Generating rules [n] RevisionName of Mandator
Rule generation in progress, view only.

• View [n] RevisionName of Mandator
View only, no simulation, and no rule generation.

Notice that the status bar does not automatically update.

back to top

7.2 General Revision Settings

The upper section of the "general" page of a model revision provides the same actions for this revision in its toolbar as the context
menu (right click) on the revision in the model revision table of the model tab page:

• Save
Save name and comment settings.

• Share
Unblock this model revision (so that other users can edit it).

• Copy
Create a copy of this model revision (and reserve it for edit by me).

• Golive
Initiate golive process by checking the necessary modifications and providing a report on all changes (this report must then be
confirmed to initiate the actual golive process).

• Model revision print view
Generate a model revision report in a new browser window. You can choose the scope of the report.

• Delete

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Deletion of this model revision.

Notice that the actions available depend on the status of the model revision and your privileges. Refer to Revision Control for details.

The remainder of the section lets you name and comment this model revision, and view its status, and when and by whom it was set to
a certain status.

xDC Statistics

The subsequent sections of the "general" page of a model revision provide an overview on the main memory and disk memory usages of
the model revision.

The details on how IBM Safer Payments stores data is described in the Storage Architecture help page.

Audit Trail

The section Audit Trail shows an overview of the last 10 changes made to the currently viewed revision. Clicking the button in its toolbar
shows a detailed audit trail.

back to top

7.2.1 Inherited Inputs

Input attributes shown in this section are inherited from mandators that are above this mandator within the mandator hierarchy. You
may use these input attributes in the same way as the ones you define yourself (shown in a different section/table), but you may not
change them.

back to top

7.2.2 Own Inputs

Input attributes shown in this section belong to this mandator and you may add, delete, and change these input attributes if you have
the necessary privileges.

Notice that you must define mappings within this model revision to "connect" these input attributes to transaction messages coming into
IBM Safer Payments for the attribute values to be populated.

back to top

7.2.3 Inherited Outputs

Output attributes shown in this section are inherited from mandators that are above this mandator within the mandator hierarchy. You
may use these output attributes in the same way as the ones you define yourself (shown in a different section/table), but you may not
change them.

back to top

7.2.4 Own Outputs

Output attributes shown in this section belong to this mandator and you may add, delete, and change these output attributes if you
have the necessary privileges.

Notice that you must define mappings within this model revision to "connect" these output attributes to transaction messages generated
by IBM Safer Payments for the attribute values to be included in message responses.

back to top

7.2.5 Input Attributes

Each attribute whose value is delivered into IBM Safer Payments that shall be used for real-time decision making or case investigation
must be defined as an input attribute.

Notice that if you use a mandator structure, the rules of this decision logic may use all attributes defined in champion model revisions of
mandators above in the structure.

Each input attribute is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain. Notice that the attribute names
do not need to correspond to the variable names of data delivered to IBM Safer Payments; you define the relation between IBM
Safer Payments attributes and variable names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

remains easy to understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be in the MDC and
DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that are only used for
the evaluation of the current transaction and for which you do not need any history do not need to be stored at all. Notice that
your storage options determine how much main and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored of this attribute on disk.

• Overwritable
If checked, rules may overwrite values of this input attribute.

• Data type
IBM Safer Payments supports the data types:

◦ Boolean
Stores values of type "true/false" (stored using one Bit). If this attribute is not set its default value is "false". The default
mapping for delivered data is "1" for "true" and "0" for "false". The mapping of the boolean values can be changed through
preprocessings in "Mappings". Note: MDC or DDC capacity for boolean type attributes must be a multiple of 8.

◦ Numeric
Variable Byte length (0..8) signed numeric values with variable (0..6) decimals. Both settings determine the universe of the
attribute that is calculated in the same form. If this attribute is not set its default value is "nil" for display and "0" for any
computational use (as in a condition). You may also explicitly check this attribute for "nil" (empty) values in conditions.

◦ Text
Fixed length text values (configurable length). If this attribute is not set its default value is "nil" for display and "" (empty
string) for any computational use (as in a condition). You may also explicitly check this attribute for "nil" (empty) values in
conditions.

◦ Hexadecimal
Hexadecimal values (configurable length). Notice that the hexadecimal values can be up to twice as long as the Byte length
defined. If this attribute is not set its default value is "00..." for any computational use (as in a condition) and for display.

◦ IPv4
IP address (e.g. 127.0.0.1) values (stored using 4 Bytes). Addresses can be delivered and are displayed as a text of four digit
groups (0-255) separated by dots. Internally they are efficiently stored as binary information.

◦ Time interval
Two date and time values defining an inclusive interval (stored using 12 Bytes). Several types of date and time values are
supported but both sides of the interval must use the same one:

▪ Full timestamps

▪ Time only

▪ Day of the week only

▪ Day of the week with time

▪ Day of month and month only

▪ Day of month and month with time

▪ Day of month only

▪ Day of month with time

◦ Timestamp
Timestamp (date and time) values (stored using 5 Bytes).

• Formatted as
The formatting options are for display of values on the IBM Safer Payments pages (for examples in queries or case investigation).
Choices differ by data type:

◦ Amount
Using digit group and decimal separators as defined for each user's preferences (e.g. "12,345.67") for numeric attributes
only.

◦ Decimals
Using decimal separators as defined for each user's preferences (e.g. "12345.67") for numeric attributes only. This option
does not use digit group separators.

◦ ID
Using digit group separators as defined for each user's preferences (e.g. "123,456,789") for numeric attributes only.

◦ PAN
Using dashed quadruple format typically used for primary account numbers as embossed on cards (e.g.
"1234-1243-1243-1243") for numeric and text attributes only.

◦ No formatting
Shows data with no formatter applied.

Notice that timestamp type attributes are always formatted according to user's preferences.

• Encrypted
Encrypted attributes are stored on disk only in PCI DSS compliant format. User who do not have the privilege to view unmasked

data (global user privileges) will only see masked values of this attribute.

• Purge entries
If checked, purging of outdated entries is enabled.

• Length/decimals
Quantifies text and numerical data types:

◦ Numeric
Byte length of internal storage, ranging from 1 to 8, and decimals ranging from 0 to 6. The value range that the resulting
attribute can represent is computed live in the browser and displayed on the right.

◦ Text
Byte length of internal storage, with ASCII coded characters, this is exactly the maximum number of characters that can fit
into the attribute. Since IBM Safer Payments supports UTF-8 coding, non-ASCII characters may consume multiple bytes. For
example, special characters in non-English European languages, such as ä, ü , ö, ß, ê, é, è etc typically require two bytes; all
characters of Greek, Cyrillic, Coptic, Armenian, Hebrew, and Arabic require two bytes per character; and Chinese/Japanese
/Korean Unified Ideographs require three bytes per character. You thus need to size the byte length of text attribute values
according to the UTF-8 character encoding byte space requirements.

◦ Hexadecimal
Byte length of internal storage, thus any hexadecimal text value is twice the number of characters. For instance, the
hexadecimal value "FF" would internaly be stored by IBM Safer Payments using one Byte.

• Unit
Displayed with numeric values of this attribute. Typically used for currencies.

• Meta attribute
IBM Safer Payments needs to know which of your (freely configurable) attributes represent certain fraud prevention standard
attributes (aka "meta attributes") to render certain functions. Some meta attributes are mandatory (model revision will be refused
for golive if missing), while others are optional. Because most meta attributes have pre-defined data types, the choice of the meta
attribute depends on the type:

◦ Boolean meta attributes

▪ Fraud (mandatory)
Used to mark transaction records as fraudulent. The value of 0 is considered "not fraud", while any other value can
represent fraud or a fraud type. This attribute is read both for analyses and rule generation, and can also be set by the
investigation function.

▪ URID computation complete (mandatory for Serialize Computation/Access protection)
The URID computation complete attribute is used internally by IBM Safer Payments when processing mergings, to know
whether it is safe to use a transaction as a merging target.

◦ Numeric meta attributes

▪ Account
Used to identify payment entities, such as cardholders or account owners. Typically this attribute is the PAN or the
account number. This meta attribute can either be of numeric or text type.

▪ Amount (mandatory)
Used to identify the monetary value of a transaction record.

▪ Fraud (mandatory)
Used to mark transaction records as fraudulent. Using a numeric attribute as this meta attribute, two general
configuration options are available. If no categories are defined for the attribute, the value of 0 is considered "not
fraud", while any other value can represent fraud or a fraud type. As soon as one category is defined for the attribute,
all categories that have been defined to be a fraud category are considered "fraud". In this case all other values are
considered "not fraud". This attribute is read both for analyses and rule generation, and can also be set by the
investigation function.

▪ Message type ID (mandatory)
Used to differentiate different types of transaction records and messages. Used for instance in "Mapping" to identify
transaction message types.

▪ Primary instance ID
Used in an IBM Safer Payments cluster to identify the IBM Safer Payments instance that sets the primary URID (another
meta attribute). Notice that transaction records may have different URIDs in each IBM Safer Payments instance. In
order to uniquely identify each record, the primary URID in combination with the primary instance Id are used. Notice
that the length of this meta attribute is fixed at 1 (ID values from 1 to 127).

▪ Primary URID
URID set by the IBM Safer Payments instance that had processed this record as primary instance. Notice that the length
of this meta attribute is fixed at 8.

◦ Hexadecimal meta attributes

▪ Account
Used to identify payment entities, such as cardholders or account owners. Typically this attribute is the PAN or the
account number. This meta attribute can either be of numeric or text type.

◦ Text meta attributes

▪ Account
Used to identify payment entities, such as cardholders or account owners. Typically this attribute is the PAN or the
account number. This meta attribute can either be of numeric or text type.

▪ Email
If you use email/text notifications, this meta attribute indicates the attribute carrying the recipient's email address.

◦ Timestamp meta attributes

▪ Timestamp (mandatory)

This is the (IBM Safer Payments external) timestamp of the transaction. Typically this timestamp denotes the actual sale
date and time. This attribute is used by IBM Safer Payments to understand the sequence of transactions irrespective of
when they actually arrived in IBM Safer Payments.

▪ System time (mandatory)
This stores the IBM Safer Payments system timestamp that is automatically generated by IBM Safer Payments. This
attribute is used by IBM Safer Payments to understand exactly when the transaction was processed.

• Discard Future Timestamp
If checked, an attribute of type "Timestamp" will be discarded, if the timestamp is further in the future than the current timestamp
plus the defined offset. The offset's time format is a combination of days and hours in which an upcoming timestamp is still
regarded as valid.

Notice that if you use a mandator structure, mandatory meta attributes must be defined in the top mandator.

Remarks

• If you enlarge the size of an MDC (or enable MDC) in a challenger, during golive, the "missing" data will be loaded from DDC to
MDC.

• If you change the length or the number of decimals of an attribute all stored information will be lost once you start a golive.

back to top

7.2.6 Messages

Transaction data enters and leaves IBM Safer Payments as "messages":

• online transaction messages (those that require an immediate response such as authorization requests) use IBM Safer Payments's
message control interface (MCI), while

• offline transaction messages use IBM Safer Payments's batch data interface (BDI).

More information on these interfaces can be found at the Interfaces Overview.

In a typical IBM Safer Payments application, multiple data sources (and drains) exist that all send transaction message requests to IBM
Safer Payments. Since these messages typically stem from different source systems, they typically contain different data fields that
require mapping of message variables to IBM Safer Payments input and output attributes. They sometimes even contain different data
formats and hence require (possibly different) preprocessing.

Messages and mappings

IBM Safer Payments comprises full management capabilities for messages and mappings. Because the message definitions themselves
are model revision independent, messages are defined on a mandator basis within IBM Safer Payments administration. Messages are
inherited downwards within the mandator hierarchy. Based on the own and inherited messages defined, within each model revision, the
mapping of message variables to IBM Safer Payments attributes and any pre-/post-processing is defined.

The various data source messages are identified by a MessageTypeId (aka MTID), which is a (mandatory) IBM Safer Payments meta
attribute of numeric data type. Typical message types in an IBM Safer Payments application could include: authorization requests,
masterdata delivery transactions, posted transaction notifications, fraud alerts, chargeback notifications etc. Each different message can
have its own variable-attribute mappings and its own pre-/post-processing settings.

back to top

7.2.7 Mappings

In a typical IBM Safer Payments application, multiple data sources (and drains) exist. Frequently the IBM Safer Payments input and
output attributes must be mapped (and sometimes pre-/post-processed) to the variables of these data sources. IBM Safer Payments
thus allows for the definition of any number of messages from messages page on administration tab. For details refer to IBM Safer
Payments Messages Online Help.

For each message and each input/output attribute, you can define which variable name and pre-/post-processing shall be used with the
respective message. The respective table entry consists for XML/CSV/nested XML messages of alias
[preprocessing(preprocessingParameters)] and for FCD messages of start: length [preprocessing(preprocessingParameters)]. For nested
XML messages, the alias is represented by the sequence of elements that lead to the value starting from the root element. The different
elements within the sequence are separated by a forward slash character (root_element/child_element/sub_child). If you want to map
attributes, you would need to continue the sequence until the attribute (root_element/child_element/sub_child/attribute_key). In case
there are array elements, they will be numbered starting from the 2nd element (array_element/item_2).

The same applies to JSON, except that arrays are represented as [x] where x is the position of the element in the array. (Example:
transaction/order/items[0]/categories[0]/[0] for {"transaction":{"order":{"items":[{"categories":[["Books"]]}]}}})

In the table below, each row represents one IBM Safer Payments attribute.

Notes:

• Mappings of inherited attributes, recognizable through an entry in the Inherited from column, are not editable here.

• You can filter the attributes shown in the table according to their origin by selecting the respective option in the toolbar.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.2.7.1 Mapping

The following settings are available for mappings:

• The mandatory "alias" identifies the name of the message variable that shall be mapped to the row's IBM Safer Payments attribute
for XML online and CSV batch data deliveries.

• The mandatory "start" and "length" values let you specify the start position and length of this variable value of each data row for
FCD offline data deliveries. Notice that the first character in an FCD row corresponds to start position of '1'.

• The "preprocessing" lets you specify a method of processing for this variable before it is mapped to the respective IBM Safer
Payments attribute:

◦ Any data delivery pre-processings

▪ auto decimal
Any message value delivered with no decimal period gets a decimal period inserted before n-th character from the right.

▪ replace basic HTML entities
Replaces < > ' " & with < > ' " &. Other HTML entities will not be changed.

▪ counterfeit notes
Computes a score to be used in conditions based on a list of denominations to be filtered, a specified score increment
and a specified factor.

▪ IP to hex
Converts dotted-decimal IP address notation (127.0.0.1) to hexadecimal format (7F000001).

▪ replace
Defines n pairs of text values where the second text value replaces the first text value.

▪ replace substring
Each substring texta is replaced with textb in the value.

▪ substring
Cuts out the substring at a certain position with a certain length.

▪ timestamp
Accepts timestamp values of other formats than the standard IBM Safer Payments ISO format "YYYY-MM-DD
hh:mm:ss".

◦ Additional pre-processings for XML online and CSV offline data deliveries:

▪ concatenate
Appends the values of the listed variables(s) to this attribute.

▪ crc32 hash
Concatenates the values of the listed variables(s) and computes a crc32 checksum over the result.

▪ evaluate travel periods
Allows to perform a simple allowlist check for location and dates.

▪ convert currency
Converts the value using the integer variable value (alias) and converts it according to the integer rate and decimals.

▪ take if empty
If the alias defined is either not delivered with the transaction message or if it is delivered empty, a specific value is
used instead.

◦ Additional pre-processings for FCD offline data deliveries:

▪ append constant right
Appends a constant to the right of this attribute.

▪ concatenate
Appends parts of the FCD message together if multiple start length pairs are specified.

Pre-processings can be used with any attribute type as they operate on string level only. They are applied to both transactions
from batch files and from the message command interface.

back to top

7.3 Modelling

The process of creating model revisions assessing the likelihood of a transaction being fraudulent is referred to as "modelling". This
section thus comprises all tools needed for this task:

• Test
Testing allows to create "real-world like" transactions in a spreadsheet type metaphor, and have IBM Safer Payments compute its
intermediate and output attributes from this. It is thus a quick and easy tool to verify behavior and to perform "what-if" type
analyses.

• Simulation
Simulation allows for the computation of new and modified model elements as if they had been in place with past time periods. In
IBM Safer Payments, simulation is complemented with a large number of analytical tools to let you get a good understanding on
how the model performs with the data.

• Analysis
Statistical evaluation of original transaction data, derived attributes, and rule performance.

• Rule generation

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Automatic and assisted rule generation let you generate complete models from scratch or adapt existing models to emerging fraud
patterns.

These functions are directly available from the navigation menu left underneath the "Modelling" entry. The modelling page itself contains
general configuration items that are used in all modelling functions.

The attribute modelling section allows for each attribute to define how it shall be used in:

• Test,

• Simulation,

• Analysis, and

• Rule generation.

To allow for attributes to be easily found even in models with multiple hundreds of attributes, the toolbar contains filters:

• Show/hide inherited attributes (toolbutton)

• Filter for certain attributes (drop list selection)

Notice that the attribute drop list is divided into two sections "origin" and "message attributes". If you check any of the "origin" entries,
all attributes of this origin are shown in the table below. By selecting any of the (mandator defined) messages, all attributes that are
mapped (with this model revision) in the respective message are also shown in the table below. If you select inputs as well as outputs in
the origin section, the message section will be hidden, since you implicitly already selected all messages.

To change the modelling settings for test, analysis, and rule generation in details, simply click on the respective attribute row.

Remarks

Notice that you may highlight multiple rows in the table and open a context menu by a right mouse click. The context menu lets you
enable or disable the selected attribute for any of the modelling uses. If no modelling selections for an attribute had never been made
for this attribute, IBM Safer Payments will make an educated guess on the settings (that you can always change later); if previously
modelling selections were made, they are remembered.

back to top

7.3.1 Settings

This section covers modelling settings.

back to top

7.3.1.1 Modelling

Each modelling setting defines if and how both own and inherited attributes are to be used in attribute analyses and rule generation
(these settings do not influence how IBM Safer Payments makes decisions).

The choice of analysis model usages depends on the attribute's data type and on the nature of the attribute itself:

• Categoric
This is best suited for attributes that have values on a nominal scale. In other words, the values just label concepts, and the order
and absolute values have no meaning outside this. Typical examples include: merchant category codes, point of sale entry mode
codes, country codes etc. The "max computed indicators" field lets you specify the maximum number of categories to be
considered (to avoid overly lengthy computation times).

• Integer
This is typically used for attributes that represent a counter where the number of events to be considered differently is not
significantly higher than a few dozen (in which case the interval model usage might be better suited). The "max computed
indicators" field lets you specify the maximum number of values -- which then is also the highest value minus one -- to be
considered (to avoid overly lengthy computation times).

• Intervals
This is best suited for attributes with continuous values with a near uniform distribution. For analyses and rule generation with this
attribute, IBM Safer Payments creates a number of equally sized intervals. The value range in which the intervals are generated,
and the size of the intervals, are specified by the from/step/to settings.

• Logarithmic
Typically for all amount type numeric attributes. For analyses, this model usage creates logarithmic intervals using predefined 16
intervals of non-equal size.

• Quantiles
This is similar to the logarithmic model usage of analysis. However, while a pre-defined log scale is best for the kind of exploration
needed for analysis, for rule generation, the model usage "quantiles" is more appropriate as it creates intervals so that the total
value of fraudulent transactions is roughly the same for all intervals. Notice that this model usage cannot utilise multiple CPU cores
and may thus be significantly slower compared to other model usages. If you experience substantial slowdown, you may consider
using custom intervals instead.

• Custom Categories
This model usage lets you pre-define which categories are to be used. If you select this option, a section opens that lets you enter
the values. This section also contains a more detailed online help function.

• Custom Intervals

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This model usage lets you pre-define which intervals are to be used. If you select this option, a section opens that lets you enter
the values. This section also contains a more detailed online help function.

The setting "max selected indicators" lets you define how many (single) indicators IBM Safer Payments would list in a proposed rule
condition.

back to top

7.3.2 Test

Each model revision contains a "sandbox" type playground to test the revision's behaviour against data. You may (manually) enter any
number of test records, name them, and provide them with any values for the attributes involved in decision making. Clicking the
[Compute] button causes IBM Safer Payments to compute all non-entered values that are outputs of profiling or rules.

Test data records are stored permanently with the respective model revision (until they are manually deleted from the test page). The
records are therefore copied together with a model revision when it is generated as a copy of another revision.

Records are strictly sorted by their "system time" meta attribute values (therefore no two timestamp values may be the same). This
allows for profiling methods that consider time-sequences (calendar profiles, counters, events) to be computed from the test data
records. Test never considers production data from the MDC/DDC for any of its computations.

Usage

• To create a new data record, click [New record] above.

• To enter values, double-click on the respective field.

• The pen icon indicates an entered value.

• To erase a value, double-click on the field and just delete the value.

• Click [Compute] to calculate all records.

• Unset and uncalculated values are set to their default values, which are indicated by round brackets.

Mandators

The decision models of all mandators are taken into account when computing the records. A green square is shown in the column
header of each test record that satisfies the mandator conditions for the mandator this one model revision revision belongs to.

Force profiling outputs

If you like to test the decision rule's computation to certain attribute value conditions that involve complex profiling outputs to be
computed, you do not need to create all the records that result in specific profiling output attribute values. You rather may "force" them
to a value by simply entering a value in the respective attribute's field. Notice that forced attributes have the same pen icon as
entered input attribute values.

Remarks

• As soon as more than one test record is defined the meta attribute "system time" must be filled for every test record. All those
timestamp values have to differ by at least one second. This is because the test function must know the sequence in which test
records are to be considered. For a single test record this is not necessary.

• All entered values must be formatted using the same rules as used for transaction messages and batch file data. For instance,
timestamp values must be entered as "YYYY-MM-DD hh:mm:ss", and numbers using the period as decimal character and no digit
grouping symbols or dimension characters (such as currency symbols) may be used. Boolean values must be entered as "1" for
'true' and "0" for 'false'. Hexadecimal values can be entered using any combination of both lower and upper caps letters, e.g.
"F0C4", "f0C4", and "f0c4".

• Computation considers the mandator hierarchy and mandator conditions:

◦ A test record is only computed if the mandator conditions are met

◦ If there are head mandators, their (champion) model revisions are computed before this (challenger) revision

• Computed values are stored as well. To re-compute, for instance after a rule change, click the [Compute] button on the test page.
To remove all computed values from the table, click the [Reset computed values] button.

back to top

7.3.3 Simulation

Simulation allows for the computation of new and modified model elements as if they had been in place with past time periods. In IBM
Safer Payments, simulation is complemented with a large number of analytical tools to let you get a good understanding on how the
model performs with the data.

In a nutshell, simulation computes attributes and rules that have not been present in the champion model for past transaction data as if
they had been present in the past. This includes both newly created and modified model elements. When simulation is first enabled, it
analyzes which model revision elements must be computed to simulate the attributes and rules defined on the modelling page. Once
simulation is computed, and a model revision element is changed, simulation is "stopped" automatically since results could be incorrect.
When simulation is restarted after a model revision change, it detects which elements do require recomputation and only re-computes
these.

Control

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

While which elements are to be simulated is defined on the modelling page, this page lets you control the actual simulation function
using two toolbuttons:

• Start simulation

• Stop simulation

The states of the icons represent the various states simulation can be in:

• Both icons disabled: simulation is locked since rule generation is under way.

• Only start icon enabled: simulation stopped and can be started.

• Only stop icon enabled: simulation is currently computed and can be stopped.

• Both icons enabled: simulation is computed. Clicking [Start simulation] refreshes the simulated data, clicking [Stop simulation]
deletes all results and frees memory resources.

Notice that during simulation, a progress bar appears next to the toolbuttons. Rest the mouse pointer over the progress bar for details.

Simulation methods

IBM Safer Payments supports different simulation methods to complement different simulation objectives.

• By record
This simulation method computes record by record so that any model revision element using any earlier record attribute value as
input or in a condition, will be computed correctly. The disadvantage is that no parallel computing is used which results, compared
to the computation method "in chunks", in a significantly lower simulation performance (speed in which results are available).

• In chunks
This simulation method computes each record analogous to the method "by record" but subsequent records are simulated in
parallel. The number of records which are computed in parallel is defined by the configurable number of simulation threads. In
most real-world applications, because of the throughput of transaction messages, there should be so many "other" transaction
messages between those of the same cardholder or merchant that feedback loops, for instance if a counter condition evaluates an
output attribute or a rule overwrites an (overwritable) input attribute, should be fully represented. If this assumption is not valid
for your application, you should use the simulation method "per record" instead.

Remarks

• IBM Safer Payments creates so-called "simulation MDC" as temporary storages for the simulated attribute's values that are
released when simulation is halted.

• An attribute is simulated when:

◦ it is enabled for simulation in modelling,

◦ has an impact change and lies in the path of a model revision element that is simulated (e.g. a counter and its output
attributes will be simulated, if the counter was changed with computation impact compared to the champion revision and the
counter attribute is used in a condition of a rule that is simulated),
note that the implicit simulation of elements in the path currently does not apply to PMML models so make sure to simulate a
PMML model when needed by enabling one of its outputs for simulation,

◦ it is used in a conclusion of a rule that is enabled for analysis.

• While simulation may take a while to be completed, during computation of the results, no partial results are available.

back to top

7.3.3.1 Model Simulation Data Selection

Data selection lets you choose which mandator's data shall be included (if a choice from multiple mandators can be made) and lets you
define interval conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Server time absolute (from-to timestamp interval)

Notice that the timestamps are taken from IBM Safer Payments server time at the time the record was created within IBM Safer
Payments (meta attribute "System time"), which is when the originating transaction was received (either as transaction message via the
IBM Safer Payments message and command interface (MCI) or as file record processed via the IBM Safer Payments batch data interface
(BDI)). If the record was later changed, for instance as merging target, this record timestamp value is never changed. Notice that these
timestamps must thus not be the same as the time when the transaction actually was made (typically the "point of sales" type
timestamp, a separate meta attribute "Timestamp" in IBM Safer Payments), since the transaction may have been received by IBM Safer
Payments later (as in the case of batch data).

back to top

7.3.3.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.3.3.3 Simulation Report

This report lists all actions that simulation will perform when you confirm this report. The color icons denote the type of report message:

• This represents a situation in which there is potentially data missing. Only proceed if you know that this does not render your
simulation faulty.

• This represents a situation in which IBM Safer Payments feels that you made sub-optimal choices. Only proceed when you know
that this is what you want.

• Describes an element that IBM Safer Payments has determined that requires simulation and thus computational effort.

• No color icon represents an element that IBM Safer Payments has determined that does not require any computational effort since
it is already available.

Notice that you may confirm simulation even if there are "red" marked entries since there are situations in which this makes sense.

back to top

7.3.3.4 Simulation Queries

The typical routine for adapting IBM Safer Payments to emerging fraud patterns is for the fraud analysts to experiment with modified
rules or new/modified profilings. This activity is performed on a challenger model revision to the current champion model revision.
Simulation is different from testing (on "test" page) as it involves (past) production data combined with results of profiling. This is why
there is an extra function for "simulation".

Simulation provides a query-type functionality that is different from investigation queries in the sense that it combines all champion
attributes with the (new) attributes of the respective challenger model revision.

Simulation is enabled and disabled from a toolbutton. If enabled, all applicable (new with this challenger) attributes are simulated.
During simulation, you may not edit the model revision to avoid inconsistencies.

Notice that once simulation results are computed, they are kept until you disable simulation. Even if you have performed changes to the
model revision in the meantime. To re-compute, disable and enable simulation.

Remarks

• Simulation computation works as a snapshot. When computation is started, the data record interval computed is from the current
last record backwards. You may therefore re-execute the simulation after a while to ensure that the most current set of data is
used for simulation.

• For champion model revisions, simulation is not available.

• Simulation requires IBM Safer Payments to create MDCs that exist while the model revision is in challenger status. IBM Safer
Payments checks that sufficient main memory is available before it executes simulation and in addition monitors main memory
availability through the respective SAI, however it should be kept in mind that improper use of simulation can exhaust the main
memory made available by the hosting server hardware.

back to top

7.3.3.4.1 Model Revision Simulation Query

Data selection lets you choose which mandator's data shall be included (if a choice from multiple mandators can be made) and lets you
define interval and additional conditions. The interval can be provided as:

• Records absolute (URID from-to interval)

• Server time absolute (from-to timestamp interval)

Notice that the timestamps are taken from IBM Safer Payments server time at the time the record was created within IBM Safer
Payments (meta attribute "System time"), which is when the originating transaction was received (either as transaction message via the
IBM Safer Payments message and command interface (MCI) or as file record processed via the IBM Safer Payments batch data interface
(BDI)). If the record was later changed, for instance as merging target, this record timestamp value is never changed. Notice that these
timestamps must thus not be the same as the time when the transaction actually was made (typically the "point of sales" type
timestamp, a separate meta attribute "Timestamp" in IBM Safer Payments), since the transaction may have been received by IBM Safer
Payments later (as in the case of batch data). If you instead require the "Timestamp" meta attribute to be used as a condition for your
data selection, you must define it as a condition below. In this case, you should still consider using (applicable) time limits for the meta
attribute "System time" as this allows IBM Safer Payments to sometimes significantly speed up the execution.

You may further restrict the records to be included using record specific attribute value conditions. Refer to their section help pages for
more information.

back to top

7.3.3.4.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.3.4 Analyses

Using existing and simulated data of past transactions, IBM Safer Payments lets you define multiple analyses. Each analysis has multiple
aspects that are computed and can be displayed by selecting the respective topic from the navigation menu left (below the entry
"Analyses"). In this context, an "analysis" is a definition of a subset (or all) the data stored or simulated in IBM Safer Payments.

While often, defining just one analysis is all you need, sometimes it can be highly useful to have IBM Safer Payments compute multiple
analyses at the same time:

• The definition of "training" and "verification" data selections is particularly useful when you create a fraud prevention model. A
significantly lower performance of the model (or a part thereof) can for instance indicate overfitting.

• Sometimes it is useful to separate your analyses by criteria as "transaction type" (e.g. card not present vs card present, regions,
merchant categories, card types, issuers). Since IBM Safer Payments computes all analyses in parallel, you simply can choose
which analyses are to be compared in each topic.

Note that only those records will be considered for analyses where meta attribute timestamp is not empty.

back to top

7.3.4.1 ModelAnalysis.helpHeader.selection

ModelAnalysis.helpText.selection
back to top

7.3.4.2 Analysis

This form lets you define an analysis.

Notice that only enabled analyses are actually computed.

Analysis control

• Save modifications and start analysis
Saves all modifications you made to this analysis and (re)starts computation. Previously computed results will be lost.

• Stop analysis
If an analysis is in status "Computing" or "Optimizing" this button lets you stop the analysis without discarding the results. Notice
that a stopped analysis cannot be continued.

Settings

• Rulesets
Only selected rulesets will be included in this analyis. There are a number of reasons for not including all rulesets:

◦ In certain applications, so-called "technical rules" are used. These are rules that do not detect fraud patterns but aggregate
data for different purposes. There is thus no point in analyzing the correlation of such rules with the occurrence of fraud and
hence the ruleset containing such rules typically are not included in modelling analyses.

◦ In large models, the number of rules and rulesets can be so overwhelming that reducing the scope of a modelling analysis
can be beneficial.

Remarks:

◦ You may analyze also inherited and final rulesets.

◦ Only enabled rulesets are available for selection. Not enabled rulesets are not being simulated and can therefore not be
analysed.

◦ During next simulation, all rules of the enabled rulesets and the belonging conclusion attributes will be simulated. All other
rules that change the simulated output attributes will be simulated as well. Additionally, other revision elements will be
simulated, if they have computation impact changes compared to the champion and are used in conditions of simulated
elements.

• Use simulation data selection
If enabled, the analysis uses exactly the same data selection as defined for simulation. Notice that editing the data selection is not
possible as long as this option is enabled.

back to top

7.3.4.3 Summary Statistics

Summary statistics provide a quick overview on the totals of the simulation/analysis data selection.

The following formulas are used:

• Total:

(Genuine + Fraud)

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Average:

(Amount / Records)

• Fraud ratio:

The ratio is calculated in base points (BP):

(((Fraud * 100) / Genuine) * 100)

The statistics include all records of the data selection of the analysis. The value of fraud is taken from the simulation result. Intercept,
case queue, notification and reminder are computed as follows:

• Summary/Marked intercepted/Marked not-intercepted: The value for intercept is taken from production and is not altered by the
current simulation.

• Rule fired: Only hits of rules that are enabled for analysis are counted. The hits are calculated based on the current simulation
result.

• Intercepted by this model revision: The value of intercept is taken from the current simulation result of the meta attribute
intercept. Note that all simulated rules have influence on this value, not only those which are enabled for analysis.

• Alarms/Notifications/Reminders generated: The computation includes only rules that are enabled for analysis. A record is counted,
if there was at least one hit of a rule that creates a rule action or the meta attribute is set after the analysed rules have hit.
Note that because only analysis enabled rules are taken into account, resetting a meta attribute by a higher prioritized rule that is
not included in analysis, will not be reflected by the result.

back to top

7.3.4.4 Attribute Analyses

Attribute analyses can be executed for all attributes which are defined in this model revision.

Modelling parameters (and if attribute analyses is enabled or not) is configured on the "modelling" page of this model revision.

Notice that attribute analyses use a sampling technique in which extrapolated results are instantly shown even when only a fraction of
the records are analyzed.

back to top

7.3.4.4.1 Attribute Analysis Chart

Attribute statistics are displayed graphically using bar/line charts. The options for these charts (display preferences, number of data
points displayed, sorting, etc.) can be set from the tools in the section header (from left):

• The two show/hide bars/lines toolbuttons let you choose how the analysis is displayed.

• The "type of analysis" drop list lets you select what should be shown on the vertical axes:

◦ Amount
Shows total amount of all records for this attribute value (record amount defined by "amount" meta attribute).

◦ Records
Shows total number of records for this attribute value.

◦ Ratio amount
Shows ratio of total fraud record amounts divided by total amounts of all records for this attribute value (BP: "basis point",
equal to 1/100th of a percent).

◦ Ratio record
Shows ratio of number of fraud records divided by number of all records for this attribute value (BP: "basis point", equal to
1/100th of a percent).

• Sorting criterion:

◦ With "amount"/"record" type analyses of categorical model usage attributes, the displayed values can either be sorted by
"fraud" or "genuine" amounts/records.

◦ With analyses of categorical model usage attributes, the number of categories to be displayed can be selected here. Notice
that the number of categories displayed can never be larger than the number of categories defined in the modelling
parameters of the attribute itself.

With dots, bar and line charts, blue indicates fraud (right scale) while yellow indicates genuine (left scale). You may rest the mouse
pointer over a dot/bar/line to display the exact values.

back to top

7.3.4.5 Rule Overlap

These statistics show the number of records from the selected analyses for which the conditions of multiple rules have applied, several
rules have intervened, and alarms, notifications or reminders were generated by several rules. A strong overlap (high numbers)
indicates difficulty in attributing a transaction interception to a single rule and thus should be avoided.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.3.4.6 Rules Performances

The rule performance analysis plots key performance figures for each rule over time. The total time interval is defined by the analysis
data selection entered.

You may select individually for which of the rules you like to see the analysis charted. Each ruleset defined therefore comes with its own
checklist in which you can either select "all" rules or individual rules.

back to top

7.3.4.6.1 Rule Performance

The chart in this section plots the key performance figures you select on the check list to the right hand side over time. The time
resolution can be changed by the drop list box in the toolbar, the time period can be changed by using the mouse to zoom into the
period (highlight section with pointer or use scroll wheel).

Remarks

• On the left hand side, a scale is shown for any performance figured checked. The grid of the chart, however, is only shown for the
first selected performance figure of the list.

• Hovering the mouse pointer over a data point gets you a readout of the exact value

• With weekly time resolution, the date value shown on the horizontal axis is the "wednesday date" of the respective week. The
week ranges from Sunday 00:00:00 before this wednesday to Saturday 23:59:59 after this wednesday.

back to top

7.3.4.7 Rule Analysis

Single rule statistics benchmark the performance of each rule as if this rule would be the only one existing.

There are several statistics available for each rule of the selected rulesets. Note that you have to select a data range defined on the
page 'Analysis'. All of the following statistics are computed based on the selected data range. IBM Safer Payments is using the
mandatory meta attribute 'amount' to compute statistics including amounts.

• Fraud transactions hit
Total number of fraudulent transactions hit by this rule.

• Genuine transactions hit
Total number of genuine transactions hit by this rule.

• Fraud amount hit
Total amount of fraudulent transactions hit by this rule.

• Genuine amount hit
Total amount of genuine transactions hit by this rule.

• Hit rate
Fraud amount hit by this rule divided by the total amount of fraudulent transactions within the selected data range.

• False alarm ratio
Number of genuine transactions hit by this rule divided by the number of fraudulent transactions hit by this rule.

• Saved amount per false alarm
Fraud amount hit by this rule divided by the number of genuine transactions hit by this rule.

back to top

7.3.4.8 Rule Optimization

Optimization analysis is based on single rule statistics. Hence optimization analysis does not start before statistics are completed. In
optimization analysis, IBM Safer Payments simulates from the current set of rules, which rules when taken away would "optimize" the
false alarm ratio to what extent.

IBM Safer Payments utilizes three different scenarios to compute the account based hit rate:

• After hit
Any fraudulent transaction that occurs after a fraudulent transaction of the account was directly hit by an intercept is included in
the calculation of the fraud loss prevented.

• After intercept
Any fraudulent transaction that occurs after a transaction of the account was hit by an intercept is included in the calculation of the
fraud loss prevented.

• Any intercept
Purely account based calculation, the computed fraud losses sum up all account fraud if any transaction of the account was hit.

back to top

7.3.5 Automatic and Assisted Rule Generation

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Standard model generation involves using statistical analysis to discover fraud patterns and a rule editor to create countermeasures.
While this is well supported by IBM Safer Payments, there are two more levels of rule generation supported by IBM Safer Payments:

1. Manual model generation

2. Assisted model generation

3. Automatic model generation

For level 2. and 3., IBM Safer Payments employs a rule generating algorithm that creates rulesets condition by condition and rule by
rule. The actual difference between level 2. and level 3. is that level 2. only suggests the next generation step and lets you modify IBM
Safer Payments' proposal or not follow IBM Safer Payments' proposal at all, while level 3. assumes just an acceptance of each proposal
and stops only once one of the stop criteria defined is reached. The remainder of this page provides some insight on how rule generation
works, the actual sections on the pages that contain the respective rule generation functions have their own online help pages that
contain usage details.

Indicators

Indicators are the smallest fragment of a condition and essentially are the possible values of an attribute (because a specific value of an
attribute can be an "indicator" of fraud or not). Examples of indicators are:

• "CountryCode = FR" (categorical)

• "NumTrx1h = 0" (linear) and

• "Amount = [1220; 1480]"

IBM Safer Payments rule generation creates a list of indicators of each model attribute that can be viewed by clicking right on the
respective row in the rule design table and selecting from the pop-up menu. This opens a dialog with a table where each row represents
one of the indicators.

Conditions

A condition is an aggregate of one or more indicators. In simple terms, it combines an attribute with one or more values, or an open or
closed interval (eg "MCC = 5141;5142", "MCC = 5142", "Amount > 1000", "Amount = [100; 600]", etc.).

Because a condition is the combination of all indicators selected, the condition can be seen and manipulated by selecting and deselecting
indicators.

For each step in the rule generation process, the rule generation function assesses the individual quality of each indicator and derives a
proposal for a condition. This process always starts by selecting one "seed" indicator for the attribute as the indicator with the highest
quality.

Relaxation

The subsequent step is called "relaxation". Relaxation means to add indicators to the condition. How relaxation is performed depends on
the type of attribute. With a categorical type attribute, any category is added that improves the quality of the condition. With linear and
quantilize attributes, only relaxation is only performed with "neighboring" values (if for instance an intermediate linear attribute is used
for model generation that counts shopping transactions within the past 48 hours, it would not make sense to add the indicator
"Shopping=18" to "Shopping=12").

Condition selection

Rule generation proposes one of these actions:

• Commit condition
In the rule design table, the respective condition row is highlighted in yellow and the [Commit condition] button is enabled. The
IBM Safer Payments recommendation is to add this condition to the currently designed rule.

• Commit rule
In the rule design table, no condition row is highlighted in yellow and the [Commit rule] button is enabled. The IBM Safer
Payments recommendation is to add the rule as defined by the pushpinned conditions to the ruleset and start creating the next
rule.

• No action
Both the [Commit condition] and [Commit rule] buttons are disabled in the rule design section, and no rule is highlighted in the
table. IBM Safer Payments recommendation is to stop rule generation based on the defined parameters.

Notice that automated rule generation can be enabled and disabled at any time. As long as automatic rule generation is disabled, you
may create rules by selecting indicators for conditions, conditions for rules, and rules for the ruleset.

Remarks

• Rule generation only uses the per-transaction fraud figures. Depending on the specifics of the data, the per-account fraud figures
may be quite different. However, since in general, rules that are good in finding per-transaction fraud are also good in finding per-
account fraud, this should be no problem in practical applications. To determine the exact numbers for per-account fraud, use the
account analysis function.

• Notice that all fraud figures shown in the generated rules table assume that each subsequent rule is used in addition to the one
before. If a rule is used "alone", it can have significantly different performance. Use the ruleset optimization analysis to find an
optimized sequence and subset of the generated rules. The rule generation function generates rules, the rule analyzer shows
optimal subsets of the rules for a decision logic.

• Generated rules are not automatically transferred to the decision logic as a matter of precaution. You select the import function at
the conclusion of the rule generation.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.3.6 Rule Generation Settings

The IBM Safer Payments rule generation function employs a number of complex algorithms to propose and generate rule conditions and
rules that detect fraud with high accuracy. Since each application has its unique fraud patterns and individual policy, the rule generation
algorithms can be fine-tuned to fit the specific needs by the parameters set in this form. Refer to the Automatic and Assisted Rule
Generation page for details on the approach behind this. Notice that the parameters that control rule generation that deliver the best
results are highly dependent on your application, the structure of your data and fraud patterns. Please consult the IBM Safer Payments
support for the best set of settings for your applications.

The settings on this page are:

Rule name / comment

These fields allow the entry of a text with variable elements that is used to name and comment the generated rules. Variable elements
include:

• {n}, {nn}, {nnn}
Number of rule in ruleset, {nn} fills it to two digits, {nnn} to three digits so they can be sorted by name.

For comments only, variable elements also include:

• {localtimestamp}
ISO formatted timestamp of the rule generation in the time zone of the user.

• {revision}
Number of revision.

• {timestamp}
ISO formatted timestamp of the rule generation in in UTC.

• {user}
Name of user.

Weighting (Default = 0.0, value range -0.999 to +10.0)

Weight determines how much IBM Safer Payments shall favor hit rate over false positives. The value of 0 is the default settings in which
IBM Safer Payments tries to consider a good compromise between both a high hit rate and a low false alarm ratio. If you decrease this
value below zero, rules will be preferred that have a low false alarm ratio. If you increase this value above zero, rules will be preferred
that have a high hit rate (Thus a rules set will have less rules the higher this value is).

Min false positives (Default = 1.0, value range 0.0 to 10.0)

In rule generation, sometimes indicators, conditions, or rules exhibit a very low false alarm ratio. The reason for this is often overfitting
because only a few transactions are concerned. As a result of this very low false positive rate, these elements would get a very high
evaluation that would steer rule generation "too much" toward these elements. Therefore this setting allows the setting of an
"indifferency" zone: any false positive value below this value is considered to be indifferent to this value by IBM Safer Payments.

Stop false positives (Default = 50.0, value range 1.0 to 500.0)

Automatic rule generation and rule generation proposals are stopped if the last rule generated has false positives equal or greater than
this setting. This setting is mostly used as a stop criterion for automatic rule generation as the creation of a rule with a very high false
alarm ratio usually is a signal that no good quality rules can be generated that improve the model performance.

Upper bound hit rate (Default = 50.0%, value range 1.0% to 100.0%)

Automatic rule generation and rule generation proposals are stopped if the total of rules generated hit this percentage value in hit rate.
This setting is mostly used as stop a criterion for automatic rule generation.

Max number of conditions (Default = 6, value range 1 to 12)

Defining a max number of conditions that are generated for each rule avoids the generation of overly complex rules. However, notice
that IBM Safer Payments rule generation may require that to get the false alarm ratio down more conditions must be allowed. If the
number of conditions is too limited, IBM Safer Payments may not be able to generate rules with a sufficiently low false alarm ratio.

Max hit (Default = 50.0, value range 0.1 to 100.0)

In rule generation, sometimes indicators, conditions, or rules exhibit a very high hit rate. The reason for this is often overfitting because
only a few transactions are concerned. As a result of this very high hit rate, these elements would get a very high evaluation that would
steer rule generation "too much" toward these elements. Therefore this setting allows to set an "indifferency" zone: any hit rate value
above this setting is considered to be indifferent to the value.

Max number of rules (Default = 50, value range 1 to 1000)

Number of rules to be generated as stop condition.

Min sample size (Default = 0.01%, value range 0.0% to 10.0%)

Ensures that only conditions are considered that cover at least this percentage of transactions of all training data transactions (genuine
and fraudulent). Increase this value if you experience that rules are generated that fit only very few transactions and thus are prone to
overfitting.

Min condition improvement (Default = 0.2, value range 0 to 10.0)

IBM Safer Payments uses a goal function for rule quality on a relative level. Adding a condition to a rule changes the quality value

determined by this function. This setting defines the minimum improvement to the quality value a new condition must bring to a rule for
it to be considered. Having a non-zero threshold ensures that conditions are only added to a rule if they provide significant improvement
of its performance. This ensures that rules remain both easy readable by a human and avoids overfitting. Increasing this value results in
fewer conditions per rule and potentially lower quality rules, decreasing this value results in more conditions and potentially overfitting.
If no condition would improve the current rule by this threshold, no condition is selected.

Min population quantise (Default = 1000, value range 10 to 10,000,000)

If the model usage for a continuous variable (ratio measurement scale) is "quantilise" and a number of quantiles to be generated is
defined (modelling), the number of quantiles will automatically be reduced if the defined number of transactions (genuine and
fraudulent) is fewer than this setting. This ensures that no indicators are generated (and conditions constructed from them) that have so
few records in them that overfitting is probable.

Min select hit rate (Default = 0.3%, value range 0.0% to 10.0%)

To avoid overfitting, rule generation will not recommend the selection, if the condition catches less than the defined part of the total
fraud. If none of the model attributes contains indicators that can be used to design a condition that catches more than the defined part
of the total fraud, rule generation proposes to end the construction of the rule. This criterion is hence crucial to define how fine vs.
coarse the generated rules shall be. By decreasing this parameter, the rules generated will in general have a lower false alarm ratio but
you will need more rules to catch the same total of fraud and thus may deliver better performance. Typically the rules will have more
conditions. More rules with more conditions make a less easy to read rule base and bear the risk of overfitting. The optimum setting of
this value depends on the structure of the fraud in your data.

Relax All Up Threshold (Default = 0.5, value range 0.0 to 10.0)

Some attributes represent indicators that are known to indicate a higher risk the higher their value is. Examples for this are counters
that identify risky circumstances with the previous transactions. Because frequently, the transaction histories involving high scores of
such indicators are rare even with large simulation data volumes, the rule generation function will create condition intervals with upper
bounds for such attributes, even though an interval with no upper bound would be more appropriate. You may choose to perform this
“relax all up” function automatically, using a lower value of this parameter. Rule generation compares the quality of the condition
interval with an upper bound to one unbounded. If the unbounded does not deliver a quality that is worse more than the value of this
parameter, the indicators are all relaxed up to an unbound interval. Notice that the unit of this parameter is the same as with the "min
condition improvement" parameter explained above.

back to top

7.3.6.1 Rule Generation Data Selection

This section defines which data is to be used for rule generation. Notice that you may return to this page from rule generation to either
check your settings or to change them. In the case that you change data selection settings, the selection is recomputed, which may take
some time.

Rule generation scenario

This setting defines the general scenario for which rules are generated:

• Ignore existing rules and ignore existing intercepts in records
Creates a fraud prevention model as if there were no records marked "intercepted" in the data and no rules were already defined.
Choose this scenario if you are creating a completely new set of prevention rules ("from scratch").

• Ignore existing intercepts but consider already defined rules of this model revision
Choose this scenario if there are already defined rules in this model revision that should be considered. This keeps IBM Safer
Payments from creating them (or similar rules) again.

• Consider already defined rules of this model revision and already existing records intercepts
In addition to records that are already hit with existing rules, this scenario also considers records that have a non-zero value of the
"intercept" meta attribute. Choose this scenario if you are in daily operations with IBM Safer Payments and you want the rule
generation to only suggest fraud countermeasures (rules) based on the evaluation of records that have not been intercepted in the
past (with whatever model revision was in production then) and that are not hit by rules already defined (and enabled) in this
model revision.

Verification

If enabled, IBM Safer Payments performs automatic verification of rule generation results. Enabling this checkbox opens a second data
selection subsection for the verification data. Typically you would select an initial time/data period for training, and a subsequent
time/data period for verification.

Verification results are displayed in green next to the training results (in black). Typically verification results are not as good as training
results. This is because the fraud patterns in the verification data selection are somewhat different to the fraud patterns of the training
data selection, and thus, the fraud countermeasures (rules) developed for the training data selection only perform to a fraction for the
verification data. This effect is called "overfitting", meaning that the rules fit the training data better than the verification data. It is an
inevitable part of any model generation. However it is important that the degree of overfitting is within limits because otherwise the
models you create with training data will not be useful.

Which degree of overfitting is acceptable (i.e. must be lived with) strongly depends on your application. Notice that overfitting is
strongly influenced by the rule generation settings and the profilings defined. Consult with the IBM Safer Payments support to identify
the proper settings and overfitting criteria for your application.

Training/verification data selection

These subsections allow for the definition of exactly which data is to be used for training/verification. The data range settings let you

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

select a from/to type range, and the attribute condition subsection lets you in addition to that also define per-record criteria.

Remarks

• Notice that the "performance" section (top table) of the rule generation page shows the totals resulting from this selection.

• More information on can be found on the Automatic and Assisted Rule Generation online help page.

back to top

7.3.6.2 Rule Generation

The upper section of the rule generation page shows the performance table, a collection of statistical data about the rule generation
process. It is only displayed once all results are completed. As long as the results are still computed, a progress bar is shown instead of
the results. You may also change the data selection and rule settings from here by clicking on the [Change data selection settings] and
[Rulesettings] icon.

Notice that if verification is enabled, all respective values in the table are shown underneath the training data values in green.

Columns

1. Total
Total amount (taken from the "amount" meta attribute) and number of all records that are fitting the training data selection criteria
defined.

2. Fraud
Total amount (taken from the "amount" meta attribute) and number of all records marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

3. Genuine
Total amount (taken from the "amount" meta attribute) and number of all records not marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

4. Statistics
Contains various derived performance indicators:

◦ Hit rate
Total fraud amount of this row's data selection divided by the total fraud amount in all records fitting training data selection
criteria.

◦ False positives
Number of genuine records falsely hit divided by number of fraud records correctly hit in all records fitting training data
selection criteria.

◦ Saved amount per false alarm
Monetary savings by fraud prevented for each false alarm endured (refer to Benchmarking Prevention Performance for
details).

◦ Intercept
Number of records hit divided all records fitting training data selection criteria (displayed as "basis points", 100 BP equals
1%).

Rows

1. All
All records that are fitting the training data selection criteria defined. Notice that the "hit rate" for this, by definition, is always
100%.

2. Marked intercepted in data
All records for which the "intercept" meta attribute is non-zero (in other words, that IBM Safer Payments in the past had
intercepted). Depending on the rule generation settings, these records are missing from row 4.

3. Intercepted by existing rules
All records for which any rule in the current model revision (and any inherited rules) fires (in other words, records that IBM Safer
Payments would mark intercepted with the current rules). Depending on the rule generation settings, these records are missing
from row 4.

4. Used for rule generation
All records that are used to generate the rules. These are either all records of row 1., minus the records of row 2., minus the
records of row 2. and 3. (depending on the rule generation settings).

5. Intercepted by generated rules
Performance of the rules already generated (these are the rules listed in the third section of this page). This row is only shown
when rules are generated.

Remark

More information on can be found on the Automatic and Assisted Rule Generation online help page.
back to top

7.3.6.3 Rule Designer

The middle section of the rule generation page shows the rule design table, where the actual rule generation mostly takes place.

Notice that even if verification is enabled, no verification data is shown. This is because verification data is about verifying the rule

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

design decisions, not influencing them.

Toolbar

• [Commit condition]
If enabled, IBM Safer Payments proposes (yellow highlighting) a next condition for the current rule (under construction). Clicking
this icon adds the condition to the rule.

• [Commit rule]
If enabled, IBM Safer Payments proposes to create a rule out of all conditions that are pushpinned. Clicking this icon adds the rule
to the set of newly generated rules.

• [Start fully automated rule generation]
If enabled, IBM Safer Payments lets you activate the automated rule generation mode in which each IBM Safer Payments proposal
is accepted. While the automated rule mode is running, the icon shows a small green dot. Clicking on it again, stops the automated
rule generation mode. You may then either create rules manually or start the automated mode again.

• [Change rule generation settings]
Allows you to change the rule generation settings during rule generation. Changing settings typically only results in minor re-
computation efforts.

• [Reset condition]
If you have created one or more conditions of the current rule, you can delete them by clicking this icon.

• [Hide/Show Attributes without selected indicators]
Adjusts the view of attributes to only show attributes with selected indicators or show all.

Columns

1. Attributes
Name of the model attribute. Add model attributes or remove model attributes by clicking the [Change attributes model usage]
icon above. Left of the attribute name, the blue arrow icon indicates that this attribute is proposed by IBM Safer Payments to be
used for the next condition (row is also highlighted in yellow); a pushpin icon indicates that this attribute has already been used as
a condition attribute in the current rule.

2. Usage
Attribute usage as defined in the modelling settings. Click the [Change attributes model usage] icon above to change.

3. Indicators
Delivers information about the indicators for this attribute:

◦ Selected
Number of indicators currently selected for the best condition IBM Safer Payments proposes for this attribute.

◦ Total
Total number of indicators found and considered by IBM Safer Payments for this attribute.

◦ Limit
Maximum number of indicators considered by IBM Safer Payments for this attribute.

4. Condition
Best condition IBM Safer Payments proposes for the respective attribute:

◦ Op
The condition operator.

◦ Constant
The condition constant.

5. Total
Total amount (taken from the "amount" meta attribute) and number of all records that are fitting the training data selection criteria
defined.

6. Fraud
Total amount (taken from the "amount" meta attribute) and number of all records marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

7. Genuine
Total amount (taken from the "amount" meta attribute) and number of all records not marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

8. Statistics
Contains various derived performance indicators:

◦ Hit rate
Total fraud amount of this row's data selection divided by the total fraud amount in all records fitting training data selection
criteria.

◦ False positives
Number of genuine records falsely hit divided by number of fraud records correctly hit in all records fitting training data
selection criteria.

◦ Saved amount per false alarm
Monetary savings for fraud prevented for each false alarm endured (refer to Benchmarking Prevention Performance for
details).

◦ Intercept
Number of records hit divided all records fitting training data selection criteria (displayed as "basis points", 100 BP equals
1%).

Rows

Each row represents one model attribute. The IBM Safer Payments rule generation algorithm creates at each step a possible condition

for each attribute/row that it considers the best "it can make from this attribute". Which of the conditions/rows it considers as best next
steps is highlighted in yellow.

You may now accept any of the conditions for the current rule by selecting a row and using [Commit as condition] from the context
menu, you may accept the highlighted choice by clicking the [Select condition for attributename] toolbar icon, or you may modify any of
the conditions by selecting [Explore all indicators] or [Explore performing indicators] from the row' pop-up menu.

Notice that when you change any indicators of a condition in the "indicator" dialog that opens from exploring, the effects become visible
immediately in the right columns of the row to provide immediate feedback on the action.

Remark

More information on can be found on the Automatic and Assisted Rule Generation online help page.
back to top

7.3.6.4 Indicators

The table on this dialog shows the indicators for the respective attribute.

Notice that even if verification is enabled, no verification data is shown. This is because verification data is about verifying the rule
design decisions, not influencing them.

Columns

1. Sel(ection)
Checkbox determines if this indicator is part of the condition for this attribute. Notice that if you select/unselect any indicators, the
changes to the performance of the entire condition are immediately visualised in the rule design table (from which the dialog was
opened). Notice that for certain usage types, only adjacent indicators may be selected (to avoid fragmented conditions). Also
notice that all changes made are immediately reflected in the rule design table, so all you need to do is close the dialog once you
have made all desired changes.

2. Indicator
Value of the indicator.

3. Total
Total amount (taken from the "amount" meta attribute) and number of all records that are fitting the training data selection criteria
defined.

4. Fraud
Total amount (taken from the "amount" meta attribute) and number of all records marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

5. Genuine
Total amount (taken from the "amount" meta attribute) and number of all records not marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

6. Statistics
Contains various derived performance indicators:

◦ Hit rate
Total fraud amount of this row's data selection divided by the total fraud amount in all records fitting training data selection
criteria.

◦ False positives
Number of genuine records falsely hit divided by number of fraud records correctly hit in all records fitting training data
selection criteria.

◦ Saved amount per false alarm
Monetary savings by fraud prevented for each false alarm endured (refer to Benchmarking Prevention Performance for
details).

◦ Intercept
Number of records hit divided all records fitting training data selection criteria (displayed as "basis points", 100 BP equals
1%).

Rows

Each row represents one indicator for an attribute and the statistical analysis for that indicator. Since all indicators are non-overlapping
(that is, any value of an attribute can only be represented by one indicator) the record amounts and numbers can be added when
multiple indicators are selected.

Remark

More information can be found on the Automatic and Assisted Rule Generation online help page.
back to top

7.3.6.5 Generated Rules

The bottom section of the rule generation page shows the rules that have already been designed. Notice that you may select multiple
rules in this table using the [Ctrl] key and clicking multiple individual rows, and the [Shift] key and clicking an interval of rows. Then you
can open a pop-up menu by clicking right on a selected row. You may use this to either save the selected rules to a new or an already
existing ruleset, or to delete the selected rules. If you use this to selectively delete rules that you do not want, you can then use the
toolbar [Conclude rule generation and save rules] to save the remaining rules to a ruleset.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Notice that if verification is enabled, all respective values in the table are shown underneath the training data value in green.

Toolbar

• [Restart rule generation from scratch]
Deletes all generated rules and restarts rule generation. This is quicker than stopping and starting rule generation, as IBM Safer
Payments can re-use some of the computed data.

• [Conclude rule generation and save rules]
Enabled if there is any rule in the table. Saves all rules in the table below to a ruleset and concludes rule generation.

• [Conclude rule generation without saving rules]
Concludes rule generation and discards any results.

Columns

1. Rule
Name of newly generated rule (the name is created according to the rule generation settings).

2. Condition
Conditions (one per each line) for this rule.

3. Total
Total amount (taken from the "amount" meta attribute) and number of all records that are fitting the training data selection criteria
defined.

4. Fraud
Total amount (taken from the "amount" meta attribute) and number of all records marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

5. Genuine
Total amount (taken from the "amount" meta attribute) and number of all records not marked as fraud (taken from "fraud" meta
attribute) that are fitting the training data selection criteria defined.

6. Statistics
Contains various derived performance indicators:

◦ Hit rate
Total fraud amount of this row's data selection divided by the total fraud amount in all records fitting training data selection
criteria.

◦ False positives
Number of genuine records falsely hit divided by number of fraud records correctly hit in all records fitting training data
selection criteria.

◦ Saved amount per false alarm
Monetary savings by fraud prevented for each false alarm endured (refer to Benchmarking Prevention Performance for
details).

◦ Intercept
Number of records hit divided all records fitting training data selection criteria (displayed as "basis points", 100 BP equals
1%).

Rows

Each row represents one rule. Notice that the performance values shown in the right columns are always the incremental performance,
i.e. the additional performance with respect to the already existing rules.

Remark

More information on can be found on the Automatic and Assisted Rule Generation online help page.
back to top

7.4 Lists

Lists are used to aggregate data (categorization). A list thus generates a new attribute, which is defined with the respective list. Each
list has a number of "values" that are set for the list attribute if the value condition(s) are met. It can either be a text or numeric type
attribute.

List data aggregation typically serves two purposes:

• Representation of defined risk using block/allow lists (i.e. known risky merchants, known not risky terminals, etc.). In IBM Safer
Payments, this type of list is either represented with lists in a model revision, or as defined risk (defined in the administration
section). The difference is that lists in the model revision are changed within revisions by fraud modelling personnel and thus
typically represent long-term data, while the defined risk lists can be added and deleted during daily operations by fraud
investigation personnel.

• Data aggregation of frequent mappings (MCC, ICA, POS codes, etc.). These types of lists are represented as a specific types of
rules that are executed before other rules are executed.

back to top

7.4.1 List

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Each list contains the definition of n values, where each value can have any number of conditions. The conditions of the values are
checked sequentially and once a condition is satisfied, the respective value is assigned to the list attribute.

Notice that value conditions are computed in the sequence the values are displayed in this form (top->down). If the conditions of a
value are all satisfied, the value is applied to the output attribute and computation of this list halts. This implies that you may define
overlapping list areas. For instance, assume that you define a value "gas station" to the condition "IF MerchantCategory EQUAL_TO
5542" and below the value "shop" to the condition "IF MerchantCategory EQUAL_TO 5000~5999", transactions with the
MerchantCategory value of 5542 would be assigned the list output attribute value "gas station", while all other transactions with
MerchantCategory values from 5000 to 5999 would be assigned the list output attribute value "shops".

Lists themselves do not require any memory resources, only the new attribute according to its DDC/MDC settings.

back to top

7.4.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.4.3 List Attributes

Each list data aggregation creates exactly one new attribute that it feeds its computational result into.

Each list output attribute is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be in the MDC and
DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that are only used for
the evaluation of the current transaction and for which you do not need any history do not need to be stored at all. Notice that
your storage options determine how much main and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored of this attribute on disk.

• Data type
IBM Safer Payments supports the data types:

◦ Boolean
Stores values of type "true/false", "yes/no" and "1/0" (stored using one Bit). If this attribute is not set by any list value its
default value is "false"/"no"/"0". Note: MDC or DDC capacity for boolean type attributes must be a multiple of 8.

◦ Numeric
Variable Byte length signed numeric values with variable (0..6) decimals. Both settings determine the universe of the
attribute that is calculated in the same form. If this attribute is not set by any list value its default value is "nil" for display
and "0" for any computational use (as in a condition). You may also explicitly check this attribute for "nil" (empty) values in
conditions.

◦ Text
Fixed length text values (configurable length). If this attribute is not set by any list value its default value is "nil" for display
and "" (empty string) for any computational use (as in a condition). You may also explicitly check this attribute for "nil"
(empty) values in conditions.

◦ Hexadecimal
Hexadecimal values (configurable length). Notice that the hexadecimal values can be up to twice as long as the Byte length
defined. If this attribute is not set by any list value its default value is "00..." for any computational use (as in a condition)
and for display.

◦ IPv4
IP address (e.g. 127.0.0.1) values (stored using 4 Bytes). Addresses can be delivered and are displayed as a text of four digit
groups (0-255) separated by dots. Internally they are efficiently stored as binary information.

• Formatted as
The formatting options are for display of values on the IBM Safer Payments pages (for examples in queries or case investigation).
Choices differ by data type:

◦ Amount
Using digit group and decimal separators as defined for each user's preferences (e.g. "12,345.67") for numeric attributes
only.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

◦ Decimals
Using decimal separators as defined for each user's preferences (e.g. "12345.67") for numeric attributes only. This option
does not use digit group separators.

◦ ID
Using digit group separators as defined for each user's preferences (e.g. "123,456,789") for numeric attributes only.

◦ PAN
Using dashed quadruple format typically used for primary account numbers as embossed on cards (e.g.
"1234-1243-1243-1243") for numeric and text attributes.

◦ No formatting
Shows data with no formatter applied.

• Length/decimals
Quantifies text and numerical data types:

◦ Numeric
Byte length of internal storage, ranging from 1 to 8, and decimals ranging from 0 to 6. The value range that the resulting
attribute can represent is computed live in the browser and displayed on the right.

◦ Text
Byte length of internal storage, with ASCII coded characters, this is exactly the maximum number of characters that can fit
into the attribute. Since IBM Safer Payments supports UTF-8 coding, non-ASCII characters may consume multiple bytes. For
example, special characters in non-English European languages, such as ä, ü , ö, ß, ê, é, è etc typically require two bytes; all
characters of Greek, Cyrillic, Coptic, Armenian, Hebrew, and Arabic require two bytes per character; and Chinese/Japanese
/Korean Unified Ideographs require three bytes per character. You thus need to size the byte length of text attribute values
according to the UTF-8 character encoding byte space requirements.

• Unit
Displayed with numeric values of this attribute. Typically used for currencies.

back to top

7.5 Indexes

Indexes can be defined with reference to any text, numeric, hexadecimal, or IPv4 type input attribute. They are used to quickly access
records that have the same value for the reference attribute as the current transaction message. They are needed for any attribute that
identifies a dimension into which past transaction behavior shall be profiled by IBM Safer Payments for real-time decisioning.

Index types

IBM Safer Payments supports three types of indexes: standard, interval, and peer. They all serve different purposes. For example:

• In issuer related fraud prevention, typically cardholder past behavior is profiled, and thus a standard index is defined for the PAN
(primary account number) attribute.

• In acquirer related fraud prevention, typically merchant/terminal/ATM past behavior is profiled, and thus one or more standard
indexes are defined for the attributes identifying merchant/terminal/ATM.

• With peer-to-peer payment systems (payment systems where each member can be both a payer and a payee, such as ewallets,
online banking, Visa person-to-person, MasterCard MoneySend), the definition of a peer index allows for each payer and payee of
a transaction to be evaluated with respect to both their payer and payee history.

• To represent standing data that is represented as interval ranges (e.g. BIN/IIN range tables, IP location/intelligence tables), the
definition of an interval index allows to represent such data with the masterdata capabilities of IBM Safer Payments, and to use
them with any transaction.

Notice that you may define multiple (and also different type) indexes for the same attribute. This is useful in rare situations where you
for example need evaluation sequences according to different sequence attributes.

All profilings are profiling past behavior and thus are defined alongside an index. This is why in the navigation menu left, these index
based profilings are organized under "profilings".

Indexes and sequences

Indexes and sequences are working together to access the history of past transaction records with profilings (and queries). The index
itself always points to the most recent transaction record with the respective index attribute value while the sequence for each past
transaction record points to the transaction record (with the same index attribute value) before this one.

See index sequence help for further details.

back to top

7.5.1 Index

The remainder of this page describes some of the settings of an index and the implications of them. There is also general help on
indexes.

Index type

IBM Safer Payments supports different types on indexes that are described in the general help on indexes.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

(Source/Target) Attribute

For standard and interval type indexes, this selection the attribute for which an index shall be created. With peer indexes, the source
attribute indicates the input attribute that identifies the payer, and the target attribute identifies the payee. Source and target attributes
must have the same data type and length.

Notice that you may have multiple indexes for the same attribute (for instance, using a different sequence attribute).

Size and minimum lifetime

Determines how many entries an index can hold simultaneously. Notice:

• Each index is fully stored both in MDC and DDC; there is thus no separate setting of the capacities as with attribute records. (For
memory consumption, see below.)

• Once all entries in an index are filled, IBM Safer Payments will overwrite entries that have not been accessed (read or write) within
less time than defined as "minimum lifetime". (Notice that there is no special scheme for the overwriting of entries. Entries are
overwritten on a "found first" basis.)

• If IBM Safer Payments cannot find an overwritable entry, that is, all existing entries have been accessed last in less than the
minimum lifetime, the new entry will not be written and thus discarded. Since this may result in incomplete indexes, this must be
considered a severe sizing fault during IBM Safer Payments configuration. IBM Safer Payments generates an event log in the case
of an "index overflow". There are special maintenance functions to "re-fill" and index from stored transaction records. Contact the
IBM Safer Payments support on their usage. Notice that there are status alarm indicators (SAI) that can alert to fill levels of
indexes, which can be useful if you are unsure on how large to size an index.

Resizing

There are two possible cases:

• Enlarge
Enlarging an index size is always possible. During golive of the revision with the enlarged index, the respective memory sizes are
automatically enlarged.

• Reduce
Reducing an index is only possible when the index area that would be dropped as result of the reduction has not yet been used.
This includes outdated entries, so that a reduction is only possible if the index never grew larger than the reduced size. The golive
report checks this and only allows a reduced index to go life if these conditions are met.

Purging

Purging allows for the automated removal of all index entries that are older than a defined time period (last read or write access older
than maximum lifetime). Purging is performed as part of the "end of day" jobs configured in IBM Safer Payments system configuration.
This function for instance is necessary to be used with PCI-DSS compliant applications of IBM Safer Payments. It is also possible to keep
track of purged notes in order to speed up the insertion process for new keys in an already filled index.

Memory consumption

Index size determines how many different values can be stored in an index. This size is the same on disk as in memory. It is determined
by:

(24 Byte + AttributeSize) * IndexSize

both for MDC and DDC (AttributeSize is 8 Bytes for numeric type attributes and the character length for text type attributes).

Computation conditions

The optional definition of computation conditions allows for the creation of partial indexes, that is, indexes that are only accessed for
attribute values of certain transaction messages. Attributes used in these conditions either need to be stored or set by pre-processing
rules or lists to allow recomputation of index dependent elements after mergings.

Sequence

The sequence points to the previous transaction record (with respect to the sequence attribute chosen) of each transaction record.
Indexes using a sequence are required for counters, mergings, precedents, patterns, collusions and certain queries. See index sequence
help for further details.

Insertion conditions

The optional definition of insert conditions allows to have index entries only be generated by specific transaction messages.

back to top

7.5.2 Mergings

Mergings are used to merge multiple transaction messages into one transaction record.

Business background

In payment fraud prevention, a single financial transaction – such as the purchase of goods in a shop – can generate a multitude of
different transaction messages. In credit card processing, these typically are:

• Authorisation request

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

A merchant asks an issuer whether they authorise a certain financial transaction. The issuer returns an authorisation code which
guarantees the transaction when it is later posted. In some cases, there will be no posting transaction (which causes the actual
financial funds transfer) for a granted authorisation. For example, car rental companies frequently use the authorisation to make a
"reservation" of funds for potential coverage of damages on their car. When the car is later returned without damage, the
authorisation is either revoked or just times out. Any authorisation, regardless of whether or not there is a respective posting,
reduces the available balance of the cardholder.

• Advice
Often, IBM Safer Payments is called before the complete authorisation process is finalised. In this case, an authorisation request
may be answered differently than the fraud prevention system has recommended. Because the fraud prevention system needs to
know about it, typically, a so-called "advice" transaction message is generated that contains information about this and sends it to
the fraud prevention system.

• Posting
A merchant posts an actual financial transaction to an issuer. This typically invokes the actual transfer of funds. There are also
postings without respective authorisation requests. This is because merchants can also accept financial transactions without
previous authorisation. (Whether or not, or to what limit the merchant in this case is guaranteed his payment depends on the
individual contract.)

• Chargeback
If the cardholder disputes a transaction with their issuer, the issuer charges back the amount to the acquirer, who in turn charges
back the amount to the merchant.

• Representment
If the merchant does not agree with the chargeback, they may represent the transaction to their acquirer, who in turn represents
the transaction to the issuer. This starts a manual settlement process of the issue.

• Fraud
If a transaction was deemed to be fraudulent – which can come from multiple sources – a fraud message is generated. This
message is also required by most credit card schemes to be delivered to the scheme. Fraud merging requires merging at a later
point in time because the fraud alerts typically come in weeks after the actual transactions occurred.

Whilst it is important to differentiate all these transaction messages in payment processing, for the purpose of fraud prevention, they all
describe one payment transaction.

Because of this, typically, all these transaction messages are merged into one single transaction within the fraud prevention system. The
additional information some transaction messages provide are stored in attributes of the fraud prevention system "transaction record".

Merging process

A complete description of how transactions are processed with IBM Safer Payments is provided on the Message Computation page. Here
this process is only described as far as it is relevant to the actual merging process.

Once a transaction message is received in IBM Safer Payments (online or batch), it is first determined which mandator conditions fit for
this transaction. Then for each mandator, first lists are computed, then mergings.

Notice that merging involves a merging source and a merging target. The merging source is an incoming transaction message that
satisfies the merging source conditions. The merging target is always a transaction record already stored in IBM Safer Payments's
MDC/DDC.

Merging consists of the following computational steps:

1. Check merging source conditions on each incoming transaction message for all mandators for which the mandator conditions are
met. If the source conditions of a merging are matched, search for matching targets (continue subsequent steps). If the incoming
message does not fulfill the source conditions of any of the mergings, the transaction is considered not to be a merging source and
normal computation continues (merging ends here and does nothing until next transaction/record arrives in IBM Safer Payments).

2. To find merging targets, first the value of the attribute of the index of this merging is checked to identify all existing records in IBM
Safer Payments MDC/DDC that belong to the same target entity. Potential targets are all records already stored in MDC (and DDC,
if the option "Mergings may use DDC" is enabled via the IBM Safer Payments system configuraion and if the respective checkbox is
enabled for this merging). They are evaluated back in time with respect to the sequence "timestamp" attribute of the index.

3. Next the (optional) time tolerance criterion ("enforce time" / "tolerance") is checked. Only transaction records that are within the
time tolerance specified are considered further as potential targets (again the sequence "timestamp" attribute of the index is used
for this comparison). Notice that the time tolerance is symmetrical, that is, the matching source may have a timestamp before or
after the matching target.

4. Then the "target conditions" are checked. Only data cache records that satisfy all target conditions will be considered as merging
targets.

5. Additionally, termination conditions can be added. The first potential target record that satisfies all defined termination conditions
will terminate the computation of the merging. This transaction record is also the last record that is evaluated as a merging target.

6. If exactly one data cache record satisfies all merging target criteria, this record is considered the merging target. Depending on the
merging settings, values from the merging source are copied to the merging target and values of the merging target are set to
defined values (execution of conclusions). If more than one data cache record satisfies all merging target criteria, the behavior
depends on the setting of "Merging method". In its default setting ("first found fitting target record"), only the first record that
satisfies all criteria is considered to be the merging target; and only for this merging target, the merging conclusions are executed.
In its "all fitting target records" setting, all transaction records satisfying all criteria are merging targets; and in its "closest amount
target record" setting, only the data cache record with the closest "amount" meta attribute value is considered to be the merging
target.

7. The "store source" option lets you determine under which conditions an incoming transaction message that is identified as a
merging source is stored with its input attribute values in IBM Safer Payments's MDC/DDC.

8. If the "re-compute target" option is checked, the target record is recomputed (if there are multiple target records, the latest one
with respect to the sequence "timestamp" attribute of the index) and the outputs of this transaction record are passed back as

transaction message responses. If this option is not checked, empty/default values are sent back. This behavior ensures that if for
instance you match postings to authorisation transactions, the record is recomputed in case now a reaction should take place.

If a merging succeeded, which means that at least one target was found, then no other mergings will be executed.

The sequence of mergings computed follows the mandator structure from the top (like all other computations in IBM Safer Payments).
That is, first the mergings of the top mandator are computed, then the mergings of all mandators down the path to the fitting mandator
are computed (if there are any). Within a mandatator's champion model revision, mergings are not computed in a determined
sequence.

Merging example

The combination of settings for mergings is rather complex because this feature is very powerful. In most applications, however, the
mergings will represent mixing data streams that in your environment must be merged to form a single transaction history that enables
fraud pattern detection and fraud management, and this setting will not change after initial configuration of your fraud prevention
system.

An example of a merging setting frequently used in credit/debit card fraud prevention is the matching of fraud messages that come from
a card management system or other sources. From a business point of view, the authorisation requests and postings that are already in
the data cache should be marked fraudulent once a fraud message for the respective transaction comes in.

The first problem frequently faced in this scenario is that fraud messages are generated not by the authorisation system, but by an
account management or other separate systems. These systems usually do not share a unique identifier with the authorisation system
so that there is no easy way to identify which transaction corresponds to which fraud message. Therefore a specific merging definition
must be used.

Typical settings would be:

1. Source condition
Typically, you would have one or more MTID values identifying a fraud message. This would be set as source condition.

2. Index
Usually, you would use the index defined for the "account" meta attribute so that IBM Safer Payments can quickly reduce its search
for merging targets to only the transactions of the cardholder. This reduces the search effort significantly as typically only a small
fraction of all transactions belong to this one account. Notice that with peer type indexes, you also select which index attribute
(payer or payee) shall be used, and which sequence (source or target).

3. Time tolerance
Frequently, fraud messages only have the calendar date of the original transaction but not the timestamp. There can also be time
shifts due to non-standard conversions or manual processing errors of time zones with international payment transactions. This is
why most applications use a time tolerance of 25 hours (or 1.1 days).

4. Target conditions
Here you would include conditions that define which data cache records should be matched to which fraud messages. For instance,
"MTID equal_to POS;ATH" could define that fraud messages should only be merged to records in the data cache that represent
authorisation requests or postings. Notice that unlike the source condition, the attribute "MTID" value in the target conditions
references the MTID value of the (potential) merging target, not source.
If you were to perform fraud merging only with the index attribute value and time tolerance criteria, matching would be rather
inaccurate. Customers frequently have more than one transaction within 25 hours so that the transaction amount is usually used
as another criterion for fraud matching. Because of exchange rate fluctuations and sometimes fees included in transaction message
amounts, this criterion is also typically defined with a tolerance. Unlike the time tolerance, however, the amount tolerance is not
defined by absolute value but rather by relative value. A typical target condition for this would be "Amount close_to_(by_5%)
{Amount}".
You would also use a target condition to ensure that only currently unmerged records are to be considered as merging targets. A
condition "Fraud equal_to 0" ensures that only data cache records not already marked as fraudulent are considered. Fraud
messages often also contain MCC and/or MerchantID information. In many applications, however, this value is frequently wrong in
fraud messages so that it is rarely used as merging criterion. If in your case, however, you do have such information of good
quality, you can include it in the target conditions.

5. Conclusions
All criteria above are used to identify if a transaction message is a merging source and what merging targets exist. The
Conclusions determine what happens to the merging target record. Typically, the "fraud" meta attribute would be set to a non-zero
value. If a fraud type code exists in the fraud message, you may like to copy this from the fraud message (merging source) to the
merging target record in a conclusion "Fraud is {Fraud}".

In this example, you would usually use "closest amount target record" as "merging method" to ensure that if there are multiple merging
targets for one merging source, the merging target with the closest "amount" value is chosen. Notice that if the "amount" value
difference is outside of the "close_to interval", it will not be considered for merging. If two "amount" values are exactly the same, the
least recent data cache record will be selected. This is based on the assumption that if there are two transactions by one customer
within a short period of time, for exactly the same amount, they are most likely both fraudulent, so it is more meaningful if the first one
is marked as fraudulent. If for the other (later) transaction, a fraud message also exists, it would be matched once the first fraud
message is processed.

The store source option lets you define under which circumstances a merging source is stored in the xDC.

The maximum target option defines an upper limit of evaluated target records. If the merging reaches this limit prior to finding a fitting
target, the computation is aborted and a log message is created.

The "re-compute target" option enforces the target record to be recomputed after the merging is completed (using the potentially
changed record data), and the result of this re-computation is sent back as transaction message response to the merging message
request (or in case of a batch file, stored in the log data file). If the option is disabled, the default values of the output attributes are
returned with the message response.

back to top

7.5.2.1 Merging

To create a merging definition the following settings are available:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comment
Comments are for documentational purposes only. It is advisable to comment the merging fully, so the decision logic remains easy
to understand.

• Index
A Merging is defined with an index to quickly reduce the search for merging targets. Notice that with peer type indexes, you also
select which index attribute (payer or payee) shall be used, and which sequence (source or target).

• Store source
This setting determines whether or not a transaction which is considered as a merging source is stored within IBM Safer Payments
data caches. The following settings are available:

◦ always
All merging sources are stored in MDC/DDC.

◦ if no targets found
Only merging sources for which no merging targets could be found are stored in MDC/DDC.

◦ never
All merging sources are discarded after the merging process has been finished.

Note:
In case the merging finds no target record, a subsequent merging might find a target. If that subsequent merging has 'Re-
compute target' activated, the source record will not be stored, irrespective of the 'store source' setting.

• Enforce time
If enabled, only transaction records with timestamps (sequence timestamp of the index defined above) within the time tolerance
are considered to be potential merging targets (i.e timestamp of merging source message +/- time tolerance).

• Merging method
If more than one data record satisfies all merging target criteria, this setting determines which records are considered to be
merging targets. Merging conclusions are executed for all merging targets.

◦ all fitting target records
All records that satisfy all target criteria are considered to be merging targets.

◦ closest amount target record
Only the record with the closest "amount" meta attribute value is considered to be the merging target.

◦ first found fitting target record
Only the first record that satisfies all criteria is considered to be the merging target.

• Max targets
The maximum target option defines an upper limit of evaluated target records within the sequence of the index. If the merging
reaches this limit prior to finding a fitting target, the computation is aborted and a log message is created.

• Re-compute target
If enabled, the merging target is recomputed after the merging is completed. The result of this recomputation is sent back as
transaction message response to the merging message request (or in case of a batch file, stored in the log data file). If disabled,
the default values of the output attributes are returned with the message response. Note that all index computation conditions are
evaluated again when a transaction is recomputed. Only if the conditions are satisfied for the target after applying the merging
conclusions, index dependent elements will be recomputed.

• Retry mergings
If enabled, then IBM Safer Payments will retry a merging when it doesn't find a target. This can be necessary when you have
merging source and target messages that arrive close together while one of the instances is temporarily unavailable. When the
instance comes back online, then it is possible that due to the high parallelism of the FLI the source and target messages could
arrive on the second instance in the wrong order, and the source would not be able to find the target.
Note, this is an independent setting from the 'Access Protection' setting under System Configuration -> Serialize Computation.
That setting waits until a merging target is completed processing before starting the computation of the merging source and retries
the specified number of times. This setting will retry to find a merging target if no target can be found. Note that if both settings
are turned on then it can retry the combined amount.

◦ Max Merging Tries
When 'Retry Mergings' is enabled, this setting determines how many times it should try

◦ Retry Wait Time
When 'Retry Mergings' is enabled, this setting determines how long to wait in between the retries (in msec)

• Update calendar profiles and events
If enabled, calendar profiles and events belonging to the mergings mandator or submandators will get updated, when they meet
the mergings conditions and have the option 'Update during merging' enabled.

• Collusions
Selected collusions are triggered when this merging is executed. For further information about collusions please refer to the
respective online help page.

back to top

7.5.2.2 Conditions

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.2.3 Conclusions

This element uses conclusions. You can find further information in the conclusions chapter:

10.4.2 Conclusions

back to top

7.5.3 Masterdatas

It is often necessary to store certain data that is associated with index attributes. This data could be customer data that can be used
with a PAN, merchant data that can be used with a MerchantID, or technical data (for example countries that correspond to BIN
ranges). Such data would not be delivered with each transaction, but rather be delivered once and then stored with the respective index
attribute (PAN, MerchantID, BIN, etc.).

Such data is referred to within IBM Safer Payments as “masterdata”. Masterdata can be delivered either by “normal”
transactions/records that also deliver a “real” transaction/record, or by “special” transactions/records that only deliver the masterdata
data (aka “non-monetary” transactions/records). In both cases, a masterdata source transaction/record is identified by the respective
“Insertion Condition(s)” of the masterdata definition. Often a specific TrxType or MTID attribute value defines a masterdata source
transaction/record. The “Store source” checkbox lets you define whether or not a masterdata source transaction/record shall be included
in the data cache or not. Typically if masterdata is delivered by non-monetary transactions, you do not want these transactions to be
stored with the data cache.

There is no specific definition of masterdata targets since any transaction/record that is processed after the masterdata source has set a
value of a masterdata attribute, this value is taken for processing of this transaction/record.

Remarks

• To change a masterdata attribute value, you just send another transaction/record with the new value. To delete a masterdata
attribute value, you just send another transaction/record with empty or zero value. (note that this is true for normal masterdata,
but when multi-value masterdata is enabled you need to use the insertion and deletion conditions to update a masterdata)

• If you have multiple masterdata attributes delivered with one transaction/record, you just create multiple masterdata definitions.
The storage process of the masterdata attribute values to the index is valid for all masterdata definitions.

• The masterdata attribute must be defined as an input attribute of the model revision (own or inherited).

Once IBM Safer Payments detects a masterdata source transaction message, it extracts the value of the referenced attribute and stores
it alongside one referenced index. Masterdata definitions require the sizing of DDC and MDC with the same number of elements as the
index to which they refer. The memory requirement for normal (non multi-value masterdata) is thus the referenced index capacity times
the masterdata attribute length. See the masterdata page for more information on sizing multi-value masterdata.

back to top

7.5.3.1 Masterdata

To create a masterdata definition, the following settings are available:

• Name
Name of masterdata definition. Often it is best to use the same name as the masterdata attribute selected below.

• Comment
Comments to masterdata definition.

• Index
Masterdata is defined with an index. For instance, if the masterdata definition is about cardholder data, the index that represents
the cardholder (e.g. "PAN" or "Issuer" index) must be chosen here.

• Masterdata attribute
Specify the attribute for which the masterdata definition is intended. This must be an own or inherited input attribute. For all
transactions for which the insertion condition (below) is fulfilled, the value of the delivering transaction of this attribute is stored in
the masterdata cache ("write masterdata"); for all transactions for which the insertion and deletion conditions are not fulfilled, the
value of the masterdata cache is written back into the transaction; as if it would have always been part of the transaction ("read
masterdata"). When multiple values is enabled (see below) then only the first value from the multi-value list will be written to the
transaction. Notice that for peer type indexes, the definition of a masterdata attribute for the source and target part of the index is
necessary.

• Store source
If checked, the masterdata source message is stored as a record in the IBM Safer Payments data caches. If unchecked, the
message is discarded after (the potential) masterdata extraction is carried out. This is only applied to transactions that satisfy the
condition defined below.

Note:
For the record that is meant to be stored after masterdata was computed a subsequent merging might find a target. If that

http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.2
http://sphost1.fyre.ibm.com:8005/#level10.4.2
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

merging has 'Re-compute target' activated, the source record will not be stored, irrespective of the 'store source' setting. This can
only happen when masterdata and merging source conditions overlap.

• Allow for multiple values
If checked, more than one masterdata value can be stored per index node. Multi valued masterdata can be used in a few different
ways. The simple case is just to store multiple values of masterdata which are related to an index. For example, you could store
multiple addresses for a customer instead of just their current address. Multi valued masterdata can also be used to enable a
multi-relations workflow. To read more about that see the Multi-Relations section.
When using multiple valued masterdata the multiple values are not used in calculations, due to the potential impact on latency. If
the insertion conditions for masterdata are not met and a value is copied from the masterdata cache to a transaction, then it will
always be the first value in the multi value list. There is currently no way to select a different value to be written or to not write a
value to the transaction. This may result in confusion when examining the resulting transactions if it does not make sense that the
first value in the list should be applied to the transaction.

• Capacity for multiple values
The capacity for multiple values is the overall number of additional elements stored. This is the capacity for all elements in the
multiple values storage, so for example, if you had an index capacity of 10000 elements, and wanted to store up to 5 elements per
index node, you would set the capacity to 40000. This would not mean that you are limited to 5 index entries per node, it is
possible to store 20 entries on some nodes and only 1 entry on other nodes, but the full capacity (the sum of all the nodes) is
allocated here.

• Associated index
The index which will be used to find relations in a multi-relations workflow. When multiple value masterdata is displayed in a case
then this index will be searched using the values given in the multiple valued masterdata. For more information see the Multi-
Relations section. Note that this index is only used to help display more information in user queries, it is not used in computations.
If you do not select an index then Safer Payments will attempt to find the appropriate index based on the attribute which was
selected.

• Relationship values
Attributes used to describe the relationship between each index node and each masterdata value associated with it. When you
have multiple values enabled for masterdata then you may want to add extra information about the relationship between the index
node and the particular masterdata value. For example, if you are storing multiple addresses for a customer, you may want to also
store the information about which one is the current address, which can be stored in a relationship attribute (although, note that in
this example, you would also need to update the relationship description when a new address was added)
Relationship attributes need to be passed in the same transaction as the masterdata value they are related to and are only
updated if the insertion conditions for the masterdata are hit. Relationship attributes will always be updated when that masterdata
value is sent, so if you send empty relationship values with an existing masterdata value then that will effectively delete the
existing relationship values.

• Insertion conditions
Insertion conditions decide if the masterdata cache value (the value that "sticks") is written from the transaction to masterdata
cache or read from masterdata cache to the transaction. When multiple values are not enabled then if the insertion conditions are
hit then it will take the masterdata attribute value from the incoming transaction and overwrite the existing masterdata cache
value in memory (so if an empty value is sent then it will effectively delete the existing masterdata value). When multiple values
are enabled, then when the insertion condition is hit then it searches for the value from masterdata attribute of the incoming
transaction in the existing list of multiple values. If the value from the incoming transaction is not found in the list, then it is added
to the end of the list along with any relationship attributes. If the value is found then only the relationship attributes will be
updated.

• Deletion conditions
Deletion conditions allow you to delete values from the masterdata when using multiple values (although they can also be used for
normal masterdata, it may be simpler to just send empty values which will overwrite the existing values). When a deletion
condition is hit, then Safer Payments will search the existing list of masterdata for the appropriate node and if it finds a matching
masterdata value, then it will remove it, along with any associated relationship information. You should generally attempt to use
non-overlapping conditions for your insertion and deletion conditions, but if both are hit, then the insertion will take precedence
and the deletion will not be performed.

Memory consumption

The size of masterdata is determined by a combination of index capacity and multiple values capacity (if you have multiple values
enabled). This size is the same on disk as in memory (except when deferred writing or encryption are enabled). The base masterdata
size (without multiple values enabled) is determined by:

AttributeLength * IndexCapacity

both for MDC and DDC (AttributeLength is configurable in the input attribute setup). When multiple values are turned on the sizing of
the masterdata is more complex. If you turn multiple values on, then in addition to the base masterdata size above it will also allocate:

((8 Bytes) * IndexCapacity) + ((8 Bytes + AttributeLength) * MultipleValuesCapacity)

for MDC and DDC. In addition, if masterdata attribute is of type Hex or IP, then an additional (1 bit * IndexCapacity) will be required.

Each relationship attribute also requires its own memory. Every relationship attribute you add requires:

(RelationshipAttributeLength * IndexCapacity) + (RelationshipAttributeLength * MultipleValuesCapacity)

back to top

7.5.3.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

10.4.1 Conditions

back to top

7.5.4 Device Identification

IBM Safer Payments device identification keeps histories of up to 4 devices per counterparty (user account). For each of these devices
(browsers), the following data is computed and stored:

• number of transactions with this device

• earliest and latest transaction date

• number of cookie and device ID mismatches

This information is made available from within the device identification profiling profiling method. For each device identification, output
attributes carrying this information can be defined.

Notice that you can define multiple device identifications, for instance to identify customer and merchant devices.

back to top

7.5.4.1 Device Identification

To create a device identification definition, the following settings are available:

• Name
The name of a device identification definition. It is used in all IBM Safer Payments forms.

• Comment
A description of the device identification. This will be displayed in various forms and allows to add a more verbose description of
the device identification.

• Index
Device identification is defined with an index. For instance, if the device identification definition is meant to match devices in online
banking, this would be an index on account number. If a peer index is selected, the device identification offers the additional
computation method "last target fingerprint".

• Timestamp
An attribute that contains timestamp information. This timestamp should be the point in time when the device identification has
been gathered on the end-user device.

• Time unit
The time unit that will be applied to computation outputs.

• Cookie
An attribute that contains four byte of hexadecimal cookie data. This can be the result of the crc32 hash transformation or any
other four byte hexadecimal attribute. As long as this value does not change between two transactions the device identification will
consider two devices to be the same.

• Fingerprint
Another attribute that contains four byte of hexadecimal fingerprint data. This can be the result of the crc32 hash transformation
or any other four byte hexadecimal attribute except the one used as "Cookie". As long as this value does not change between two
transactions the device identification will consider two devices to be the same even when the cookie has changed.

• Computation Conditions
Computation conditions allow to define filters on incoming transaction data. Only transactions that match all defined conditions are
taken into account for the device identification.

• Output attributes
Every device identification can compute one or more output attributes. For detailed information refer to the respective help text.

Memory consumption

Device identifications are defined with reference to an index. Their memory consumption is computed as:

80 Bytes * IndexSize

both for MDC and DDC. The memory consumption for all computed output attributes has to be added.

back to top

7.5.4.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.4.3 Device Identification Attributes

http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Each device identification profiling creates one or more new attributes that it feeds its computational results into. Notice that if you use
a mandator structure, the rules of this decision logic may use all attributes defined in champion mandator revisions above it in the
structure. Each of the device identification output attributes is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain. Notice that the attribute names
do not need to correspond to the variable names of data delivered to IBM Safer Payments; you define the relation between IBM
Safer Payments attributes and variable names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be in the MDC and
DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that are only used for
the evaluation of the current transaction and for which you do not need any history do not need to be stored at all. Notice that
your storage options determine how much main and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored for this attribute on disk.

• Data type
Computations (see below) either deliver numeric, boolean, or hexadecimal output depending on the chosen computation method.
The formatting and length of output attributes can only be adjusted for computations delivering numeric output.

• Formatted as
The formatting options are for display of values on the IBM Safer Payments pages (for examples in queries or case investigation).
Choices differ by data type:

◦ Amount
Using digit group and decimal separators as defined for each user's preferences (e.g. "12,345.67") for numeric attributes
only.

◦ Decimals
Using decimal separators as defined for each user's preferences (e.g. "12345.67") for numeric attributes only. This option
does not use digit group separators.

◦ ID
Using digit group separators as defined for each user's preferences (e.g. "123,456,789") for numeric attributes only.

◦ PAN
Using dashed quadruple format typically used for primary account numbers as embossed on cards (e.g.
"1234-1243-1243-1243") for numeric and text attributes.

◦ No formatting
Shows data with no formatter applied.

• Length/decimals
Byte length of internal storage for numeric output attribute values, ranging from 1 to 8, and decimals ranging from 0 to 6. The
value range that the resulting attribute can represent is computed live in the browser and displayed on the right.

• Unit
Displayed with numeric values of this attribute. For all computations that work on timestamps or durations this is set to the time
unit defined in the device identification definition.

• Computation
This setting determines how the output attribute is computed from the set of transaction records selected by this device
identification:

◦ Average number of uses per time unit
Computes the average number of uses per time unit for the matched device. If no device is matched and a new device
created, the output value is (0).

◦ Cookie changed
Indicates that a device uses an unknown cookie. If the fingerprint attribute matches, the new cookie is stored and the device
identification information is kept. If the fingerprint also changed a new device is created (and an old device is potentially
overwritten).

◦ Fingerprint changed
Indicates that a device uses an unknown fingerprint. If the cookie attribute matches, the new fingerprint is stored and the
device identification information is kept. If the cookie also changed a new device is created (and an old device is potentially
overwritten).

◦ Last target fingerprint
This computation method is only available in combination with a peer index: It computes the fingerprint of the last device
used with the target account of the current transaction.

◦ Number of cookie mismatches
Counts the number of times the cookie has been changed for a given device. The number is incremented, whenever a device
is matched only by the fingerprint.

◦ Number of fingerprint mismatches
Counts the number of times the fingeprint has been changed for a given device. The number is incremented, whenever a
device is matched by the device cookie but not by the fingerprint. This could happen e.g. when the device configuration

changes.

◦ Number of uses
The number of transactions that have been matched to the device.

◦ Time between first and previous use
The time between the initial use and the second most recent use of a device with respect to the timestamp attribute.

◦ Time since first use
The time between the initial and the most recent use of a device with respect to the timestamp attribute.

◦ Time since previous use
The time between the second most recent use and the most recent use of a device.

Examples:

• The following table shows a sequence of transactions together with the computed outputs:

Account (Index) Cookie Fingerprint Number of uses Number of cookie mismatches Number of fingerprint mismatches Cookie changed Fingerprint changed

1 1234 0xAAAAAAAA 0xCCCCCCCC 1 0 0 Yes Yes

2 1234 0xAAAAAAAA 0xCCCCCCCD 2 0 1 No Yes

3 4321 0xBBBBBBBB 0xDDDDDDDD 1 0 0 Yes Yes

4 1234 0xAAAAAAAA 0xCCCCCCCD 3 0 1 No No

5 1234 0xAAAAAAAB 0xCCCCCCCD 4 1 1 Yes No

6 4321 0xBBBBBBBB 0xDDDDDDDD 2 0 0 No No

7 1234 0xAAAAAAAC 0xCCCCCCCC 1 0 0 Yes Yes

8 1234 0xAAAAAAAB 0xCCCCCCCD 5 1 1 No No

• Remarks:

◦ Please not that #3 and #6 are transactions for a different account.

◦ As long as either the cookie or the fingerprint of a device matches, the device identification is updated with data from the
current transaction. The cookie is always matched first.

◦ In #7 a new device is created because neither cookie nor fingerprint match the previous transaction for this account. As
every device identification has slots for up to four devices, the data from #5 is still available and #8 can be matched to it.

• The following table shows a sequence of transactions together with the computed outputs for time unit hours:

#
Account
(Index)

Cookie Fingerprint Timestamp
Time since first

use
Time since previous

use
Time between first and previous

use
Average number of uses per time

unit

1 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
00:00:00

0.00 0.00 0.00 (0)

2 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
01:00:00

1.00 0.00 0.00 2.00

3 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
03:00:00

3.00 2.00 1.00 1.33

4 1234 0xBBBBBBBB 0xDDDDDDDD
1970-01-01
06:00:00

0.00 0.00 0.00 (0)

5 1234 0xAAAAAAAA 0xCCCCCCCD
1970-01-01
09:00:00

9.00 6.00 3.00 0.44

6 1234 0xAAAAAAAA 0xCCCCCCCD
1970-01-01
12:00:00

12.00 3.00 9.00 0.42

• Remarks:

◦ The transaction in #4 affects the same account but is matched to a new device because neither cookie nor fingerprint match.

◦ Transactions #5 can be matched to the first device via the cookie. #6 is also matched to this device by cookie and fingerprint.

• The following table shows a sequence of transactions together with the computed outputs:

Source Account (Index) Target Account (Index) Cookie Fingerprint Last target fingerprint

1 1234 0000 0xAAAAAAAA 0xCCCCCCCC 0x00000000

2 5678 0000 0xBBBBBBBB 0xDDDDDDDD 0x00000000

3 1234 5678 0xAAAAAAAA 0xCCCCCCCC 0xDDDDDDDD

• Remarks:

◦ The "last target attribute" computation is only available for peer indexes.

◦ The output attribute is set to the last known fingerprint value for the target account. If the target account does not have any
fingerprint set from a previous transaction, the output is "0x00000000". This computation never changes the device
identification for the target account.

• The following table shows an example with transactions for one device that are coming in out of sequence:

#
Account
(Index)

Cookie Fingerprint Timestamp
Number of

uses
Time since first

use
Time since previous

use
Time between first and

previous use
Average number of uses per

time unit

1 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
01:00:00

1 0.00 0.00 0.00 (0)

2 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
03:00:00

2 2.00 0.00 0.00 1.00

3 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
00:00:00

3 3.00 2.00 1.00 1.00

4 1234 0xAAAAAAAA 0xCCCCCCCC
1970-01-01
06:00:00

4 6.00 3.00 3.00 0.67

• Remark:

The computed output values for out-of-sequence transactions will always be calculated with respect to the most current transaction
(with respect to the timestamp attribute). Therefore the "number of uses" in transaction #3 is "3".

back to top

7.5.5 Precedents

Precedents allow quick and easy access to values of the previous transaction record's value by copying it into an attribute of this
transaction message.

This for instance allows to define for attributes in this transaction message:

• Amount of last transaction of this cardholder.

• Amount of last transaction at this merchant.

• Amount of foreign last transaction of this cardholder.

• Amount of last transaction of this cardholder above $200.

back to top

7.5.5.1 Precedent

A precedent copies the value of the "source attribute" of a previous transaction record:

• of the most recent transaction record in the index dimension chosen,

• that satisfies the conditions (if defined)

and stores them into its output attribute.

Index

IBM Safer Payments searches for the preceeding record in the dimension of an index sequence. Only indexes that have sequences can
be selected here. Notice that with peer indexes, the preceeding record can be searched for in either the "direction" of the source (payer)
or the target (payee) sequence.

Source attribute

Lets you select which attribute's value should be captured (and outputted) by this precedent. Notice that the attribute type/length of the
output attribute of a precedent is exactly the type/length of this source attribute.

Max records

Maximum number of records alongside the sequence that are evaluated into the past. You should define a reasonable limit here so that
in case of very long sequences and a precedent not being found, computation times do not get too high.

Include DDC

Check to have IBM Safer Payments include data from disk with this computation. Notice that this may significantly increase computation
time.

Computation Conditions

The first record into the past (that is, back in sequence time from now into the past) that satisfies this/these computation condition(s) is
considered the precedent. The source attribute value of this record will be taken as output attribute of this precedent and is passed to
the decision model with this transaction message.

back to top

7.5.5.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.5.3 Precedents Attributes

The output attribute of a precedent is of the same type, format, and length (and if numeric, same decimals) as the source attribute
defined above. The required type/length(/decimals) settings are thus taken automatically from the source attribute and are not shown
or editable in this form. If categories are defined for the source attribute, they will be assigned to the output attribute of the precedent
automatically. In this case the categories are shown at the bottom of the page but are not editable.

It, however, typically has a different name and sometimes different storage settings.

The settings of a precedent output attribute are hence:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be
in the MDC and DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that
are only used for the evaluation of the current transaction and for which you do not need any history do not need to be stored at
all. Notice that your storage options determine how much main and disk memory IBM Safer Payments consumes (number of
records times length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored for this attribute on disk.

back to top

7.5.6 Calendar Profiles

Calendar profiles provide aggregated counts of totals and transaction message frequencies over calendar periods and store these
alongside a referenced index. The number of calendar periods held according to the transaction message timestamp sequence can be
set freely. The periods are based on the values of the meta attribute "timestamp" of the transaction message sequence. Each timestamp
later than the last one received, moves "transaction time" forward. This transaction time is the reference for the calendar periods.

Within a calendar profile, new attributes can be defined that carry totals or frequencies from any calendar period tracked by the profile.

Memory consumption for the bare calendar profile is computed as:

(12 Bytes * NumberOfPeriods) * IndexSize

When "support standard deviation" is enabled the memory consumption will be:

(20 Bytes * NumberOfPeriods) * IndexSize

both for DDC and MDC. In addition the new attributes memory consumption must be added.

Computation of calendar profiles is a two-step task ("pre" and "post"). If the profile shall include the current transaction, only input
attributes and list/precedent profiling output attributes can be used in its condition ("pre"). If the profile is defined to not include the
current transaction, all other attributes can be used as well in its conditions ("post"). Because the "other attributes" are computed after
the profile was (pre-)updated, in this case, a (post-)update step takes place after the rules are computed. This allows defining profiles
on rule output attributes, for instance such as a profile for transaction message intercepts or case generation alerts.

back to top

7.5.6.1 Calendar Profile

For details on calendar profile definition, rest the mouse pointer over the respective field to show tooltip style explanations and read
below.

Each calendar profile is specified by a set of definitions that are entered on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are for documentational purposes only. It is advisable to comment the calendar profile fully, so the decision logic
remains easy to understand.

• Index
Each calendar profile is computed with an index. For example, to profile cardholder behaviour, you would use an index on the
primary account number; to profile merchant behavior, you would use an index on the merchant ID. Notice that the index chosen
does not need to have a sequence. If you selected a peer type index, you may also select which index attribute (payer or payee)
shall be used for profiling.

• Computation timestamp
Determines whether the reference time of the profile (explained below) or the transaction time is used to compute the output
attributes of the profile. If set to "Reference time" period 0 is considered as the reference time (most recent timestamp that has
been seen in the meta attribute "timestamp"). If set to "use other" period 0 is considered as the transaction time in the selected
timestamp attribute.

• Include current
If checked, the current transaction message data (including everything computed) is used in the calendar profile's value.

• Update during merging
Update calendar profile when a merging with setting `update calendar profiles and events` or a manual fraud mark has changed
the profile's conditions. Example:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

◦ Transaction 1 amount: 100. Calendar total amount: 100

◦ Transaction 2 amount: 30. Calendar total amount: 100+30=130

◦ Merging changes the amounts of transaction 1 and 2 to 10

◦ Transaction 3 amount: 300. Calendar total amount: 10+10+300=320

Note: Make sure to activate `update calendar profiles and events` in all mergings that have conclusions which use the calendar
profile's amount attribute or conditions attributes. If there are some of those mergings that do have the option enabled and others
that do not, it can lead to unexpected values in the profile's output attribute(s).

• Support standard deviation

When enabled, standard deviation can be chosen as an output attribute's computation. Note that this will change the memory
consumption for the bare calendar profile to:

(20 Bytes * NumberOfPeriods) * IndexSize

Changing this value will delete all calendar period data after golive.

• Decimal accuracy

Sets the decimal accuracy for standard deviation. The larger the value, the more precise standard deviation can be calculated. In
principle, this is only necessary when the deviation output attribute shows more decimals than the amount attribute uses.
Enlarging the value comes at a price, since very large values need to be saved for computing deviation. Enlarging the accuracy
enhances the probability that the values cannot be saved in the 8 bytes integer anymore. Setting the accuracy to "0" is good
enough for most requirements.

Changing this value will delete all calendar period data after golive.

• Amount attribute
While the default of this is the amount meta attribute defined, you may specify an alternative attribute to compute the calendar
profile's amount values (for instance, another currency).

• Time zone offset
Profiles are strictly calendrical. In order to decide to which calendar period a transaction message is added, profiles use the
timestamp meta attribute of the model revision. If the transaction message's timestamp meta attribute values are in a different
time zone than the periods of the profile, you can enter a non-zero value here. This value in seconds is added to the transaction
message's timestamp meta attribute value before the fitting period is computed.

• Calendar period
Profiles are strictly calendrical and so are the calendar periods.

• Number of periods
Number of calendar periods that are considered by the profile (including the current period).

• Exclude zero periods
If checked, periods which have no fitting transaction, will be excluded from computation.

• Computation Conditions
Determine which transaction messages are included in the calendar profile.

• Output attributes
You may define one or more attributes that deliver calendar profile data to be used in subsequent decision logic elements.

Example

Assuming a calendar profile is defined that counts all transaction messages with an amount larger than or equal to $100.00 over
calendar periods of 12 consecutive months, the figures below show how some sample transactions are stored in a profile (assumed
today is the 2011-12-14):

The green boxes depict transaction with their transaction timestamp and their amount. Notice that the transaction timestamp denotes
when the transaction actually occurred at the point of sales (meta attribute "timestamp"); this is not the system timestamp. The 12
gray containers depict the 12 calendar periods for which the profile collects data. The periods are numbered from "0" (this calendar

period) to "11" (oldest recorded period). Now six example transactions come in:

1. Counted in calendar period 0

2. Not counted because profile condition ("amount ≥ $100.00") not met

3. Counted in calendar period 1

4. Not counted because transaction timestamp is before the profile's calendar periods

5. Counted in calendar period 0

6. Counted in calendar period 10

To exemplify how output attribute values are computed for this, assume profile calendar periods more filled:

Notice that you may define any number of output attributes that are computed differently from the same calendar periods. Assuming
that you want to compare last three months' performance to the performance of the three months before. In this case, you would define
an output attribute with "past calendar period(s)" of "0~2/3~5" (most recent period first in intervals). This would compute for number
of transactions as:

(62 + 112 + 5) / (98 + 22 + 170) = 179 / 290 = 0.6172

Notice that when you define a ratio (such as above), you would probably want to define an output attribute with decimals.

For the computation of total amounts the computation would be:

(2414.45 + 4623.30 + 371.55) / (4422.94 + 502.88 + 6708.02) = 7409.30 / 11633.84 = 0.6369

Because profiles are strictly calendrical, once a new calendar period starts, it starts empty and is only filled during the period. If this is
not wanted, IBM Safer Payments can project the new period value (if "number of periods" is greater than one). In order to do so, enable
the "projection" function in a profile output attribute (more details on profile output attribute online help page). In this case, the above
number of transaction computation for "past calendar period(s)" of "0~2/3~5" would be:

((((62 * 14) + (112 * (31 - 14))) / 31) + 112 + 5) / (98 + 22 + 170) = 0.7118

As time passes, eventually transaction messages come in that are past the most recent calendar period. In this case the profile
performs a so-called "rollover", that is, the oldest period is discarded and a new period is created:

Notice that if the transaction would not have been January 2012 but March 2012, the profile would rollover three calendar periods at
once. This implies that if you would have a "freak transaction", that for instance references a timestamp meta attribute value that is
years into the future, the profile would rollover all periods and thus delete all periods.

In certain applications, transactions are not sent to IBM Safer Payments in ordered sequence with respect to the point-of-sales
timestamps (timestamp meta attribute). This is for instance the case, if you feed authorisation requests and posted transactions into
IBM Safer Payments. Because authorisation requests are real-time and posted transactions are often nightly batch feeds, transactions
could come in that are for an earlier point in time than the newest transactions that had arrived in IBM Safer Payments until this point in
time. IBM Safer Payments keeps track of the newest transaction's timestamp and is also known as the "reference timestamp". This has
another use when it comes to the computation of the profile output attributes. For the computation of these attributes, you may select if
this should consider "transaction time" or "reference time" (setting "computation timestamp"). For transactions that come in sequence
(each timestamp meta attribute value of the subsequent transaction message is greater than or equal to the one of the transaction
before), this setting makes no difference since the "reference time" is the same as the "transaction time". However, for an "out-of-
sequence" transaction, such as a posted transaction that comes in a few hours after it was made at the point of sales, this setting does
make a difference. If set to reference timestamp, computation of the said transaction uses the profile values (i.e. computes the profile's
output attributes) according to the reference timestamp which is the newest timestamp that has been seen by Safer Payments (possibly
considering transactions that were made after the current one but arrived before). This means that a period is considered a certain back
period based on the reference timestamp. If set to another timestamp attribute, computation of the said transaction uses the profile
values according to the value of the selected timestamp attribute (e.g. meta attribute timestamp) of the transaction. This means that a
period is considered a certain back period based on the timestamp of the transaction.

If the most recent transaction received by IBM Safer Payments had the timestamp meta attribute value of 2011-12-14, and a new
transaction comes in with timestamp meta attribute value 2011-10-20, reference time computation would compute calendar profiles

exactly as exemplified above. Transaction time computation, however, would re-create the result as follows:

(5 + 98 + 22) / (170 + 9 + 25) = 0.6127

Notice that for past calendar periods, no projection is used and the full value of the month of October was used.

Remarks

• When you enlarge the number of profile calendar periods into the past, the "new" periods will initially not be filled but only fill up
with the passage of time.

• When you decrease the number of profile calendar periods into the past, the periods not used anymore will be permanently
deleted.

• When computing profiles for sandbox records, no rollovers are performed. This means when testing old periods are not discarded
but kept and still included in the computation.

back to top

7.5.6.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.6.3 Calendar Profile Attributes

Each calendar profile creates one or more new attributes that it feeds its computational results into.

Each of the calendar profile output attributes is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be
in the MDC and DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that
are only used for the evaluation of the current transaction and for which you do not need any history do not need to be stored at
all. Notice that your storage options determine how much main and disk memory IBM Safer Payments consumes (number of
records times length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored for this attribute on disk.

• Data type
Calendar profile output attributes are either frequencies (numbers) of records or amounts. Thus only the numeric data type exists.
Frequently frequencies are expressed by length 2 attributes, and amounts by length 4 / decimals 2 attributes.

• Formatted as
The formatting options are for display of values on the IBM Safer Payments pages (for examples in queries or case investigation).
Choices are:

◦ Amount
Using digit group and decimal separators as defined for each user's preferences (e.g. "12,345.67").

◦ Decimals
Using decimal separators as defined for each user's preferences (e.g. "12345.67") for numeric attributes only. This option
does not use digit group separators.

◦ ID
Using digit group separators as defined for each user's preferences (e.g. "123,456,789").

◦ PAN
Using dashed quadruple format typically used for primary account numbers as embossed on cards (e.g.
"1234-1243-1243-1243").

◦ No formatting
Shows data with no formatter applied.

• Length/decimals
Byte length of internal storage, ranging from 1 to 8, and decimals ranging from 0 to 6. The value range that the resulting attribute
can represent is computed live in the browser and displayed on the right.

• Unit
Displayed with values of this attribute. Typically used for currencies.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Computation
Determines how the attribute shall be computed from the calendar profile.

• Past calendar period(s)
Selects how the value of this attribute is to be computed from the past calendar periods defined. Periods are denoted by numbers:
the value "0" corresponds to the current period, the value "1" to the first past period, and the value "(n-1)" corresponds to the
oldest period (n is the "number of periods" as set with the calendar profile definition above). There are multiple types of
computation you can define here:

◦ n
If you just specify a single number, the value of exactly this calendar period is applied to this attribute.

◦ n~m
If you specify a number interval, the total value (sum) of all calendar periods of this interval is applied to this attribute.
Notice that this interval is inclusive, for instance, if you define "3~5", the profile calendar period is "monthly" and the current
transaction is in mid-December, the value applied to the profile output attribute would include the past months July, August,
and September of this year.

◦ min(n~m)
Computes the minimum of the calendar period values in the specified interval.

◦ max(n~m)
Computes the maximum of the calendar period values in the specified interval.

◦ avg(n~m)
Computes the average of the calendar period values in the specified interval.

◦ (n~m)/(k~l)
Computes the ratio of the sum of the interval "n~m" divided by "k~l" (intervals computed as above). Also supports entries
such as "n/k~l)", "(n~m)/k", and "n/k" (brackets are ignored and only put here for illustration). Notice that this value is not
in percent, but absolute.

• Projection

If checked, the value of the current calendar period (value "0" in "past calendar period(s)" settings above) is computed as
projection in respect to the last period.

Projection is calculated according to formula

(valueLastPeriod * ((periodLength - timeSinceCurrentPeriodBegin) / periodLength)) + (valueCurrentPeriod *
(timeSinceCurrentPeriodBegin / periodLength))

The option is only available, if the "number of periods" as set with the calendar profile definition above is above "1". Notice that
when the period "0" appears in intervals or ratios, and "projection" is checked, the current period is also computed as projection.

The algorithm takes into account the fact that calendar months, quarters and years are not of uniform length. It will use the
respective period’s true lengths for the projection.

Projection is not supported for standard deviation computation.

back to top

7.5.7 Patterns

Business background

Certain fraud schemes involve a certain sequence of transactions. For instance, after one international purchase transaction, there would
be a domestic purchase transaction, and immediately after that domestic transaction, an international ATM withdrawal follows. To detect
such schemes, IBM Safer Payments provides “pattern” profiling.

For details, see online help pattern.

back to top

7.5.7.1 Pattern

For the business background, see online help patterns.

Definition

Pattern definition consists of:

• conditions that identify when pattern profiling is performed,

• stencils that describe each part of a pattern, and

• an output attribute generated by pattern profiling, indicating the pattern being matched with the current transaction message.

One set of conditions is applied to each incoming transaction message processed by IBM Safer Payments. Only if all conditions are met,
IBM Safer Payments will evaluate if the past transactions history of this transactions message matches the pattern defined.

Each stencil is a combination of another set of conditions that a past transaction record shall satisfy, and a range of “filler” transaction
messages (or a “filler time range”) that may occur after the condition matching record had occurred. All stencils defined must be
satisfied by the transaction record sequence in order for the pattern to be matched.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The output attribute is fixed of type “boolean” (True/False, hereinafter “1”/“0”), and of computation “occurs”. Pattern profiling only
assigns values “0” and “1” to it. “0” indicates that either the condition was not matched by the current transaction message or that the
stencil sequence was not matched by previous transaction records. “1” indicates that both the condition was matched for the current
transaction message and that the stencil sequence was matched.

Example

The example assumes this pattern definition:

In this example, the pattern output attribute is assigned the value of “1” if:

• There are two subsequent (“pure”) international purchase record that are minimum 1 hour and maximum 6 hours apart (stencil 1 /
records).

• Thereafter there are minimum 1 and maximum 5 records within minimum 3 and maximum 18 hours after the past international
purchase record that do not satisfy the records condition of stencil 2 of a domestic purchase record (stencil 1 / filler).

• After these filler transactions, but also within maximum 18 hours, there is one domestic purchase record (stencil 2 / records).

• Thereafter there are up to maximum 3 records of any kind plus the current international ATM transaction (pattern conditions)
which have to occur within maximum 6 hours (stencil 2 / filler).

The following figure uses a number of sample sequences to exemplify how patterns are computed:

Timelines for each example card with their transaction sequences are drawn on a vertical arrow. Time moves from bottom to top. For
illustration reasons, all pattern condition matching – and thus computation triggering transaction messages – are positioned all at
44:00h.

Dots mark transactions on the example cards timelines:

• Red: current transaction message satisfying the pattern conditions.

• Blue: past transaction record satisfying stencil 2 conditions.

• Green: past transaction record satisfying stencil 1 conditions.

• White: past transaction record that does not satisfy the current or next stencil's conditions.

The “pattern occurs” value of the output attribute for the example transaction sequences would be computed as:

1. There are two (green) transaction records satisfying stencil 1 records’ conditions. Thereafter, there are three (white) transaction
records not satisfying stencil 2 records’ conditions; these transaction records are within the stencil 1 filler conditions of number 1
to 5 (there are 3 transaction records) and time range 3 to 18 hours (11 hours) before the (blue) first stencil 2 records’ condition
satisfying transaction record. Finally, the current transaction message satisfied the pattern conditions. The pattern occurs value
hence is “1”.

2. Different to card 1, in this example, there is one (white) not stencil 1 records condition satisfying transaction record between the
two (green) ones satisfying it. Because the “pure” option is enabled for the stencil 1 records definition, the non-satisfying
transaction record causes stencil 1 to not apply and hence the pattern occurs value is “0”. Notice that if the “pure” option would
not be enabled, the pattern occurs value would be “1”.

3. Same as card 1, only that there are three rather than two (green) stencil 1 records condition satisfying transaction records
subsequent to each other. Since the first two transaction records already satisfy the stencil 1 records condition, the third (green)
one is counted as a filler, and since 4 filler transaction records are also within the number 1 to 5, and the time distance between
the last stencil 1 record and the first stencil 2 record is 13 hours which is within the time range 3 to 18 hours. The pattern occurs
value hence is “1”.

4. The first two (green) transaction records satisfy stencil 1 records condition, thus the third (green) transaction record, even though
also satisfying this condition is considered to be the first stencil 1 filler transaction record. The next (blue) transaction record
satisfies stencil 2 records condition, thus the next (blue) stencil 2 records condition satisfying transaction record is considered the
first stencil 2 filler transaction record. However, since the time between the first transaction record satisfying stencil 2 records
condition and the current transaction message is 10 hours, exceeding the stencil 2 filler maximum time range of 6 hours, the
pattern occurs output value is “0”.

5. Same as card 4, however, this time the stencil 2 filler maximum time condition is met. The pattern occurs value hence is “1”.

6. Same as card 1, however, there is only one transaction record satisfying stencil 1 records condition. The pattern occurs value
hence is “0”.

7. Same as card 1, however, there is no transaction record satisfying stencil 2 records condition. The pattern occurs value hence is
“0”.

8. Same as card 1, however, there are 6 stencil 1 filler transaction records. The pattern occurs value hence is “0”.

9. Same as card 1, however, there are no stencil 1 filler transaction records. The pattern occurs value hence is “0”.

10. Same as card 1, however, maximum number of allowed filler transactions and maximum time ranges are assumed. The pattern
occurs value hence is “1”.

Remarks

• If you are in doubt how patterns compute, use the IBM Safer Payments test function to create various transaction record
sequences and check how they are computed.

• All intervals (time ranges, filler numbers) are inclusive, that is, the “to” and “from” values themselves are included in the interval.

• If the “pure” option is enabled for records of a stencil, the records satisfying the conditions may not be interleaved by other
records.

• If the record occurrence is set to “1”, the “pure” and “time range” options are not available.

• The number of stencils is not limited.

• The filler time and filler transactions settings are logically “and”-ed. They must both be satisfied for the pattern output attribute to
be set to one.

• Occurrence defines how many transactions fitting a stencil’s condition must occur. If there are less transaction messages than the
defined number of occurrences directly after another that all fit the conditions, the stencil is not considered applying (and thus the
pattern is not considered to match).

back to top

7.5.7.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.7.3 Stencil

A stencil is a combination of a condition that a past transaction record shall satisfy, and a range of “filler” transaction messages (or a

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

“filler time range”) that may occur between two different stencils. All stencils defined must be satisfied by the transaction record
sequence in order for the pattern to be matched.

More information on how stencils are computed is found on the Online Help Pattern page.

back to top

7.5.7.3.1 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.7.4 Pattern Attributes

Each pattern profiling creates exactly one new attributes that it feeds its computational results into.

Each of the pattern output attributes is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be
in the MDC and DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that
are only used for the evaluation of the current transaction and for which you do not need any history do not need to be stored at
all. Notice that your storage options determine how much main and disk memory IBM Safer Payments consumes (number of
records times length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored for this attribute on disk.

back to top

7.5.8 Events

Events track how long ago (in transaction time) a certain occurrence occurred. The occurrence is often a specific (non-monetary)
transaction message that is identified by the event's conditions. Each event contains a new numeric type attribute definition that carries
the result. The attribute may have any numeric size.

Calendar profiles and events are a very powerful feature in advanced fraud prevention. Whilst the data cache can only support the
storage (and thus subsequent access/evaluation by counters) of a limited number of transactions, calendar profiles and events do not
have a transaction limit.

Events are used to “remember” things that happened (possibly a long time ago). Examples could be “account opened”, “new card
imprinted”, “PIN OK verified”, etc.

An event is a “normal” transaction, however, only the timestamp and event condition attributes are used. The event conditions would
typically be implemented by defining (using the MTID meta attribute) an attribute, and defining the condition, for example the MTID
value for "PIN verified OK".

Any time a transaction comes in that fires the events condition, the transactions timestamp is stored in the event. The event output
attribute reflects the time difference between each new transaction and the last occurrence of the event transaction (for the event
transaction itself, this time difference is zero). The smallest unit for time differences is seconds. To make the definition of events easier,
minutes, hours, days, weeks, months or years can also be used as definition units. In addition, attributes may use decimals,
representing for instance “2.4 days since last address change”.

Remarks

• While typically, event transactions are defined to only “trigger” the event, this need not be the case. An event triggering
transaction could also be a full monetary transaction.

• Event transactions are (notwithstanding their event specific effects) just “normal” transactions and are also stored within the
transaction data or shown in investigation reports.

• The output value of an event can also be negative in case of transaction messages not always being in strict sequence. If for
instance for one cardholder, a posted transaction with a transactiondate of yesterday comes in shortly after an authorization
request from a restaurant. If there would be an event defining the last restaurant visit as an event, the posted transaction of
yesterday would get the value "-1 days" for the event since with respect to the posted transaction, the last restaurant request
occurred -1 days ago. Use mathematical comparison operators in conditions to interpret this value in the way you need it.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

back to top

7.5.8.1 Event

The settings for each event are:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comment
Used in the model revision to describe the event.

• Index
Index this event is defined along to.

• Timestamp
Attribute used as reference for event computation.

• Time unit
Event time is computed using this time unit.

• Include current
If checked, the event evaluation includes the current transaction. For instance, if this option is not checked, and no event
conditions is provided, the event output attribute lists the time since the previous transaction for this index attribute value had
arrived.

• Update during merging
Trigger an event or update its timestamp when a record meets the event's conditions after a merging which uses setting `update
calendar profiles and events` or after a manual fraud mark.

Memory consumption

Events are defined with reference to an index. Their memory consumption is computed as:

4 Bytes * IndexSize

both for MDC and DDC. In addition the new numeric attributes memory consumption must be added.

back to top

7.5.8.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.8.3 Event Attributes

Each event profiling creates exactly one new attribute which is filled with the time that has passed since the event last occurred.
Occurrence is defined by the conditions.

The event output attribute is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Profiling generated attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be
in the MDC and DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that
are only used for the evaluation of the current transaction and for which you do not need any history do not need to be stored at
all. Notice that your storage options determine how much main and disk memory IBM Safer Payments consumes (number of
records times length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored of this attribute on disk.

• Data type
The event profiling output attribute is of numeric data type. Notice that the value has the time unit set as "Time unit" above with
the event. The length/decimals settings should cover the value range that you are interested at. Notice that if an event did not
occur yet or did occur so long in the past that the value cannot be represented in the universe of the attribute, the value is clipped
at the positive maximum of the universe.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

back to top

7.5.9 Counters

Counters are similar to calendar profiles, however they evaluate individual transactions back using a referenced index. Thus counters
are more flexible than calendar profiles. They can be defined for a "rolling time period" rather than calendar fixed time periods, and past
transaction attribute values can be compared to those of the current one (this for example enables defining a counter for "number of
transactions at the same ATM within the past 2 hours"). Also, there are more complex evaluation methods available than in calendar
profiles. The disadvantage of counters in comparison with profiles is, that in particular with long-term evaluations, the large amount of
transactions that require evaluation can make counters perform significantly more slowly than profiles.

Counter results are stored in one or more new attributes defined within the counter. Counters themselves require a sequence but apart
from this and the new attribute have no memory consumption.

back to top

7.5.9.1 Counter

A counter assembles a set of past transaction records that satisfy a time range and a maximum number of evaluated and matching
records criterion, as well as a set of conditions, alongside an index sequence. As an option, the current transaction is included in this
set, if the “include current” checkbox is checked.

Example

Assuming the following sequence of transactions:

Timestamp Amount Country Merchant Category

1 2010-01-10 14:00:00 114.13 US 5571

2 2010-01-16 12:00:00 83.03 US 5411

3 2010-01-18 08:00:00 200.00 US 6011

4 2010-01-18 09:00:00 400.00 MY 5813

5 2010-01-18 09:01:00 400.00 MY 5813

6 2010-01-18 09:02:00 400.00 MY 5813

7 2010-01-18 15:00:00 133.00 US 5812

8 2010-01-18 19:00:00 300.00 US 5933

9 2010-01-22 11:00:00 1018.19 MO 5541

10 2010-02-08 12:00:00 100.00 US 5973

11 2010-02-08 12:15:00 300.00 US 5973

Here, the last row #11 represents the current transaction. The following counter definition examples would imply the following set of
transactions:

• A
Include current: no
Max evaluated records: 100
Max matching records: 100
Time range: 21 to 0 days
Evaluation Conditions: none
=> past transaction records 7 to 10 counted

• B
Include current: no
Max evaluated records: 100
Max matching records: 100
Time range: 4 to 0 weeks
Evaluation Conditions: Country equal to US
=> past transaction records 2, 3, 7, 8, and 10 counted

• C
Include current: no
Max evaluated records: 3
Max matching records: 3
Time range: 4 to 0 weeks
Evaluation Conditions: Country equal to US
=> past transaction records 8 and 10 counted

• D
Include current: yes
Max evaluated records: 100
Max matching records: 100
Time range: 4 to 0 weeks
Evaluation Conditions: Country equal to US
=> past transaction records 2, 3, 7, 8, 10, and 11 counted

• E
Include current: yes
Max evaluated records: 100
Max matching records: 100

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Time range: 1 to 0 weeks
Evaluation Conditions: none
=> past transaction records 10 and 11 counted

Based on this set of past (and potentially the current) transactions, a number of output attributes is derived. For each output attribute,
the "computation" setting defines how this attribute shall be computed from the transaction set. For details on computation methods,
open the online help page of the output attribute.

Remarks

Please notice, that the time range definition is inclusive, i.e. time range 3 to 0 hours means 0 <= x <= 3.

back to top

7.5.9.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.5.9.3 Counter Attributes

Each counter profiling creates one or more new attributes that it feeds its computational results into. Notice that if you use a mandator
structure, the rules of this decision logic may use all attributes defined in champion mandator revisions above it in the structure. Each of
the counter output attributes is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain. Notice that the attribute names
do not need to correspond to the variable names of data delivered to IBM Safer Payments; you define the relation between IBM
Safer Payments attributes and variable names in "Mappings".

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be in the MDC and
DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that are only used for
the evaluation of the current transaction and for which you do not need any history do not need to be stored at all. Notice that
your storage options determine how much main and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored for this attribute on disk.

• Data type
Computations (see below) either deliver numeric or text output (only if computation is "most occurrence value" the output
attribute of a counter may be "text").

• Formatted as
The formatting options are for display of values on the IBM Safer Payments pages (for examples in queries or case investigation).
Choices differ by data type:

◦ Amount
Using digit group and decimal separators as defined for each user's preferences (e.g. "12,345.67") for numeric attributes
only.

◦ Decimals
Using decimal separators as defined for each user's preferences (e.g. "12345.67") for numeric attributes only. This option
does not use digit group separators.

◦ ID
Using digit group separators as defined for each user's preferences (e.g. "123,456,789") for numeric attributes only.

◦ PAN
Using dashed quadruple format typically used for primary account numbers as embossed on cards (e.g.
"1234-1243-1243-1243") for numeric and text attributes.

◦ No formatting
Shows data with no formatter applied.

• Length/decimals
Byte length of internal storage for numeric output attribute values, ranging from 1 to 8, and decimals ranging from 0 to 6. The
value range that the resulting attribute can represent is computed live in the browser and displayed on the right.

• Unit
Displayed with numeric values of this attribute.

• Computation

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This setting determines how the output attribute is computed from the set of transaction records selected by this counter:

◦ Simple counting methods
The simple counting methods include:

▪ Frequency
Number of transaction records selected.

▪ Total amount
Total amount of all transaction records selected.

▪ Average amount
Average amount of all transaction records selected.

▪ Maximum amount
Maximum amount of all transaction records selected.

◦ Multiple occurrences
The overly frequent occurrence of certain values for an attribute can be a strong indicator of fraudulent behavior. IBM Safer
Payments provides different counting methods for this indicator:

▪ Most occurrence frequency
This counting method outputs the number of selected transaction records that have the same value as the reference
attribute (defined above). If for instance this counter is used on MerchantID with the index/sequence attribute PAN, this
counting method returns how many transactions the cardholder of the current transactions had at most with the same
MerchantID.

▪ Ratio of most occurrence
This is the normalized version of the previous. It is computed as the most occurrence frequency value divided by the
total number of transaction records that satisfy the counter conditions (frequency). If no transaction satisfies the
counter conditions, this value is zero. If the value occurs no more than once, this value is also zero. Notice that this
value is always in the interval [0; 1]. You should therefore define the respective counter output attribute with decimals.

▪ Most occurrence value
Delivers the value that occurred most. Can be used with text and numeric type reference attributes. The respective
counter output attribute must have the same type as the referenced attribute. If the value occurs no more than once,
this computation delivers zero for numeric type attributes and an empty text for text type attributes. If more than one
value occurs with the maximum same frequency, the first value is outputted. Notice that with this computation method,
data type and length of the output attribute gets taken from the reference attribute and may not be changed. If
categories are defined for the reference attribute, they will be assigned to the output attribute of the counter
automatically. In this case the categories are shown at the bottom of the page but are not editable.

Examples: Assume the following lists of values of the reference attribute with transaction records that satisfy the counter
conditions:

Values of reference attribute Most occurrence frequency Ratio of most occurrence

{10; 20; 20; 30; 30; 30; 40; 50} 3 3/8=0.375

{} 0 0.000

{10} 1 0.000

{10; 10; 10} 3 1.000

{10; 10; 10; 10; 20; 20; 20; 20} 4 4/8=0.500

{10; 20; 30; 40; 50; 60; 70; 80} 1 0.000

{10; 20; 20; 30; 30; 30; 40; 10} 3 3/8=0.375

◦ Distinct values
Some fraud patterns can be identified by analysing the number or ratio of distinct values of the reference attribute in the past
transaction record sequence. IBM Safer Payments provides different counting methods for this indicator:

▪ Number of distinct values
This counting method outputs the number of values of the reference attribute of past transactions that are different
from each other.

▪ Ratio of distinct values
This is the normalised version of the previous counting method. It is "0" for all values being the same (if more than one
value is counted), and "1" for all values being different from each other.

Examples: Assume the following lists of values of the reference attribute with transaction records that satisfy the counter
conditions:

Values of reference attribute Number of distinct values Ratio of distinct values

{10; 20; 20; 30; 30; 30; 40; 50} 5 4/7=0.571

{} 0 1.000

{10} 1 1.000

{10; 10; 10} 1 0.000

{10; 20; 30} 3 2/2=1.000

{10; 10; 10; 10; 20; 20; 20; 20} 2 1/7=0.143

{10; 20; 30; 40; 50; 60; 70; 80} 8 7/7=1.000

{10; 20; 20; 30; 30; 30; 40; 10} 4 3/7=0.429

◦ Multiple values
Some fraud patterns can be identified by analysing the number or ratio of values of an attribute in the past transaction
sequence that occur more than once. IBM Safer Payments provides different counting methods for this indicator:

▪ Number of multiple values
This counting method outputs the number of values of the reference attribute of past transactions that occur more than
once.

▪ Ratio of multiple values
This is the normalised version of the previous counting method.

Examples: Assume the following lists of values of the reference attribute with transaction records that satisfy the counter
conditions:

Values of reference attribute Number of multiple values Ratio of multiple values

{10; 20; 20; 30; 30; 30; 40; 50} 2 2/8=0.250

{} 0 0.000

{10} 0 0.000

{10; 10; 10} 1 1/3=0.333

{10; 20; 30} 0 0.000

{10; 10; 10; 10; 20; 20; 20; 20} 2 2/8=0.250

{10; 20; 30; 40; 50; 60; 70; 80} 0 0.000

{10; 20; 20; 30; 30; 30; 40; 10} 3 3/8=0.375

◦ Distinct IP B/C Nets
This is a variant of "number of distinct values" designed to count the number of different B/C IP nets used by a customer. For
this, an attribute holding the IP address must be specified as reference attribute. The format of the IP address must be the
"dotted" format, such as "129.44.1.8". The subnet mask applied is "255.255.255.0" for distinct C class nets and
"255.255.0.0" for distinct B class nets. That is, IP addresses "129.44.1.2", "129.44.1.255", "129.44.1.0", and "129.44.1.144"
would all be considered to be with the same C class net as "129.44.1.8"; and thus not counted as distinct nets. Notice that
the IP address holding attribute must be of "text" type and have a minimum length of 15 ("xxx.xxx.xxx.xxx").

back to top

7.5.10 Collusions

Business background

Collusion is the process where card information is copied from transactions made at one or more terminals at the merchant site
("common point of purchase", aka CPP or "point of compromise", aka POC), over a defined period of time, and later used to create
fraudulent transactions.

A traditional way of fighting this type of fraud is to replace all cards that have been used at the POC during the affected period. This is a
costly process involving customer disruption. It also only works after a point of compromise is detected and verified.

IBM Safer Payments provides a much better way to deal with this type of fraud. Using collusion processing, IBM Safer Payments
constantly analyses past transactions for indicators that a set of cards has been compromised and is now used for fraudulent
transactions. Special investigation cases are generated for potential points of compromises. These investigation cases provide the
possibility to protect compromised cards even before they are used for fraudulent transactions. In addition collusions not only detect
potential points of compromise but als provide further information such as a skimming time range.

In this way, collusion fraud can be prevented even before a POC is known, and POCs themselves can be found.

Collusion processing can be triggered by rules, if the respective conditions are met, or when mergings are executed. With that it is
possible to execute a collusion processing automatically in all cases where cards seem to be used fraudulently after being compromised
in order to protect other cards before collusion fraud takes place. Collusions are triggered within the real-time processing of incoming
messages but are executed in parallel to the real-time execution of messages. Using this technology collusion processings will not
influence the computation time of incoming transactions.

In addition to the automatic execution of collusions it is possible to run collusions manually for a predefined data selection.

For reasons of generality, what in the standard situation described above is the "card" or the "account" is referred to as "first party",
what is the "merchant" or the "terminal" is the counterparty".

Analytical process

The analytical process is as follows:

1. Analyse the transaction record history for the first party. Collect all transaction records of this history that satisfy the “counterparty
time criterion” and “counterparty conditions”. The counterparty time criterion is a time interval (from/to) relative to the value of
the meta attribute 'Timestamp'.

2. For the resulting set of past transaction records, create a set of counterparties involved with these transaction records.

3. For each counterparty, select what other first parties had transaction records with the counterparty, with the transaction records
satisfying the “connivance time criterion” (relative to the transaction message timestamp found in step 2. above) and the
“connivance conditions”.

4. Count how many of these first parties satisfy the compromised criteria within the compromised time range (with respect to the
reference timestamp) after they made the first transaction at the counterparty within the connivance time period; and do not
satisfy the compromised criteria before. If no compromised conditions are defined the compromised criteria includes fraudulent
transaction. If additional compromised conditions are defined, first parties are counted as affected first parties if either "fraud-
criterion" or the compromised conditions are satisfied within the compromised time range.

5. For each counterparty where more first parties than defined as "Threshold first parties" are counted, generate the defined “point of

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

compromise suspicion case” (as defined as case class).

Example

Assuming the conditions of a rule that indicates fraudulent behaviour induced by a POC are satisfied, the respective rule triggers a
collusion. This transaction is marked red and the previous transactions are shown with their counterparty value in the figure below left:

Now the sequence of past transaction records is analysed: the "counterparty time range" identifies the sub-sequence (within dotted
green lines) in which merchants are considered that had transaction records with first party B. In the figure above right, these were the
counterparties 2, 4, 6, and 7 (marked dark grey). Counterparties 3 and 5 do not fulfil the counterparty conditions.

Next the past transaction record sequences of all four counterparties are analysed as potential POCs. The next figure shows the POC
analysis for the first counterparty 7:

The figure shows the first party transaction record histories (vertical lines) for each first party that had transactions with the
counterparty 7 within the connivance period. Fraudulent transaction records are marked in red, transaction records involving
counterparty 7 that match the connivance conditions are marked dark grey. The counterparty values are printed in the hexagons.

The first party transaction record sequences are evaluated:

• First party A: The first party had one transaction record at counterparty 7 within the connivance period and fraud within the
compromised time range after the first transaction record at counterparty 7 and no fraud before the first transaction record at
counterparty 7. It is thus counted as potential POC induced fraud.

• First party B: This is the first party whose transaction message is currently/originally evaluated. Since the first transaction record
at counterparty 7 occurred after the connivance period, this first party is not considered further.

• First party C: The first party has a transaction record within the connivance period at counterparty 7, no fraud before the first
transaction record at counterparty 7, and at least one fraud transaction record within the compromised time range after the first
transaction record at counterparty 7. It is thus counted as potential POC induced fraud.

• First party D: The first party has a transaction record within the connivance period at counterparty 7, but fraud occurred before the
first transaction record at counterparty 7. This first party is not considered further.

• First party E: The first party has a transaction record within the connivance period at counterparty 7, but no fraud occurred. This
first party is not considered further since no additional compromised conditions are defined.

• First party F: The "connivance conditions" are not satisfied for the transaction record at counterparty 7. This first party is not
considered further.

• First party G: Same as first party D. This first party is not considered further.

• First party H: The first transaction record at the counterparty that satisfies the connivance conditions is fraudulent. It is thus
counted as potential POC induced fraud.

• First party I: Fraud occurred within the compromised time range after the first transaction record with the counterparty. It is thus
counted as potential POC induced fraud.

• First party J: Even though the first fraud occurred after the first transaction record at the counterparty and within the compromised
time range, this first counterparty transaction record was outside the connivance period. This first party is not considered further.

The same analysis is performed on all four counterparties. The example results of this are:

Counterparty 2 4 6 7

First parties that indicate potential POC 14 33 1 4

All first parties that fit connivance criteria 22 193 5 9

Ratio 38.89% 17.10% 1.85% 44.44%

This concludes the analytical part of collusions. Based on the results:

• POC investigation cases are generated through the generation of alarms, and

• the indicators computed are displayed within the newly created cases or updated if the generated alarm is aggregated with an
already existing case for the found potential point of compromise.

A POC alarm is generated for each counterparty where the result is higher than pre-defined threshold:

• Threshold first parties
Absolute number of first parties that indicate potential POC.

In addition to the detected potential POC the following information are provided within the generated cases:

• number of affected first parties

• number of generated alarms

• skimming time range

Remarks

• Collusion alarms also contain a list of potentially affected first parties. These are displayed on the case investigation page in a
separate section and can be drilled down for their past transaction record sequence.

• Besides the time ranges mentioned above there are also limits available for first parties and counterparties which are included in
the collusion processings. This allows to control the computation time of collusions.

• Manually executed collusions do not generate cases. Instead a summary is displayed where all detected potential POCs are
displayed together with further information such as number of affected first parties and the respective skimming time range. These
information can be used for further investigations.

back to top

7.5.10.1 Collusion

Each collusion searches within past transactions whether there is an accumulation of fraud with accounts/cards that could indicate that a
common point of purchase has been used to extract account/card information. Refer to the online help function for collusions above for
details on the computation. Each collusion comprises a number of definitions:

In order to include a collusion within the real-time processing of transactions, the respective checkbox has to be enabled for a rule or a
merging.

To simulate a collusion processing press the green button on top of the form. This will start a simulation of the respective collusion using
the data selection configured on the page "Simulation". Results of manually executed collusions are provided in a table on the bottom of
this page. It is recommended to simulate collusions before they are taken into production to avoid a large number of generated alarms
or unexpected results. Manually executed collusions can be aborted at any time during computation by clicking the respective red
button.

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• First party (index)
Index of the attribute (must have a sequence) that shall be used as first party. This would typically be the attribute that identifies
the card or the account.

• Threshold first parties
Threshold for the absolute number of cards that indicate a potential POC. If this threshold is reached for a counter party, a
collusion alarm is generated.

• Counterparty (index)
Index of the attribute (must have a sequence) that identifies the counterparties to be evaluated. This would typically be the
attribute that identifies the merchant or the terminal.

• Counterparty time range
Time interval, relative to the value of the meta attribute 'Timestamp', in which counterparties that had transactions with the first
party are considered. Only counterparties are considered as points of compromise that had transactions with the first party during
this time period and that also satisfy the "counterparty conditions" (below). Please notice, that the time range definition is
inclusive, i.e. time range 3 to 0 hours means 0 <= x <= 3. Please also notice that the sequence timestamp attribute of the first
party index is used for this evaluation.

• Max counterparties
The maximum number of counterparties that will be evaluated.

• Connivance time range
Time before and after the transaction at the counterparty, in which other first parties are considered that had transactions with a
counterparty and that also satisfy the "connivance conditions" (below). Please notice, that the time range definition is inclusive, i.e.
time range 3 to 0 hours means 0 <= x <= 3. Please also notice that the sequence timestamp attribute of the counterparty index is
used for this evaluation.

• Max first parties
The maximum number of first parties, that will be evaluated for each counterparty.

• Compromised time range

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Time interval, relative to the current reference timestamp, in which the compromised criterion (below) has to be satisified. The
reference timestamp is the most recent timestamp that is available for the meta attribute 'Timestamp'. Please note that in case no
compromised conditions are defined, only fraudulent transactions are considered as indicators for a compromised account.

• Generate alarms
An alarm is generated for each counterparty that is considered a potential point of compromise:

◦ Case class
Id of case class that the generated alarm(s) shall belong to. Please note that only case classes of type "collusion" are
selectable.

◦ Case score
Value of the meta attribute "case score" which determines the importance of the generated alarm(s).

For help on the sections, refer to their individual online help pages.

Notice that the online help page for collusions (from the top section) describes the collusion evaluation process in detail.

back to top

7.5.10.2 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

7.6 Formulas

Formulas allow the use of mathematical expressions to generate a new attribute from existing ones. While mathematical expressions
can also be used with conditions, using a formula to generate a new attribute can be more efficient if this expression is used many times
in the model revision. The attribute may have any numeric size.

Note that rule conclusions that write a formula expression to an output attribute are similar to Model/Formula.

back to top

7.6.1 Formula

For details on formula definition, rest the mouse pointer over the respective field to show tooltip style explanations.

There are six operations each of which has two operands:

• (x + y)

• (x - y)

• (x * y)

• (x / y)

• geoDistanceKm(pos(latitudeA; longitudeA); pos(latitudeB; longitudeB))

• geoDistanceMiles(pos(latitudeA; longitudeA); pos(latitudeB; longitudeB))

The operands x, y, latitudeA, longitudeA, latitudeB and longitudeB may either be:

• a numeric expression (decimal character is period, no spaces in numbers, may have leading minus sign)

• an attribute of the same transaction (format: [attribute name]) or

• a math condition

In addition to all operations mentioned above, you can also make Python function calls in your formulas. To get the list of available
Python functions you need to type "py" in the expression field. For more information about Python code execution refer to the respective
online help page.

Memory consumption of a formula is only the memory consumption of the formula output attribute. There is no overhead.

pos is a placeholder formula to encode 2 values for geo distance processing. It cannot be used without geoDistanceKm or
geoDistanceMiles

geoDistanceKm / geoDistanceMiles computes the distance between two geographical coordinates.

Following steps should be performed to achieve useful distance calculation results:

• Define latitude/longitude masterdata for the respective index attribute.

• Define message type, and corresponding mapping to import geo locations

• Load geographical coordinates using a batch load job. The csv file should contain following attributes: MTID, zip, latitude,
longitude)

• Define three precedents to capture the data of the previous transaction: previousLatitude, previousLongitude, previousTimestamp

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Define formula to compute distance: geoDistanceKm(pos(#previousLatitude; #previousLongitude); pos(#latitude; #longitude))

• Define formula to compute time difference: sub(#trxDateTime; #previousTimestamp)

• Define rule(s), e.g. (zipDistanceKm ≥ 75) ; (zipTimeDifference ≤ 3600); (trxType != eCommerce)

back to top

7.6.2 Formula Attributes

Each formula creates exactly one new attribute which is filled with the result of the calculation.

The formula output attribute is specified by a set of definitions that are made on this form:

• Name
The name is used in all IBM Safer Payments forms and should be chosen from a business domain.

• Comments
Comments are only for documentational purposes. It is advisable to comment the attributes extensively, so the decision logic
remains easy to understand.

• Storage type
Attributes that you need in real-time (for counters and mergings) or for analysis and rule generation should be stored in MDC and
DDC. Attributes that you only need for investigation and queries should only be stored in the DDC. Attributes that are only used for
the evaluation of the current transaction and for which you do not need any history do not need to be stored at all. Notice that
your storage options determine how much main and disk memory IBM Safer Payments consumes (number of records times
length/characters). You find the memory totals for this model revision in "General".

• MDC records
Number of records that should be stored of this attribute in main memory. Because data in main memory is not persistent, the
MDC is primed from the DDC when IBM Safer Payments starts up. This implies that the DDC size (i.e. the number of records
stored) must always be greater than or equal to the MDC size.

• DDC records
Number of records that should be stored of this attribute on disk.

• Data type
The data type of a formula output attribute is numeric.

• Length/decimals
Byte length of internal storage, ranging from 1 to 8, and decimals ranging from 0 to 6. The value range that the resulting attribute
can represent is computed live in the browser and displayed on the right.

back to top

7.7 Model Components

This section defines modeling capabilities of IBM Safer Payments. Safer Payments provides the possibility to combine multiple modeling
types to combat fraud effectively. While some of them (rulesets) can be created and trained within Safer Payments itself, other model
types can be imported to Safer Payments in PMML (Predictive Model Markup Language) format. The imported PMML models can be
evaluated as a part of the overall model alongside model components created within IBM Safer Payments. The following model
component types are supported:

• Ruleset / Scorecard

• Decision tree

• Neural network

• Random forest

General remarks

• With all the model components of this model revision, a model component with higher priority is computed after a model
component with lower priority. This is because later model components can overwrite output of earlier model components.

• First the model components of the "highest" mandator in the hierarchy are computed, all model components of the current
mandator are computed last. This is equivalent to an automatically higher priority of the model components of the current model
revision, since model components in the current model revision can overwrite any decision a model component of a higher
mandator's champion model revision has made. This implies that the model component priorities only determine the computation
lineup of model components within a model revision.

The following diagram exemplarily shows an order of execution of model components and final rulesets.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The model components and final rulesets are executed in the following order (Assumption: current mandator = mandator 4):

1. All model components of the top mandator (mandator 1) according to their priorities (A -> C -> B)

2. All model components of the head mandator (mandator 2) according to their priorities (F -> D -> E)

3. All model components of the current mandator according to their priorities (J -> I)

4. All final rulesets of the current mandator according to their priorities (FC -> FD)

5. All final rulesets of the head mandator (mandator 2) according to their priorities (FF -> FE)

6. All final rulesets of the top mandator (mandator 1) according to their priorities (FB -> FA)

PMML specific remarks

• IBM Safer Payments supports import and execution of a subset of model types and options defined in PMML version 4.3.

• Refer to the section help data field mapping to see how data field mappings can be defined.

• Refer to the section help output field mapping to see how output field mappings can be defined.

• Refer to the section help transformation field mapping to see how transformation field mappings can be defined.

• Before uploading large PMML model files, you might need to adjust the maximum post size setting on the system configuration
page. Uploads which exceed the maximum allowed post size will be rejected.

• Note that wildcard characters encountered in PMML predicates will be interpreted according to their role in IBM Safer Payment's
expressions.

PMML data types

Below you can find all supported PMML data types and their counterparts in IBM Safer Payments to which a valid mapping can be
defined.

PMML data type SP data type

string text, IPv4, hexadecimal, numeric, timestamp

integer numeric

float numeric

double numeric

boolean boolean

dateTime timestamp

PMML transformations

PMML transformations allow to derive new data fields from input data by applying various functions on them. IBM Safer Payments
supports a subset of these transformations defined in PMML 4.3 standard. The table below provides an overview of the supported
transformations per PMML model type.

PMML decision tree PMML random forest PMML neural network

Constant Transformation dictionary and outputs with feature "transformedValue" Transformation dictionary and outputs with feature "transformedValue" -

FieldRef Transformation dictionary and outputs with feature "transformedValue" Transformation dictionary and outputs with feature "transformedValue" Input layer

Apply Transformation dictionary and outputs with feature "transformedValue" Transformation dictionary and outputs with feature "transformedValue" -

NormDiscrete - - Input layer

NormContinuous - - -

Discretize - - -

MapValues - - -

TextIndex - - -

Aggregate - - -

Lag - - -

The following built-in functions are supported in "Apply" transformations: +, -, *, /, log10, ln, sqrt, abs, exp, pow, threshold, floor,
ceil, round, min, max, sum, avg, product.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

7.7.1 Ruleset / Scorecard

Rulesets are a structuring aid for rules. Grouping rules into sets has a number of advantages:

• Often the representation of a certain fraud type or region specific fraud cannot be done in one rule. Grouping them into a ruleset
keeps them at one place for easier reference and maintenance.

• Rulesets can be enabled and disabled entirely. This allows for a set of rules to always be enabled and disabled at once.

• Rulesets can have additional conditions. Thus if there is a number of rules that shares some conditions (such as region, merchant
type, or similar), this condition must only be formulated once as the ruleset condition, keeping the actual rules conditions smaller
and easier to maintain.

• Because each ruleset can be given a priority, grouping rules in sets can make it easier to create and maintain a priority scheme for
the entire rules of the model revision.

Remarks

• Notice that the individual priorities of single rules in ruleset are only relevant for the order of execution within a ruleset.

• Also notice that the conditions that you define for a ruleset will be applied as if they would be defined the same for all individual
rules of the set.

• In some applications, there are rules that need to be computed last (i.e. with highest priority). If you need this, enable "Final
rulesets" within the mandator administration settings for the respective mandator(s). You find more information on final rulesets
on their online help page.

back to top

7.7.1.1 Rules

Rules are the core of the model revision as they combine values of input attributes and attributes generated by the profiling methods
listed before in this section, to identify fraud patterns. Rules can also have any number of conclusions that set or modify output
attributes.

Rules can be entered manually, generated assisted/automatically or be imported via a PMML scorecard.

• To manually enter a new rule, click on the [New rule] icon. To edit an existing rule, click on the respective rule row. Extended rule
options are available from a context menu by clicking right on the respective row. You may also select multiple rules using the
[Ctrl] key with mouse clicks for individual selection or the [Shift] key with mouse clicks for the selection of an interval.

• Information on assisted or automatic rule generation can be found on the Automatic and Assisted Rule Generation online help
page.

• To import rules via a PMML scorecard, click on the [Import PMML scorecard] icon or drop the file directly on the icon. Further
information on PMML scorecard import can be found on the PMML online help page.

Remarks

With all the rules of this ruleset, a rule with higher priority is computed after a rule with lower priority. This is because later rules can
overwrite conclusions of earlier rules.

Rules require no memory in MDC or DDC.

back to top

7.7.1.1.1 Rule

The definition of a rule involves a number of settings that are made in this form. Rest the mouse pointer over a setting for details.
Settings are:

• Enabled
If checked, this rule is active.

• Priority
Enter any value between 0 and 10,000 for the rule priority, the higher this value is, the LATER the rule is computed within this
ruleset (later computation means it can overwrite computations by earlier computed rules).

• Name
Name of this rule.

• Comment
Comments are informational only, however it is highly recommended that you comment each item in IBM Safer Payments fully as
these comments are used in various places.

• Performance report
Includes this rule for performance report analysis performed using group by queries. If you enable this setting, the rule will keep a
record for which transaction it was applied. Thus, this requires additional memory in MDC or DDC.

• Collusions
Selected collusions are triggered if the rule conditions are met. For further information about collusions please refer to the
respective online help page.

• Conditions
The conclusions of a rule are executed when all defined conditions are satisfied. If no condition is defined, the conclusions of a rule
will be applied to all transaction messages.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Conclusions
The conclusions of a rule are executed when all defined conditions are satisfied.

• Actions
The actions of a rule are executed when all defined conditions are satisfied.

If a rule query is defined, you can execute it on a specific rule by selecting "Execute rule query" from the context menu or the form. A
rule query delivers all records, that are hit by the selected rule. This function requires an active and valid simulation. Further information
on simulation queries can be found here.

Selecting "Execute Rule Analysis" from the form starts a single rule analysis in order to get statistics about this specific rule. Further
information on rule analysis can be found here.

Information about the rule report can be found here.

back to top

7.7.1.1.2 Rule Report

Important: To start a rule report a rule report query has to be defined and the simulation of the meta attribute intercept has to be
enabled in the modelling section. Beside that the executing user needs to have simulation memory for the mandator of this revision.

The rule report provides information about the performance of a rule. There are two options to start the rule report:

• With context
The complete decision model is considered. To start the rule report with context it is required to have a valid simulation
already.The summary takes only those records into account where the rule, the report is generated for, fired. However the relative
amount and share against the entire Simulation are shown in the summary as well. The absolute numbers for the entire Simulation
can be found in the report header. Note that this option is only available if the ruleset and the rule are enabled.

• Without context
Only the selected rule is simulated. In case you start a report "without context", all your previous simulation and analysis results
will be invalid. Notice that results will be lost as soon as you close the form. The executing user needs to have memory assigned to
his user account for the mandator of this revision.

The report consist of three parts:

• Report Settings
The basic information about the report is listed here. Beside that the definition of the rule set and the rule itself is shown.

• Summary
This section summarizes the number of generated alarms dissected by the return value (meta-attribute intercept). The summary is
computed using the simulation the report based on, not the original transaction data.

• Record list
The record list shows the records where the rule fired. It is defined as a rule report query. The record list is computed using the
simulation the report based on, not the original transaction data.

back to top

7.7.1.1.3 PMML Scorecard Import

PMML (short for Predictive Model Markup Language) is a XML-based file format used to describe and exchange models produced by data
mining and machine learning algorithms. One of the supported models is the scorecard model which you can use to import rules into
IBM Safer Payments.

XML schema

The PMML scorecard model has the following xml schema:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

To import rules into IBM Safer Payments from a PMML scorecard you have to upload a valid XML file, corresponding to the schema
above, via a browser. To that purpose you can click on the [Import PMML scorecard] icon in the ruleset form or drop the file directly on
the icon.

Example

An example for a valid XML file would be following scorecard definition:

A tabular representation of this scorecard would look like this:

IBM Safer Payments compatible scorecards

In order to be able to be imported into IBM Safer Payments a scorecard has to fulfill certain conditions:

• Attribute 'name' of every element 'DataField' has to correspond to an IBM Safer Payments model attribute name available to the
ruleset where the scorecard shall be imported to.

• Attribute 'dataType' and attribute 'optype' of every element 'DataField' have to correspond to the respective IBM Safer Payments
model attribute definitions. See PMML data types table in the model components online help for supported data types and
mappings.

• Attribute 'name' of every element 'MiningField' has to correspond to an IBM Safer Payments model attribute name available to the
ruleset where the scorecard shall be imported to.

• Attribute 'name' of every element 'OutputField' has to correspond to an IBM Safer Payments model attribute name that can be
overwritten by conclusions of the ruleset where the scorecard shall be imported to.

• Attribute 'dataType' and attribute 'optype' of every element 'OutputField' have to correspond to the respective IBM Safer Payments
model attribute definitions. See PMML data types table in the model components online help for supported data types and
mappings.

• Valid values for the attribute 'operator' of every element 'SimplePredicate' are:

◦ isMissing

◦ isNotMissing

◦ greaterThan

◦ lessThan

◦ greaterOrEqual

◦ lessOrEqual

◦ equal

◦ notEqual
The value has to correspond to the respective IBM Safer Payments model attribute definition (i.e. no 'greaterThan' operator for
text values). Values not known to IBM Safer Payments will be imported per default as 'equal'.

• For the attribute 'booleanOperator' of element 'CompoundPredicate' only the value 'and' is being supported. When any other value
is given, the whole rule will be ignored (not imported).

Remarks

• For supported PMML data types and their counterparts in IBM Safer Payments, see PMML data types table in the model
components online help.

• IBM Safer Payments model attributes are only matched to scorecard variables if the attribute 'usageType' of element 'MiningField'
is 'active'.

• If the scorecard is compatible to IBM Safer Payments, all existing rules in the ruleset will be erased and replaced by rules
corresponding to the imported PMML file.

• In the example above the created rules would be:

• Scorecards are usually only used for rules which change a score. Therefore all imported rules will have a conclusion with an
'increment by' operator, where the score value will be incremented by the value specified in the respective 'partialScore' attribute
of an 'Attribute' element.

back to top

7.7.1.1.4 Rule Actions

Rule actions are performed on incoming transaction when all conditions of the rule are met. There are 5 different types of rule actions:

• Add alarm
Adds an alarm for a case class. The data of an incoming transaction will be used to create an alarm for the selected case class.
This is an alternative to define a conclusion with the meta attribute "case class".

• Add entry
Adds an entry for a defined risk list. If an incoming transaction contains the input attribute of the selected defined risk list, an
entry will be created with the transaction's attribute value. Further settings for the creation of defined risk list entries via rule
actions can be found in the configuration of the respective defined risk list.

• Add notification
Adds a notification. Choose a predefined notification that will be send when the rule fires. This is an alternative to define a
conclusion with the meta attribute "notification".

• Add reminder
Adds a reminder. Choose a predefined reminder that will be triggered when the rule fires. This is an alternative to define a
conclusion with the meta attribute "reminder".

• Set masterdata
Overwrites the stored value of the selected masterdata element. You can either use constant values (e.g. "5") or the value of an
attribute of the current transaction by using the reference to this attribute (e.g. {CustomerName}).

Remark

It is possible to define multiple rule actions of the same type. If for example several actions of the type "Add alarm" for different case
classes are defined, an alarm will be created for each case class. However using the same case class several times does not create
multiple alarms for that case class and thus has the same effect as using it only once. Performing a "Set Masterdata" action on the same
masterdata element several times, overwrites its value each time.

back to top

7.7.2 Decision Tree

Decision trees are one of the most standard and commonly used statistical models. The model is organized into hierarchical tree
structure which combines multiple nodes. Scoring of a transaction against a decision tree starts from its root node and descends into
child nodes. Each node has a logical predicate that determines the evaluation path i.e. processing is continued within a child which
predicate is evaluated to true. This process is continued until a leaf node is reached. The latest score in the evaluation path serves as
the predicted value for the evaluated message. Note that scores are defined by the attribute score on the tree nodes.

IBM Safer Payments supports both multi-node trees and binary trees. The type of the model is specified by the attribute
splitCharacteristic of TreeModel element. The supported options for the splitCharacteristic attribute are:

• multiSplit (default)
Each non-leaf node in the tree model may have an unrestricted number of children. If the attribute is not explicitly set, this value
will be used as default value.

• binarySplit
Each non-leaf node in the tree model should have exactly two children.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

It might happen that none of child nodes evaluates to true while evaluating a tree model. In that case the optional noTrueChildStrategy
attribute should indicate how to treat such situations (see section "No true child strategy" for the usage and supported options).

Score distribution

Scoring nodes in a decision tree define an attribute score which value serves as the predicted value if a transaction message chooses the
node. In addition to the predicated value, PMML also allows to define so called ScoreDistribution element within each scoring node. This
element specifies the probability distribution for each class that the model can predict. This means that scoring nodes can also compute
probabilities of each class based on the record count voted for a particular class and total record count. For more information about
score distribution refer to the official page of PMML standard.

Calculation of numeric predicates:

Note: Inside a PMML file a numeric constant in a predicate can have many decimals. Safer Payments will however allow a maximum of 8
decimals, so the decimal will potentially be cut off.

If a constant has more decimals than the attribute in the predicate, then a predicate can potentially return an unexpected boolean value
for very large numeric attribute values.

Example: The predicate in PMML is defined as

<SimplePredicate field="AMOUNT" operator="lessOrEqual" value="0.0000068500000000002">

The AMOUNT attribute in this example has a length of 8 byte (64 bit) and 2 decimals. It can therefore store values up to (263 -1) / 102

= 92,233,720,368,547,758.07 (or the according negative values).

The decimal will be cut to 0.00000685.

However since the predicate is compared with 64 bit integers and the decimal precision is 8 due to the constant, the predicate can only
be guaranteed to return expected boolean results for absolute AMOUNT values less or equal to (263 -1) / 108 = 92,233,720,368.54

When the constant has less decimals, the AMOUNT values can be larger accordingly.

No true child strategy

Defined as noTrueChildStrategy attribute in TreeModel element, this attribute defines how to treat situations where none of the child
nodes evaluates to true. The supported options for this attribute are:

• Return null predication
Tree model returns no prediction.

• Return last predication
In case one of the parent nodes scored already, the last score is taken, otherwise no prediction.

Ideally, every decision tree will provide a score. However, there might be situations, where the main predicate in a decision tree node
evaluates to unknown. For situations like this, IBM Safer payments will always evaluate to false.

back to top

7.7.3 Neural Network

A neural network is a system of neurons arranged in neural layers. It comprises of one input layer, one or more hidden layers (usually
simply referred to layers) and one output layer. All layers are interconnected and each neuron receives signals from neurons of the
previous layer and processes them. IBM Safer Payments only supports execution of feedforward fully connected neural networks as a
part of its model components.

Inputs and data transformations

The initial inputs are defined in the input layer. These are to be derived from transaction data by applying transformation to the
attributes defined in the data field mapping section. Currently, we support the following transformations:

• Field reference
Field references can be used to simply pass-through transaction data to the neural network without any transformation.

• Normalize discrete values
Can be used to transform categorical string values into normalized discrete numeric values. If transaction value equals to the value
defined in transformation, this returns 1.0 otherwise 0.0. The transformation value is defined as PMML attribute "value".

Activation of neurons

Each neuron activates the signal received from the previous layer. IBM Safer Payments supports all group 1 activation functions which
take a linear combination X of weights, inputs and a bias. These activation functions are listed below:

• threshold
activation = 1 if X > threshold otherwise 0

• logistic
activation = 1 / (1 + e-X)

• tanh
activation = (1 - e-2X) / (1 + e-2X)

• identity
activation = X

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• exponential
activation = eX

• reciprocal
activation = 1 / X

• square
activation = X2

• Gauss

activation = e-(X
2)

• sine
activation = sin(X)

• cosine
activation = cos(X)

• Elliott
activation = X / (1 + |X|)

• arctan
activation = 2 * arctan(X) / PI

• rectifier
activation = max(0, X)

Outputs

The activations of the last (hidden) layer are the final scores of the neural network. These are mapped to IBM Safer Payments attributes
as defined in the output field mapping section in the exactly same order in which neurons appear. The highest score always determines
the predicted value. Notice that no normalization such as simplemax or softmax will be applied.

back to top

7.7.4 Random Forest

A random forest combines multiple decision tree models in one statistical model using segmentation approach. This approach implies
that multiple tree models are grouped inside of a Segmentation element. Scoring takes place by evaluating each decision tree
separately, independent of others and then aggregating all outputs across all decision trees. Hence, it is model generator's responsibility
to specify how multiple models should be used and how scores should be aggregated by defining a multiple model method (see below
for the usage and supported options).

Model combination methods

Defined as multipleModelMethod attribute in Segmentation element, this attribute defines an aggregation/combination method. The
supported options are:

• Majority vote
Selecting the score for which the highest number of tree models voted. For example, assuming that we have a random forest
containing three trees and trees have predicted "NON_FRAUD", "FRAUD" and "FRAUD" respectively, the final output will be
"FRAUD" (2:1). In case of two trees (two predictions "FRAUD" vs. "NON_FRAUD") this method can become ambiguous. The
probablity of predicted values are calculated by the number of trees voted for this predicted value divided by the total number of
trees.

• Average and weighted average
Probabilities are computed as the (weighted) average of probabilities predicted by each model. The final predicted value would be
the winning class which has the highest combined probability. The predicted probabilities are defined by a node element
ScoreDistribution (see "Score distribution" section of decision trees for additional details).

• Select first
Selecting the first model score. Having the above example with three trees, the final output in this case will be "NON_FRAUD".

back to top

8. Administration

This chapter covers the administration functions of IBM Safer Payments.

back to top

8.1 Mandators

IBM Safer Payments can be configured to operate sub-portfolios in a different way. For details, refer to the online help page on structural
configuration. New mandators are created by clicking on the [New mandator] button.

If this capability is not needed, simply leave the default head mandator and do not define any more mandators here.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Notice that for any IBM Safer Payments function that is mandator specific, a choice of mandators is not shown (but implicitly selected)
when there is only one mandator, regardless whether there is only one mandator defined or the user only has access privileges for one
mandator.

back to top

8.1.1 Structural Configuration

Structural configuration involves empowering IBM Safer Payments to work for multiple sub-portfolios from within a single installation.
This configuration is made by defining a mandator structure on this page.

Structured portfolios

In the past, most payment processing centre environments were designed to serve a homogenous portfolio of cardholders or
merchants. All users could access all data, and one single model revision served all transactions. Even when the portfolio actually
consisted of multiple sub-portfolios, the same users of the payment processing centre accessed all data, and if individualization of the
model was required for different sub-portfolios, specific decision rules were introduced into the model. Previous generations of IBM Safer
Payments served these needs well.

However, needs have changed. Today, most payment processing centres serve multiple portfolios, either of "internal" or "external
customers". Customers in this sense can be lines of business of the same organization the processing centre belongs to ("internal"), or
("external") customers (issuers, acquirers) that are consumers for the processing services. What also has changed in the recent years is
that fraud prevention has moved from a task that was perceived as a "black box" by the customers and typically performed by a few
specialists of the payment processing centre, to a business process that customers want to control by themselves. Thus it has become
commonplace that the customers of the payment processing centres require to access IBM Safer Payments functionality directly.

To cater for these new needs, earlier versions of the software introduced a "mandator" concept for structured portfolios, in which one
installation could operate a portfolio consisting of sub-portfolios of multiple mandators, where each mandator could define its own model
revision and work its own case classes.

IBM Safer Payments promotes this concept to an entire new level. IBM Safer Payments not only supports multiple mandators, it also
supports any structure of mandators. Thus the payment processing centre can run a single IBM Safer Payments installation that serves
a number of its mandators, yet each of its mandators can optionally also serve sub-mandators (and so forth). Each mandators can
access IBM Safer Payments as if it is its own fraud prevention system, having its portfolio data "Chinese-walled" from the other
mandators.

The mandator structure in IBM Safer Payments encompasses all aspects of fraud prevention. For instance the payment processing
centre can define a "vanilla" fraud prevention model that deals with all standard fraud patterns. If a mandator feels that he needs to add
(or subtract) any decision rules or other elements to (from) a model, he can do so without any effect on all other mandators. Since
typically these "individualizations" involve only a small fraction of the settings of the "vanilla" fraud prevention model, much work is
saved. The result is a standardized solution where any level of individualization can be made with minimum effort.

It should be noticed that using multiple IBM Safer Payments installations for a structured portfolio is a bad choice. Not only do
administration and operation cost increase significantly, but the different installations cannot share important information in real-time.
For instance, in a structured portfolio involving multiple issuers, if a merchant-side point of compromise is detected, this information
would only be available with one IBM Safer Payments installation. And even if one would install cross-communication channels for such
information, the problem remains that detecting certain fraud patterns is much harder (and much slower) when each IBM Safer
Payments system only "sees" a fraction of the transaction volume. Therefore the only viable choice for a structured portfolio is to run
fraud prevention on a single installation, so that the pattern recognition algorithm can use all data to verify fraud patterns.

Hierarchical mandator structure

IBM Safer Payments can be configured to support any number of mandators within a tree type structure. This structure follows a
number of rules:

• A first mandator is already pre-defined when installing IBM Safer Payments. It is defined as the "top" node of the mandator
hierarchy ("Infinity Processing Corp" in the example below).

• There may only be one top node in an IBM Safer Payments configuration. In situations where there are multiple "top-level
mandators", the top node must be defined and considered a "virtual node", and the multiple mandators are defined right below it.

• For the definition of each subsequent mandator ("sub-mandator"), the next upper node of this new mandator must be selected as
"head mandator" to form a hierarchy.

• Mandators may be added later at any position, even "in-flight", without IBM Safer Payments operation halting. Mandators may also
be deleted, once all of its references in IBM Safer Payments have been deleted or deactivated (not top mandator).

• Because the mandator structure is key to all IBM Safer Payments operations, the hierarchy does not allow for moving of mandators
to different heads.

For illustrational purposes, now assume the following example hierarchy with 8 mandators:

The example assumes that IBM Safer Payments is operated in the datacenter of Infinity Processing Corp that provides issuer and

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

acquirer services for the 3 mandators: Goldhausen, Rich Int'l, and United Banks. Goldhausen itself owns Trust Bank. United Banks is a
legal construction over Savings&Loans, Corporate Int’l, and CountryBank. United Banks thus has no own card portfolios.

There are a number of implications with such a hierarchy:

Inheritance

Within the mandator structure, a mandator below the top mandator inherits certain properties from mandators in the direct path
"above" it. For instance, CountryBank inherits from United Banks and Infinity Processing Corp. Properties inherited include model
revision elements, such as:

• attributes,

• profiling, and

• rules.

This allows defining model revisions in a "top-down" approach. For instance, all "standard" attributes would be defined with Infinity
Processing Corp, so they are available with all mandators. Assuming that the three sub-mandators of United Banks require additional
attributes, they would be defined with the model of United Banks. This way the additional attributes would be visible and available with
United Banks, Savings&Loans, Corporate Int'l, and CountryBank (An "inherited" attribute can be used just like any "local" attribute. It,
however, can only be edited from within the mandator it belongs to).

Typically "general purpose" profilings (e.g. "Revenue past 24h", "Number ATM withdrawals past 30 min at this ATM"), and thus their
output attributes, would also be defined on a high hierarchy level – most likely the top mandator.

With rulesets and rules, inheritance can be used even more effectively by defining "general fraud rules" in the top mandator and rules
addressing portfolio specific fraud patterns in mandators down the hierarchy; there can also be rules that revert a decision made by a
rule in a higher node.

Mandator conditions

In a mandated configuration, it must be defined which mandator "owns" a transaction message/record. For this, each mandator is
associated with so-called "mandator conditions". Typically these conditions involve IIN-Ranges ("Institute Identification Number") or
other criteria that define "ownership" of records.

Mandator conditions are defined on the form that opens below this section when you select a mandator or create a new mandator using
the respective button of the toolbar. They may use any attribute present in any of the mandator champions available to this mandator.

IBM Safer Payments interpretation of the mandator conditions follows the hierarchy: IBM Safer Payments starts with the top mandator
and evaluates the conditions of all its sub-mandators. For each of these sub-mandators, IBM Safer Payments starts the evaluation of the
sub-mandators of this mandator (if the conditions of sub-mandators of the same mandator are overlapping, IBM Safer Payments will
compute all sub-mandators and continue their path).

Mandator ownership of a transaction message/record is essential for various access and computational decisions that IBM Safer
Payments makes. These are described in detail below.

Computation

For any kind of IBM Safer Payments transaction message computation (online or batch), IBM Safer Payments must determine which
model revisions are applied to it. IBM Safer Payments handles this the following way:

• Determine owning mandator (cf. above).

• Find path up to top mandator from owning mandator.

• Apply all champion models from top of the path (i.e. first top mandator, last owning mandator. This ensures that a sub-mandator is
always computed after a mandator, ensuring that the more "further down" a mandator model is, the more it has the "last word" on
decisions).

Because the owner mandator champion model is always computed last, it can overrule decisions made by head mandators.

While the principle that the lower mandator in the hierarchy always overrules the higher one is the correct one for most types of
computation in a model, there is an exception. For instance, there may be rules for which the mandator up higher in the hierarchy
should overrule the lower one. These rules are located in the "final rulesets" of a model revision. Since only certain applications do
require this, whether or not final rulesets are available is defined on a per-mandator level in the mandator settings.

Data access

In structured portfolios data access is only granted to authorized users. Data access comprises – if the respective role privileges are
granted – the following functions:

• view transaction details in query result tables and investigation pages,

• use data for simulation and analysis, and

• use data for rule generation.

In IBM Safer Payments, a user is authorized to view all data that is owned by the mandator and its sub-mandators the user is
associated to.

For ease of use, in each of the functions listed above, the mandators whose data shall be included in the function can be selected in a
checkbox list. For instance, if a user is associated with United Banks, he will be presented with the choice of United Banks,
Savings&Loans, Corporate Int'l, and CountryBank. It is important to notice that the United Banks choice in this case comprises all
transaction records that satisfy the United Banks conditions and none of the sub-mandators' conditions.

Mandator maintenance

A user that has change privileges for a mandator may create, change, and delete any sub-mandator "below". A user, however, may not
change or delete a mandator if he has no change privileges of the head mandator.

This ensures that a user with change privileges for its own mandator cannot change the mandator conditions for example to expand its
ownership of data.

There is one exception to this for the top mandator. A user with change privileges for the top mandator can change the top mandator's
properties. Notice that the top mandator cannot be deleted and does not have data conditions.

Mandator deletion

Because mandator deletion can have disastrous effects when performed unintentionally, change privileges for mandators shall be
granted only to users that understand these implications well. Even then, it is advisable to use a separate user account for such
activities.

As a matter of precaution, the mandator deletion confirmation dialog requires the user to re-type the name of the mandator to ensure
that the user is well aware of what he is doing.

Granted roles

The access and change privileges to entities associated to a mandator are controlled by "roles" that are granted to a user for each
mandator separately. For details, refer to user accounts.

back to top

8.1.2 Mandator

Each mandator represents a logical (often also physical) unit that combines model revisions, access privileges, investigation, users,
query and reports. It typically represents either a customer of a processor or a sub-portfolio. For details on IBM Safer Payments
mandator hierarchies, refer to the online help page on structural configuration. Each of the counter output attributes is specified by a set
of definitions that are made on this form:

Settings

• Head
Determines (for a new mandator) to which existing mandator it is attached (as sub-mandator). Notice that you may not change
this once a mandator is created.

• Name
The name is used in all IBM Safer Payments pages and functions.

• Comments
Comments are only for documentational purposes. It is advisable to fully comment the mandators.

• Remote lookup index
This would typically be an index to the account (or PAN) attribute index. There are two reasons you may want to use a remote
lookup index:

◦ If you are using the IBM Safer Payments case investigation or query capabilities, you may flag (and unflag) individual
transactions as fraudulent (or not). When this feature is used in a clustered configuration, the other instances must follow
this flagging. For them to identify the correct transaction this index is used.

◦ If you are using the IBM Safer Payments case investigation, you may enable reporting attributes in a case class when cases
already exist for that case class. For the old cases, the reporting attribute value is determined based on their transaction. To
speed up the process of determining the correct reporting attribute value on a remote instance, it is highly recommended to
define this index.

• Final rulesets
Enables an additional set of rules that are (1) computed after all other rulesets are computed, and (2) are computed in a sequence
"upward" the mandator hierarchy. This implies that, unlike with normal rulesets, final rulesets of a higher mandator are computed
after a lower mandator, and thus can override the decisions of mandators located lower in the hierarchy.

• Allow investigation user report
This option enables evaluation of individual investigation user efficiency.

• Simulation memory
Absolute maximum of total main memory that IBM Safer Payments allows for all simulations of all users for this mandator. Notice
that IBM Safer Payments may decline simulation requests even when this limit is not reached, if the total memory on this IBM
Safer Payments instance does not suffice to serve the simulation request. Please notice that the memory limit of a certain
mandator may not exceed the memory limit of its head mandator.

Doublet detection

Lets you configure which transactions of this mandator shall be considered doublets:

• Enabled
Activates doublet detection for this mandator.

• Include DDC
Allows access to ddc values for the evaluation of doublets. This might have catastrophic effects on performance.

• Index
Defines which index should be used for doublet detection. Usually, this should be the most distinctive index of your configuration.

• Attributes
Choose a number of attributes, that characterize a unique transaction record. The number of attributes selected here should be

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

kept to a minimum as this effects computational performance.

Doublet detection analyses the sequence of an index entry. If it encounters a transaction records, that has identical values for all
selected attributes, the currently processed transaction is discarded.

Status alarm indicators in dashboard

Lets you define how status alarms for users of this mandator are shown:

• Explanation text
This text is shown below the header at all times.

• Explanation tooltip
This text is shown as tooltip if the mouse pointer rests over the "Alarm" header.

• Online help type
Lets you enable default or custom help texts in the header of the status alarm section.

◦ custom online help only
This option allows entering of a custom help text. Only the custom help text will be displayed.

◦ custom and default online help
This option allows entering of a custom help text. Both, the custom help text and the default help text, will be displayed.

◦ no online help
No help text will be displayed

◦ default online help only
Only the default help text will be displayed.

• Custom online help
If you selected custom help text to be displayed (above), you may enter it here.

Mandator conditions

For all non-top mandators, these conditions define the data ownership.

Notice that the definition must comprise all data that shall be owned by sub-mandators of this mandator. Data that satisfies the
mandator conditions of a sub-mandator is not considered to be owned by this mandator.

Mandator custom CSS layout configuration

IBM Safer Payments enables hierarchical customization of its user interface. All CSS definitions entered here are applied to this
mandator and all its members (and their members).

back to top

8.1.2.1 Conditions

This element uses conditions. You can find further information in the conditions chapter:

10.4.1 Conditions

back to top

8.2 Roles

To complement the flexibility of IBM Safer Payments' mandator hierarchy, user privileges are managed using a role model that allows
the definition and granting of roles for each mandator individually. In addition to this, each user account is tied to an ("associated")
mandator, which also determines which data a user may access ("access" comprises the privilege to view individual transactions in
query results or investigation screens, as well as in simulation, analysis and rule generation). The inner workings of this are explained in
the remainder of this section.

Role definitions

The number of roles is not limited. Roles are defined for a specific mandator and can be inherited by sub mandators. Roles can be
viewed/changed by users with the respective privileges. Refer to the help page of the section below for details on the definition of roles.

Grants

Once roles are defined, they can be "granted" to each user account assigned to a fitting mandator (depends on the setting whether or
not roles are inherited). Refer to the online help page on "user accounts" for more details

back to top

8.2.1 Role

Each role is the combination of a number of privileges that are either enabled or not (check boxes). The privileges are organized in a
hierarchy, where the privileges on lower levels of the hierarchy can only be enabled if the respective upper level privilege is enabled. To
provide a clear overview of all enabled privileges, privileges that cannot be enabled because the upper level privilege is not enabled are
hidden. All privileges displayed with "..." expand to additional privileges when checked. Right of the privileges, a more detailed

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level10.4.1
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

explanation of the respective privilege is provided.

In most cases the upper level privilege is a "view" function privilege. Once this is enabled, either "change" or "add/edit/delete" privileges
become selectable (and visible).

Whether the privileges superseding "view" are combined to "change" or split up to "add/edit/delete" privileges depends on the specifics
of the respective IBM Safer Payments function.

Roles are associated with a mandator. Use the "inherit" option to make roles available with sub mandators as well. Otherwise, this role
can only be used for setting mandator privileges of the mandator this role is associated with.

These privileges available in IBM Safer Payments are described on the page itself.

• View dashboard
View the IBM Safer Payments dashboard with its status alarm indicators and KPI charts.

• Reports...
View and generate reports that have already been defined.

◦ Change
Add, edit, and delete reports.

• Investigation...
Investigation of cases generated for suspicious transactions.

◦ Query...
View and execute queries that have already been defined.

▪ Change
Add, edit, and delete queries.

▪ Change Extract Template
Add and edit extract template of a query.

◦ Common point query...
View and execute common point queries that have already been defined.

▪ Change
Add, edit, and delete common point queries.

◦ Create Cases
User may create cases right from a query result table.

◦ Fraud marking
Manual flagging of fraudulent transactions in transaction tables of investigation queries.

◦ Cases...
Investigate cases.

▪ Investigation supervisor...
User may see case selection and execute case search.

▪ Take over
Take over investigation cases that are reserved (follow up) for other users.

▪ Interrupt
Interrupt investigation cases that are currently worked by other users.

▪ View other users' cases
View cases that are being investigated by another user.

▪ Bulk transitions
Execute bulk case transitions via context menu.

▪ Change CPP
Add, edit, and delete CPP of cases.

▪ Send case actions
User may send case actions.

▪ Modify case actions
User may modify case actions before sending.

▪ Execute external queries
User may execute external queries.

◦ Masterdata
User may query masterdata.

◦ Change masterdata values
Change or enter masterdata in investigation cases or masterdata queries.

◦ Group by queries...
View and generate group by queries that have already beend defined.

▪ Change
Add, edit, and delete group by queries.

◦ CPPs...
View CPPs.

▪ Change
Add and edit CPPs.

• Monitoring...
View Monitoring tab.

◦ Compliance lists...
User may view the compliance list definitions.

▪ Change
User may change the compliance list definitions.

▪ Ad hoc check
User may perform compliance ad hoc checks.

◦ Defined risk lists...
User may view the defined risk list definitions.

▪ Change
User may change the defined risk list definitions.

◦ Defined risk list entries...
User may view the entries to defined risk lists.

▪ Import
User may import entries to defined risk lists.

▪ Change
User may change the entries to defined risk lists.

▪ Bulk delete
Bulk delete defined risk list entries.

▪ Bulk (de)activate
Bulk (de)activate defined risk list entries.

▪ View defined risk list audit trail
User may view defined risk list audit trail.

• Model...
View model tab.

◦ Decision models...
View model revisions and their components.

▪ Edit...
Edit model revision.

▪ Take over
Take over a model revision that is reserved for other users.

▪ Data caches
Edit disk and memory data cache sizes.

▪ Indexes
Edit index definitions.

▪ Masterdata
Edit masterdata definitions.

▪ Modelling
Activation and configuration of modelling functions (test, simulation, analysis, and element generation).

▪ Inputs/outputs
Change model revision inputs and outputs.

▪ Change I/O encryption
Enable/disable encryption and purging of outdated entries of input/output attributes.

▪ Message mapping...
View mapping of message variables to model revision attributes.

▪ Change
Add, edit, and delete message mappings.

▪ Mergings
Change mergings of messages to records.

▪ Copy
Copy model revisions.

▪ Initialize golive...
Initialize a new model revision to golive (mark challenger down to become champion).

▪ Confirm Golive
Confirm golive of a new model revision (golive of challenger to champion).

▪ Re-golive
Re-golive of a model revision that is already retired

▪ Retire champion
Retire a model revision in status champion without promoting another revision to status champion.

▪ Delete
Deletion of a model revision.

• Administration...
Access administration tab.

◦ Mandators...
View mandator administration.

▪ Edit
Add, edit, and delete mandators.

◦ Roles...

View role definitions, their privileges, and mandator associations.

▪ Change
Add, edit, and delete role definitions.

◦ Case actions...
View case action definitions.

▪ Change
Add, edit, and delete case action definitions.

▪ Change SQL
Add, edit, and delete case actions definitions that execute SQL commands.

▪ Run Test
Test case action definitions.

◦ User groups...
View user group definitions.

▪ Change
Add, edit, and delete user groups.

◦ Case states...
View case states.

▪ Change
Add, edit, and delete case states.

◦ Case workflows...
View case workflows.

▪ Change
Add, edit, and delete case workflows.

◦ Case close codes...
View case close code definitions.

▪ Change
Add, edit, and delete case close code definitions.

◦ Case classes...
View case classes.

▪ Change
Add, edit, and delete case classes.

◦ Working queues...
View working queues.

▪ Change
Add, edit, and delete working queues.

◦ Case groups...
View case groups.

▪ Change
Edit and add case groups.

◦ Notifications...
View alarm notification definitions.

▪ Change
Add, edit, and delete notification definitions.

▪ Change SQL
Add, edit, and delete SQL notification definitions that execute SQL commands.

▪ Run Test
Test notification definitions.

◦ Text modules...
View text module definitions.

▪ Change
Add, edit, and delete text module definitions.

◦ External queries...
View external query definitions.

▪ Change
Add, edit, and delete external query definitions.

▪ Run Test
Test external queries definitions.

◦ Reminders...
View reminder definitions.

▪ Change
Add, edit, and delete reminder definitions.

◦ Status alarm indicators...
View status alarm indicators.

▪ Change
Add, edit, and delete status alarm indicators.

◦ Charts and KPI...
View chart and key performance indicator definitions.

▪ Change
Add, edit, and delete charts and key performance indicators.

◦ Charts and KPI...
View chart and key performance indicator definitions.

▪ Change
Add, edit, and delete charts and key performance indicators.

◦ Memory management...
View memory consumption of simulations.

▪ Stop simulations
Stop simulations of other users.

• Cluster...
View Cluster Tab.

◦ Outgoing channel configuration
View outgoing channel configuration.

▪ Change
Add, edit, and delete outgoing channel configuration definitions.

▪ Change Basic Authentication
Edit settings of Basic Authentication.

▪ Run Test
Test outgoing channel configuration definitions.

• Ticker...
View ticker.

◦ Add
Add ticker entries.

◦ Delete
Delete ticker entries.

back to top

8.3 User Accounts

The table below lists all user accounts for which you have access privileges.

Depending on your privileges, you may change (edit/add/delete) user accounts. You may also select from the toolbar whether or not
disabled accounts shall be shown. Notice that depending on the IBM Safer Payments settings, you may or may not delete user accounts
permanently (non-deletion is to ensure that all audit trails will lead back to a user account).

back to top

8.3.1 User Account

User administration

IBM Safer Payments is designed to support large scale applications with many hundred users belonging to a large number of mandators.
For details on processing structured portfolios with mandator structures, visit the structural configuration help page.

IBM Safer Payments provides a two-dimensional privilege system allowing efficient but fine-grained control over which areas users can
access and what operations they can perform:

• Global privileges
These privileges are granted independently from the mandator structure. One of these global privileges is the "user account
maintenance" privilege that enables a user to create/change user accounts. A user with this privilege can grant other accounts
more privileges than he has for himself.

• Mandator privileges
Each role is a set of privileges assembled for a specific "user role" in IBM Safer Payments. Roles are granted to user accounts
always on a per-mandator basis. The privileges of the roles are thus only applied to this mandator.

Remarks

• Each user account is associated to one mandator. A user with the global privilege to change user accounts may only create user
accounts for their associated mandator and its sub mandators.

• Each user account is associated to one mandator. A user's privilege to change their own mandator privileges applies to that
mandator and its sub mandators.

• Roles can be passed on to sub mandators by enabling a checkbox next to the mandator-role association.

• A user that has been granted the role privilege to change or view one mandator also has the same privilege for its sub mandators
even without explicitely passing the role to those sub mandators. This is an exception to all other mandator privileges that are
strictly limited to the mandator granted.

• A user that has been granted the change privilege for a particular type of element (e.g. case actions) for one mandator is able to
view this type of element for all mandators up the hierarchy. This is necessary to avoid creating duplicate elements on different
levels of the hierarchy.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• A user's login may never be changed once the account has been created.

• For certain settings default values can be configured on the system configuration page to make setting up new accounts easier.

back to top

8.3.1.1 Global Privileges

These privileges are granted independently from the mandator structure as they cover access privileges to the general functionality of
IBM Safer Payments:

• User accounts
Defines which user account management actions may be performed by the user for other user's accounts.

• User self service
Defines which user account self service actions may be initiated by the user (user changes settings of his own account).

• System configuration
Defines which system configuration actions may be performed by the user. If the user has no rights for system configuration, the
right 'export configuration' cannot be activated.

• Real-time intercept codes
Defines which real-time intercept codes management actions may be initiated by the user.

• Messages
Defines which message management actions may be initiated by the user.

• Cluster
Privileges of this user account with respect to cluster management.

• Event log messages
Privileges of this user account with respect to the configuration of event log messages.

• Jobs
Privileges of this user account with respect to the configuration and execution of jobs.

• Password safes
Defines which password safes management actions may be initiated by the user.

• Compliance list
Privileges of this user account with regard to reloading compliance lists and searching/viewing compliance list entries.

• Key entry
Defines if and which part of a public encryption key may be entered by the user.

• Key management
Defines which key management actions may be initiated by the user.

• View system internals
User may view the details of IBM Safer Payments' internal data structure.

• View unmasked data
User may view encrypted data unmasked (if encryption is enabled).

• Change memory limits
User may change memory limits of mandators.

• Export configuration
User may export configuration.

• View system log messages
User may view the system log messages.

• View audit log messages
User may view the audit log messages.

• View transaction reports
User may view transaction reports.

• View rules fired
User may view the rules that created an alarm.

• View conditions of rules fired
User may view the conditions of the rules that created an alarm.

• View manual icon
View the manual icon in each help dialog.

• View private working queue
User may view investigation cases of his private working queue.

• Set all user preference defaults
If enabled, this user may set the defaults for all user's preferences.

back to top

8.3.1.2 Maintenance Functions

Maintenance functions are special API requests. Their functionality is assumed to not be used during standard IBM Safer Payments
operations, but rather for highly specific maintenance functions, such as issues analyses, benchmarking, or facilitating automated
testing. Maintenance functions can be enabled separately:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Index functions
Enables functions to reset an index (including all its related calendar profiles, events and masterdata) and to rebuild an entire
index (erases existing one) using all records stored.

• Reset user preferences.
Enables a function to reset preferences, searchfilter, table sizes and column orders for all users.

• Rewrite element to disk
Enables a function to store a serializable object of an IBM Safer Payments installation on disk.

• Cleanout Revisions
Enables a function that unloads all non-champion revisions from IBM Safer Payments and moves their file representation from the
"cfg" to the "arc" directories of all IBM Safer Payments instances.

• Set MDC/DDC sizes
Enables a function to change size of the specified xdc.

• Check health of index
Enables a function to check specified index for issues. During execution of this maintenance function no other access to this index
is possible.

• Reset FLI
Enables functions to reset all outgoing FLI connections and rewind the FLI buffer's read position to the first unacknowledged FLI
message.

• Cancel master key change
Enables a function to cancel a master key change.

• Convert attribute data
Enables a function to convert an integer value in format YYYYMMDDhhmmssZZZ to a timestamp in milliseconds since 1970-01-01
00:00:00.

back to top

8.3.1.3 Mandator Privileges

In this section, you may grant any number of roles to this user account for exactly one mandator. You may create multiple grants to
associate multiple roles for one mandator or multiple mandators.

back to top

8.3.1.4 Simulation Memory

In this section, you may define how much memory can be used for simulation for a specific mandator. The user account may not use
more simulation memory than defined with the mandator.

back to top

8.4 Case Actions

Case actions are messages sent by IBM Safer Payments to other systems during case investigation. Once case actions are defined, they
can be configured for inclusion both for case classes and case close codes. (All these configurations are available from the administration
tab.) Notice that you first have to define case actions, before they can be enabled for inclusion with case classes and case close codes.

With case close codes, the enabled case actions are automatically executed when a case is closed with the respective case close code.

With case classes, the enabled case actions are available for manual trigger (by the fraud investigator) during the investigation of a
case.

The uses for case actions are manifold. Here are some examples:

• With a case closed as fraud verified, the respective case close code could also send a case action to the cardholder management
system to close the account and invoke the embossing of a new card.

• During the investigation of a case, case actions can be used to send emails to the cardholder or merchant involved with the case.

back to top

8.4.1 Case Action

The definition of a case action involves a number of settings that are made in this form. Rest the mouse pointer over a setting for
details. Settings are:

• Enabled
Allows you to temporarily enable/disable case actions without the need of redefining them or change model rules.

• Name
Used to identify the case action. The name does not appear in the generated message.

• Comment
Used to describe the case action. The comment does not appear in the generated message.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Mandator
Each case action belongs to the mandator of the selected outgoing channel configuration. Once created, mandator ownership does
not change.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the case action message. Outgoing channel configurations can be
defined in the "cluster" tab and then referenced here. Depending on the type of the chosen outgoing channel configuration, the
remainder of the form changes to display protocol specific settings. The values in the form will be pre-filled by default settings
defined in the outgoing channel configuration, but offer to overwrite the values for the case action.

◦ SMTP
Case actions shall be sent by email using a SMTP type email service. SMTP case actions are queued and are sent out
periodically (defined in IBM Safer Payments configuration) as batch. If the SMTP service is temporary unavailable, IBM Safer
Payments attempts re-sending them also periodically. SMTP case actions are also stored on disk to ensure that unsent SMTP
case actions will be attempted to be resent after a hard stop of IBM Safer Payments. This choice allows the following entries:

▪ Format values
Format/unformat values which are inserted in the message template.

▪ Email "from" address
The sender address used for the outgoing SMTP case actions.

▪ Recipient address
Lets you choose between a "constant" recipient address (entered below) or taking the string value of the email meta
attribute by choosing the option "variable from meta attribute" of the current transaction message. The latter allows for
sending emails to individual cardholders, merchants, or acquirers.

▪ Constant email "to" address
If the recipient address is "constant", all outgoing SMTP messages are sent to this address. You may use multiple email
addresses here, just separate them by semicolon.

▪ Subject template
Text template for the subject line of the outgoing SMTP message (see below).

▪ Body template
Text template for the message body of the outgoing SMTP message (see below).

▪ Support HTML formatting
When activated, mails send HTML formatted text as well as plain text (inside one message). Provide HTML formatted
text through "HTML body template" box and plain text through "Body template" box.

▪ Encode HTML body base64
When activated, the HTML body text will be base64 encoded. Note that some more complicated HTML formattings might
not be rendered correctly with base64 encoding. Please try with test notification first.

▪ HTML body template
HTML formatted text template for the message body of the outgoing SMTP message (see below).

◦ Message or HTTP Message
Case actions shall be sent by IP message to any other system. Analogous to SMTP case actions, message case actions are
stored until they can be sent successfully. These choices allow the following entries:

▪ Format values
Format/unformat values which are inserted in the message template.

▪ Content type (HTTP only)
The content type that will be used in the HTTP header. For additional information on how to use multipart forms, click
here.

▪ Message template
Text template for the message (see below).

◦ File
Case action shall be stored as a file. There will be one file per each case action and the file name includes the system time
with microseconds. This choice allows the following entries:

▪ Format values
Format/unformat values which are inserted in the message template.

▪ File name prefix
Allows to define a file name prefix to distinguish messages from different case actions using the same outgoing channel
configuration.

▪ Message template
Text template for the message (see below).

◦ SQL
Case action shall be executed as ODBC SQL. You have to install and configure a valid ODBC connector on all machines with
active AMI. Make sure, that you can reach your database with your ODBC connector, before configuring ODBC SQL actions.
The integration should be compatible with mySQL, postgreSQL and oracle ODBC connectors.

It is not possible to parse return values or to import data by SQL into IBM Safer Payments.

This choice allows the following entries:

▪ Format values
Format/unformat values which are inserted in the message template.

▪ SQL Query
SQL template for the message (see below).
This could be for example:

INSERT INTO fraud VALUES ({PAN}, sysdate, 'REASON_1');

{call iris.Update_Status({PAN}, {Trx_Id}, 'REASON_2', {Trx_Time})}

◦ Template file (.docx)

With word template file (.docx) case actions it is possible to generate template based word documents automatically from a
case. First a suitable .docx template file has to be created with Microsoft Word (version 2010 or higher) and uploaded.

Within the .docx template document it is possible to define placeholders for reporting attributes, query results, masterdata,
user data case variables, and text modules which are filled when sending the case action. The values will be formatted
according to their data type and "format" setting.

You can apply different font styling options to your placeholders. Please note that you might need to choose a specific font
family for some placeholders to make sure the filled text is rendered correctly. For example, if the replacement text contains
Thai characters, font family for the corresponding placeholder could be set to "Browallia New" or to any other font family that
includes Thai characters.

When a template file (.docx) case action is sent from a case, the investigator may decide, if he would like to download the
generated template file (.docx) document or if he prefers to attach the document directly to the case. To add a template file
(.docx) document directly to the case, case attachments have to be activated for investigation.

Text templates

Within the text templates, you can define several placeholders for reporting attributes, query results, masterdata, user data case
variables, and text modules (only for e-mail, sql, documents and Word documents) which are filled when sending the case action.

• Reporting attributes:
Placeholders for reporting attributes are defined with curly brackets {attribute name}. You can use every attribute, that was
defined when creating the case and which was reachable by the mandator. For cases created by an index based evaluation you
can also use curly brackets to reference "Hit Condition Values" by their name.

• Query results:
There are two different types of query result placeholders, depending on the type of case action they are used in.

◦ Placeholder for e-mail or sql-notifications:
Placeholders for query results are defined with curly brackets. They can only be used for case action previews and if query
results were added to the case action previously. It is necessary to define the selected columns as attribute names in curly
brackets too {{attribute A}{attribute B}{attribute C}}. This would create following result table:
attribute A attribute B attribute C
A1 B1 C1
A2 B2 C2

The data has to be selected in case queries and added with right mouse click first. There will be no query result, if there was
no selected data before sending the case action. Query results in e-mails will always be sent out as CSV file and will be visible
in the e-mail body.
For SQL Notifications, you can only use one attribute name between double curly brackets {{attribute A}}. An example for
SQL would be

UPDATE my_table SET column1='{{attribute A}}', column2='{{attribute B}}'

WHERE column3='{{attribute C}}'

If there are two entries added to the case action, this would perform two sql database updates.

◦ Placeholder for types File, HTTP and Message:
The template syntax, usage and resulting content are the same as for SQL and e-mail case actions. Instead of using HTML to
format the table, its rows and columns are separated by characters which can be selected in the system configuration. An
example could be to separate the columns using semicolons and the rows using a line break. The result would look like this:

attribute A;attribute B;attribute C

A1;B1;C1

A2;B2;C2

◦ Placeholder for word template file (.docx) documents:
Placeholders for query results are defined by creating a table inside the Word document with at least one table row. Within
the table header the selected columns can be defined with attribute names inside curly brackets. The first table row defines if
the column will be filled with transaction data of the case action or not. In the case that the column should be filled, add an
opening and closing curly bracket "{}" in the first table row in the respective column.
This could be for example:
{TrxDateTime} {Amount} {Merchant ID}
{} {} {}

Query results can only be used when query results were added to the case action previously. The data has to be selected in
case queries and added via context menu. There will be no query result, if there was no selected data before sending the
case action.

• Case alarm tables:
The system configuration option "case aggregation history" causes cases to store a list of all aggregated alarms belonging to it.
Those alarms behave identical to query results in that they can be added to the case action section and be referenced using the
exact same placeholders. However, it's not possible to add both case alarms and query results to case actions at the
same time!

• Masterdata:
Placeholders for masterdata attributes are defined with double square brackets [[masterdata attribute name]]. You can use
every masterdata, that is accessible by the mandator.

• User data variables:
Placeholders for user data are defined with single square brackets [InvestigatingUserName]. You can switch between users by

changing the prefix

◦ [Investigating..]: The user, that is currently investigating the case.

◦ [Viewing..]: The user, that is viewing the case and sending the case action.

◦ [Closedby..]: The user, that closed the case.

The prefix has to be combined with a user variable name. For example, [..UserName] could be used as [InvestigatingUserName],
[ViewingUserName] or [ClosedbyUserName]

◦ [..UserName]: The username as string.

◦ [..UserNameAndLogin]: The username, followed by the user login in parenthesis.

◦ [..UserUid]: The system internal user UID.

◦ [..UserEmail]: The users e-mail address.

◦ [..UserPhone]: The users phone number.

◦ [..UserLocation]: The users location.

◦ [..UserMandator]: The users mandator name.

◦ [..UserMandatorUid]: The UID of the users mandator.

• Case variables:
Case variables are also defined with square brackets [GeneratedOn]. You can use following placeholders:

◦ [CaseClass]: The name of the case class.

◦ [CaseClassUid]: The UID of the case class.

◦ [CaseClassId]: The ID of the case class.

◦ [GeneratedOn]: The generation date as ISO formatted date.

◦ [GeneratedOnTimestamp]: The generation date as UNIX timestamp.

◦ [ClosedOn]: The case close date as ISO formatted date.

◦ [ClosedOnTimestamp]: The case close date as UNIX timestamp.

◦ [FollowupOn]: The followup date as ISO formatted date.

◦ [FollowupOnTimestamp]: The followup date as UNIX timestamp.

◦ [LastActionOn]: The last action date as ISO formatted date.

◦ [LastActionOnTimestamp]: The last action date as UNIX timestamp.

◦ [StateChangedOn]: The case state change date as ISO formatted date.

◦ [StateChangedOnTimestamp]: The case state change date as UNIX timestamp.

◦ [Score]: The case score.

◦ [Hits]: The case hits.

◦ [State]: The investigation state.

◦ [StateUid]: The UID of the investigation state.

◦ [ExtendedState]: The investigation state as visible in the case selection table.

◦ [LastState]: The last investigation state.

◦ [LastStateUid]: The UID of the last investigation state.

◦ [FraudStatus]: The fraud status of the case close code, if the case was closed.

◦ [CaseCloseCode]: The case close code, if defined.

◦ [CaseCloseCodeUid]: The UID of the case close code.

◦ [Mandator]: The case mandators name.

◦ [MandatorUid]: The case mandators UID.

◦ [CaseUid]: The case UID, as visible in the case selection table (1-123).

◦ [CaseUidRaw]: The case UID, as visible in url or in file system (1000000000000123).

◦ [Memo]: The text value of memo field.

◦ [CaseAgeInDays]: The time since case generation in days.

◦ [CaseAgeInHours]: The time since case generation in hours.

◦ [CaseAgeInMinutes]: The time since case generation in minutes.

◦ [DaysSinceLastAction]: The time since last action in days.

◦ [HoursSinceLastAction]: The time since last action in hours.

◦ [MinutesSinceLastAction]: The time since last action in minutes.

◦ [DaysSinceStateChanged]: The time since case state changed in days.

◦ [HoursSinceStateChanged]: The time since case state changed in hours.

◦ [MinutesSinceStateChanged]: The time since case state changed in minutes.

◦ [Firstparty]: Not compromised first party, only available for collusion type case classes.

◦ [Counterparty]: Counterparty of the case, only available for collusion type case class.

• Text modules:
Text modules are also defined with square brackets and the keyword [TextModule]. An investigator may choose one of the text
modules when he sends a case action during case investigation. If he chose one, the placeholder of the message is replaced by the
text template of the text module. Otherwise the placeholder is removed from the case action message. Notice, text module

placeholders can only be used in the body template. In the subject template, the placeholders for text modules are not replaced.
Please notice as well that text module placholders can only be used for case actions with the target "SMTP" or "Document".

• Loop construct for regular cases:
The loop construct allows to print out query results or alerted transactions, that were added to the case action section on the case
investigation page in a flexible format in constrast to the query results placeholder that always returns a table. They are available
for case action types "File", "HTTP", "Message", and "SMTP". The general syntax is:

{[][]}

The first set of square brackets contains a text template that can contain references to attributes, case variables, text modules and
masterdata. This text template will be repeated and evaluated for each query result or alerted transaction. In case no data was
added to the case action section, all alerted transactions will be iterated through. The second set of square brackets is optional and
can contain a string that separates the outputs of each iteration. Example: Assuming we have a case for PAN
"1111222211112222" with two alarms: one with an "Amount" value of "1.0" and another with a value of "2.0". We now could
define a template like this:

{[{PAN} | {Amount}][\n]}

The result would be:

1111222211112222 | 1.0

1111222211112222 | 2.0

• Loop construct for index based evaluation cases:
Index based evaluations that used multiple value evaluation can have several associated index nodes in one case. To retrieve
information specific to those index nodes like the value itself or associated masterdata a loop construct was introduced for case
actions of type "File", "HTTP", "Message", and "SMTP". The general syntax is:

{[][]}

The first set of square brackets contains a text template that can contain references to attributes, case variables, text modules and
masterdata. This text template will be repeated and evaluated for each associated index node in the case. The second set of
square brackets is optional and can contain a string that separates the outputs of each associated index node. Example: Assuming
we have a case for customer "A" and accounts "1" and "2". We now could define a template like this:

{[{PAN} | [[Account Type]]][\n]}

Assuming account "1" is a private account and "2" is a business account, the result would be:

1 | private

2 | business

Please note that the "Account Type" masterdata is defined on the "PAN" index and therefore changes in each iteration of the loop.
This is a special behaviour of index based evaluation cases. In regular cases only the masterdata values associated with the
current alarm (the one that is highlighted in the alerted transactions table) will be used.

• Index based evaluation variables:
Index based evaluations offer special fields and placeholders:

◦ [HitNodeValue]: The node value that triggered the alarm.

◦ [HitAssociatedNodeValue]: The associated node value that triggered the alarm. If none is present the placeholder will be
replaced with an empty string.

◦ [CalendarComputationName]: Only usable in a loop construct (see above). Retrieves the calendar computation names for the
current associated index node duplicating the line if needed.

◦ [CalendarComputationValue]: Only usable in a loop construct (see above). Retrieves the calendar computation values for the
current associated index node duplicating the line if needed.

Testing case actions

The [Save and create test case action] toolbar button above creates a sample case action. You can either use an existing case to fill the
message template or create a case action using an empty template. Please note that reporting attributes, query results and masterdata
will not be included in message templates when testing case actions.

back to top

8.5 Administration

This chapter covers the administration functions of IBM Safer Payments.

back to top

8.5.1 User Groups

The table below lists all user groups for which you have access privileges.

User groups can be used for configuring privileges of case transitions. The definition of a user group involves selection of multiple users
from the list of potential case investigators. The selected users will be then privileged to execute certain case transitions on investigation
cases. Once user groups are defined, they should be assigned to case transitions from the case class definition. The same user can

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

belong to more than one group at the same time.

back to top

8.5.1.1 User Group

User groups have the following settings:

• Name
Used to identify the user group.

• Comment
Used to describe the user group. You may use this field to explain what this user group is used for.

• Mandator
Each user group belongs to one mandator. Once created, mandator ownership does not change.

• Users
Here you will find all users that are associated with the selected mandator or with submandators and have investigation privileges.
The selected users will belong to the user group and will be privileged to execute certain case transitions on investigation cases if
the user group is assigned to case transitions from the case class definition.

back to top

8.5.2 Case States

The table lists all case states that are defined and that you have access privileges for.

Case states are part of case workflow elements and allow to add new investigation stages. Case states are defined on a per mandator
basis and are inherited downwards within the mandator hierarchy. An arbitrary number of case states can be created and once created,
they can be used in case workflows (Administration -> Case management -> Case workflows). Cases are worked according to the case
workflow definition and through the states selected from here.

Remarks

Notice that case states "New", "Closed" and "Followup" are default and thus cannot be changed or deleted.

back to top

8.5.2.1 Case State

The definition of case states involves a number of settings that are made in this form.

• Name
Used to identify the case state.

• Comment
Used to describe the case state. You may use this field to explain what this state is used for.

• Mandator
Each case state belongs to one mandator. Once created, mandator ownership does not change.

• Exclusive state
Determines whether or not the case state is exclusive. In exclusive state a case is assigned an investigator and can only be worked
by that investigator. Cases that are in exclusive state are not available to other investigators. Any case transition to exclusive state
will require an investigating user as manual input.

back to top

8.5.3 Case Workflows

The table lists all case workflows that are defined and that you have access privileges for.

IBM Safer Payments allows defining freely configurable case investigation workflows. Case workflows are created on a per mandator
basis and are inherited downwards within the mandator hierarchy. Once created, case workflows should be used in case classes
indicating how cases of each case class should be worked.

Definition

Case workflow definition consists of:

• case states, and

• case transitions that allow to switch between these states and apply certain actions on a case.

Each case transition has source states and a target state (from/to). Execution of a transition will change the state of a case to the target
state specified in the transition settings. In addition to that, there are a number of other configuration parameters for case transitions.

Once case transitions are defined, they can be executed on cases:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• manually by the fraud investigator, or

• automatically if auto escalation conditions are defined and fulfilled.

Both case transition privileges and auto escalation conditions are configured from the case class settings when making case workflow
selection.

Remarks

When creating a new case workflow, you need to make sure it contains the two mandatory states ("New" and "Closed") and valid
transitions between the defined case states. Newly created cases are set to state "New". The final investigation state is "Closed", where
cases are considered as closed. While these two states are mandatory in every case management workflow in IBM Safer Payments, it is
possible to add an arbitrary number of investigation states in between.

Please notice that you need to update case class settings every time you add a new transition to case workflow because otherwise the
newly created transitions will be available neither for manual nor for automatic execution.

If this capability of defining new case workflows is not needed, simply use the default case workflow which comes with IBM Safer
Payments installation. Please note that the default workflow may not be changed.

back to top

8.5.3.1 Case Workflow

The definition of case workflows involves a number of settings that are made in this form.

• Enabled
Allows you to temporarily enable/disable case workflows.

• Name
Used to identify the case workflow.

• Comment
Used to describe the case workflow. You may use this field to describe how case investigation will be carried out when using this
case workflow.

• Mandator
Each case workflow belongs to one mandator. Once created, mandator ownership does not change.

• Case states
Lets you select case states that will be used in this case workflow.

• Transitions
You may define one or more transitions between case states selected above.

back to top

8.5.3.2 Case Workflow Transitions

Case transitions allow to switch between case states. You can define case transitions below.
back to top

8.5.3.3 Case Workflow Transition

The definition of case transitions involves the following settings that are made in this form.

• Name
Used to identify the transition.

• Comment
Used to describe the transition.

• Justification codes
Justification codes (aka "reason codes") are the choices fraud investigators have when executing case transitions. All codes entered
here as free text will be available in the transition form for selection. You can leave this field empty if no justification is required for
executing a certain transition.

• Justification mandatory
If enabled, the investigator will be required to select a justification code (defined above) when executing the case transition.

• Comment allowed
If enabled, the transition form shown to the investigator will contain an additional free text field where the user can enter his
comments.

• Comment mandatory
If comments for the transition allowed, determines whether or not the comment is mandatory.

• Bulk transition
If enabled, the following transition can be executed by investigation supervisors (if appropriate privilege is granted) and working
queue managers via context menu on a single case or on multiple cases in one step. Notice that if this option is not enabled, the
transition will not be available for execution via context menu.

• Source states
Lets you specify all possible case states from which this transition can happen.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Target case class
This option allows you to change the case class of a case when executing the transition. There are two options for this field
available "current" and "definable".

◦ Current
Case class will remain the same when the transition is executed. If you do not want to change case class, simply leave
selection on "current" and specify target state for the transition in the following field.

◦ Definable
This option will let you choose a target case class and a target state later from the case class definition when making case
workflow selection.

• Target state
If target case class "current" is selected, you need to specify target state for this transition.

back to top

8.5.4 Case Close Codes

The table lists all case close codes that are defined and that you have access privileges for.

Case close codes are the choices fraud investigators have when they close a case in investigation.

back to top

8.5.4.1 Case Close Code

Case close codes have the following settings:

• Name
Name that will be shown as standard to the fraud investigator on the "case" page of case investigation.

• Mandator
Each case close code belongs to one mandator. Once created, mandator ownership does not change.

• Comment
Used to describe the case close code. The comment is also displayed to users that work investigation cases. You may thus use it to
include case class specific investigation instructions.

• Fraud status
Each case close code must map to one of the "principal" fraud statuses so that IBM Safer Payments can interpret case closings for
its reporting and statistical analysis. Available fraud statuses are "fraudulent", "genuine", and "unknown".

• Case actions
Lets you choose which case actions are triggered when a case is closed using this case close code.

back to top

8.5.5 Case Classes

The table lists all case classes that are defined for this mandator.

Case generation

In most applications of IBM Safer Payments, the reaction to a suspected fraudulent transaction is:

• intercepting with the transaction in real-time (typical means of interceptions are declining a transaction or referring it to a call
center for security screening), and/or

• creation of an investigation case.

Both reactions are triggered by the model revision output attributes, and carried out by IBM Safer Payments according to its
configuration.

With intercepting, the real-time interception codes are defined on the real-time interception codes page on the admin tab.

Alarms

The creation of investigation cases is a bit more complex. The first step is the creation of alarms. Each transaction message that is
computed with a CaseClass meta attribute non-zero value is considered an alarm. Alarms are organized per mandator.

When an alarm is generated, IBM Safer Payments checks if there are unworked (new) cases for the "same payment entity" to which this
alarm is consolidated. Because this check may take a while (a few milliseconds), this check is not performed within the (potentially real-
time) message computation. Instead, each alarm generated is fabricated into a case (that looks as if there was no other case to
consolidate with) and put into an "alarm" class for each mandator.

These not-yet-checked-for-consolidation cases are not displayed with any of IBM Safer Payments investigation functions. Instead, a
scheduled "case loading" service periodically (as defined with IBM Safer Payments settings) works this "alarm" class for each mandator
and checks for each alarm if it can be consolidated or not. If it can, consolidation is performed, if not, the case is put to the "case" class
for the respective mandator so it becomes available to all IBM Safer Payments investigation functions.

Case consolidation

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Case consolidation for regular cases (aka "aggregation") is performed whenever the new alarm hits on an entity (cardholder, merchant)
for which an already unworked case exists. The case score and case class as well as the reporting attribute values of the "aggregated"
case are taken from either the case or the alarm, whichever has the higher case score. If two alarms have the same case score, the
newer one "wins" the consolidation, as it is assumed that "newer" means "more current" and thus "more accurate" to describe the case
in the IBM Safer Payments investigation workflow. Collusion cases are always aggregated with respect to potential points of
compromise. Compromised and affected first parties are consolidated and skimming time ranges are updated during case aggregation.
If a case has already been worked on it is not used as a target for case consolidation.

Automated case transitions

IBM Safer Payments allows to automate execution of case transitions by defining a number of conditions on case variables and on
reporting attributes as selected in case class setting. Conditions can be added to each case transition that is marked as automated.
Scheduled jobs will constantly monitor cases of each case class and fitting cases will be escalated in a timely manner. You can also setup
to send case actions with the execution of case transitions which could be used to notify investigation supervisors or to send reminders
to investigators, for example. By default, all fitting cases are escalated every minute. You can change this setting from the system
configuration page.

back to top

8.5.5.1 Case Class

The definition of a case class involves a number of settings that are made in this form. Two different types of case classes are available
to provide specific information both for "regular" and "collusion" cases. Rest the mouse pointer over a setting for details. Settings are:

• Enabled
Allows you to temporarily enable/disable case classes without needing to redefine them or change model rules.

• Case class ID
If a transaction message is computed with a non-zero "case class" value, IBM Safer Payments checks if any of the case classes
bears this number, and if so, creates an alarm for this case class. Please notice that you may not re-use numbers of inherited case
classes.

• Mandator
Each case class belongs to one mandator. Once created, mandator ownership does not change.

• Name
Used to identify the case class.

• Comment
Used to describe the case class. The comment is also displayed to users that work on a case of this case class. You may thus use it
to include case class specific investigation instructions.

• Case workflow
Each case class must define one investigation workflow. Cases of this case class will be modelled according to the selected
workflow.

• Type
There are two different types of case classes available. Regular case classes for "normal" investigation cases generated by rules
and specific collusion cases generated by collusion processes.

◦ Regular
For regular case classes the following additional settings are available:

▪ Reporting attributes
Selects attributes to be displayed with the investigation case list. Typically you would choose attributes that described
the case for users to quickly identify it. If you want to enable additional reporting attributes after cases have already
been created for this case class, you should consider to use a remote lookup index (see mandator configuration for
more information).

▪ Enabled for case creation
Allows you to use this case class for case creation. It will be possible to create cases with this case class even if the case
class itself is disabled. In this case you'll have to enable the case class first in order to see the created cases for
investigation.

▪ Column sequence
Lets you choose how reporting attributes shall be shown in the investigation case table. Notice that this table is shown
when you select "case investigation" from the "investigation tab".

▪ Case consolidation
If enabled, alarms that have the same value as the aggregation attribute (selected below) for new cases are combined
within the same case.

▪ Aggregation attribute
If case consolidation is enabled alarms that have the same value as the aggregation attribute are aggregated into once
case. Only cases that have not been closed are used as targets for the alarm aggregation.

▪ Index based evaluation
For index based evaluation case classes the following additional settings are available:

▪ Case consolidation
If enabled, alarms that have the same value or values for the specified index (see below) are aggregated into an
already existing and not closed case.

▪ Aggregation index
If case consolidation is enabled this field specifies which index is used to perform case aggregation. In a typical
use case an index based evaluation would use a customer index as the primary index and an account index as the
associated index. When enabling case aggregation using the associated index all associated index values are

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

evaluated meaning that an alarm for customer 1 with accounts A and B will only be aggregated to a case that also
has accounts A and B and only those. When choosing aggregation on the associated index, cases from
index based evaluations that do not use an associated index will never be aggregated.

▪ Highlight case alarms in queries
If enabled, all transactions belonging to a case will be highlighted in query results.

◦ Collusion
Collusion cases provide information about the detected (potential) point of compromise, compromised first parties and
potentially affected first parties. Instead of reporting attributes there are additional case attributes, such as First skimming
transaction and Last skimming transaction. During aggregation all such case attributes are updated. Collusion alarms are
always aggregated for detected potential points of compromise.

◦ Aggregation trailing
Lets you enable or disable logging of alarm aggregation in case audit trail. If disabled, alarm aggregation logs will not be
added to case audit trail.

◦ Limit the number of loaded audit trails
If enabled, allows you to specify the number of audit trail entries to be stored in memory. The remaining audit trail entries
will be available on disk and can be loaded on demand from the case investigation page.

◦ Number of audit trail entries per case
The maximum number of audit trail entries per case to be stored in memory. If currently there are more audit trail entries in
the memory than the number specified here, these entries will be dumped to the disk within the end of day job (being
executed once a day). Please note that increasing this number will not result to immediate load of audit trail entries from disk
but will only affect new audit trails to be added to a case. If you want the increased parameter to become effective for all
existing cases, you need to restart the application.

◦ Queries
Lets you choose which of the index queries defined are automatically displayed on the case investigation "case" page for
cases of this case class. Please note that only one fitting index query (with respect to counterparty and first party indexes) is
displayed for potential points of compromise and affected first parties for cases of type collusion.

◦ Masterdata
Lets you choose which masterdata values are to be included with cases of this case class. For more information on
masterdata, refer to the help page on the masterdata definition page. Please note that only masterdata attributes linked to
the counterparty index are displayed for cases of type collusion.

◦ Case Actions
Lets you choose which case action values are to be included with cases of this case class.

◦ Case Close Codes
Lets you choose which close codes can be used to close a case of this case class.

◦ Case Transitions
This section contains all case transitions populated from the selected case workflow that can be executed on cases of this
case class. Please note that transitions listed here need to be configured before you can use them in the case investigation
module.

back to top

8.5.5.2 Case Transitions

Below you can find all case transitions of the selected case workflow. You need to update some of the settings by adding user groups
and/or auto escalation conditions for each transition before using the transitions in the case investigation module.
back to top

8.5.5.3 Case Transition

Every case transition from the selected workflow needs the following settings to be defined.

• Case actions
Allows you to select case actions that will be send automatically when this case transition is executed.

◦ Case close codes
Allows you to select case close codes, which can be used with this transition.

◦ User groups
Specify which user groups are privileged to execute this case transition. If left empty, only investigation supervisors and
working queue managers will be privileged execute this case transition.

◦ Automated transition
If enabled, the following transition can be executed automatically by the system (if auto escalation conditions below are
defined and fulfilled).

◦ Case close code
You need to specify a case close code for automated closing case transitions. Cases will be closed with the selected code.

◦ Followup user
You need to select an investigator for automated transitions to exclusive state. Cases will be added to the working queue of
the selected user when the transition is executed.

◦ Auto escalation conditions
In addition to manual execution of case transitions, it is also possible to trigger case transitions automatically by defining a
number of case conditions. Each condition will be evaluated, and cases that satisfy all conditions defined will be escalated. If
you define no condition here, the transition will be executed.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Remarks

Please note that cases that have already been closed (case state "Closed") are not considered as escalation targets and thus no
automated transition can be executed on these.

back to top

8.5.6 Working Queues

The table lists all working queues that are defined and that you have access privileges for.

Working queues provide a queuing and prioritization mechanism for investigation cases. Cases are constantly evaluated and sent off to
working queues. By this way cases are becoming available to investigators assigned to the working queues.

Definition

Each working queue defines insertion conditions and selection of users assigned to the queue. Cases satisfying the insertion conditions
are being added to the working queue. Investigators can then work cases by pulling them from the queues they are assigned to.
Besides having assigned users, working queues might also have queue managers who besides doing case investgation, can also see the
list of cases available in the working queue. In addition to that, working queue managers will be privileged to:

• Take over investigation cases that are reserved (follow up) for other investigators

• Interrupt investigation cases that are currently worked by other investigators

• View cases that are being investigated by another investigator

• Execute bulk case transitions via context menu

It is possible to prioritize working queues by assigning a numeric value to it. This prioritization indicator is used when evaluating cases,
and when pulling a case from the queue.

Remarks

Notice that working queue prioritization only influences the sequence of working queues within a mandator. That means that first
working queues of mandators on higher levels within the mandator hierarchy are evaluated.

back to top

8.5.6.1 Working Queue

Working queues have the following settings:

• Enabled
Allows you to temporarily enable/disable the working queue.

• Priority
Numeric value ranging from 1 to 10,000 indicating the priority of the working queue. Evaluation is performed in ascending order of
the priorities. That means the higher the number, the LATER the working queue is evaluated within a mandator.

• Name
Used to identify the working queue.

• Comment
Used to describe the working queue. You may use this field to explain what this working queue is used for.

• Mandator
Each working queue belongs to one mandator. Once created, mandator ownership does not change.

• Cases from mandators
Restricts cases to be added to the working queue to the mandators specified.

• Users
Selection of users assigned to the working queue. The assigned users will be able to pull investigation cases from the working
queue.

• Queue managers
Queue managers can see the list of all cases associated with the working queue. They will also be privilaged to perform all
supervisor actions (taking over cases, interrupting, viewing cases of the working queue users and executing bulk transitions).

• Show closed cases
Additionally, take on board closed cases (to inspect forepassed activities).

• Insertion conditions
You may further restrict the cases to be added to the working queue to those whose reporting attributes and data satisfy certain
criteria by defining conditions here.

back to top

8.5.7 Case Groups

Case Groups are used as a mechanism to assign CPPs to specific investigation cases, and that also means to assign to a mandator
because a case group must be defined based on one mandator. Once a case group is defined it is available in the CPP selection
application. When adding a new CPP the case group it belongs to must be selected. The table shows all case groups.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The following columns are always shown:

• Mandator
Name of the mandator to which the case group belongs.

• Name
Name of the case group.

• Enabled
Indicates, if the case group is enabled.

• Comment
Comment of the CPP.

• Inherit to submandators
Indicates, if the case group inherits to submandators. If this is the case, submandators of the listed mandator are able to view and
create CPPs of/for the case group.

• Evaluation attribute
An attribute of closed fraudulent cases that are connected with a CPP. It will be added up and displayed in the CPP table.

Remarks

• Case groups must be defined and enabled to create and use CPPs.

• Notice that you can sort the investigation table by clicking on column headers. To sort for more than one column, simply click the
columns in sequence (the former "inner" sorting will remain). Sorting preferences are stored with your user's account.

back to top

8.5.7.1 Case Groups

The configuration of case groups.

• Enabled
A case group can be enabled or disabled. CPPs cannot be assigned to disabled case groups. If a case group that contains CPPs gets
disabled, the belonging CPPs are not displayed in the CPP table anymore and cannot be assigned to cases.

• Inherit to submandators
CPPs of case groups that inherit to submandators are visible to submandators. Furthermore, submandators are able to assign CPPs
to the case group and view and change belonging CPPs.

• Name
The name of the case group.

• Comment
A comment which is added to the case group. Comments do not influence computation and are informational only.

• Mandator
The mandator the case group belongs to.

• Evaluation attribute
Choose an attribute that will be added up and displayed in the CPP table, if it belongs to a case that was closed as fraudulent and
is connected with a CPP. The CPP list displays the sum of values in the column 'Sum of evaluation attribute' from all the cases to
which the CPP is assigned to.

back to top

8.6 Notifications

Notifications (typically sent via email, mobile text, or fax media) are a potential reaction to a transaction message. IBM Safer Payments
creates a notification the same way as it generates alarms for investigation cases.

There are many similarities to case classes. Notifications are defined on a mandator basis and are triggered by the "notification" meta
attribute value being non-zero. The value of the "notification" meta attribute determines which of the notifications defined is generated
for the transaction message.

Notice that notifications can be generated in parallel to cases, reminders and real-time reactions, such as to intercept a transaction.

back to top

8.6.1 Notification

The definition of a notification involves a number of settings that are made in this form. Rest the mouse pointer over a setting for
details. Settings are:

• Enabled
Allows you to temporarily enable/disable notifications without the need of redefining them or change model rules.

• Notification ID
Value of the "notification" meta attribute that triggers this notification.

• Name

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Used to identify the notification. The name does not appear in the generated notification message.

• Comment
Used to describe the notification. The comment does not appear in the generated notification message.

• Mandator
Each notification belongs to the mandator of the selected outgoing channel configuration. Once created, mandator ownership does
not change.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the notification message. Outgoing channel configurations can be
defined in the "cluster" tab and then referenced here. Depending on the type of the chosen outgoing channel configuration, the
remainder of the form changes to display protocol specific settings. The values in the form will be pre-filled by default settings
defined in the outgoing channel configuration, but offer to overwrite the values for the notification.

◦ SMTP
Notification shall be sent by email using a SMTP type email service. SMTP notifications are queued and are sent out
periodically (defined in IBM Safer Payments configuration) as batch. If the SMTP service is temporary unavailable, IBM Safer
Payments attempts re-sending them also periodically. SMTP notifications are also stored on disk to ensure that unsent SMTP
notifications will be attempted to be resent after a hard stop of IBM Safer Payments. This choice allows the following entries:

▪ Format values
Format/unformat values which are inserted in the message template.

▪ Email "from" address
The sender address used for the outgoing SMTP notification.

▪ Email "to" address type
Lets you choose between a "constant" recipient address (entered below) or taking the string value of the "email" meta
attribute of the current transaction message. The latter allows for sending emails to individual cardholders, merchants,
or acquirers.

▪ Constant email "to" address
If the recipient address is "constant", all outgoing SMTP messages are sent to this address. You may use multiple email
addresses here, just separate them by semicolon.

▪ Subject template
Text template for the subject line of the outgoing SMTP message (see below).

▪ Support HTML formatting
When activated, mails send HTML formatted text as well as plain text (inside one message). Provide HTML formatted
text through "HTML body template" box and plain text through "Body template" box.

▪ Encode HTML body base64
When activated, the HTML body text will be base64 encoded. Note that some more complicated HTML formattings might
not be rendered correctly with base64 encoding. Please try with test notification first.

▪ Body template
Text template for the message body of the outgoing SMTP message (see below).

◦ HTML body template
HTML formatted text template for the message body of the outgoing SMTP message (see below).

• Message or HTTP Message
Notification shall be sent by IP message to any other system. Analogous to SMTP notifications, message notifications are stored
until they can be sent successfully. These choices allow the following entries:

◦ Format values
Format/unformat values which are inserted in the message template.

◦ Content type (HTTP only)
The content type that will be used in the HTTP header. For additional information on how to use multipart forms, click here.

◦ Message template
Text template for the message (see below).

• File
Notification shall be stored as a file. There will be one file per each notification and the file name includes the system time with
microseconds. This choice allows the following entries:

◦ Format values
Format/unformat values which are inserted in the message template.

◦ File name prefix
Allows to define a file name prefix to distinguish messages from different case actions using the same outgoing channel
configuration.

◦ Message template
Text template for the message (see below).

• SQL
Notification shall be executed as ODBC SQL. You have to install and configure a valid ODBC connector on all machines with active
AMI. Make sure, that you can reach your database with your ODBC connector, before configuring ODBC SQL actions. The
integration should be compatible with mySQL, postgreSQL and oracle ODBC connectors.

It is not possible to parse return values or to import data by SQL into IBM Safer Payments.

This choice allows the following entries:

◦ Format values
Format/unformat values which are inserted in the message template.

◦ SQL Query
SQL template for the message (see below).

This could be for example:

INSERT INTO fraud VALUES ({PAN}, sysdate, 'REASON_1');

{call iris.Update_Status({PAN}, {Trx_Id}, 'REASON_2', {Trx_Time})}

Text templates

Within the text templates, each transaction record attribute value can be filled in. Just put the attribute name (as it appears in the
model) in curly brackets. IBM Safer Payments automatically fills in the appropriate value and formats it according to the attribute
settings. When using a notification inside an index based evaluation all special template placeholders for index based evaluations are
available.

Testing notifications

The [Save and create test notification] toolbar button above creates a sample notification. You can either use a specific record to fill the
defined message template, or create a notification using an empty template.

back to top

8.7 Text Modules

Text modules can be used to predefine text templates which can be added to case actions. IBM Safer Payments provides case actions to
send messages to other systems during case investigation. For the case actions types "SMTP", "SQL" and "Word (.docx)" a placeholder
for text modules can be defined by adding the keyword [TextModule] into the body template. An investigator may choose one of the text
modules when he sends a case action during case investigation. If he chose one, the placeholder of the message is replaced by the text
template of the text module. Otherwise the placeholder is removed from the case action message.

The table below lists all defined text modules. To add a new text module click [new text module]. To view or change text modules, left
click on the respective row in the table.

back to top

8.7.1 Text Module

The definition of an text module involves a number of settings that are made in this form. Rest the mouse pointer over a setting for
details. Settings are:

• Enabled
Allows you to temporarily enable/disable text modules.

• Name
Used to identify the text module. The name is used to choose the text which should be added to the case action.

• Comment
Used to describe the text module.

• Mandator
Each text module belongs to one mandator. Once created, mandator ownership does not change.

• Text template
Used to define a text which can be added to a case action (of the type SMTP or document) during case investigation.

back to top

8.8 External Queries

External queries are means of requesting data from another system for case investigation purposes. They are used to ensure that the
data used to evaluate a case is up to date.

External queries can be sent as IP or HTTP messages and are triggered either while loading a case or upon user request.

External queries within IBM Safer Payments are modelled using the same template mechanism as case actions or notifications. The
response is parsed according to the definition and displayed within the case. It is even possible to update the stored data of the case
using the received data.

back to top

8.8.1 External Query

The definition of an external query involves a number of settings that are made in this form. Rest the mouse pointer over a setting for
details. Settings are:

• Enabled
Allows you to temporarily enable/disable external queries without the need of redefining them.

• Name

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Used to identify the external query. The name does not appear in the generated message.

• Comment
Used to describe the external query. The comment does not appear in the generated message.

• Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the external query. Outgoing channel configurations can be defined
in the "cluster" tab and then referenced here. External queries support outgoing channel configurations of the types "HTTP" and
"message".

• Mandator
Each external query belongs to one mandator defined in the outgoing channel configuration. This mandator can not be changed.

• Format values
Format/unformat values which are inserted in the message template.

• Content type (HTTP only)
The content type that will be used in the HTTP header.

• Message template
This is the template which is used to generate the request. You can use any reporting attribute within IBM Safer Payments by just
putting its name within curly brackets. IBM Safer Payments will replace that part of the message with its actual value from the
case.

• Response mapping
IBM Safer Payments expects XML responses. This setting tells IBM Safer Payments which XML-tag will be used to fill which
reporting attribute. It is defined as a list of pairs, where each pair is separated by a ';'. The values are expected as
'attributename:XML-tag', where attributename is the name of an attribute as defined in IBM Safer Payments and XML-tag is the
name of the tag without '<' or '>' characters.

• Overwrite case values
The mapped response values can be used to overwrite the values stored within the case.

back to top

8.9 Reminders

Reminders are timers that are triggered similarly to cases and notifications. Reminders are defined on a mandator basis and are
triggered by the "reminder" meta attribute value being non-zero. The value of the "reminder" meta attribute determines which of the
defined reminders is triggered for the transaction message.

A reminder works as follows:

• Once the reminder is triggered, it waits the defined time period.

• Once this time period is up, it re-computes the triggering transaction messages as if it was sent at that moment.

• Attribute values of all outputs are reset to "nil".

• The value of the "Message type ID" meta attribute is overwritten with the value defined in the reminder. This is used to
differentiate the "first" computation of the transaction message (when it originally came in) from the "second" computation of the
transaction record (when the reminder expired).

Remarks

• Make sure that the rules that trigger a reminder will not fire for the MTID value defined in the reminder. Otherwise the reminder
would be re-triggered and executed repetitively.

• Reminders are only executed on the primary IBM Safer Payments instance that received the initial transaction message.

• There is no new transaction record produced by the execution of the second computation. Also the transaction message remains
the same with the transaction record stored.

• Reminders are not stored permanently. When you shut down the IBM Safer Payments instance or when the IBM Safer Payments
instance stops operation, the reminders not yet executed will be deleted.

Testing reminders

The [Save and create test reminder for most recent record (last URID)] toolbar button creates a sample reminder for the most recent
record generated.

back to top

8.9.1 Reminder

The definition of a reminder involves a number of settings that are made in this form. Rest the mouse pointer over a setting for details.
The following settings are available:

• Enabled
Allows you to temporarily enable/disable reminders without the need to redefine them or change model rules.

• Reminder ID
Value of the "reminder" meta attribute that triggers this reminder.

• Name
Used to identify the reminder. The name does not appear in the generated reminder message.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Comment
Used to describe the reminder. The comment does not appear in the generated reminder message.

• Mandator
Each reminder belongs to one mandator. Once created, mandator ownership does not change.

• Message
The triggering transaction message is computed again with this message after the reminder has expired.

• Time
Waiting time period (in seconds) of the reminder before it recomputes the transaction message.

back to top

8.10 Master Keys

The table lists all master keys for which a public key is available within IBM Safer Payments.

Notice that you may not add master encryption keys from this user interface for security reasons.

To add (master) keys, add your new generated usage key files ("key_<key_id_n>.iris") to the IBM Safer Payments "key" folder on all
instances and press the [Reload private keys from disk] button.

back to top

8.10.1 Encryption Keys

The table lists all encryption keys for which the public key is available within IBM Safer Payments. To enter public keys or to activate
keys, click on the key row in the table.

Notice that you may not add private encryption keys from this user interface for security reasons. Private keys must be installed by the
administrator at file level. Pay attention to the timed validity of keys. For more details, read the background help page for PCI DSS
encryption of IBM Safer Payments.

back to top

8.10.2 Encryption Key

Which functions are available depends on your specific privileges:

• Key entry
Depending on the privileges of the roles that your user account is granted, you may either enter the left key or right key. You may
also add a comment to your entry that remains visible with the key table. Notice that each entry overwrites any previous entry.
There is therefore no editing of existing entries. Notice that the key pair ID is defined with the private key and therefore cannot be
changed.

• Key validation
Use the toolbar icon to check the validity of a key triplet once both public keys are entered.

• Key activation
Also checks validity of key and activates key triplet if key was valid. The previously valid key is automatically disabled.

• Key revocation
Removes all key triplets from IBM Safer Payments permanently. Keys cannot be activated again after revocation. Notice that you
can also revoke keys that are not yet activated or for which the public keys have not (yet) been entered.

• Change master key
Re-encrypts all data with a new master key. The re-encryption process takes a long time and all instances will be inactive during
this process.

For more details, refer to the background help page for PCI DSS encryption of IBM Safer Payments.

back to top

8.11 Job Schedule

The table lists all jobs that have been defined. Because of the status information provided an auto-refresh time interval (on the "system
configuration" page) can be defined which causes this page to reload periodically.

To view or change job details and parameters, left click on the respective row in the table.

Use the context menu to execute or stop one (or in new user interface multiple) job(s), or to generate reports when report generation
jobs are selected.

For more details, read the background help page on IBM Safer Payments interfaces that is available from the main help page.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

8.11.1 Job

Each job represents a manually or periodically executable task. There are different types of jobs available. The following settings are
common for all of them:

• Name
Used to identify the job.

• Comment
Used to describe the job.

• Job type
Select which kind of job you would like to define (see below for type specific settings). Currently these types are available:

◦ Load file
The standard way of loading a batch of files into IBM Safer Payments. For more details, read the BDI (batch data interface)
overview.

◦ Generate report
Job type to generate reports. The results can be downloaded using the button at the top of the form.

◦ Evaluate sanction list
Job type used to perform offline compliance checks.

◦ Execute index based evaluation
Job type used to execute index based evaluations. Important: While index based evaluations are executed, the used indexes
are locked against changes, so message computations affecting those indexes will be halted until the job finishes. Because of
this, index based evaluation jobs should be run on an instance that does not process incoming transactions.

◦ Export data
Job type used to export transactional data.

• Priority
The priority for the operation system to execute the job. Notice that the maximum priority is limited by the general IBM Safer
Payments setting (system configuration page). The higher this priority, the more computational resources will be given by IBM
Safer Payments to the computation of this job.

• Maximum threads
Maximum number of parallel threads (if available from the overall BDI thread pool size as configured) that IBM Safer Payments
attempts to employ for the processing of this job. The higher this number, the more parallel computing resoures will be given by
IBM Safer Payments to the computation of this job. If the total number of currently available BDI threads (as configured on the
system configuration page minus the ones currently used by other jobs) is lower than the maximum number of threads set here,
IBM Safer Payments will only use the available amount of threads for the entire duration of its job processing.

• Recurrence
Select if a job should be executed manually, daily, weekly, monthly or periodically using a defined time interval. Notice that for jobs
repeated in a defined time interval, IBM Safer Payments sets the next time the job runs in alignment to full hours. If you, for
instance, create a job at 15:43, the next run would be at 16:00, if you set the time interval to 20, 30 or 60 minutes. If you set the
interval to 10 minutes, the next run would be at 15:50.

• Suspended
If checked, the recurring automatic execution of this job is suspended; it can still be executed manually.

• Day of week
Select on which day of the week (server time) a weekly job shall be executed.

• Day of month
Select on which day of the month (server time) a monthly job shall be executed. Numbers 1 to 31 are valid. If the chosen day
doesn't exist in a given month, for example 30 and 31 in February, the job is executed on the last day of the month.

• Daytime
Select the server time at which daily, weekly or monthly jobs shall be executed.

• Repeat every
Specifies the interval after which a job should be restarted.

The following settings are only available for job type "Load file":

• Wait for semaphore file
If selected, execution of a job waits until a semaphore file is delivered to ensure that partial file deliveries are not processed.

• Create log file
If checked, a log file is created during file processing; the log will contain a row for each record containing the (XML formatted)
response of the computation.

• Curtail masterdata
If checked, all masterdata elements, that have an MTID meta attribute insert condition for the message type ID of this job and are
not updated with this job, are deleted (set to nil value) upon completion of the job.

• Parameter
Customer specific processing options can be entered here. These options are provided by the IBM Safer Payments team.

• Message
This message will be associated with all messages coming from this job. The meta attribute "Message type ID" will automatically
be filled with the respective MTID of the selected message.

• Continue after error
If enabled, rows in which format errors are detected will be skipped and event log messages will be generated; if disabled, job
halts at error

• Check row length

Only available for messages using the FCD format. If enabled, only rows that have the expected length will be processed. The
expected length is computed using the defined mappings.

• Incoming directory
Directory for the files to be loaded by this job. According to the type of the selected message ("CSV format", "FCD format" or "XML
format" or "Nested XML format") all files with suffix .csv, .fcd, .xml or .txt within the incoming directory are imported in
alphabetical order during the job. In case you want to send other formats, please choose the custom message type and make sure
you have the custom parser library in place.

• Archive directory
Directory to which files that have successfully been loaded into IBM Safer Payments are moved

• Error directory
Directory to which files that have not successfully been loaded into IBM Safer Payments are moved

• Enable encrypted delivery
If selected, delivery of encrypted job files is activated. Job files need to be encrypted with the key from encrypted aes key path.
You will find further details for the encrypted job import in Importing encrypted job files.

• Password safe
Choose the activated rsa decryption key from password safe here. This key will be used to decrypt the encrypted aes key.

• Aes key path
Path to the encrypted aes key, which is used to decrypt the job file(s). The key itself will be decrypted with the activated rsa key
from password safe.

• Re-create interval index
If enabled, selected interval indexes will be reset and recreated during the execution of the job. Use this feature to update interval
indexes while loading masterdata. The recreation will be performed on each instance.

◦ Mandators
Select the mandators whose indexes should be recreated.

◦ Indexes
Select the interval indexes that should be recreated.

◦ Remote wait factor
The relative wait factor for a remote recreation to get transmitted. The first recreation of a remote instance is triggered
immediately after the primary recreation job. The second remote recreation will wait for the time of the primary recreation
job, multiplied by this wait factor.
"0" for immediate transmission to all instances after successful execution of the recreation job. "1" for a cascaded execution
of the recreation. It is recommended to use "1.05" to have an additional wait of 5% to avoid having simultaneous recreations
on 2 machines.

The following settings are only available for job type "Generate report":

• Mandators
Select the mandators that should be included in the report generation job.

• Reports
Select the reports to be executed for the report generation job. Currently, group by queries, merchant monitoring rules and reports
from the report section that are defined for the selected mandators will be available for selection here.

• Use outgoing channel configuration
If checked, the report(s) will be sent via outgoing channel configuration when the job is executed.

◦ Outgoing channel configuration
The outgoing channel configuration that will be used to deliver the report(s). Outgoing channel configurations can be defined
in the "cluster" tab and then referenced here. Depending on the type of the chosen outgoing channel configuration, the
remainder of the form changes to display protocol specific settings. The values in the form will be pre-filled by default
settings defined in the outgoing channel configuration, but offer to overwrite the values for the job.

▪ SMTP
SMTP messages are queued and are sent out periodically (defined in IBM Safer Payments configuration) as batch. If the
SMTP service is temporary unavailable, IBM Safer Payments attempts re-sending them also periodically. SMTP messages
are also stored on disk to ensure that unsent SMTP messages will be attempted to be resent after a hard stop of IBM
Safer Payments. This choice allows the following entries:

▪ Email "from" address
The sender address used for the outgoing SMTP notification.

▪ Email "to" address type
Lets you choose between a "constant" recipient address (entered below) or taking the string value of the "email"
meta attribute of the current transaction message. The latter allows for sending emails to individual cardholders,
merchants, or acquirers.

▪ Constant email "to" address
The recipient address is "constant", all outgoing SMTP messages are sent to this address. You may use multiple
email addresses here, just separate them by semicolon.

▪ Subject template
Text template for the subject line of the outgoing SMTP message.

▪ Body template
Text template for the message body of the outgoing SMTP message.

▪ File
There will be one file per each report and the file name includes the system time with microseconds. This choice allows
the following entries:

▪ File name prefix
Allows to define a file name prefix to distinguish messages from different jobs using the same outgoing channel

configuration.

The following settings are only available for job type "Evaluate scanction list":

• Mandators
Select the mandators from which compliance lists will be selectable.

• Compliance lists
Select the compliance lists for the sanction list job. Only offline compliance lists defined for the selected mandators will be
available.

The following settings are only available for job type "Execute index based evaluation":

• Mandators
Select the mandators from which index based evaluations will be selectable.

• Index based evaluations
Select the index based evaluations to execute. Only index based evaluations defined for the selected mandators will be available.
Each index based evaluation will be executed isolated from the others so there is no interaction or dependency between them.

The following settings are only available for job type "export data job":

• Export type
Type of exported data stream. Currently only CSV format is supported.

• Target file
Directory and name of the file where exported data will be written. It is highly recommended to use a different disk
subsystem to avoid severe performance impacts. You may include the following variable fields in the file name which will be
replaced with actual values:

◦ {name}
This variable field is replaced with the name of the job.

◦ {comment}
This variable field is replaced with the comment of the job.

◦ {dateIso}
This variable field is replaced with execution date.

◦ {instanceId}
This variable field is replaced with the instance ID of the IBM Safer Payments instance.

◦ {instanceName}
This variable field is replaced with the instance name of the IBM Safer Payments instance.

• Decimal separator
Specify which character should be used to as decimal separator.

• Field separator
Specify which character should be used to seperate values in exported CSV file.

• Salt
A random token which will be used to hash encrypted attributes. You can use the pre-generated salt, or you can enter a new one.

• Include DDC
If enabled, the job will use data available on the disk data cache (DDC).

• Export data selection
The data selection allows for both choosing an interval and additional conditions. Refer to the section help pages for more
information.

• Attributes
Allows to select which columns are to be included in the exported data file.

• Encrypted attributes export
This section lets you define how encrypted attributes should be exported. Refer to the section help for more information.

Notice that when using multiple threads for data export, the data is processed in chunks and thus the sequence of records is not
preserved. If you want to preserve the sequence you should execute single threaded data export.

back to top

8.11.2 Encrypted Attributes Export

When exporting encrypted attributes from IBM Safer Payments using data export job, you must define for every attribute how the
stored value should be exported. Each encrypted attribute can be exported as plain text, and/or can be hashed or masked.

By default, plain text values of encrypted attributes are exported. However, you can deselect the plain text column, or add the hashed
and masked variants of the value. Including hashed/masked variants of the value will introduce additional columns in the data export
file named by attribute name + "_hashed" and attribute name + "_masked" respectively.

For exporting the hashed variant of an encrypted attribute, data export job uses so called salt, which is a random token used by the
encryption algorithm to "safeguard" sensitive exports. You can use the pre-generated salt, or you can enter a new one in the field
above.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

8.11.3 Importing encrypted job files

If "Job encryption enabled" is activated in system settings in section "Batch data interface", encrypted job files can be imported through
the BDI interface. To achieve the encrypted processing of batch data IBM Safer Payments chooses a combination of RSA and AES
encryption. In order for the import to work, job files have to be encrypted with the following specification:

• Encryption system: AES (Advanced Encryption Standard)

• Cipher: aes-256-cbc

• Hash function: sha-256

It is expected, that job files may be encrypted by a different person than the one importing the encrypted files in IBM Safer Payments.
Therefore encrypted job files and the AES password (which is used to encrypt the job files) need to be exchanged somehow. In order to
exchange the AES password securely, IBM Safer Payments uses public / private key encryption using the RSA encryption system (Rivest,
Shamir and Adleman).

Creating a RSA public an private key file

The person operating IBM Safer Payments has to create a private / public key pair. This can for example be done using openssl with the
following command:

RSA_PASSWORD=myRsaPassword123

openssl genrsa 1024 | openssl pkcs8 -topk8 -out privateKey.pem -v1 PBE-SHA1-3DES -passout pass:$RSA_PASSWORD

openssl rsa -in privateKey.pem -out publicKey.pem -outform PEM -pubout -passin pass:$RSA_PASSWORD

A private key 'privateKey.pem' and a public key 'publicKey.pem' are then written to disk. The private key is secured with the
"RSA_PASSWORD" and can only be used in combination with this password.

The private key stays at IBM Safer Payments and will be used in the following process to decrypt the AES password (see description
below). The public key should be transferred to a person encrypting the job file.

Encrypting the job file

The person encrypting the job file can generate a 32 byte AES password (key) randomly with the following command.

AES_PASSWORD=$(< /dev/urandom tr -dc _A-Z-a-z-0-9 | head -c32)

The key does not have to be created randomly but can be defined manually, it is however recommended.

The AES password can be used to encrypt a job file with the following command:

openssl enc -aes-256-cbc -md sha256 -in unencryptedJobFile.csv -out encryptedJobFile.csv -pass pass:$AES_PASSWORD -p

The encrypted job file "encryptedJobFile.csv" is then written to disk.

Encrypting the AES password

With the RSA public key the unencrypted AES password can then be encrypted and written to disk with the following command:

printf $AES_PASSWORD | openssl rsautl -encrypt -inkey publicKey.pem -pubin -out aesKey.ssl

The AES password is then written encrypted to the file "aesKey.ssl"

Preparing the encrypted import

The person who encrypted the job file sends the IBM Safer Payments operating user

• the encrypted job file ("encryptedJobFile.csv" in the example, or multiple files if more than one were encrypted with the same
password). The person operating IBM Safer Payments places this file in the "Incoming directory" folder which shall be used for the
job .

• the file which contains the encrypted AES password ("aesKey.ssl" in the example). The person operating IBM Safer Payments
places this file in a folder of the machine running the instance with the "Batch data interface".

The person operating IBM Safer Payments then places the previously created RSA private key inside thepassword safe folder (by default
the folder "/pws") of each IBM Safer Payments instance. It is important, that the key is available on all instances, in order to activate it.
The key must then be activated in 'administration/password safe' by selecting it in the table, providing the password RSA_PASSWORD
from above and saving. Once the key is activated it will be marked with a green status symbol in the password safe table. See password
safe for further details.

Importing the encrypted job file

To import the encrypted job file a job has to be created with "Load file job" as job type and the option "Enable encrypted import" needs
to be activated. The password safe, which was activated in the previous step needs to be selected from the drop down in the field
"Password safe". The path to the AES key file ("aesKey.ssl" in the example) needs to be provided in the field "Aes key path" and the
path to the encrypted job file needs to be provided in the field "Incoming directory". Running the job then imports the encrypted job file.
It is possible to import multiple encrypted job files, when these are placed inside the job file folder. Note that these files need to be
encrypted with the same AES password in order for the decryption to succeed.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

8.12 Password Safes

The table lists all password safes. A password safe is automatically generated for private keys which are located in the password safes
folder.

Provide the correct password to activate a key. Once activated, it can be selected in an encrypted job to decrypt a file that contains an
aes password. Using this aes password the encrypted job can be executed.

You will find further details for the encrypted job import in Importing encrypted job files.

back to top

8.12.1 Password Safe

Password safes have the following settings:

• Name
Descriptive name. Can be selected in settings of an encrypted job.

• Password
A private key itself should be protected with a password. Provide the correct password to activate the key. Once activated, it can
be selected in an encrypted job to decrypt a file that contains an aes password. Using this aes password the encrypted job can be
executed. You will find further details for the encrypted job import in Importing encrypted job files.

• Comment
Used to describe the password safe.

back to top

8.13 Status Alarm Indicators

The table lists all status alarm indicators ("SAI"). SAI can be configured to monitor all important system and health parameter of an IBM
Safer Payments installation (single-instance or clustered). They are displayed on the dashboard page and may be configured differently
for each mandator.

back to top

8.13.1 Status Alarm Indicator

Status alarm indicators ("SAI") monitor internal or external parameter values of IBM Safer Payments operations. They can be defined as
either "warnings" or "errors". If a defined threshold is reached, the SAI shows its warning/error status on the dashboard and (if
enabled) sends out an email or mobile text message.

Configuration

The definition of a SAI involves a number of settings:

• Enabled
Lets you enable/disable SAI without the need to deleting and re-entering them.

• Position
Numerical value that identifies the relative position of the SAI on the dashboard. The smaller the number, the higher the position.

• Name
Used to identify the SAI; can be taken into the SAI alert messages (below).

• Comment
Used to describe the SAI; can be taken into the SAI alert messages (below).

• Mandator
Each SAI strictly belongs to one mandator (this ownership cannot be changed once the SAI is created). You may choose from any
SAI that you have SAI change privileges for. Notice that users will only see SAIs on their dashboard page that belong to the
mandator the user belongs to as well.

• Alarm type
Defines the type of alarm. Depending on the type of alarm, different subsections containing alarm type specific settings are shown.
The alarm types are:

◦ Cases in investigation [#]
Monitors number of cases satisfying the specified settings:

▪ Data from mandators
Restricts the cases monitored to the mandators specified.

▪ Case state
Restricts the cases monitored to the case state specified.

▪ Case close code
Restricts the cases monitored to the case close codes specified.

▪ Case conditions

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Restricts the cases monitored to those that satisfy all conditions defined.

Notice that since cases are replicated within a cluster, this SAI will show only once on the dashboard.

◦ Emails unsent [#]
Total number of emails and mobile text messages queued for sending out (total for all mandators defined in IBM Safer
Payments). Since each IBM Safer Payments instance sends out its Emails and texts individually, this SAI will be shown for
each cluster instance on the dashboard.

◦ Externally delivered data
Reads SAI value from an external source. The additional setting is:

▪ External file name
Path and file name of the data delivered.

For details on the file format, scroll to the end of this page.

◦ Fastlink buffer usage [%]
Monitors utilization of the FastLink outgoing buffer. This SAI will be shown for each cluster instance on the dashboard.

◦ Fastlink messages unsent [#]
Monitors backlog of the FastLink outgoing buffer. This SAI will be shown for each cluster instance on the dashboard.

◦ IBM Safer Payments memory consumption [GB]
Current memory consumption of IBM Safer Payments in Gigabytes. This SAI will be shown for each cluster instance on the
dashboard.

◦ IBM Safer Payments reserved memory [%]
Current reserved memory of IBM Safer Payments in percentage of memory usage limit. Reserved Memory is the sum of
simulation, analysis, rulegeneration and mdc memory of all champions. This SAI will be shown for each cluster instance on
the dashboard.

◦ IBM Safer Payments peak memory consumption [GB]
Peak memory consumption of IBM Safer Payments in Gigabytes. Same as before, only peak value as monitored by the
operating system. Only available on Windows platforms. This SAI will be shown for each cluster instance on the dashboard.

◦ Last error log message [h]
Time since last error log message was generated by this instance. This SAI will be shown for each cluster instance on the
dashboard.

◦ Last fatal error log message [h]
Time since last fatal error log message was generated by this instance. This SAI will be shown for each cluster instance on
the dashboard.

◦ Last warning log message [h]
Time since last warning log message was generated by this instance. This SAI will be shown for each cluster instance on the
dashboard.

◦ Encryption Key active since [d]
Time since current encryption keys was activated. This SAI will be shown for each cluster instance on the dashboard. Since
encryption keys are replicated within a cluster, this SAI will show only once on the dashboard. *deprecated* use "encryption
key valid until"

◦ Remaining lifetime of key [d]
Time until current encryption key will expire and shutdown incoming interfaces. This SAI will be shown for each cluster
instance on the dashboard. Since encryption keys are replicated within a cluster, this SAI will show only once on the
dashboard.

◦ Master Key active since [d]
Time since current master key will was activated. This function is deprecated and will be removed in a later release

◦ Master Key valid until [d]
Time until current master key will expire and IBM Safer Payments will force a re-encryption. This SAI will be shown for each
cluster instance on the dashboard. Since encryption keys are replicated within a cluster, this SAI will show only once on the
dashboard.

◦ Free disk space [GB]
The application will measure the number of available disk space in GB of this folder. On Linux for example, "statvfs" will be
used to calculate the number of available blocks.

◦ Oldest open case [d]
Monitors the age of the oldest unclosed case for the mandators defined. Since cases are replicated within a cluster, this SAI
will show only once on the dashboard.

◦ Index fill level [%]
Maximum fill level (calculated as the number of distinct entries currently stored in the index divided by the capacity of the
respective index) of all indexes selected.

◦ MCI average latency [ms]
Average internal latency in the selected period of time for messages in the Message Command Interface without network
communication.

◦ MCI maximum latency [ms]
Maximum internal latency measured in the selected period of time for messages in the Message Command Interface without
network communication.

◦ MCI latency violations [%]
Percentage of transactions that take longer to calculate than the maximum latency in settings.

◦ Operating system total physical memory usage [%]
Percentage of physical RAM used on server. This includes IBM Safer Payments, the operating system, and all other software
that runs on the server. If the available physical RAM is low, IBM Safer Payments operation may slow down to a degree that

renders stable operations impossible. Only available on Windows platforms. This SAI will be shown for each cluster instance
on the dashboard.

◦ Transaction message rate [1/s]
Monitors number of transaction messages satisfying the specified settings:

▪ Data from mandators
Restricts the transaction messages monitored to the mandators specified.

▪ Data points
Lets you define a number of past periods used to average the value. Averaging is important with transaction message
streams that have a high degree of fluctuation. The total period considered is printed for information right of the field
(data points * check each).

▪ Transaction message condition
Lets you restrict transaction messages according to attribute values.

This SAI will show for each cluster instance on the dashboard.

◦ Users logged on [#]
Number of users currently logged on.

▪ Data from mandators
Restricts the users monitored to the mandators specified.

Notice that since users are served from only one instance within a cluster, this SAI will show only once on the dashboard.

• Check each
Frequency this SAI is checked.

• Alarm status
Each SAI can be defined to either indicate an "error" or a "warning". If you like both a warning and an error for an alarm status,
define two SAIs with different thresholds.

• Alert above/below
If "below" or "above" are checked, their respective threshold entry fields becomes visible and allow for the entry of values that if
exceeded cause the SAI to go into alarm state

• Dashboard messages
Specify how SAI are shown on the dashboard page:

◦ Display text
Template for text shown on the dashboard with each SAI line. Because of the limited space, you may want to keep this text
short. You may use the message variables explained below to include dynamic contents.

◦ Display tooltip
Template for text shown as "tooltip" style pop-up message when the mouse pointer hovers over the display text. Because the
tooltip is not hard limited on size, you may use this to display more details about the alarm than with the display text. You
may use the message variables explained below to include dynamic contents.

• Alert by Email
Enables SMTP delivery of email or text message. Once enabled, more fields are shown below:

◦ Email from
Email address (name@domain.com) that should be displayed as the sender of the alert. If this field is not set, the default
email from address of the IBM Safer Payments settings is used.

◦ Email to
Email address (name@domain.com) of the recipient of the alert. Multiple recipients can be entered if separated by comma or
semicolon.

◦ Email subject
Text template for the subject line of the email send out. You may use the message variables explained below to include
dynamic contents.

◦ Email body
Text template for the email body send out. You may use the message variables explained below to include dynamic contents.

Template variables

Within the display text/tooltip and the email subject/body templates, you may use the following variable fields:

• {externalMessage}
With all external alarms, the delivering file can contain a "message text". This variable field is replaced with that text. Notice that if
this "message text" contains any of the other variable fields, they will be filled in as well.

• {name}
This variable field is replaced with the name of the SAI. If the name text contains any of the other variable fields, they will be filled
in as well.

• {comment}
This variable field is replaced with the comment of the SAI. If the name text contains any of the other variable fields, they will be
filled in as well.

• {value}
This variable field is replaced with the current (numeric) value of the SAI using 3 decimals (when it was last computed).

• {integerValue}
This variable field is replaced with the current (numeric) value of the SAI using no decimals (when it was last computed).

• {thresholdAbove}
This variable field is replaced with the (numeric) value of the "above" threshold.

• {thresholdBelow}
This variable field is replaced with the (numeric) value of the "below" threshold.

• {lastUpdateTimestamp}
This variable field is replaced with timestamp the SAI was last computed (and the current value of {value} was derived).

• {alarmTimestamp}
This variable field is replaced with timestamp the last alarm was triggered.

• {mandator}
This variable field is replaced with the name of the mandator to which the SAI belongs.

• {instanceId}
This variable field is replaced with the instance ID of the IBM Safer Payments instance.

• {instanceName}
This variable field is replaced with the instance name of this IBM Safer Payments instance.

Template conditions

Before the template variables are filled in (above), you may define conditional text elements that are displayed only if the last computed
value of the SAI meets defined criterion.

The format of these conditions is:
 IF(value op value:text)

As op (operators) you may use: "<", ">", "<=", ">=", and "=". value is the last computed value of this SAI and text is the text that is
filled in instead of this condition when the condition is met.

For example:
 IF(value < 0.5:Last Warning {value}h ago)IF(value>=0.5:No warning within 0.5h)
will get replaced with the text "Last Warning 0.3h ago" if the value of the SAI was 0.3 and will get replaced with "No warning within
0.5h" if the value was 5.9.

Remarks

• All SAIs are computed periodically, each within its own IBM Safer Payments service thread.

• Each SAI computes/updates according to its frequency settings. If an alert (email/text) is generated, it is generated at exactly this
time. The dashboard page refreshes according to its own refresh setting, or respectively, the user refresh actions, not necessarily
synchronous to the SAI computational updates.
With email generation, the email is generated when the alarm is first triggered. As long as the alarm remains active, the periodic
computation does not trigger further alarms. Another alarm would only be generated if the alarm condition is first no longer valid,
but then becomes valid again.

• There are no emails generated for the alarm condition being no longer valid.

• Explanation texts and online help options/texts to be displayed on the dashboard with SAI can be defined with the mandator
administration settings.

• SAIs that monitor via a time series of data points are stored in memory only. After a restart of IBM Safer Payments, they must
build up the time series before the reading is accurate.

External alarms

The alarm type "external" allows for external systems to deliver SAIs into the IBM Safer Payments dashboard and email alerting
mechanisms. If alarm type is set to "external", a text entry "external file name" opens in which the path and file name of the file
containing the external indicator values is defined. The file format is fixed-length text where each line corresponds to one value delivery.
The "frequency" setting defines how often this file is read (last line only).

The format of each line is:
YYYY-MM-DD hh:mm:ss S mmm

where S is the status (0: OK, 1: warning/error), and mmm the (variable size) message that optionally can be included with display and
email messages as detailed above. The timestamp value is taken as the "alarmTimestamp" and can also be included in messages. Since
IBM Safer Payments only reads the last line of the file, the delivering software program can safely append each alert to the file so that
an audit trail gets created.

back to top

8.14 Charts

The table lists all charts that are defined and for which you have access privileges.

Charts are displayed on the IBM Safer Payments dashboard page and allow for key performance indicators ("KPIs") be defined within
them.

back to top

8.14.1 Chart

Charts have the following settings:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Enabled
Lets you temporarily display or hide charts.

• Position
Lets you define in which sequence multiple charts are shown. Smaller numbers are top positions.

• Mandator
Each chart belongs to one mandator. Once created, mandator ownership does not change.

• Name
Name that will be shown on the "dashboard" page of IBM Safer Payments.

• Comment
Used to describe the case chart. The comment is also displayed to users on the "dashboard" page and may thus contain further
explanations.

• Explanation text
This text is shown below the header of this chart at all times.

• Explanation tooltip
This text is shown as tooltip if the mouse pointer rests over the chart's header.

• Online help type
Lets you enable default or custom help texts in the header of the status alarm section.

◦ Custom online help
If you selected custom help text to be displayed (above), you may enter it here.

back to top

8.15 Key Performance Indicators

The table lists all key performance indicators ("KPI") that are defined and that you have access privileges for. KPI are displayed in charts
on the IBM Safer Payments dashboard page.

KPI are similar to status alarm indicators. Their differences are:

• KPI trace their indicators as time series and display them as time series charts on the IBM Safer Payments dashboard.

• KPI do not generate alarms or show alarm status. You may define both an SAI and a KPI for any indicator that you like both to be
shown as time series and have (an) alert(s) associated to.

• KPI are also used to represent long-term data. They are thus stored both in main memory (for dashboard display) and on disk, so
historical KPI data is automatically loaded when IBM Safer Payments boots.

back to top

8.15.1 Key Performance Indicator

The definition of a key performance indicator (KPI) involves a number of settings:

• Enabled
Sets the KPI definition active. Notice that for each enabled KPI, a separate IBM Safer Payments service thread is started.

• Chart
Selects in which chart this KPI is to be displayed.

• Position
Numerical value that identifies the relative position of the KPI on the dashboard chart it is defined in. The smaller the number, the
higher the position. The position values must not to be in sequence.

• Name
This name is used to identify the KPI in the chart legend. The name should thus be kept short to not consume too much space. The
chart legend displays for each time series: "name [unit/timeunit]" or "name [unit]".

• Comment
This name is used to describe the KPI in the chart legend's tooltip.

• KPI type
Defines the type of KPI. Depending on the type of KPI, different subsections containing KPI type specific settings are shown. The
KPI types are:

◦ External file
External KPIs are read from disk to allow including data from other systems to be displayed with the IBM Safer Payments
dashboard. Specific settings are:

▪ External file name
Path and file name of the data delivered.

▪ Value unit
Unit of the values of the data delivered (e.g. "trx/min", "cases", "%"). Will be printed as unit on the chart's diagram.

For details on the file format, scroll to the end of this page.

◦ Investigation Activities
Monitors investigation activities that can be filtered with the following specific settings:

▪ Data from mandators

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Restricts the cases monitored to the mandators specified.

▪ Case actions
Restricts the cases monitored to selected investigation actions.

▪ Case close codes
If the case actions (above) to be monitored include closed cases, this selection opens and let you further restricts the
closed cases monitored to the case close codes specified.

▪ Case classes
Restricts the cases monitored to the case classes specified.

▪ Time unit
Unit in which the KPI is computed and displayed.

▪ Data points
Lets you define a number of past periods used to average the value. Averaging is important with transaction message
streams that have a high degree of fluctuation. The total period considered is printed for information right of the field
(data points * check each).

▪ Case conditions
Restricts the cases monitored to those that satisfy all conditions defined.

Notice that since cases are replicated within a cluster, this KPI will show only once on the dashboard.

◦ Logged on users
Number of users currently logged on.

▪ Data from mandators
Restricts the users monitored to the mandators specified.

Notice that since users are served from only one instance within a cluster, this KPI will show only once on the dashboard.

◦ Notifications generated
Monitors number of notifications generated satisfying the specified settings:

▪ Data from mandators
Restricts the notifications monitored to the mandators specified.

▪ Time unit
Unit in which the KPI is displayed.

▪ Data points
Lets you define a number of past periods used to average the value. Averaging is important with notification streams
that have a high degree of fluctuation. The total period considered is printed for information right of the field (data
points * check each).

▪ Transaction message condition
Lets you restrict notifications according to attribute values of their transaction message.

This KPI will show for each cluster instance on the dashboard.

◦ Number of cases
Counts number of cases by case classes and status.

▪ Data from mandators
Restricts the cases monitored to the mandators specified.

▪ Case state
Restricts the cases monitored to the case states specified.

▪ Case close codes
If the case state (above) to be monitored include closed cases, this selection opens and let you further restricts the
closed cases monitored to the case close codes specified.

▪ Case classes
Restricts the cases monitored to the case classes specified.

▪ Case conditions
Restricts the cases monitored to those that satisfy all conditions defined.

◦ Average latency MCI
Monitors average latency of transaction messages in milliseconds.

◦ Maximum latency MCI
Monitors maximum latency of transaction messages in milliseconds.

◦ MCI latency violation
Monitors percentage of transactions that have required processing/latency of more than the defined threshold in configuration
settings.

◦ Transaction message rate
Monitors number of transaction messages satisfying the specified settings:

▪ Data from mandators
Restricts the transaction messages monitored to the mandators specified.

▪ Time unit
Unit in which the KPI is computed and displayed.

▪ Data points
Lets you define a number of past periods used to average the value. Averaging is important with transaction message
streams that have a high degree of fluctuation. The total period considered is printed for information right of the field
(data points * check each).

▪ Transaction message condition
Lets you restrict transaction messages according to attribute values.

This KPI will show for each cluster instance on the dashboard.

• Frequency
Frequency this KPI is checked in seconds.

• Period
Time period for which data points shall be kept in days.

• Auto scale
If checked, the chart scales its own minimum and maximum according to the data range displayed. It not checked, you may enter
a minimum and a maximum vertical axis value.

• Representation
Lets you select which type of chart is to be used to visualize this KPI.

Remarks

• All KPIs are computed periodically within each its own IBM Safer Payments service thread.

• Each KPI updates according to its frequency settings. The dashboard page refreshes according to its own refresh setting, or the
user refresh actions (whatever occurs first).

• KPI are stored in memory for the time period specified only. On disk, they are stored for an unlimited amount of time. After a
reboot, past data is pre-loaded so that past performance data is shown as well.

• KPI data outside the defined time period is removed from memory once per day during the end of day gardening job (also for
external KPI data files).

External alarms

The KPI type "external file" allows for external systems to deliver KPIs into the IBM Safer Payments dashboard. If KPI type is set to
"external type", a text entry field "File name" opens in the form in which the file name of the file containing the external KPI is defined.
Each external KPI corresponds to a text file named "kpi_FileName.iris" in the "KpiPath" directory. Each update cycle, the new contents of
this file is read.

The format of each line is:

YYYY-MM-DD hh:mm:ss value

where value is the KPI value in floating point representation (for instance either "9.4150e+002" or "941.5"). The timestamp value is
used to plot the time series data.

back to top

8.16 Messages

Transaction data enters and leaves IBM Safer Payments as "messages":

• online transaction messages (those that require an immediate response such as authorization requests) use IBM Safer Payments's
message control interface (MCI), while

• offline transaction messages use IBM Safer Payments's batch data interface (BDI).

More information on these interfaces can be found at the Interfaces Overview.

In a typical IBM Safer Payments application, multiple data sources (and drains) exist that all send transaction message requests to IBM
Safer Payments. Since these messages typically stem from different source systems, they typically contain different data fields that
require mapping of message variables to IBM Safer Payments input and output attributes. They sometimes even contain different data
formats and hence require (possibly different) preprocessing.

Messages and mappings

IBM Safer Payments comprises full management capabilities for messages and mappings. Because the message definitions themselves
are model revision independent, messages are defined on a mandator basis within IBM Safer Payments administration. Messages are
inherited downwards within the mandator hierarchy. Based on the own and inherited messages defined, within each model revision, the
mapping of message variables to IBM Safer Payments attributes and any pre-/post-processing is defined.

The various data source messages are identified by a MessageTypeId (aka MTID), which is a (mandatory) IBM Safer Payments meta
attribute of numeric data type. Typical message types in an IBM Safer Payments application could include: authorization requests,
masterdata delivery transactions, posted transaction notifications, fraud alerts, chargeback notifications etc. Each different message can
have its own variable-attribute mappings and its own pre-/post-processing settings.

back to top

8.16.1 Message

Each message is defined for one Message type ID. An incoming transaction message (via MCI or BDI) will be associated to a message if
its Message type ID value fits the Message type ID.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The settings for each message are:

• Mandator
Each message belongs to a mandator and is inherited to all mandators that belong to it. Notice that you cannot change mandator
ownership of a message once created.

• Name
Used in the model revision mappings to identify the message.

• Comment
Used in the model revision mappings to describe the message.

• MTID
Message type ID for this message as used with MCI transactions.

• Storage and processing
Used to configure whether a message is creating transaction records.

◦ Create transaction records
Create a transaction record for this message. Can be overwritten by mergings and masterdata that are configured to store
sources.

◦ Do not create transaction records
Do not create a transaction record for this message. Can be overwritten by mergings and masterdata that are configured to
store sources.

◦ Compute monitoring lists only
Do not create a transaction record for this message and compute monitoring lists only. Cannot be overwritten.

• Latency threshold

The maximum latency IBM Safer Payments may take for the processing of a transaction. This setting will be used by key
performance, status alarm indicators and system internals.

• Monitor latency
Monitor latency as key performance indicator or in latency report, if available. Only messages whith this checkbox enabled will be
considered as latency violation for KPIs and will be added to the latency report in system internals. The latency report is archived
in the "log" directory and can be downloaded with the configuration in "System Internals" page.

• Offline via Batch Data Interface

• Type
Used to identify if a message is used online (MCI) or offline (BDI). In case of offline messages the message can either be a CSV,
FCD, JSON, XML or nested XML file. The MCI interface accepts XML, JSON and custom defined messages. For custom messages,
please make sure you have the custom parser library in place.

• Charging message
Used to configure whether transactions of this message are to be charged. Only charging messages will be counted in the
transaction message report.

• Fixed entry size
Used to determine how many characters need to be read from file per line/entry. If -1, then no fixed sized will be applied, and it
will be read till end of line.

• Online via Message Command Interface
IBM Safer Payments uses these values to estimate bandwidth required for replicating and processing of MCI data. Please enter the
expected values in the respective fields.

◦ Average volume
Total number of transaction messages within a long time period (typically a year).

◦ Peak volume
Peak number of transaction messages to be processed (typically defined as per second).

• Offline via Batch Data Interface
IBM Safer Payments uses these values to estimate bandwidth required for replicating and processing of BDI data. Please enter the
expected values in the respective fields.

◦ Records per file
Number of records on average per file.

◦ Volume
Number of files delivered per time unit.

◦ Processing time
Time in minutes one of the delivered files shall be processed within.

back to top

8.16.2 Messages Report

This report shows an overview of all messages' data streams.
back to top

8.16.2.1 Message Report

The message report provides aggregated and computed information on a message type. Each message type can come into IBM Safer
Payments as online and/or offline data streams. Open the respective help pages of the subsection(s) for more detail.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This information is intended to provide assistance with IBM Safer Payments sizing and the implementation of interfaces to IBM Safer
Payments.

back to top

8.16.2.1.1 Online via Message Command Interface

For messages that are defined to receive online transaction messages via MCI, the estimated lengths of the messages is shown plus
example messages (with variable formatting and additional information). In addition, bandwidth requirements are computed from the
volume settings provided from the message definition. The MCI interface accepts the XML or JSON format by default. In case you want
to send other formats, please configure the MCI settings accordingly and make sure you have the custom parser library in place.

Message samples

The samples provided illustrate how messages to and from IBM Safer Payments should look like. Notice that there are a number of
placeholders used:

• The MessageId value is exemplary.

• 'xxxx' denotes hexadecimal values (number of characters represents maximum length).

• 'aaaa' denotes text values (number of characters represents maximum length).

• '1' denotes Boolean values.

• Numeric values have placeholders showing the maximum positive number that the IBM Safer Payments attribute can take.

• IPv4 values are denoted by an exemplary IP address.

• '....' is a placeholder for value of unknown type (for instance, if used by a processing function).

• 'YYYY-MM-DD hh:mm:ss' is a placeholder for a timestamp value (depending on processings, there could be different formats).

Refer to the reference on the MCI (Message and Command Interface) for a complete reference on messages sent to and received from
IBM Safer Payments.

Message samples view options

The different view options to the message sample are:

• condensed
If the placeholders are replaced with the true values, this is exactly the format of the message IBM Safer Payments expects to
receive or will send. Since this format does now allow for line feeds, the example can be rather long and you might have to scroll
the page to the right.

• pretty
Different to 'condensed', this option uses line feeds and space characters to make the sample message easier to read.

• pretty plus warnings (only XML)
Also shows when different IBM Safer Payments attributes feed from the same XML variable.

• pretty plus warnings and comments (only XML)
Provides additional information on which IBM Safer Payments attributes feed from the XML variables.

back to top

8.16.2.1.2 Offline via Batch Data Interface

For messages that are defined to be delivered with batch file data, the estimated length of records is computed. In addition, bandwidth
requirements are computed from the volume settings provided from the message definition.

FCD columns format

This section provides an exact overview on what data all mandators extract from an FCD file, in case the FCD format is enabled for this
message.

For each data element extracted, the exact positions of extraction are listed and the attributes that feed from it. The color icon indicates
potential warnings or errors with the definition. Positions within the FCD record that are not extracted are also listed.

FCD record sample

This section provides an example record using the following placeholders:

• Boolean
A Boolean value is indicated by the '0' placeholder character.

• Numeric
A numeric value is indicated by '1' placeholder character(s).

• Hexadecimal
A hexadecimal value is indicated by 'x' placeholder character(s).

• IPv4
An IP address value is indicated by 'i' placeholder character(s).

• Text
A text value is indicated by 'a' placeholder character(s).

• Timestamp

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

A timestamp value is indicated by its complete format placeholder (e.g. 'YYYYMMDD').

Notice that positions within the FCD record that are not extracted by any mandator's mapping are indicated by '_' characters, and
positions extracted to multiple attributes are indicated as '?'.

back to top

8.17 Real-time Intercept Codes

The table lists all real-time intercept codes ("RIC") that are defined and for which you have access privileges.

Real-time intercept codes are the values of the "intercept" meta attribute that control the real-time decision IBM Safer Payments feeds
back. Typically the authorisation system that receives this value carries out the action recommended by IBM Safer Payments

back to top

8.17.1 Real-time Intercept Code

Real-time intercept codes have the following settings:

• Name
Descriptive name as used for IBM Safer Payments reports.

• Comment
Used to describe the real-time intercept code. The comment is also displayed to users on selected reports.

• Interval
Defines the value(s) for the meta attribute "intercept" that fall into this real-time intercept code. Notice that if the real-time
intercept code is only one value, you mayenter only this value both as "from" and "to" as the interval definition is inclusive.

• Intercept
There are three different types of intercepts:

◦ authorise
IBM Safer Payments has no objection to authorise this transaction.

◦ refer
IBM Safer Payments recommends to refer this transaction to an investigator.

◦ decline
IBM Safer Payments recommends to decline this transaction.

Note that all transactions with an intercept code 'refer' or 'decline' are considered as 'marked intercepted' within analyses.

back to top

8.18 Event Logging

This sections covers IBM Safer Payments event logging.

back to top

8.18.1 Configuration

This sections covers event message configuration.

back to top

8.18.1.1 Event Log Messages

IBM Safer Payments comes with a fully configurable event log engine that is configured from the event log message page on the admin
tab. The page lists all available event log messages.

The log messages are programmed into IBM Safer Payments, you may thus not add or delete from this list. Click on a row to view
details and to change settings.

Notice that all settings that are user overwritten are indicated with an asterisk behind the value.

back to top

8.18.1.2 Event Log Message

This section shows settings of the log message identified in the section title:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• PCI DSS mandated
To comply with PCI DSS, certain log messages must be included in the audit logs. This is indicated for each log message and
cannot be changed by the user. However, this indication is not mandatory and should be considered a recommendation. You may
choose to follow this recommendation or not.

• Default
These are the settings as defined by the IBM Safer Payments team as default values. You may override these settings in the
"Change Settings" section below.

• Change Settings
Each default setting (above) may be overwritten by first checking the "Change xyz" checkbox, and then entering the new value for
the setting. Notice that the changing remains even if IBM changes a setting in the future. For example, if log message X be
disabled and you change it to enabled, the log message is shown. If later, IBM decides to enable the log message by default, the
log message is still shown. If even more later, IBM changes the default again to disabled, the log message will still be shown.
However, once you uncheck the "Change xyz" checkbox, the default setting is used.

Log targets

Log target configuration allows enabling/disabling the event log message for the three possible targets:

• System event log

• Audit event log

• Operating system event log

System and audit event logs are IBM Safer Payments internal. The log messages are stored in daily files in the "log" directory of the IBM
Safer Payments installation and can be read from the respective pages on the admin tab. Alternatively, the simple text format of the log
message files also allows them to be read with any editor or processed with any log tool.

The operating system event log target stands for the external event logging system of the operating system, where Safer Payments is
running on. On UNIX operating systems, event log messages are delivered as "syslog" messages.

Log levels

The log level is a classification involving the levels:

• Debug
Analysis and troubleshooting information mostly used during integration and testing of an IBM Safer Payments installation.

• Copyright
Delivers release information.

• Informational
Describes certain activities within IBM Safer Payments.

• Warning
Potentially troublesome incidents.

• Error
Problems presumably resolvable by user/administrator.

• Fatal
Problems presumably resolvable only by IBM. If you encounter them, please contact IBM Safer Payments support to analyze.

The comment of the log message is displayed only in log tables. It gives additional information about the general circumstances of a log
event and how to resolve certain situations. Please notice that this is not the actual message that is printed to the system or audit event
logs.

back to top

8.18.2 Browsing

This sections covers event message browsing.

back to top

8.18.2.1 Log Entries

This page lets you view log messages:

• Which of the generated log messages are displayed depends on the filter settings above.

• How and which log messages are generated depends on the event log message settings.

• The columns displayed are:

◦ Instance
IBM Safer Payments optionally (system configuration) implements centralized logging. In this case, all IBM Safer Payments
instances replicate all locally generated log messages to all other instances within the IBM Safer Payments cluster. This
column identifies the IBM Safer Payments cluster instance this log message was originated on.

◦ Timestamp
Timestamp log message was generated (system time of originating instance), including microseconds. Notice that the actual
resolution of the computer clock might not represent microseconds.

◦ Log level

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The log level is a classification involving the levels:

▪ Debug
Analysis and troubleshooting information mostly used during integration and testing of an IBM Safer Payments
installation.

▪ Copyright
Delivers release information.

▪ Informational
Describes certain activities within IBM Safer Payments.

▪ Warning
Potentially troublesome incidents.

▪ Error
Problems presumably resolvable by user/administrator.

▪ Fatal
Problems presumably resolvable only by IBM. If you encounter them, please contact IBM Safer Payments support to
analyze.

◦ ID
The log message ID is a unique identification within IBM Safer Payments. Notice that the same log message (same ID) can
have different log message texts depending on what is intended to express.

◦ User
For all log messages that are generated with respect to an explicit action of a user, the user login (and name) is provided
here.

◦ Message
Text describing the actual event. Notice that with the audit log, the IP address from which a request is received is included
after message text. For requests that were forwarded to IBM Safer Payments by a (reverse) proxy, the originating IP
address(es) are also provided.

◦ Comment
This text provides further explanation of the log message and may contain information on how to provide remidy for a
problem.

Notice that you may change log level and comment of each log message from the event log message page.

back to top

8.18.2.2 Log Filter

The settings of this section enable filtering of log entries displayed in the section below. A log entry must satisfy all filter conditions to be
displayed. The filter conditions are:

• Date/time
Lets you define a time interval.
By default this is defined as the time period from now into the past using the number of seconds defined in system configuration
setting 'Event log messages - Default view period'.

• Log levels
Lets you select which log levels should be displayed.

• Instances
In a multi-instance cluster installation with centralized logging enabled, you may select instances for which log entries shall be
shown.

• Users
Select only log messages that are associated to a specific user. Notice that "[IBM Safer Payments]" is a placeholder for log
messages that are not associated to a user.

All changes to filter criteria are executed immediately, that is, as soon as the entry focus leaves an entry field, the contents of the log
entries table below refreshes according to the new filter criteria.

The button Refresh table with default view period (new user interface only) will refresh the table with the default timespan
mentioned under 'Date/time' above.

back to top

8.19 Memory Control

Certain modelling simulations of model revisions require IBM Safer Payments to create temporary data objects. For instance, if you
define a new or modified counter in a model revision and enable simulation for it, IBM Safer Payments must create temporary data
objects to represent the output attributes of the counter. Since simulation is mostly performed out of main memory (rather than disk
memory) for performance reasons, and since main memory is a scarce resource, once the main memory available to simulations is
exhausted, IBM Safer Payments has to decline further requests for simulation.

The memory control page first provides an overview on the memory consumption of all simulations running and the information when
this model revision was last touched by the user. Second, users with respective privileges may stop simulations of users to free their
memory for other simulations. This ensures that there are no "forgotten" simulations that consume the otherwise dearly needed
memory.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

To create a partial list of simulations, you may filter the table for both mandators and users.

back to top

8.20 System Configuration

This page contains all settings that are the same for all IBM Safer Payments instances in a cluster. Their settings are described by tooltip
style explanations when you rest the mouse pointer over the respective label.

Typically these settings have been made during installation of IBM Safer Payments by or with the assistance of IBM Safer Payments
consultants. Only perform changes on this page when you know what you are doing as improper settings can cause IBM Safer Payments
to not work as excepted.

Notice that some changes will come into effect immediately, while others come into effect only when IBM Safer Payments reboots. This
can cause different IBM Safer Payments instance in a cluster to behave differently when re-booted at different times.

Because the subjects of the different sections of this page are highly divers, detailed help is provided from within each section for some
of the sections.

When in doubt, contact the IBM Safer Payments support to assist with the configuration.

Tools

The toolbar of this section contains some utilities:

• Saves the system configuration (replicated via FLI to all instances of the cluster).

• Lets you download an archive file with configuration and log data to your local computer (to be used with issue analysis).

• Creates a full report with respect to the PCI DSS compliance of the current IBM Safer Payments system configuration and
settings.

back to top

8.20.1 Main Memory Sizing

IBM Safer Payments draws part of its high transaction message processing, simulation, and model generation performance from the
fact, that it caches most of the data used for computation in main memory. IBM Safer Payments uses main memory for different
purposes:

• Production memory data cache
For each data holding attribute, index, calendar profile, etc in IBM Safer Payments, the part most relevant to real-time processing
(aka "production") is kept in this cache area for expedited access. In most IBM Safer Payments applications, the total main
memory requirement of the production memory data caches requires the dominant part of the main memory available on the
server hardware. How much memory is used depends on the individual settings of all champions' model elements. For details,
refer to IBM Safer Payments storage architecture.

• Simulations memory data cache
During simulation, IBM Safer Payments needs to build up temporary memory data caches for simulated elements. For instance, if a
new element was added or changed, and its result is to be simulated, IBM Safer Payments uses caching so that the results are
immediately available for analyses and model generation.

• Miscellaneous
While most other functions of IBM Safer Payments also use main memory during computation, this amount is significantly smaller
compared to the MDC memory used for production and simulation.

Notice that the operating system will deliver IBM Safer Payments with nearly any amount of memory, yet once physical RAM memory is
exhausted, the operating system will start offload RAM pages to disk (swapping). This diminishes IBM Safer Payments performance by
multiple orders of magnitude to a level where the entire computer can become so busy with swapping, that it does not react anymore to
user input or transaction messages.

It is obvious that this situation must be avoided at all cost. IBM Safer Payments has a number of features to configure the amount of
main memory accessible to data caches and simulation as well as means to help monitor the key health figures of the installation:

• Sizing

◦ Main memory usage limit
The maximum memory consumption of any IBM Safer Payments instances can be limited.

◦ Mandator simulation memory limit
For each mandator the maximum of simulation memory that can be accessed for analyses, simulations and model generation
can be limited.

• Alarming

◦ Status Alarms Indicators
IBM Safer Payments provides various Status Alarm Indicators to monitor the memory consumption of an IBM Safer Payments
installation. The monitoring is performed on instance level an can be accumulated per cluster. For details, refer to Status
Alarm Indicators.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

8.20.2 Authentication Settings

IBM Safer Payments supports the following authentication methods:

• Local
Only the IBM Safer Payments stored password is checked.

• LDAP
Only the LDAP password is checked.

• Local and LDAP
First the local password is checked, if it does not fit the LDAP server is checked.

• OIDC claim
The specified username attribute inside the OIDC token is checked for existance within IBM Safer Payments

LDAP authentication

IBM Safer Payments supports LDAP (lightweight directory access protocol) servers as an alternative means of user access
authentication. The LDAP server is not part of IBM Safer Payments, you must install and operate it separately from IBM Safer Payments.

Configuration of the LDAP server involves the following settings:

• Use Active Directory
Use Active Directory authentication method (username@domain)

• Allow Single Sign On
Allow a user to automatically login using their windows credentials. For more info please see Setup required to enable Single Sign On.

• Automatically Re-login
Allow a user to automatically sign in after their session expires (this setting is only available when Single Sign On is enabled).

• LDAP hosts
IP address or domain name of LDAP server (for example "iris.ldap.intranet"). You can also enter multiple hosts by separating them with
commas (i.e. "iris.ldap.intranet,iris2.ldap.intranet"). In this case IBM Safer Payments will try and connect to any backup hosts in the
order they are listed if it cannot contact the first host.

• LDAP base DN
Base of distinguished name (for example "OU=Users,DC=company,DC=local").

• Active Directory domain
Active Directory domain for login (username@domain).

• LDAP port
IP port of LDAP server (typically "389" or "636" for SSL access).

• LDAP encryption over SSL
Enables encrypted communication between IBM Safer Payments and LDAP host.

The LDAP SSL connection settings are configured outside of Safer Payments.

Safer Payments is using the shared library of OpenLDAP to implement the LDAP authentication. The SSL/TLS settings are not done in
Safer Payments, they need to be applied to the OpenLDAP configuration file, which can be found under /etc/openldap/ldap.conf. Please
refer to the OpenLDAP manual for the necessary settings and options to set up the certificates. Please note that you have to restart
Safer Payments after every change of configuration files on operating system level for the changes to take effect in Safer Payments.

• LDAP timeout
LDAP timeout (time to wait to connect to LDAP server)

Notice that in each case, a user account in IBM Safer Payments must exist for a user to log on.

If LDAP only authentication is enabled, all administrators are also authenticated only by the LDAP host. If this authentication fails, the
administrator is locked out.

OIDC authentication

IBM Safer Paymets also supports a token based Single Sign On (SSO) login based on the OpenID Connect protocol. In this case, Safer
Payments is presented with a OIDC token containing a login name. This token is provided by an external server, which is not a part of
IBM Safer Payments and must be operated separately. For PCI compliant usage, you must address all PA-DSS and PCI DSS
requirements for this server on you own.

The configuration of the OIDC token based authentication involves the following settings:

• Token name
In this field, you need to specify the name of the HTTP header field that contains the OIDC claims token.

• Username attribute
The username attribute identifies the attribute of the OIDC claim that is used for authentication.

Example token:

{
"login_name": "jsmith@exampleMail.com",
"last_name": "Smith",
"first_name": "Jane",
"id": "cl.jsmith",
"internal_id": "25",
"emails": {

"personal": "jsmith@personalMail.com",
"business": "jsmith@businessMail.com"
},
"phone_numbers": {
"business": "555-555-1234"
}
}

If this login method is used, you must ensure that the username submitted via the OIDC claim token exists as a user inside IBM Safer
Payments. If this is not the case, a login is not possible.

back to top

8.20.2.1 Setup required to enable Single Sign On

When you have configured Safer Payments to use LDAP (with either the 'LDAP' setting or 'local then LDAP') you also have the option to
turn on Single Sign On (SSO) allowing your users to be automatically logged in by authenticating the account that they've logged in with
on their machine. In order to do this the Safer Payments server uses the Kerberos authentication method and some additional set up
steps will be required on your LDAP server, on the Safer Payments server and on each individual's client machine. The first steps will
describe how to set up SSO assuming you are using Active Directory as an LDAP server. If you are using a Linux KDC then see the steps
at the bottom for instructions.

The steps below need to be performed for the Safer Payments server where your API is running. If you would like SSO to be available if
your API changes servers then you will need to perform the steps on each other server where the API can run. The steps below will
assume that you are just setting up kerberos on the single Safer Payments server where the API is running, and so will refer to this
server as the Safer Payments server

Creating the Kerberos keytab on Active Directory

First, go to your Active Directory server and add a new user which will be used by the service (if you are using a Linux KDC see the
bottom of this document for instructions). In our examples below we will assume that the user is named SPServiceUser with the
password Password123. Ensure that this user's password will not expire, since it will only be used by the service. We will also assume
that you have another user that will be used to login to Safer Payments called AdminUser with a password of your choosing.

Next open a command prompt as administrator and run the following 2 commands to associate the service principal with the username
and create the keytab:

setspn -A HTTP/SaferPaymentsServerWithDomain Username

ktpass -out OutputPath -princ HTTP/SaferPaymentsServerWithDomain@DomainNameInCaps -mapUser Username -mapOp set
-pass Password -crypto RC4-HMAC-NT -pType KRB5_NT_PRINCIPAL

For example, if your Safer Payments server is on a machine called SPServer and is part of the domain internal.example.com and you
used the username and password mentioned previously you would run the following commands

setspn -A HTTP/SPServer.internal.example.com SPServiceUser

ktpass -out c:\krb5.keytab -princ HTTP/SPServer.internal.example.com@INTERNAL.EXAMPLE.COM -mapUser SPServiceUser
-mapOp set -pass Password123 -crypto RC4-HMAC-NT -pType KRB5_NT_PRINCIPAL

You should now have a keytab file created at c:\krb5.keytab. Copy this file to your Safer Payments server where your API is running
using a secure method.

Configuring Kerberos on the Safer Payments Server

Next you will do the required Kerberos configuration steps on the Safer Payments Server. First, you want to ensure that you can reach
the Active Directory server from your Safer Payments server with the fully qualified domain name (i.e. assuming the Active Directory
server is named ADServer and continuing with the example above you would run ping ADServer.internal.example.com). If you can't
reach the Active Directory server then you'll need to either configure your hosts file or your local DNS server so that you can.

After ensuring that your Safer Payments server can connect to your Active Directory server you will set up the /etc/krb5.conf file to
point to your domain. Open the /etc/krb5.conf file in your editor and change the default_realm to point to your realm, and then change
the [realms] section to point to your Active Directory server and the [domain_realm] section to point to your realm. For example,
continuing with the example above the file would look like this (all the logging and libdefaults settings other than the default_realm can
potentially be changed).

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = INTERNAL.EXAMPLE.COM

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true

[realms]
INTERNAL.EXAMPLE.COM = {
kdc = ADServer.internal.example.com
admin_server = ADServer.internal.example.com
}

[domain_realm]
.internal.example.com = INTERNAL.EXAMPLE.COM
internal.example.com = INTERNAL.EXAMPLE.COM

You can now test that your kerberos settings are correct and you can connect to your Active Directory by running the kinit command.
Continuing with the example above you would run the command

kinit AdminUser

Followed by the user's password. If no errors occur then you can run the klist command which should show a ticket for the username
which you just entered. If you had an error while running the kinit command, check the connectivity between the machines (in both
directions) and ensure that there were no errors in either of the configuration files you set up in the previous steps

Next copy the keytab file you created from the previous section to /etc/krb5.keytab

Since keytab files contain highly sensitive information, notably encryption keys, it is imperative to ensure proper access controls to
these files. Assuming that your Safer Payments service runs under a unique username, the keytab file should be modified so it is
readable only by that username.

You can now test that the keytab was created correctly. Run the following command and ensure that it lists the service principal which
you created in the steps above.

klist -k -t /etc/krb5.keytab

With our example above, the command should show the principal HTTP/SPServer.internal.example.com@INTERNAL.EXAMPLE.COM

Next you can test that you can authenticate the keytab by running the following command (followed by entering the user's password
that you set up previously):

kinit -k -t /etc/krb5.keytab HTTP/SaferPaymentsServerWithDomain

For example, continuing with the example above you would enter:

kinit -k -t /etc/krb5.keytab HTTP/SPServer.internal.example.com

Followed by the password Password123. If this command does not give any errors then your keytab is set up correctly and kerberos is
correctly configured on the machine.

Setting up Safer Payments

In order to use the Single Sign On feature you need select the 'LDAP' or 'local then LDAP' settings in the system configuration. Once you
have selected one of those options you will have the option to 'Allow Single Sign On' which will allow the users to be automatically
logged in with the same user account that they used to log in to their machine when they load any Safer Payments page. The Single
Sign On feature assumes that the usernames are the exact same between Safer Payments and the Active Directory server, just like the
LDAP feature.

Setting up the client

Finally, before a client can use the Single Sign On feature you will need to run some set up steps on your client machine to allow your
authorization credentials to be sent through the browser.

First, obviously you will need to ensure that the machine is connected to the domain and that you are logged in as a domain user who
also has a username in Safer Payments

Next you will need to set up the browser. Follow the steps below depending on which browser you are using.

Internet Explorer and Google Chrome on Windows

1. Open Control Panel and select Internet Options and then the Security tab.

2. Select the Trusted sites zone and then select the Custom level... button

3. In the settings dialog navigate to the User Authentication section and change the Logon setting to Automatic logon with current
user name and password and hit OK

4. Finally, back on the Trusted sites zone, hit the Sites button and add the website of your Safer Payments instance to the Trusted
sites (using its fully qualified domain name). Following with our previous example we would add
http://SPServer.internal.example.com (if your Safer Payments site only uses HTTP and not HTTPS you will need to unselect the box
at the bottom requiring HTTPS)

5. You can now hit ok to close the settings dialog and save the settings

Firefox

1. Open a new Firefox tab and in the URL bar navigate to about:config and click the I'll be careful, I Promise! button

2. In the search dialog search for negotiate and then open the network.negotiate-auth.trusted-uris value and enter the fully qualified
domain name (following with our previous example you would enter SPServer.internal.example.com)

3. You can now close the about:config tab

After configuring the browser, ensure you are logged on to your machine with a user account that has a matching username in Safer
Payments, and then you should be able to open a new web page pointing to Safer Payments and be automatically logged in.

Creating the Kerberos keytab on Linux

The information below will describe how to create a keytab using the MIT KDC implementation, however there should be equivalent
commands in other implementations.

Ideally you should set up your Iris server to access the KDC before running the steps below, so that you can run the remote version of
kadmin on your Iris server. To do that, follow the steps above under Configuring Kerberos on the Safer Payments Server until after you
run the kinit AdminUser command. Alternatively, you can also run the kadmin.local command on your KDC server, but it is
recommended to run it on the Iris server so you do not need to transfer the keytab over the network.

First you will need to create a principal for the service. Run the kadmin command to enter the kadmin CLI, then run the following
commands to add a service principal and then create a keytab.

kadmin

addprinc HTTP/SaferPaymentsServerWithDomainInLowercase[@RealmNameInCaps]

ktadd -k OutputPath HTTP/SaferPaymentsServerWithDomainInLowercase[@RealmNameInCaps]

To use our example names from above you would do the following commands:

kadmin

addprinc HTTP/spserver.internal.example.com@INTERNAL.EXAMPLE.COM

ktadd -k /home/dev/KDCServer.keytab HTTP/spserver.internal.example.com@INTERNAL.EXAMPLE.COM

You will now have the keytab file available on the Iris server (or, if you ran kadmin.local on the KDC machine, transfer the keytab file to
the Iris server using a secure method) and you can follow the remaining steps from Configuring Kerberos on the Safer Payments Server
above
back to top

8.20.3 Deferred Writing

The IBM Safer Payments storage architecture involves both an in-memory data cache layer (MDC) and a disk data cache layer (DDC).
The standard IBM Safer Payments data access logic is the following:

• Read access
For any kind of computation need, transaction data available in MDC is read from MDC. Data not available in MDC is optionally read
from DDC (the latter should be used not in real-time decisioning, such as in profiling counters or mergings, and its use can be
enabled or disabled in the system configuration).

• Write access
Data is both written to the MDC and the DDC immediately (if it falls within the limits of the respective storage capacity).

High performance applications

For high-performance applications of IBM Safer Payments, with a very large number of online or offline transactions to be processed
(multiple thousands per second), the immediate (synchronous) writing of each data element into the DDC can be "deferred". This way,
multiple DDC write operations are combined (so that they can be written to disk more efficiently) and are written a short time later
(asynchronous).

If deferred writing is enabled, IBM Safer Payments does only write data (that the MDC can hold) into the MDC (and not the DDC
immediately). Rather a separate service thread continuously stores all unsaved data (data in MDC but not in DDC) in a round robin
fashion. That is, first all unsaved records for each attribute are saved at once, then all indexes.

It should be noted that even though this approach of storing IBM Safer Payments data on disk in the end transfers the same total
amount of data compared to the IBM Safer Payments standard data access logic that stores each record's data individually and
immediately, however, since storing larger chunks of data rather than many many small elements is by orders of magnitude more
efficient.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Deferred writing thus enables using IBM Safer Payments in high performance applications while it ensures that data loss is minimal in
case of a non-orderly shutdown.

Deferred writing options

Optionally a deferred writing time gap can be defined. If this period is set to larger than zero, this time period will never be saved to
disk. This option is useful for operations of IBM Safer Payments in applications where the actual decision on whether or not to authorized
a transaction is made after IBM Safer Payments has assessed the transaction, and IBM Safer Payments is informed of the (final)
authorisation decision by advices. Since such advices messages would come into IBM Safer Payments with a certain delay (usually
seconds), deferred writing should wait a period somewhat larger than the advice delay, so that the merging operation can be performed
while the data is still in main memory. Notice that if the advice for whatever reason comes later and the respective data range has
already been written to disk, the merging is still carried out correctly, yet because the merging target writes are into an region where
the main memory attributes are already stored on disk, the merging targets would induce direct disk writes, that can severely slow
down transaction processing.

Another deferred writing option is the setting of a safety margin. Since IBM Safer Payments continues to process transactions while the
data from main memory is written to disk, not the full MDC cache size is available for deferred write caching. This setting defines how
many MDC record positions are not used for deferred writing caching. The value should be set as the maximum number of transactions
(messages and records) processed by IBM Safer Payments in the time it takes to write the MDC cached data to DDC.

Deferred writing disk usage limits

Depending on the performance of the disk subsystem, IBM Safer Payments can overuse caches and control mechanisms. It is therefore
useful to limit the bandwidth of IBM Safer Payments deferred writing operation. This limit is facilitated by writing data in chunks of 'disk
chunk size' and wait the 'disk chunk delay' amount of time after each chunk was written.

For most purposes, the optimum chunk size is 64 KB (65,536 Bytes). The disk chunk delay can then be computed by the following
formula:

disk chunk delay = ((1/SET) - (1/NET)) * disk chunk size

where

• SET is the desired maximum write performance, and

• NET is the maximum sustained writer performance of the disk subsystem.

Assuming a NET performance of 128 MB/s and a desired IBM Safer Payments write performance of 48 MB/s, as well as a disk chunk size
of 64 KB, the disk chunk delay would compute to about 1 millisecond.

Notice that for technical reasons, the minimum wait time is 1 milliseconds, if the write performance should be higher, the disk chunk size
would have to be increased from 64 KB.

Since data elements smaller than the defined disk chunk size are written at once, it can be useful to define a pause after IBM Safer
Payments has written an element (e.g. an attribute, an index, a masterdata) to provide the disks some time to perform other tasks. The
typical setting for the 'pause after element' is the same wait time as the disk chunk delay.

Deferred writing shadow commit options

There are currently two options for the deferred writing shadow commit:

• shadow commit chunk size
If greater than 0, transaction computation will get smoother as between chunks, computation continues.

• shadow commit chunk delay
Time shadow commit waits at least between chunks for transaction computation (if greater than zero).

Remarks

• If deferred writing is enabled, IBM Safer Payments starts a separate service thread that continuously subsequently writes all
attributes, all indexes, all masterdatas, all events, and all calendar profiles. This implies that depending on the wait times for the
disk subsystem, this thread alone can pretty much use the computing resources of an entire CPU. You will thus observe CPU load
on IBM Safer Payments even if IBM Safer Payments does not perform any other task.

• While with attributes, only the period (record interval) between the last MDC to DDC save operation is stored, indexes are stored
at once. Since the actual MDC to DDC save operation takes too much time for transaction processing to wait for its completion,
write operations to the index/masterdata/event/calendar profile are cached in a temporary MDC (aka "shadow") during the MDC to
DDC save operation. Once this save operation is completed, the temporary MDC will be committed at once to the respective
index/masterdata/event/calendar profile (to the MDC, where it is saved in the next deferred write iteration).

• The time it takes to have written all attributes' deltas and indexes depends on the number of transactions IBM Safer Payments
processes and the performance of the hardware used; in particular its disk subsystem performance. This is a self-regulating
process as the higher the transaction volume gets, the larger the stored chunks of data get (and thus the efficiency of the save
operation increases. It is not possible to deliver more transactions to IBM Safer Payments as the deferred writer can save in a
typical hardware configuration.

• When IBM Safer Payments stops to compute transactions (offline and online), the to be cached record intervals for the attributes
eventually reaches zero and the indexes have no changes. An orderly shutdown will also ensure that all cached data is stored from
MDC to DDC before IBM Safer Payments stops operation.

• Enabling deferred writing in operation will not cause any disruption of service as the individual data element writing is just disabled
and the asynchronous deferred writing service thread is started.

• Disabling deferred writing in operation causes IBM Safer Payments to dump all data not yet saved in DDC at once. This operation
will disrupt computation and can take a few minutes, depending on the amount of data that must be written.

• In case of a non-orderly shutdown, all data not saved from MDC to DDC is lost. If the respective IBM Safer Payments instance is
restarted later, this missing data will not automatically be restored. If you need to restore this data, you will have to restore the
entire IBM Safer Payments instance.

back to top

8.20.4 Case Investigation

The settings of this section involve the case investigation workflow build into IBM Safer Payments.

Configuration involves the following settings:

• Manual fraud value
If no categories are defined for the "fraud" meta attribute, this value is assigned to the records that are manually marked as
fraudulent.

◦ Remote fraud flag retries
Number of retries, if the remote fraud flag couldn't be set on the remote instance, for example due to FLI synchronization
issues. 0 means no re-try, just send the fraud marking once.

▪ Remote flag retry each
Number of seconds to wait each time the remote fraud flag couldn't be set on the remote instance, for example due to
FLI synchronization issues. While waiting, the FLI is not receiving further FLI message from the instance that was
previously trying to set the fraud flag.

▪ Update calendar profiles and events by manual fraud marks
When enabled, setting manual fraud marks will update calendar profile periods or events. This can have effects on a
calendar profile when it uses "fraud" attribute as "amount attribute" or in its conditions. It can effect an event when it
uses "fraud" attribute in its conditions.

▪ Maximum cases shown on selection table
Maximum number of cases that are sent from the IBM Safer Payments server to the browser as a result of a case search
or a case selection. This is to limit the load time of the page.

▪ Maximum cases shown in history
Maximum number of cases that are sent as case history query of the case investigation page. This is to limit the load
time of the page.

▪ Archive cases after [days]
Automatically archives cases that have been generated and not been worked on since at least the defined number of
days.

▪ Clear reporting attribute caches after [days]
Automatically clears the reporting attributes cache of cases that have been generated and not been worked on since at
least the defined number of days. The cache is built when viewing cases. It contains attributes that have been added to
the case class after the case has been created and attributes from other case classes when case selection is viewed for
several case classes with different sets of attributes. Only attributes from other case classes are cleared.

▪ Case consolidation starts every [seconds]
Enter a time period in seconds in which case consolidation job should periodically start.

▪ Case escalation starts every [seconds]
Enter a time period in seconds in which case escalation job should periodically start.

▪ Case dispatching starts every [seconds]
Enter a time period in seconds in which case dispatching job should periodically start.

▪ Enable attachments
If checked, investigators can attach files to cases from their computers.

▪ Maximum case attachment size
If case attachments enabled, this parameter defines the maximum size of attached files in MB.

▪ Include DDC in case creation
If checked, data available on disk will be included when creating cases from query.

▪ Case aggregation history
If checked, aggregated alarms will be stored in the case.

Case archiving details

IBM Safer Payments creates cases from alarms. They are both created internally in RAM and on disk as a separate file for
each case. All cases are stored in subdirectories of the "inv" directory, whose location is defined by a registry entry for IBM
Safer Payments. Within this "inv" directory, there is an "INVxxx" and "ARCxxx" subdirectory for each mandator. "xxx" is the
unique ID of the mandator. There is a readme text file within each directory detailing the originating mandator. The "INVxxx"
directories contain the active cases, while the "ARCxxx" directories contain the archived cases.

Each case file name follows the convention (example):

investigation_case_2011-08-08_10-53-13_000000000000441700.iris

(The timestamp value denotes the case generation and the number is the unique internal case ID of IBM Safer Payments).

The format in which cases are stored is JSON, like all non-binary IBM Safer Payments files. Unlike the IBM Safer Payments
configuration files, however, in case files, the references to any IBM Safer Payments object (such as attributes, case classes,
rules etc.) are also included in clear text. This enables reading the case files also outside IBM Safer Payments. The files use
UTF-8 for non-English characters. To increase readability for JSON files, use a formatter such as www.jsonlint.com.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Archiving is carried out once per day in a service thread spun off by IBM Safer Payments. This thread identifies all cases that
shall be archived, removes them from its main memory caches, and moves the case file from the respective "INVxxx"
directory to the "ARCxxx" directory.

Remarks

▪ IBM Safer Payments never erases cases from the "ARCxxx" directories. It is the responsibility of the administrator to
ensure that files in these directories are moved to a safe place or deleted after they are not needed anymore.

▪ Once a case file is archived, IBM Safer Payments cannot display it or search for it anymore. Also its audit trail entries
are not accessible anymore from within IBM Safer Payments.

back to top

8.20.5 SNMP Settings

IBM Safer Payments supports SNMP (Simple Network Management Protocol).

back to top

8.20.6 Query

The following settings configure queries in general to avoid displaying problems and excessive query computation length:

• Records warning at
Some (mostly older) browsers have problems loading query tables with very large content. For this reason, the number of records
may be limited for the display. If a user defines a query in which the number of records exceeds this value, IBM Safer Payments
will show a warning dialog.

• Records limit at
To avoid excessive query computation length this value defines queries maximum record limit. If a user defines a query in which
the number of records exceeds this value the validator will show an error.

• Group by query accounts limit
Some (mostly older) browsers have problems loading query tables with very large content. For this reason, the number of records
may be limited for the display. IBM Safer Payments will never print more accounts than this number, even if a group by query
result contains more.

• DDC may be enabled
If checked, users may define queries that also use data from the disk data cache (DDC). Attributes which are only stored in ddc,
may be used within queries and their conditions. This may result that a query computation require more time.

• Result lifetime
Defines the time a query result is stored. After expiration of this time period, IBM Safer Payments has to recompute query results.

• Common point result lifetime
Defines the time a common point query result is stored. After expiration of this time period, IBM Safer Payments has to recompute
query results.

• CSV export nil value
Defines which value should be printed in query result exports in case there is either no value provided or it is not accessible in
MDC/DDC. There is an individual setting for data type numeric, text and timestamp. If "Original value" is chosen, the usual value
for CSV exports in IBM Safer Payments is printed, which is "0" for empty numeric values, "" for empty text and timestamp and ""
when a value is not available in MDC/DDC. Choosing "Empty value", no value will be printed for empty values and values not
available in MDC/DDC.

Single API queries provide an external interface to IBM Safer Payments index query results. They are sent with HTTP GET, have no
session, no CSRF protection and need to validate the password on every query. If they are not used, they should be disabled in IBM
Safer Payments. If needed, it is recommended to restrict them to system users (see user accounts).

The following settings restrict access to single API query configuration:

• Access to single API query
The access can be enabled for all users, restricted to system users or completely disabled

back to top

9. Cluster

This section covers cluster management related administration functions of IBM Safer Payments.

back to top

9.1 Cluster Settings

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This page describes the cluster settings table. General information is found on the IBM Safer Payments cluster management page.

Table rows

Each instance of the IBM Safer Payments cluster is shown in one table row. For each row, the values in the columns show various status
information (details below). A left click on a row opens a detailed form with all relevant settings for this instance; a right click opens a
context menu with shortcuts to frequently used actions.

Table actions

While all actions on an IBM Safer Payments instance are available from the instance form that opens when you left click on the
respective row, a right click opens a context menu with shortcuts for the respective IBM Safer Payments instances. Refer to operational
cluster control for details.

Table columns

• Instance Id
IBM Safer Payments instances are numbered from 1. The instance that you are currently using to access this page is marked with
an asterisk (*).

• Status

This value can be of:

◦ Unreachable
Instance is not running or cannot be reached by the current IBM Safer Payments instance.

◦ [Unreachable|Invalidated] (detached)
Instance has been detached. No outgoing FLI queues have been created for this instance. This instance is out of sync and
needs to be restored.

◦ Startup
Instance is currently starting (this may take a few minutes since during this phase, IBM Safer Payments loads its memory
data cache from the disk data cache). In this status, the IBM Safer Payments instance has no open interfaces with the
exception of the status and command interface (SCI) and is not responding to direct user interface requests (you will thus
only see this status from another IBM Safer Payments instance). This is a transient status. If it remains for an unusual long
time, check system health and event log message files. Once all startup actions are completed, the IBM Safer Payments
instance will attempt synchronization of its data repository from the other IBM Safer Payments instances.

◦ Synchronising
Instance tries to obtain missing transaction and configuration data from other cluster instances. You should see the progress
of this effort from the FastLink status table (above this table). If the links are down, ensure that the FastLink interface (FLI)
on the synchronizing instance is enabled and active.

◦ OK
Instance is up and running.

◦ Waiting for synchronisation
Same as startup, but with a hotstart rather than a cold start (hotstart can for instance be triggered from this table's action
menu; in contrast to a cold start, the IBM Safer Payments process is not terminated).

◦ Error
Instance startup failed not available due to a severe error during startup. Check event log message files for details.

◦ Invalidated
A failure on this instance has caused its data to be corrupted. To protect integrity, this instance has closed its interfaces. You
need to restore this instance from another one. For details, see restore process.

◦ Lockdown
There are 2 ways that an instance can go into lockdown status. The first is during a restore: once a restore is started, the
donor instance closes all its interfaces and waits until all its outgoing FastLink interface (FLI) buffers are drained. During this
period, the donor IBM Safer Payments instance is in lockdown status. For details, see restore process.
The second way an instance can go into lockdown status is if the FLI buffer reaches capacity and overflows. In this case the
instance will lockdown to prevent further data loss on other instances. It will change again to a healthy status after restart. To
recover the data loss on the other instances, it is recommended to restore all other instances with that instance selected as
donor, which previously had the lockdown status. For details, see restore process.

◦ Restoring: donor
This is the donor instance of a restore process and a restore is currently under way. For details, see restore process.

◦ Restoring: recipient
This is the recipient instance of a restore process and a restore is currently under way. For details, see restore process.

◦ Restore failed
Restore failed on this instance. Check event log message files for reasons. For details, see restore process.

◦ Starting services
This is (typically) a short transient status during startup where IBM Safer Payments spins of its various service threads. If this
status remains for an unusual long time, check system health and event log message files.

◦ Undetermined
Startup did not conclude with a "real" status. Check system health and event log message files.

◦ Waiting for key
The instance cannot start since encryption keys are not entered and activated, and cannot be obtained from other IBM Safer
Payments instances. Enter and activate keys to continue the startup process.

◦ Offline
All interfaces except Encrypted Communication Interface (ECI) and Status Control Interface (SCI) are inactive and all pending
data has been written to disk. This state is suitable to create file backups.

• Name

Name defined for this IBM Safer Payments instance.

• Comment

Comment defined for this IBM Safer Payments instance.

• Message command interface (MCI)

Status of MCI (Message and Command Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no
icon if interface is disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second
average) is provided in brackets.

• Application programming interface (API)

Status of API (Application Programming Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no
icon if interface is disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second
average) and number of active user sessions are provided in brackets.

• Batch data interface (BDI)

Status of BDI (Batch Data Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second average) is
provided in brackets.

• FastLink interface (FLI)

Status of FLI (FastLink Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second average) is provided in
brackets.

• Encrypted communication interface (ECI)

Status of ECI (Encrypted Communication Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no
icon if interface is disabled and not active. A text next to the icon explains the status in detail.

• Alert message interface (AMI)

Status of AMI (Alert message interface) on this IBM Safer Payments instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in detail.

back to top

9.1.1 FastLink Status

The pivot table of this section shows the status of the FLI (FastLink Interface) connections between the IBM Safer Payments instances of
a cluster.

Each row represents the sending instance, while each column represents a receiving instance. Since no instance connects to itself, the
diagonal fields are empty. The other fields show the status of the respective connections. A colour coding scheme enables a quick
overview:

• This represents a link which is currently down. Detailed information is provided on how much data is currently held in the FLI
buffer, and if there is any data for which the target has not yet acknowledged receipt.

• This represents a link which is still transmitting data, yet the receiving instance is slower in receiving (and processing) the
replicated messages than they are build up. There is also detailed information about how many messages are stored and how
many are outstanding and not yet acknowledged.

• Like before, but the number of stored/outstanding messages is below the threshold defined on the system configuration page at
which IBM Safer Payments considers an FLI "synchronized".

• No colour icon represents a link that IBM Safer Payments cannot determine the status for. E.g. the respective IBM Safer Payments
instance may not be reachable.

The detailed information in each field is:

• Not acknowledged: number of messages that the sending IBM Safer Payments instance has already transmitted, yet not received
acknowledgment of their receipt.

• Buffered: number of unsent messages in the outgoing buffer of the sending IBM Safer Payments instance.

• Total: number of all stored messages in the outgoing buffer of the sending IBM Safer Payments instance (buffered plus not
acknowledged).

• Used: percentage of memory of outgoing buffer of the sending IBM Safer Payments instance used.

Notice that all information displayed in this table is transmitted via SCI and thus current. To update the display, you can select "cluster"
again from the navigation menu left. You may also set an auto-refresh interval on the system configuration page. There are no controls
in this section, all data is display only.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

9.1.2 Cluster Instance

The IBM Safer Payments instance form both lets you configure and control an instance in a cluster. Control is provided by the toolbar
actions that are described on the operational cluster control help page.

Form settings

The form lets you define a number of settings for this instance of an IBM Safer Payments cluster. Notice that most settings do not
become effective immediately. The settings are:

• Instance Id
Unique identification number for each IBM Safer Payments instance in a cluster. Typically starts with 1 and is incremented for each
instance.

• Name
Name of this IBM Safer Payments instance (choose it to differentiate the instance's location).

• Comment
Description of this IBM Safer Payments instance (e.g. its physical and/or logical location, its function, etc.).

• MCI (Message and Command Interface) settings
Typically the MCI is active on all IBM Safer Payments instances in a cluster to allow for the connected system to use either of the
instances (redundancy). If you intend to take down one IBM Safer Payments instance of a cluster, you might want to disable the
MCI interface before so that the connecting systems will stop sending this instance transaction request messages. (If you just shut
down an instance without closing the MCI before, it will automatically be closen on shutdown.) Because the MCI is an IP based
interface, you must define IP address and port for it (the definition of an IP address for each IBM Safer Payments interface
supports server hardware with multiple network interfaces). The MCI also supports connection filtering that is enabled by
unchecking the "all connections" box. If unchecked, an entry field opens that lets you enter a (comma separated) list of IP
addresses for which the MCI accepts connections.

• API (Application Programming Interface) and user interface settings settings
The API is fully active only on one IBM Safer Payments instance in a cluster. However, even on a disabled API, each IBM Safer
Payments instance still serves basic administrational capabilities so that in case the currently API enabled instance of an IBM Safer
Payments cluster becomes unavailable, the administrator can use each other instance of the cluster to perform administration
tasks and even to fully enable the API interface of this instance. If you intend to take down the IBM Safer Payments instance of a
cluster that has the API enabled for user access, you might want to enable the API on another instance so that the API on this
instance automatically gets disabled. Because the API is an IP based interface, you must define IP address and port for it (the
definition of an IP address for each IBM Safer Payments interface supports server hardware with multiple network interfaces). The
API also supports connection filtering that is enabled by unchecking the "all connections" box. If unchecked, an entry field opens
that lets you enter a (comma separated) list of IP addresses for which the API accepts connections. Because the API uses the HTTP
protocol, the port is typically "80".

• BDI (Batch Data Interface) settings
The BDI is also only fully active on one IBM Safer Payments instance in a cluster. In the case that the IBM Safer Payments instance
where the BDI is active is to be taken down, similar to the API, the BDI of another IBM Safer Payments instance should be enabled
first, so that the batch data processing function is carried out by the other instance.

• FLI (FastLink Interface) settings
The incoming FLI is where an IBM Safer Payments instance receives the replication messages of all other IBM Safer Payments
instances of the cluster. Disabling the FLI of an instance causes the replication messages being temporarily buffered in the
outgoing FLI of the other IBM Safer Payments instances. Outgoing FLI are not explicitly defined as the cluster definition is available
to all IBM Safer Payments instances and this tells the instance which other instances to connect to with their outgoing FLI
connections.

• SCI (Status and Control Interface) settings
The SCI is always active on all IBM Safer Payments instances in a cluster. This is because the SCI is the central lifeline between the
IBM Safer Payments instance to exchange health and status information. As an IP interface, you may define IP address and port
here. The SCI will only accept connections from the other (defined) IBM Safer Payments instances, thus no connection filtering
settings are necessary.

• ECI (Encrypted Communication Interface) settings
The ECI is used between IBM Safer Payments instances of a cluster to exchange AES encryption keys. It is not needed for an
unencrypted IBM Safer Payments installation. If deactivated, no exchange of encrypted keys is possible. As an IP interface, you
may define IP address and port here. The SCI will only accept connections from the other (defined) IBM Safer Payments instances,
thus no connection filtering settings are necessary.

• AMI (Alert Message Interface) settings
The AMI is an outgoing interface for alert messages. It can be active on all instances. If deactivated, a generated alert message
(e.g. SAI or email) will be routed to another instance with active AMI. If there is no active AMI, the alert message will be
discarded.

IP Addresses and Ports

All interfaces (API, ECI, FLI, MCI and SCI) of all cluster instances must use a unique combination of IP address and port. This is checked
server-side to avoid invalid configurations. Host names are resolved to IP addresses but we recommend to directly use IP addresses to
make the cluster operation independent of the DNS. When choosing ports for the interfaces it is recommended to not choose a port in
the ephemeral port range. You can check the configured range on your system by running sysctl -A | grep ip_local_port_range, and
can update the range if necessary. It is especially important to not use this range in test environments if you have multiple Safer
Payments instances on a single machine. Both IPv4 and IPv6 addresses are valid but ECI, FLI and SCI must each use the same protocol
version on all instances to function properly. The loopback addresses '127.0.0.1' and '::1' are only considered equal to themselves (not
to each other or any other local IP address). Link-local IPv6 addresses (addresses starting with fe80::) are not supported.

Accepting Connections From Specified Systems

The API and MCI can be set up to only accept connections from specified hosts or addresses. Both IPv4 and IPv6 addresses as well as
host names can be used. When the external system has several IP addresses, we recommend to either enter all of them or use the host
name if possible.

Change Certificates

• Copy new certificate to ./key folder - do not overwrite old certificates.

• Open cluster instance settings of currently active IBM Safer Payments instance

• Change paths of certificate

• Save instance

back to top

9.2 Cluster Management

IBM Safer Payments is "cluster-ready" out of the box. This help page introduces you to the issues involved with cluster configuration and
operation.

Availability

For most applications, a single IBM Safer Payments instance is sufficient because IBM Safer Payments can run 24/7 without any
maintenance or batch window (batch operations and maintenance are spun off as separate services by IBM Safer Payments and are
executed fully in parallel to operations). While the systems connected to IBM Safer Payments with a real-time interface (for instance,
authorisation systems) need a response from IBM Safer Payments within milliseconds to include IBM Safer Payments advice on
intercepting with a high-risk authorisation request, they continue after a timeout period with their operation without the IBM Safer
Payments advice if IBM Safer Payments does not respond. Thus, non-availability of IBM Safer Payments never halts the authorisation
process.

Availability business case

However, while IBM Safer Payments is not available, fraud otherwise detected by IBM Safer Payments would go unprevented while IBM
Safer Payments is not available. Availability of the IBM Safer Payments system thus becomes a cost comparison between the cost of
increasing availability and the losses associated with fraud that occurs during the non-availability period. Assuming your platform with
IBM Safer Payments would provide 99% availability, which translates to 87.6 hours of downtime per year, and IBM Safer Payments
saving 50% of your losses of – without IBM Safer Payments – $10 Million per year, the fraud loss increase resulting from the 1%
downtime is $50,000. With 99.9% availability, this would equal to losses of $5,000 and with 99.999% availability it would be $50.

Because the diminishing returns with higher availability and the over proportionally increasing cost of providing systems with such a low
downtime, a decision on which level of availability is best for your enterprise can only be made using the numbers for your enterprise.

It is also far from trivial to compute the estimated downtime for a given setup. The process involves experience, educated guesses and
often comes out as somewhat of a "black art".

Numbers game

The way IBM Safer Payments provides higher levels of availability is by setting up multiple IBM Safer Payments systems on multiple
computer servers, and connecting them to a cluster. Because each IBM Safer Payments instance in an IBM Safer Payments cluster must
be sized to process the full system load, all IBM Safer Payments functions are available as long as one IBM Safer Payments instance is
available. Assuming three IBM Safer Payments instances with an availability of each 99% and the cause of outages random, the
probability that all three IBM Safer Payments instances are down at the same time is 0.0001% ((100% - (100% - 99%)³) =
99.9999%).

All availability calculations in this section are only to illustrate the basic considerations. In real world cases, calculations of availability
are far more complex. However, the general rule that more IBM Safer Payments instances provide a higher level of availability stands.

There also might be other reasons for using multiple IBM Safer Payments instances, such as that you may have two active datacenters
each running an authorisation system, and a third one as disaster recovery. In such a situation it would be imperative to have an IBM
Safer Payments instance in each datacenter; regardless of availability considerations.

Performance gains

In most other applications, clustering is a technique to increase the throughput performance of a system. With IBM Safer Payments
applications, this is typically not the case. Because IBM Safer Payments makes its decisions based on past transaction data, each IBM
Safer Payments instance must store and compute all transactions. If you for instance have two authorisation systems in two datacenters
each with a "local" IBM Safer Payments instance, and you route transactions "round robin" to each of these authorisation systems, the
two IBM Safer Payments instances need to update each other on the transactions they missed out on. Because this "background
update" process requires about the same computational resource in IBM Safer Payments as processing the transaction, adding IBM
Safer Payments instances in a cluster does not increase total throughput performance.

Because transaction processing throughput of a single IBM Safer Payments instance on standard hardware already suffices for even ultra
large scale applications, this non-scaling-up characteristic of an IBM Safer Payments cluster is not typically a drawback.

Operations and control

Using multiple IBM Safer Payments instances in a cluster is completely supported by IBM Safer Payments. Each IBM Safer Payments
instance contains the administrational functionality to control all instances in a cluster. The administrational processes associated with
the operation of an IBM Safer Payments cluster are described below. First the installation of an IBM Safer Payments cluster is described.

IBM Safer Payments instances

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

While IBM Safer Payments is capable of running in a cluster with any number of IBM Safer Payments instances, the practical numbers of
IBM Safer Payments instances in a cluster are 1, 2, or 3. One is not really a cluster, but in many applications, a single IBM Safer
Payments instance suffices. Also notice that one IBM Safer Payments instance can support any number of authorisation systems. If you
are using one IBM Safer Payments instance, you will have downtime in the following cases:

1. Computer server hardware malfunction

2. Operating system malfunction

3. IBM Safer Payments update

4. IBM Safer Payments software malfunction

On the subject of updates, notice that with "normal" updates, all you need to do is to stop IBM Safer Payments, install the new release
over the existing one, and restart it. The "new" IBM Safer Payments release will come up exactly where the old one has left off. Only
major releases may imply additional administrator actions. In this case, we would inform you about this well in advance, and assist you,
if required.

Using two IBM Safer Payments instances provides you with full redundancy in standard operations. While one IBM Safer Payments
instance is unavailable, the other IBM Safer Payments instance takes over full load. Once the second IBM Safer Payments instance
becomes responsive again, the first IBM Safer Payments instance updates ("synchronises") the second IBM Safer Payments instance on
what it missed out on. The operational details of this are explained below. Using two IBM Safer Payments instances also allows you to
have scheduled downtime, for instance to replace computer hardware, update the operating system or update IBM Safer Payments
without any service interruption.

However, during scheduled downtime, IBM Safer Payments does not operate redundantly. If you take down one IBM Safer Payments
instance, and the other one fails during this period, IBM Safer Payments service is interrupted. To have redundant operations even in
this case, three IBM Safer Payments instances are needed. Using three instance has the additional advantage that after a complete loss
of an individual instance (e.g. because of hardware failure) it can be restored from another instance without service interruption (see
below). During restoration, the third instance ensures full availability of IBM Safer Payments.

Whilst you may use four or more instances, there typically is no practical advantage to be gained from this.

Maintenance

To make cluster management as easy and integrated as possible, all maintenance functions are provided from the same IBM Safer
Payments pages as all other user access. Therefore even IBM Safer Payments instances whose API is not enabled, provide access to the
cluster administration page. Hence each IBM Safer Payments instance in a cluster can be used to manage the entire cluster.

If the one IBM Safer Payments instance with the API enabled should fail, this feature ensures that as long as there is still one operating
IBM Safer Payments instance in the cluster, the administrator can use this instance to perform all maintenance tasks.

Normal operations

This section exemplifies a configuration of an IBM Safer Payments cluster with 3 instances. The sketch below shows the 3 instances with
their external and internal interfaces. The external interfaces are the MCI (Message and Command Interface) for online transaction
request/responses, the BDI (Batch Data Interface) for transaction message file delivery, and the API (Application Programming
Interface) for user access. Both BDI and API can only be active on one of the IBM Safer Payments instances at the same time, though
they can each be set active on different instances. The example assumes that both interfaces are activeon instance 1 only.

The MCI can be enabled on each instance and each IBM Safer Payments instance can assume the full transaction load as delivered by
the authorisation system. This is the normal operating condition. The authorisation system must have functionality to turn to the next
IBM Safer Payments instance in the cluster once it has determined that the IBM Safer Payments instance it currently uses is not
responsive or down. Not-responsiveness is typically detected by a watchdog timer in the authorisation system that kicks in once a
transaction request message has not been responded to within an allotted timeframe. If the authorisation system experiences that the
IBM Safer Payments instance it connects to drops the connection, it can assume that the IBM Safer Payments instance or the network
route to it went down. In this case, the authorisation system should immediately turn to the next instance.

Notice that each IBM Safer Payments instance has three internal interfaces, the SCI (Status and Control Interface) for status and control
commands, the ECI (Encrypted Communication Interface) to exchange encryption keys and login credentials, and the FLI (FastLink
Interface) for transaction and configuration data. Because the FLI must tolerate connection or instance outages, each outgoing FLI
interface is FIFO disk buffered. The size of the FLI buffer files are fixed and defined on the system configuration page. The best size is
determined by the transaction message frequency in relation to the outage time the buffers shall cover.

The SCI and ECI are not buffered since a FIFO buffer would not guarantee that the status information provided is current. For the same
reason, the replication of the cluster configuration (the contents of the "cluster.iris" file) is handled via the SCI.

Instance shutdown

Certain operational conditions require the scheduled shutdown of an IBM Safer Payments instance. This is for instance the case if the
server hardware or software of one IBM Safer Payments instance is updated. Shutdown and restart of this IBM Safer Payments instance
is straightforward and involves the following steps.

Assuming IBM Safer Payments 1 is to be shut down, the administrator disables the MCI, BDI, API and incoming FLI interfaces. The BDI
interface will, upon being disabled, complete the computation of the currently processed record (for each job running), and then
interrupt all jobs. They will later start at the next record position when the BDI is enabled again on any IBM Safer Payments instance
connected. The other interfaces, upon being disabled, will refuse any connection opening requests, will complete the computation of the
currently processed transaction message, and then shut down the connections that were open.

In this example, it is further assumed that BDI and API were activated on IBM Safer Payments 3, while the authorisation system
chooses to route its transaction message requests to IBM Safer Payments 2 when it finds the MCI interface on IBM Safer Payments 1
disabled. When the FLI incoming interface of IBM Safer Payments 1 disables, the FLI outgoing interfaces of IBM Safer Payments
instances 2 and 3 receive a connection close from IBM Safer Payments 1 and start buffering all transaction message copies and all
configuration data copies into their file buffers.

Once IBM Safer Payments 1 is restarted, and its incoming FLI is activated, IBM Safer Payments instances 2 and 3 automatically discover
this as they are periodically testing IBM Safer Payments 1 for responsiveness. Once they find IBM Safer Payments 1 to be receiving FLI
data again, they will feed all buffered transactions to the IBM Safer Payments 1 instance in sequence.

Once "synchronised", that is, IBM Safer Payments 1 being up to date with transaction and configuration data, the MCI, API, and BDI
interfaces of IBM Safer Payments 1 can be activated, if IBM Safer Payments 1 should now re-assume these tasks at this time.

Instance failure (hot start)

While the example before assumed a scheduled shutdown of an IBM Safer Payments instance, the recovery process of a non-scheduled
shutdown (hardware, or software failure) of an IBM Safer Payments instance is actually pretty much the same.

The main difference is that in case that for instance IBM Safer Payments 1 experiences a non-scheduled shutdown, the BDI and API
interfaces have not been moved to other IBM Safer Payments instances. Therefore in this case, BDI and API instantly become
unavailable. For BDI, this condition is simple to recover from as the BDI resumes operation always from the point it last stopped,
whether this stop was intentional (administrator command) or unintentional (instance failure). For the API, this actually results in the
user sessions being canceled. Data a user had not saved at this moment is lost. Because the amount of data a user can enter before he
must save is kept to a practical minimum in IBM Safer Payments, the loss of data should be tolerable as the user typically remembers
rather well what he just had entered.

The process for recovery is simple: the administrator logs onto either of the remaining operational instances, moves BDI and API to an
operational IBM Safer Payments instance, and full operation resumes.

If a second instance becomes non-available during downtime, the recovery process is the same, only that once the last operational IBM
Safer Payments instance fails, IBM Safer Payments cluster operation is down.

As soon as any IBM Safer Payments instance comes back operational, the remaining instances automatically synchronise this IBM Safer
Payments instance with the contents of their FLI buffers, and once synchronised, the IBM Safer Payments instance becomes a fully
functional member of the cluster again.

Instance failure (cold start)

In the cases discussed before, whether scheduled or non-scheduled shutdown of an IBM Safer Payments instance occurs, it is assumed
that the data on disk of these instances survives. This would normally be the case. In case of a scheduled shutdown, where typically
part of the infrastructure is replaced or the operating system or IBM Safer Payments itself is updated, disk data remains intact. In case
of a non-scheduled shutdown, data is rarely lost because IBM Safer Payments instances are typically installed on fault-tolerant RAID
disk subsystems.

There are, however, rare possible situations in which disk data on an IBM Safer Payments instance can be lost. In this case, the recovery
processes described before cannot be used because the data stored in the outgoing FLI buffers would not be sufficient to synchronise
the IBM Safer Payments instance. In this case, a more complex ("cold start") recovery process must be employed.

Also, there is the situation of the FLI buffer exhaustion of the other IBM Safer Payments instances. This can happen if during the outage
of an IBM Safer Payments instance the amount of data stored for synchronisation in the FLI buffers exceeds the allocated buffer size. In
this case, the FLI buffers cannot restore the non-active IBM Safer Payments instance anymore when it would start up later, so the FLI
buffers are dropped, and the non-active IBM Safer Payments instance must be "cold started". Notice that there are buffer management
functions within the FLI to prevent this situation from occurring.

In the 3 instance configuration discussed in this example, if one IBM Safer Payments instance disk data is lost, or the FLI buffer of
another instance feeding this IBM Safer Payments instance are dropped, this IBM Safer Payments instance must be "restored". This
process and related other operational processes are described in detail on the online help cluster instance page.

back to top

9.2.1 Cluster Settings

This page describes the cluster settings table. General information is found on the IBM Safer Payments cluster management page.

Table rows

Each instance of the IBM Safer Payments cluster is shown in one table row. For each row, the values in the columns show various status
information (details below). A left click on a row opens a detailed form with all relevant settings for this instance; a right click opens a
context menu with shortcuts to frequently used actions.

Table actions

While all actions on an IBM Safer Payments instance are available from the instance form that opens when you left click on the
respective row, a right click opens a context menu with shortcuts for the respective IBM Safer Payments instances. Refer to operational
cluster control for details.

Table columns

• Instance Id
IBM Safer Payments instances are numbered from 1. The instance that you are currently using to access this page is marked with
an asterisk (*).

• Status

This value can be of:

◦ Unreachable
Instance is not running or cannot be reached by the current IBM Safer Payments instance.

◦ [Unreachable|Invalidated] (detached)
Instance has been detached. No outgoing FLI queues have been created for this instance. This instance is out of sync and
needs to be restored.

◦ Startup
Instance is currently starting (this may take a few minutes since during this phase, IBM Safer Payments loads its memory
data cache from the disk data cache). In this status, the IBM Safer Payments instance has no open interfaces with the
exception of the status and command interface (SCI) and is not responding to direct user interface requests (you will thus
only see this status from another IBM Safer Payments instance). This is a transient status. If it remains for an unusual long
time, check system health and event log message files. Once all startup actions are completed, the IBM Safer Payments
instance will attempt synchronization of its data repository from the other IBM Safer Payments instances.

◦ Synchronising
Instance tries to obtain missing transaction and configuration data from other cluster instances. You should see the progress
of this effort from the FastLink status table (above this table). If the links are down, ensure that the FastLink interface (FLI)
on the synchronizing instance is enabled and active.

◦ OK
Instance is up and running.

◦ Waiting for synchronisation
Same as startup, but with a hotstart rather than a cold start (hotstart can for instance be triggered from this table's action
menu; in contrast to a cold start, the IBM Safer Payments process is not terminated).

◦ Error
Instance startup failed not available due to a severe error during startup. Check event log message files for details.

◦ Invalidated
A failure on this instance has caused its data to be corrupted. To protect integrity, this instance has closed its interfaces. You
need to restore this instance from another one. For details, see restore process.

◦ Lockdown
There are 2 ways that an instance can go into lockdown status. The first is during a restore: once a restore is started, the
donor instance closes all its interfaces and waits until all its outgoing FastLink interface (FLI) buffers are drained. During this
period, the donor IBM Safer Payments instance is in lockdown status. For details, see restore process.
The second way an instance can go into lockdown status is if the FLI buffer reaches capacity and overflows. In this case the
instance will lockdown to prevent further data loss on other instances. It will change again to a healthy status after restart. To
recover the data loss on the other instances, it is recommended to restore all other instances with that instance selected as
donor, which previously had the lockdown status. For details, see restore process.

◦ Restoring: donor
This is the donor instance of a restore process and a restore is currently under way. For details, see restore process.

◦ Restoring: recipient

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This is the recipient instance of a restore process and a restore is currently under way. For details, see restore process.

◦ Restore failed
Restore failed on this instance. Check event log message files for reasons. For details, see restore process.

◦ Starting services
This is (typically) a short transient status during startup where IBM Safer Payments spins of its various service threads. If this
status remains for an unusual long time, check system health and event log message files.

◦ Undetermined
Startup did not conclude with a "real" status. Check system health and event log message files.

◦ Waiting for key
The instance cannot start since encryption keys are not entered and activated, and cannot be obtained from other IBM Safer
Payments instances. Enter and activate keys to continue the startup process.

◦ Offline
All interfaces except Encrypted Communication Interface (ECI) and Status Control Interface (SCI) are inactive and all pending
data has been written to disk. This state is suitable to create file backups.

• Name

Name defined for this IBM Safer Payments instance.

• Comment

Comment defined for this IBM Safer Payments instance.

• Message command interface (MCI)

Status of MCI (Message and Command Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no
icon if interface is disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second
average) is provided in brackets.

• Application programming interface (API)

Status of API (Application Programming Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no
icon if interface is disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second
average) and number of active user sessions are provided in brackets.

• Batch data interface (BDI)

Status of BDI (Batch Data Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no icon if
interface is disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second average) is
provided in brackets.

• FastLink interface (FLI)

Status of FLI (FastLink Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in detail. Momentary load (10 second average) is provided in
brackets.

• Encrypted communication interface (ECI)

Status of ECI (Encrypted Communication Interface) on this IBM Safer Payments instance. if the status is as set, if not, and no
icon if interface is disabled and not active. A text next to the icon explains the status in detail.

• Alert message interface (AMI)

Status of AMI (Alert message interface) on this IBM Safer Payments instance. if the status is as set, if not, and no icon if interface is
disabled and not active. A text next to the icon explains the status in detail.

back to top

9.2.2 Operational Cluster Control

Operating a running IBM Safer Payments cluster involves a number of activities that are each described on a separate help page:

• Add IBM Safer Payments instance
Operational processes to add another IBM Safer Payments instance to a running cluster.

• Shutdown
Shutdown process for a single IBM Safer Payments instance or an entire IBM Safer Payments cluster.

• Detach
Detaching an instance from the cluster disables replication to this instance. Use it when you want to take down an instance for a
longer period of time.

• Attach
Attaching an instance forces to add an instance to the replication mechanism of the cluster, without synchronising it.

• Delete
Permanently removes an IBM Safer Payments instance from the cluster.

• Restore
Recreates a new or existing IBM Safer Payments instance from another IBM Safer Payments instance during operations.

Notice that setting up an IBM Safer Payments cluster, and starting it for the first time is described in the IBM Safer Payments Installation

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Manual that is available from our IBM Safer Payments support site from where you can also download IBM Safer Payments releases and
find related support information.

These functions are available from the cluster administration page instance form.

While an IBM Safer Payments cluster can restore its instances in operations from itself, there is also traditional backup within an IBM
Safer Payments cluster.

Notice that you may also perform operational control remotely.

The golive process in a cluster is described here.

back to top

9.2.3 Add Instance

You may add an IBM Safer Payments instance to a cluster at any time during full operations. The process involves a number of steps:

1. Click [Add instance] from the cluster settings table toolbar. This opens a form to configure the new IBM Safer Payments instance.
Enter the relevant information. Only activate the FastLink interface. Save your settings.

2. Install the new IBM Safer Payments instance on its platform.

3. Manually copy the file "cfg/cluster.iris" from one of the existing IBM Safer Payments instances to the new instance, overwriting the
file that was part of the "empty" installation.

4. Manually copy the "key" folder if certificates or encryption keys were added. These files will not be transmitted by network.

5. Enable the ECI interface.

6. Open the file "cfg/iris.iris" with a text editor and change its contents to:

{"iris":{"status":"New"}}

7. Start the new IBM Safer Payments instance and observe on the cluster page of another IBM Safer Payments instance its startup.
Once started up, the status of the new IBM Safer Payments instance will be shown as "invalidated".

8. Perform a restore operation on the new instance to synchronize it with the other IBM Safer Payments instances.

9. Once the restore operation is complete, the new IBM Safer Payments instance has become a full member of the cluster and can
now be configured to perform any of the cluster's services.

back to top

9.2.4 Shutdown

There are multiple reasons for shutting down one IBM Safer Payments instance of a cluster:

• Software or hardware maintenance of the hosting server.

• Update of an IBM Safer Payments instance.

Whatever the reason, if you follow the process steps detailed below, you will be able to restart the IBM Safer Payments instance later
and not have lost any data.

Isolation

Before the IBM Safer Payments instance can be shut down, you must transfer its functions to the other IBM Safer Payments instances.
How this is done, depends on the interface:

• BDI (Batch Data Interface)
By disabling the BDI on the instance you want to shut down, all data from file loading processes are halted. To resume them from
another IBM Safer Payments instance, enable the BDI on this instance. If you have not disabled the BDI on the first IBM Safer
Payments instance already, enabling the BDI on the second instance will automatically disable it on the first one (to ensure that at
each time only one IBM Safer Payments instance performs batch data loading).

• API (Application Programming Interface)
By disabling the API on the instance you want to shut down, all user sessions on this API are terminated. This excludes users with
cluster administration privileges for cluster control functions, so while you are performing a shutdown process, this will not affect
your session. To allow user access from another IBM Safer Payments instance, enable the API on this instance. If you had not
disabled the API on the first IBM Safer Payments instance already, enabling the API on the second instance will automatically
disable it on the first one (to ensure that at each time users access IBM Safer Payments only through one IBM Safer Payments
instance).

• FLI (FastLink Interface)
By disabling the FLI on the instance you want to shut down, all replication data from the other IBM Safer Payments instances are
now buffered within their FLI outgoing queue buffers. This ensures that when the IBM Safer Payments instance that you want to
shut down starts up again, and FLI is enabled again, the buffers deliver all the production and configuration data to this IBM Safer
Payments instance it had missed when it was not running.

• MCI (Message and Command Interface)
By disabling the MCI on the instance you want to shut down, all service consumers re-route their transaction message requests to
another IBM Safer Payments instance in the cluster. Notice that if you shut down an IBM Safer Payments instance without having
disabled the MCI before, the MCI will be disabled automatically during shutdown. It is, however, still a good policy to first manually
disable the MCI before shutting down an instance. For example, if the MCI is automatically disabled during shutdown, there is a

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

grace period IBM Safer Payments waits for all transactions to be terminated before it closes all MCI connections. This grace period
is typically defined long enough that all computation is completed, yet if for whatever reasons, it is not, you may interrupt
computation of a transaction before it is completed.

Once you have disabled all these interfaces to IBM Safer Payments, no new production or configuration data is generated in this
instance. However, since data could have been built in the FLI outgoing queues of this IBM Safer Payments instance, you must check the
FastLink status section on the cluster administration page to ensure that all outgoing queues of this instance have emptied.

Shutdown sequence

Now you may initiate shutdown by clicking on the respective [Shutdown] tool icon on the cluster instance form of this instance, or
from the context menu of the respective row of the instance in the cluster settings table. After clicking on the respective button, you will
see a shutdown dialog. You can select if you want to shutdown this instance immediately or at a particular time. If you want to
shutdown this instance earlier, you may select an earlier shutdown. Please notice that a started shutdown cannot be interrupted.

The actual shutdown sequence empties all internal buffers of IBM Safer Payments and terminates its service threads before it ends the
main IBM Safer Payments instance process. This entire sequence typically takes a few seconds.

The cluster settings table should show the status "unreachable" for this instance with a red icon once the sequence is completed.

You should now inspect the system event log to verify that there were no errors during shutdown.

Remarks

• You may also initiate a shutdown on the IBM Safer Payments instance you are currently connected to. In particular, if you intend to
shut down an entire IBM Safer Payments cluster, the last IBM Safer Payments instance you shut down is the one you are working
on. Since in this case, it is impossible to view the system event log from within IBM Safer Payments, you should inspect the latest
system event log instead on file level.

• To re-start an IBM Safer Payments instance after a shutdown (and potentially maintenance operation on the instance or its server),
you cannot use any function from within IBM Safer Payments, you will have to turn to the method used in your IBM Safer
Payments setup to start the instance. Notice that you have a certain time window for restarting, since the FLI outgoing queue
buffers of the other IBM Safer Payments instances only have a finite capacity. If you have exceeded this capacity, and you re-start
the IBM Safer Payments instance, it will detect that it cannot be syhcnronized to the current state of the other instances via FLI
and require you to restore this instance.

back to top

9.2.5 Detach Instance

If you detach an IBM Safer Payments Instance, it will effectively be taken out of the IBM Safer Payments cluster replication mechanism.
The outgoing FLI queues of all other instances to this instance will be closed and their contents will be discarded.

This ensures that if the detached IBM Safer Payments instance is not coming back up for an extended time, no FLI outgoing queue will
overfill. When this IBM Safer Payments instance comes back, it need to be "restored" to make good for the missed replication.

The attach of an instance forces to reopen the outgoing queues without recovering the discarded contents. An attached instance will not
be in sync any more.

Notice that the delete IBM Safer Payments instance operation also executes a detach.

back to top

9.2.6 Delete Instance

Deletion of an IBM Safer Payments instance first invokes detaching it from the cluster, and then to delete it from the cluster
configuration.

Remarks

• You may delete an IBM Safer Payments instance of a cluster in full operations.

• The deleted IBM Safer Payments instance is only deleted from the cluster, not physically from its hardware platform. If you want to
remove the IBM Safer Payments instance from its hardware platform, you need to uninstall it after you deleted it from the cluster.

back to top

9.2.7 Restore

Restores this instance from a donor. This function is needed in a number of cases:

• A new instance is added to the cluster.

• An IBM Safer Payments instance suffered from a major fault involving data loss (golive fault etc.).

• A FastLink queue to an instance broke (i.e. due to a buffer overfill situation).

• The disk subsystem of the host computer of an IBM Safer Payments instance suffered from data loss.

In these situations, no data on the instance can be used anymore and the instance must be restored. Restoration is a data

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

transplantation process in which the IBM Safer Payments instance to be restored (aka "recipient") obtains all data from another IBM
Safer Payments instance (aka "donor"). Notice that full IBM Safer Payments operations resume if you have 3 or more instances in a
cluster because when donor and recipient are both unavailable during the restore process, there is still one more IBM Safer Payments
instance to process transaction messages, batch data, and user requests (aka "operational").

Restore process

The restore process consists of a number of steps:

1. Invocation: open the edit form for the recipient instance. Click the restore button. Confirm your choice. Select the donor instance.
The remained of the process is now performed automatically by the cluster. Do not interrupt until complete.

2. Signaling: within the IBM Safer Payments cluster, the instances are now informed about their role in the restoration process
(donor, recipient, or operational). Within the instances table, the status of the recipient is now signaled as "Synchronisation:
Recipient".

3. Lockdown: the donor closes all its incoming interfaces (message command interface, application programming interface, batch
data interface, FastLink interface) and waits until its outgoing FastLink buffers are drained. The recipient status shows "Lockdown"
until this part of the process is completed.

4. Postparation: all operational instances discard their FastLink outgoing buffer to the recipient and clone the FastLink outgoing buffer
to the donor for the recipient. This buffer is continuously filling up during the restoration process since the donor has disabled its
incoming FastLink interface for the duration. The operational instances now fill both the buffers (donor and recipient) with all data
since the donor closed its interfaces. This effectively ensures that donor and recipient are both provided with the (now static) data
of the donor and the (accumulating) contents of the Fast Link buffers which ensures them to be up to date and synchronized. In
addition, the FastLink outgoing buffer of the donor to the recipient is discarded.

5. Transfer: all data stored on files from the donor is now copied to the recipient. This step can take considerable time, depending on
the size of the data and the bandwidth of the network involved. This step is signaled by the donor status being displayed as
"Synchronisation: Donor".

6. The following are carried out in parallel:

◦ Hotstart: the recipient now restarts with the donor data. This step is signaled by the recipient status being displayed as
"Startup".

◦ Incoming FastLink interface for recipient set active so that it starts being updated by the operational instances. The progress
of this step can be followed by the FastLink status display.

7. Synchronisation: incoming FastLink interfaces of donor instance activated, causing donor to be delivered with all data that was held
in the FastLink buffers since lockdown of the donor. The progress of this step can be followed by the FastLink status display.

8. Finish: both donor and recipient monitor the FastLink buffers that feed them. Once they all are considered "in-sync", the respective
message command interfaces are activated and the instance becomes fully operational again.

The following UML sequence chart exemplifies the message flow between the instances during a restore procedure in detail:

Manual restore

As an alternative to the "automatic" restore process described above, you may also restore an IBM Safer Payments instance
"manually". The disadvantage of performing a manual restore is that both donor and recipient IBM Safer Payments instance must
be shut down during the process. The process consists of a number of steps:

◦ Close interfaces on donor.

◦ Shut down donor and recipient.

◦ Delete the contents of directories "cfg", "ddc", and "inv" (and its subdirectories) on recipient.

◦ Copy all files of directories "cfg", "ddc", and "inv" (and its subdirectories) from donor to respective locations of recipient.

◦ Start both instances.

back to top

9.2.8 Backup

IBM Safer Payments cluster installation is inherently fail-resilient. Each IBM Safer Payments instance serves as a backup to all the
others, and since data stored in IBM Safer Payments is typically also stored in other systems as well, there is little need to revert back
to an older status of the application. Thus many IBM Safer Payments applications do not require any additional backup process.

Backup background

If this is not the case in your application, and you must implement backup processes for IBM Safer Payments, there are certain aspects
to consider.

First notice that an IBM Safer Payments instance cannot be backed up during operations, because while IBM Safer Payments operates, it
constantly changes file contents. In particular IBM Safer Payments requires constant and exclusive read and write access for certain
files, to ensure round-the-clock real-time processing of transactions. IBM Safer Payments must be taken offline (all interfaces disabled)
so that its disk data remains unchanged during any backup process. Notice that it is not necessary to shut down the IBM Safer
Payments instance for backup, only all incoming interfaces have to be disabled during backup.

If your application requires periodical backups, it could be advantageous to install a separate IBM Safer Payments instance dedicated to
this task. This IBM Safer Payments instance would only have FastLink interface (FLI) activated, and FLI would be suspended each time a
backup from this instance is made.

An alternative to this is to use a backup software that supports "snapshot technology", able to even back up open files. Because of the

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

typical (large) size of the IBM Safer Payments DDC files, the overhead involved with this approach could be prohibitively large.

Restoring from backup

Restoring from a backup is simple. You may also use one instance's backup to restore another or all IBM Safer Payments instances in a
cluster. Make sure that you do use separate Windows registries or registry files and that they are not overwritten by the restoration
process. The registry contains the information where each instance locally stores its data, and also tells the instance, which instance
number within the cluster it assumes. Other than that, restoring is straightforward, simply restore all files and start the instances.

Notice that there is a restore function in IBM Safer Payments that restores one IBM Safer Payments instance from another in live
operations.

back to top

9.2.9 Cluster Golive

During the actual golive of a model revision, IBM Safer Payments has to reconfigure its model and, if there were changes on the data
storage configuration, the data storage objects. During this reconfiguration, IBM Safer Payments cannot compute transaction message
requests. In a typical golive involving only changes of profiling and rules, this time period typically only lasts a few milliseconds. If new
attributes or profiling output attributes are added to the model, this time period typically still remains in a sub-second range. In some
rare cases, however, the time period can be significantly longer, for instance, if a large DDC requires encryption or decryption, or if
major DDC resizes of all attributes have to be performed as part of the golive.

The golive report that is created as part of the golive process before the process actually gets started attempts to estimate this time
period in advance. This is important as any golive for one mandator will exclude golives of other mandator at the same time. Typically
this never results in bottleneck situations as even with hundreds of mandators, most mandator's golives will be very quick, as the
mandator's users would not be privileged to perform the aforementioned major changes to the data store configuration. Also notice that
the quality of the golive estimation depends on how accurate the performance factors (entered on the system configuration page) have
been benchmarked for exactly the server platform used.

It is important to notice that in an IBM Safer Payments cluster setup, the non-availability of one instance for the duration of its golive
does not translate to non-availability of the functioning of the entire IBM Safer Payments cluster. Assuming a three-instance cluster and
a golive executed on instance 1, first instance 1 will perform golive. If this would cause transaction messages to be delayed past the
timeout, the service consumer would switch sending transactions to the instances 2 or 3. Golive on instances 2 and 3 starts on both
instances only after golive on instance 1 is completed and instance 1 is capable of processing transaction messages to take over the
load.

back to top

9.2.10 URID Replication

Within each IBM Safer Payments instance, each transaction record stored is assigned a unique record Id (URID). URIDs are assigned
incrementally; the first record thus has an URID of zero. Since URID counting is never restarted, each transaction ever processed by
IBM Safer Payments is uniquely identifiable.

This is however more complex in a clustered IBM Safer Payments installation. Because each IBM Safer Payments instance must be able
to operate autonomously, it is impossible for IBM Safer Payments instances to negotiate URID values before they store a transaction
record. Thus URID are only unique within an IBM Safer Payments instance. If the authorisation system uses three IBM Safer Payments
instance in a round-robin scheme, the first transaction record would be URID=0 on instance 1, the second URID=0 on instance 2, and
so forth.

Hence in a cluster, a transaction record is only uniquely identified by the instance Id and URID of the ("primary") IBM Safer Payments
instance that initially received the transaction message (or processed the batch data record). Therefore two attributes "Primary instance
ID" and "Primary URID" must be created with each model revision as meta attributes in a clustered configuration. Each primary IBM
Safer Payments instance then adds the primary URID and its instance Id to the FLI message passed to the other IBM Safer Payments
instances, where they get stored with the transaction record in addition to the ("secondary") URID of this specific IBM Safer Payments
instance.

The unique identification of transaction records is needed both for auditing purposes and also with the flagging of transactions as fraud
during investigation. In the latter case, the primary URID and instance Id values are used to ensure that the same transaction is flagged
(or un-flagged) as fraud on all IBM Safer Payments instance in a cluster.

back to top

9.3 Remote Operation of IBM Safer Payments

While all operational processes and maintenance tasks are supported from within IBM Safer Payments, they can also be operated
remotely from any central datacenter environment using the IBM Safer Payments API (Application Programming Interface).

The remainder of this page exemplifies the use of the API for typical operational processes and maintenance tasks. Notice that the
operations can be executed on all IBM Safer Payments server instances, regardless on whether or not their API is set active. Contact the
IBM Safer Payments support for a complete API reference manual.

Ping

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The API ping can be used on any IBM Safer Payments server instance to test if the instance is responsive. No valid user session (login)
is required for this. Load balancing / failover switching gear between the IBM Safer Payments server instances and user access can use
this API request to determine the API active IBM Safer Payments server instance.

Login/logout

All API requests (other than "ping") require authentication. Typically, a specific user account is created for such remote operations.

The user account should be created with the "enforce password changes" option disabled. Once the "login" request is responded to, the
session remains active for the specified timeout period. The session cookie must be retrieved from the response, as it must be sent back
to the API with all subsequent API requests.

Cluster status

A complete status overview can be obtained with the "getInstancesTable" request.

Switching active API

To enable the API on an instance (and automatically disable it on all other), send the "enableApi" request.

Taking an instance offline (e.g. for backup)

To disable/close all interfaces on an IBM Safer Payments server instance instance (for instance before executing a shutdown or to isolate
an instance for non-shadow copy enabled backup), send the "setOffline" request.

This request disables/closes the MCI, API, BDI, and incoming FLI interfaces of the respective IBM Safer Payments server instance.
Notice that you must first activate the API on another IBM Safer Payments server instance for users to still have access to the IBM Safer
Payments cluster (user sessions lost during switching active API). The SCI interface remains enabled/open since it is used by the IBM
Safer Payments cluster instances to exchange necessary control and status information even with an offline IBM Safer Payments server
instance. Since the operating SCI does not change any file stored data, it can safely be kept open for instance during a backup of the
instance.

Taking an instance online (e.g. after a backup)

To re-activate all enabled interfaces after having taken it offline, send the "setOnline" request.

Shutdown

To initiate the shutdown of an instance (and automatically disable it on all other), send the "shutdown" request.

Notice that you do not need to shut down an IBM Safer Payments server instance for certain maintenance tasks, such as backup without
shadow copies: taking the instance offline is sufficient.

back to top

10. Appendix

This chapter contains various reference sections.

back to top

10.1 IBM Safer Payments Architecture and Integration

This section introduces various aspects of IBM Safer Payments architecture and IBM Safer Payments integration.

back to top

10.1.1 Interfaces Overview

The IBM Safer Payments service provides multiple Interfaces:

• MCI (Message and Command Interface) real-time

• API (Application Programming Interface) user access

• BDI (Batch Data Interface) files

• SCI (Status and Control Interface) cluster control

• ECI (Encrypted Communication Interface) exchanging secrets

• FLI (FastLink Interface) redundancy

• RDI (Relational Database Interface) database

• AMI (Alert Message Interface) outgoing channels

• MQI (WebSphere MQ Interface) message queueing

While MCI, API, SCI, FLI, AMI, and MQI are IP message based message interfaces, BDI and RDI interfaces are file based for batch data.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The MCI, API and FLI interfaces operate in "service mode", where each communication is initiated by the outside party and IBM Safer
Payments replies to each request. With these interfaces, the IP connections typically stay open for more than one request (for reasons
of efficiency). This rather simple communication scheme keeps interfacing to IBM Safer Payments easy. It follows the time tested model
of most Internet protocols, where the service consumer (often a browser) polls data from the service provider (often an HTTP server)
whenever it needs to. For performance reasons, all three IP based interfaces use thread pool technology.

The BDI interface is quite different from the others because it involves transferring data in and out of IBM Safer Payments via files.
Because this requires IBM Safer Payments to become active at specific times to check if data to be imported is available or if data should
be delivered to other systems, IBM Safer Payments features a job schedule function.

While MCI and BDI are "external" interfaces in the sense that they connect IBM Safer Payments to systems of the customer, API and FLI
are "internal" interfaces in the sense that they connect IBM Safer Payments components. The API connects the IBM Safer Payments
client and the IBM Safer Payments server, the FLI connects different IBM Safer Payments instances within a cluster.

The RDI is a batch file interface using SQL statements to transfer IBM Safer Payments data into a relational database.

The AMI uses outgoing channels to send messages or queries to users, administrators, customers, and cardholders/merchants. It
currently supports sending messages to SMTP (email), HTTP, IP, ODBC (database), and file targets.

The MQI allows to connect to existing IBM WebSphere MQ message queueing environments and read queue message data.

All interfaces are described in detail on separate help pages that opens when you click on the respective interface hyperlink above.

back to top

10.1.1.1 Doublet Detection

This feature allows IBM Safer Payments to detect transaction messages (received by both MCI and API) that have already been stored in
IBM Safer Payments' MDC/DDC and to not store them again.

Configuration

How IBM Safer Payments detects doublets (once enabled), is configured be the following settings:

• Include DDC
If enabled, also data from DDC is used to compare the current transaction message with (may substantially slow down real-time
performance).

• Index
To deliver meaningful performance, doublet detection is only performed alongside an index. Choose the index that has the largest
number of entries for best performance. Typically this would be an index for the cardholder as there are typically less transactions
to check as potential doublets for each cardholder than for each merchant or terminal.

• Attributes
Select all attributes that IBM Safer Payments shall compare to determine if two transactions are the same (it is implicit that
selected index value must be the same).

Notice that doublet detection reduces run-time performance.

Behavior

If doublet detection is enabled, a detected doublet message will not be stored in MDC/DDC and will not be computed (that is, calendar
profiles/events are not updated), and the response (sent back with MCI transaction messages and stored in the .log files with BDI
transaction messages) contains the error message "Doublet detected, message discarded" and generates the event log message 284.

back to top

10.1.1.2 Message and Command Interface (MCI) Overview

The message and command interface ("MCI") connects IBM Safer Payments to authorization systems, card management systems and
related data sources (aka service consumer).

The MCI uses TCP/IP message passing, either as "naked" XML messages or XML messages wrapped in HTTP. While in both cases, you
may open a connection, send the request, wait for the response and close the connection immediately thereafter, we highly recommend
keeping the connection open between request/response pairs, since such "persistent connections" allow for a much higher transaction
message throughput and lower resource consumption.

For messages wrapped into HTTP the following header fields are neccessary

• Content-Length (length of the message included in the request)

• X-SP-Message-Type-Id (messageTypeId which represents the message type defined in SP and will be used to identify the parser to
interpret the message)

• X-SP-Message-Id (The MessageId is an alphanumerical string value that is generated by the systems connected to IBM Safer
Payments to identify a response. (Identifying messages can be useful if multiple connections to IBM Safer Payments are used in
parallel.) IBM Safer Payments does not use this response for any computational purposes; it only echoes it back in its response (it
also uses the MessageId in case of errors to document the offending message). The "MessageId" may contain up to 16 Bytes and
consist of any ASCII character between 32 and 126, with the exception of ">", "/", "<" characters.)

• X-SP-Protocol-Version (protocol version of SP, currently it is fixed to 1)

• X-SP-Request-Type (optional) defines what kind of request is send ((default)ModelRequest / StatusRequest)

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

For messages sent via IP a binary header is needed, which consists of 64 Bytes and includes the same header information as for HTTP.

• first 8 bytes define the Content-Length

• next 4 bytes define the X-SP-Message-Type-Id

• next 16 bytes define the X-SP-Message-Id

• the next byte defines the X-SP-Protocol-Version

• the next byte defines the X-SP-Request-Type (0 for ModelRequest/ 1 for StatusRequest)

• the last 34 bytes are reserved for future use

Message examples

This is an example of an XML request message sent by the service consumer to IBM Safer Payments:

<IRIS><PAN>1234567890123456</PAN><TrxDateTime>2014-04-22 21:04:56</TrxDateTime><Amount>123.45</Amount>
<MCC>5512</MCC><CC>BE</CC></IRIS>

An example XML response message by IBM Safer Payments would be:

<IRIS Version="1" Message="ModelResponse" MessageId="000af87c75503b4401" ErrorCode="0"><Intercept>1</Intercept>
</IRIS>

This is an example of an HTTP POST wrapped XML request message sent by the service consumer to IBM Safer Payments:

POST /path/script.cgi HTTP/1.0
From: test@mybank.com
User-Agent: HTTPTool/1.0
Content-Type: text/xml
Content-Length: 188
X-SP-Message-Type-Id: 101
X-SP-Message-Id: 000af87c75503b4401
X-SP-Protocol-Version: 1
X-SP-Request-Type: ModelRequest

<IRIS><PAN>1234567890123456</PAN><TrxDateTime>2014-04-22 21:04:56</TrxDateTime><Amount>123.45</Amount>
<MCC>5512</MCC><CC>BE</CC></IRIS>

An example HTTP POST wrapped XML response message by IBM Safer Payments would be:

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/xml; charset=utf-8
Content-Length: 275

<IRIS Version="1" Message="ModelResponse" MessageId="000af87c75503b4401" ErrorCode="0"><Intercept>1</Intercept>
</IRIS>

Notice that IBM Safer Payments auto-detects formats, if your response contains an HTTP POST wrapper, it will be responded to with an
HTTP response wrapper.

Connections

In a typical IBM Safer Payments application, the service consumer will open multiple connections at once. The maximum number of
connections that can be opened with IBM Safer Payments at the same time is defined by the threadpool size setting on the IBM Safer
Payments system configuration page. Because IBM Safer Payments uses a separate computational service thread for each connection,
using multiple connections in parallel increases the transaction throughput of IBM Safer Payments.

Notice that while within each connection, all transaction request messages are processed and responded to in exactly the sequence they
arrive (synchronous), while there is no guaranteed sequence of processing and responding between multiple connections
(asynchronous).

Status request

To test if the MCI is active on a specific port, you can send the request:

<IRIS Version="1" Message="StatusRequest"></IRIS>

which will be responded with:

<IRIS Version="1" Message="StatusResponse" InstanceStatus="Ok" ></IRIS>

Notice that this request can also be sent wrapped as HTTP POST.

Error handling

In normal operations, once IBM Safer Payments has started up, it opens a listener socket on the port defined for the MCI (on the cluster
page). For each connection opened by the service consumer, IBM Safer Payments uses one of its pooled computational threads to serve
the transaction message requests. If the service consumer does not need IBM Safer Payments any more, it can close a connection, and
later, when necessary, re-open it. Typically the service consumer keeps the connection open for its entire uptime, if no error occurs. In
normal operating conditions, IBM Safer Payments will never close a connection.

There are, however, certain error conditions in which IBM Safer Payments closes a connection. For instance if a message is so
malformed that IBM Safer Payments cannot detect its end, it must close the connection because it cannot know when the next message
starts and can thus not parse it. Also if a FastLink buffer is filled above a critical threshold (defined on systems configuration page), IBM
Safer Payments drops its MCI connection to avoid data inconsistency within a cluster, thereby forcing the service consumer to switch to
the next IBM Safer Payments instance of the cluster. If IBM Safer Payments experiences a severe operational problem and shuts down,
it will also close all open MCI connections.

Redundancy and load balancing

In an IBM Safer Payments cluster, under normal operating conditions, all IBM Safer Payments instances accept transaction messages via
their MCI. The service consumer is thus completely free in its decision to which instance to send its data to. The IBM Safer Payments
instances of a cluster replicate data internally.

In order to ensure redundancy, the service consumer must use a watchdog mechanism for each transaction message request sent. If
IBM Safer Payments has not replied to request within the allotted time (or closes the connection), the service consumer must re-send
the message to the next available IBM Safer Payments instance.

Notice that because each IBM Safer Payments instance must completely compute a transaction message whether it has been the one
instance the service consumer has sent the message to ("primary" IBM Safer Payments), or whether it had received this message from
another IBM Safer Payments instance as replication (via FastLink), very little can be gained from using any load balancing techniques
when sending transaction message requests to IBM Safer Payments.

XML format

It is important to notice that IBM Safer Payments' MCI supports only a subset of the XML format (for performance reasons). Thus MCI
requests must exactly follow the format laid out in this section to avoid request interpretation errors. The XML format rules are:

• Never use whitespaces in messages. No spaces between elements or any other "filler" characters (such as tabs), carriage returns
or line feeds. If the IBM Safer Payments XML data format calls for space characters – for instance between an element name and
an attribute name – you must use exactly this one space character. If the alias name used in the mapping definition of a message
contains space characters, they may be present in the respective XML element.

• Only use standard quote characters (ASCII value 34), no single quotes, no italic quotes.

• The XML format is case sensitive.

• If an attribute value of your request message is empty, do not use <aliasName/>. Use <aliasName></aliasName> or skip this
attribute entirely from the message.

• Only use characters in the ASCII range from 32 to 126 or UTF-8 encoded values.

• CDATA sections are not supported

• Predeclared entities & < > ' " are supported.

All requests are contained within <IRIS> elements so that their start and end can be identified with the open connection data stream
(persistent connection). This is an example of a standard IBM Safer Payments request transaction message:

<IRIS Version="..." Message="..." MessageTypeId="..." MessageId="...">...</IRIS>

Mandatory attributes in the opening <IRIS> element or in the header with any request are:

• Version (X-SP-Protocol-Version)
The "Version" attribute is used to differentiate different sub-types of request messages. Version="1" is the standard IRIS XML
message version, other version numbers are used for customer specific implementations.

• Message (X-SP-Request-Type)
Identifies the type of message:

◦ "ModelRequest" sends data from the service consumer to IBM Safer Payments for computation.

◦ "StatusRequest" asks IBM Safer Payments for basic health parameters and can also be used to "ping" if an MCI port (or the
IBM Safer Payments instance serving it is responsive).

For "ModelRequest" requests, the following attributes must be present in the opening <IRIS> element or in the header of the message:

• MessageTypeId (X-SP-Message-Type-Id)
The "MessageTypeId" is the (numeric) value used by IBM Safer Payments to identify the type of transaction message (messages
are created and maintained in their own section on the administration tab, see the IBM Safer Payments online help for messages
for details).

• MessageId (X-SP-Message-Id)
The MessageId is an alphanumerical string value that is generated by the systems connected to IBM Safer Payments to identify a
response. (Identifying messages can be useful if multiple connections to IBM Safer Payments are used in parallel.) IBM Safer
Payments does not use this response for any computational purposes; it only echoes it back in its response (it also uses the
MessageId in case of errors to document the offending message). The "MessageId" may contain any ASCII character between 32
and 126, with the exception of ">", "/", "<" characters.

For "StatusRequest" requests, there are no other attributes in the opening <IRIS> element. The "StatusRequest" request hence is
always like this:

<IRIS Version="1" Message="StatusRequest"></IRIS>

No specific sequence of the attributes listed above within the <IRIS> element is required. Attributes provided in a request but not listed
above are ignored by IBM Safer Payments. Notice that in future releases, we may add attributes and change their sequence.

Responses are also contained within <IRIS> elements. Which attributes are present in the opening IRIS XML element is defined on the

"IBM Safer Payments System Configuration" page. This is an example of a "ModelResponse":

<IRIS Version="..." Message="ModelResponse" IrisInstance="..." MessageTypeId="..." SystemTime="..." UniqueRecordId="..."
"MessageId="..." Mandator_n="..." Revision_n="..." Merging="..." InstanceStatus="..." Error="..." ErrorCode="...">...</IRIS>

If the value of "Respond max fired rules" is defined as non-zero value (on the "IBM Safer Payments System Configuration" page), the
attribute value elements are rather contained within the <Output> elements. Here the <RulesFired> element contains the attribute
NumRulesFired that returns the number of rules that actually fired. Between the opening and closing <RulesFired> elements, a <Rule>
element for each fired rule is provided. Here is an example:

<Rule><Mandator>...</Mandator><Revision>...</Revision><RuleID>...</RuleID><RuleName>...</RuleName>
<RuleComment>...</RuleComment><RuleSetPriority>...</RuleSetPriority><RulePriority>...</RulePriority></Rule>

This is an example of a "StatusResponse":

<IRIS Version="..." Message="StatusResponse" InstanceStatus="..." >...</IRIS>

The opening <IRIS> element of a response (depending on the settings on the "IBM Safer Payments System Configuration" page) may
contain the attributes:

• Message
Type of message:

◦ "ModelResponse" contains IBM Safer Payments computed result for the model request.

◦ "StatusResponse" is what IBM Safer Payments sends back to a "StatusRequest".

• IrisInstance
The name of the IBM Safer Payments instance that has computed the response as defined in the cluster settings.

• MessageTypeId
Echoed from "ModelRequest".

• SystemTime
System timestamp of the IBM Safer Payments instance that has computed the response (taken from the IBM Safer Payments
instance hosting server) in the format "YYYY-MM-DD hh:mm:ss".

• UniqueRecordId
This is the internal unique indentifier of the (primary) IBM Safer Payments instance that has responded to the request. It is
delivered with all responses since there are IBM Safer Payments applications where the service consumer sending the request
needs to keep the exact reference of the transaction message as stored in IBM Safer Payments. Notice that the value is "-1" if the
transaction message request did not result in the creation of a transaction record in IBM Safer Payments (e.g. fraud alerts or
postings that merged to existing records, or transaction messages delivering customer standing data (masterdata)). This attribute
is of numeric type and in the range from 0 to 9,223,372,036,854,775,808.

• MessageId
Echoed from "ModelRequest".

• Mandator_n / Revision_n
These pairs of attributes are contained for each mandator model that participated in the computation of the response. The
numbers n are simple roll numbers, the Mandator_n mandator name is provided as the name of the mandator as defined in IBM
Safer Payments, the respective champion revision is provided as the revision number rnum. Both values can be used by the
service consumer if it needs to exactly record which decision model revisions had an influence in the computation of the response.

• Merging
If the request was a merging source, Merging="1" is returned.

• InstanceStatus
Status of this instance. Possible values are: "Ok", "StartingServices", "Error", "Startup", "RestoringDonor", "RestoringRecipient",
"Invalidated", "Unreachable", "Undetermined", "Lockdown", "WaitingForSynchronization", "Synchronizing", "WaitingForKey",
"RestoreFailed", "Reencryption", "Golive", "ShutdownRequested", "Dumping". Only in status "Ok" and "ShutdownRequested" IBM
Safer Payments processes ModelRequests. Status "ShutdownRequested" indicates a situation in which the service consumer should
switch over to another IBM Safer Payments cluster instance as this one will soon become unavailable.

• Error/ErrorCode
If the value of "ErrorCode" is non-zero (and the text value of "Error" is not empty), IBM Safer Payments has encountered an error
situation that was not severe enough so that IBM Safer Payments had to actually close the connection (see above; for instance, if
because of malformattings, IBM Safer Payments is unsure where the current transaction message ends and the next one begins, it
must close the connection). Errors are listed in the table below:
ErrorCode Error Comment

1000 No message defined for MessageTypeId=n

1001 Doublet detected, message discarded Only available if doubled detection is enabled in IBM Safer Payments

1002 Parsing error in transaction message 'IRIS' element

1003 Incoming transaction message of unknown type

1004 Parsing error in transaction message variables

1005 The attribute 'MessageTypeId' of the XML IRIS element is missing from request

1099 Error message passed through

Notice that in future releases, we may add attributes and change their sequence.

XML value formats

IBM Safer Payments supports different data types for which the following formatting rules apply:

• Numeric
All numeric values may or not contain the period (".") as decimal separator. Negative values are preceeded with the minus ("-").

No exponential format, no currency character(s), and no digit group separators may be present. The number of decimals used
from the values delivered, and the minimum and maximum value depend on the settings of the respective attribute in the model.
Values higher or lower than the limits are clipped to the respective limit.

• Text
All characters between the opening and closing variable element is considered text value. The characters &, <, >, ' and " must be
escaped using predeclared entities & < > ' ". Characters must also be in the ASCII range from 32 to 126 or
128 to 255. Values longer than defined with the respective model attribute are clipped to this length.

• Timestamp
All timestamp values must be ISO-formatted, that is follow exactly the "YYYY-MM-DD hh:mm:ss" format ("YYYY": year in four
digits, "MM": month in two digits, "DD": day in two digits, "hh": 24-hour in two digits, "mm": minutes in two digits, and "ss":
seconds in two digits). If you need to enter a date as a timestamp, add " 12:00:00" to the ISO date format. Milliseconds are not
supported.

• Time interval
All time interval values use a format similar to ISO 8601 for each side of the interval and the "~" symbol to separate them. Several
types of date and time information are supported but both sides of the interval must use the same type:

◦ Full timestamps: Both sides are formatted exactly as you would when sending just a single timestamp. Example:
"2018-03-01 09:00:00~2018-03-15 12:00:00".

◦ Time only: Both sides consist of a time only. Possible formats are "hh:mm:ss", "h:mm:ss", "hh:mm" and "h:mm".

◦ Day of the week only: Both sides use the english names of the weekdays either in full or abbreviated. Case does not matter.
Example: "mon~wed".

◦ Day of the week with time: Combines the type above with a time. All time formats mentioned above can be used. Example:
"mon 9:00~wed 12:00:00".

◦ Day of month and mont only: Both sides appear similar to full timestamps but with a "-" instead of the year and without a
time. Example: "--03-01~--03-15".

◦ Day of month and month with time: Combine the type above with a time. All time formats mentioned above can be used.
Example: "--03-01 9:00~--03-15 12:00:00".

◦ Day of month only: Both sides appear similar to full timestamps but with a "-" instead of the year and the month and without
a time. Example: "----01~----15".

◦ Day of month with time: Combines the type above with a time. All time formats mentioned above can be used. Example:
"----01 9:00~----15 12:00:00".

JSON Format

The MCI allows sending messages in JSON format.

• Because array elements are referenced in the mapping with "[number]", "[" and "]" are forbidden characters in element names.

• If the alias name used in the mapping definition of a message contains space characters, they may be present in the respective
XML element.

Example of a JSON message request:

{"Message": {"Amount": 5497558138.88,"Payer": {"PAN": 36028797018963968},"Array": ["Value1","Value2"],"Timestamp":
"YYYY-MM-DD hh:mm:ss"}}

Nested elements can be accessed by writing the path into the alias in mappings, where "/" seperates the keys. For example to access
the element Amount you need to set Message/Amount as mapping alias.To access the second element in the array, it would be
"Message/Array[1]".

Example of a JSON message response:

{
"IRIS": {
"Version": 1,
"Message": "ModelResponse",
"IrisInstance": "InstanceName",
"MessageTypeId": 11,
"SystemTime": "2014-04-22 21:05:18",
"UniqueRecordId": 123456,
"MessageId": "0af87c75503b4401",
"Mandator": [
{
"Mandatorname": "MyBank",
"Revision": 144
}
],
"Merging": true,
"InstanceStatus": "Ok",
"Latency": 0.71,
"Error": "",
"ErrorCode": 0
},
"Outputs": {
"transactionOut": {
"computedOut": {
"values": [

"aaaa",
"aaaa"
]
},
"hexValue": "xxxxxxxxxxxxxxxx"
}
},
"RulesFired": {
"NumRulesFired": 1,
"Rules": [
{
"Mandator": "MyBank",
"Revision": 144,
"RuleID": 2014,
"RuleName": "ATM Skimming",
"RuleComment": "In connection with skimmed card data from ATMs.",
"RuleSetPriority": 1000.0,
"RulePriority": 750
}
]
}
}

The response has the same information as for XML responses. All output attributes mapped for the message are written in the element
"Outputs". You can also use the mapping to nest all outputs, with the same syntax, which is used for incoming messages. If array
elements are skipped, for example only output attribute with mapping array[3] is enabled for the message, then positions 0 to 2 are
filled with empty strings.

HTTP capabilities

The MCI also supports transaction message requests as HTTP POST requests. While persistent connections (as defined in HTTP 1.1) are
supported, chunked transfer-encoding is not supported. Notice that none of the POST header values including the path value will be
evaluated by IBM Safer Payments. IBM Safer Payments only evaluates the request's contents enclosed with the <IRIS> elements.

Direction

The MCI interface is an incoming interface, each connection is initiated by the service consumer and also terminated by it.

Custom Messages

The MCI allows sending custom messages and receiving custom responses. To send custom messages through the MCI interface, you
would need to define a custom header in the HTTP request with the key being "parser" and value "custom". You would also need to
configure the MCI configuration settings accordingly and make sure you have the custom parser library in place. The default XML format
only supports a single layer of elements under the IRIS tag, with no support for nested elements.

Notice that further information on the MCI is provided at the IBM Safer Payments support.

back to top

10.1.1.3 Application Programming Interface Overview

The Application Programming Interface (aka "user access interface") connects the IBM Safer Payments server component to the IBM
Safer Payments client component used by end users (via browser software) and to third-party software components (the term "Third-
party components" in this context is used to summarize any other software component that accesses or extends IBM Safer Payments
functionality. These components are in the sense optional that IBM Safer Payments in itself contains all standard functionality for fraud
prevention applications. Many IBM Safer Payments users, however, like to expand, customize or integrate IBM Safer Payments with their
systems).

Cluster installation

Since IBM Safer Payments is typically installed in a clustered environment involving multiple IBM Safer Payments server instance nodes,
the connection from the IBM Safer Payments clients (running in the users' browsers) to the cluster can be facilitated in different ways.

In an IBM Safer Payments server cluster, only one instance serves user requests at a time ("active API"). The API of all other instances
of the cluster remains deactivated. This is necessary as otherwise multiple users logged on to different instances could change the same
data object in a non-consistent way.

As long as all instances are in synchronization, the administrator can freely switch the API activation between IBM Safer Payments
server instances from the cluster settings page or remotely from scripts. Notice that when the API is activated on another instance --
deactivating the API on the current instance -- all user sessions are terminated as a consequence of this, and all unsaved data of users
is lost.

Notice that all instances with deactivated API are still accessible via its API for certain administrational tasks (in particular, cluster
administration). This ensures that if IBM Safer Payments server instance with the active API becomes unavailable, the administrators
can use any other IBM Safer Payments server instance to switch the active API.

• Simple implementation
The most simple implementation of user access in a cluster installation thus is to have IBM Safer Payments users use one
"dedicated" IBM Safer Payments server instance that has its API activated. In case of failure, update, or any other kind of

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

scheduled maintenance that requires this instance to be taken down, if users shall be able to continue their work, the API must be
activated on another IBM Safer Payments server instance, and the users must resume working on this instance. For IBM Safer
Payments cluster installations with very few users (for example, installations not using the case investigation, analysis, and
reporting capability of IBM Safer Payments), or installations in which the user access is not 24/7, this approach often is sufficient.

• Failover implementation
With larger number of users, telling them to use different servers becomes a burden. In this case, you may use an external fail-
over switch to route user requests automatically to the active API IBM Safer Payments instance. This makes all IBM Safer
Payments instances API ports visible under the same IP address and ports for all users. If the administrator now switches the
active API to another instance, users can continue their work after they logged in again. The administrator intervention can be
from within IBM Safer Payments (administration/cluster page), or remotely manually or automatically.

IBM Safer Payments client

The API uses a subset of HTTP (or HTTPS) as transfer protocol: URL encoded HTTP requests to send information from the browser to the
IBM Safer Payments server as AJAX, and JSON formatted data for the response sent back from the IBM Safer Payments server to the
browser.

The IBM Safer Payments client component is implemented as a set of JavaScript libraries that runs entirely within each user PC's web
browser (the libraries are automatically loaded (and cached) by the web browser from the IBM Safer Payments server on an as-needed
basis). Its internal architecture follows the MVC (Model View Controller) approach that decouples data from its representation. Therefore
the communication between IBM Safer Payments server and client is strictly data based (simply put: no HTML). The MVC sends AJAX
requests to IBM Safer Payments describing the action that needs to be performed by IBM Safer Payments or the data needed and
receives back status information and data in JSON format.

The same technology is used by third-party software components to access IBM Safer Payments functions and data.

To serve the needs of both the IBM Safer Payments client and third-party components, the IBM Safer Payments API comprises a
superset of API calls (AJAX request types). The API does not differentiate between functions for the IBM Safer Payments client and
third-party components, thus third party components may access the full IBM Safer Payments client functionality. The IBM Safer
Payments API hence is comprehensive and for instance would even allow for third parties to write a completely different user access
interface.

In addition to the IBM Safer Payments API requests, the IBM Safer Payments client also requests a number of static files from IBM Safer
Payments (these static files are contained in the "inc" subdirectory of the IBM Safer Payments installation), including JavaScript libraries,
CSS and image files.

Because of the HTTP transport layer used by the IBM Safer Payments API, the IBM Safer Payments server typically is configured to listen
to requests on the HTTP port that by default is 80.

Request/response formats

The IBM Safer Payments API is based on AJAX technology. AJAX typically refers to a combination of techniques, including the use of
JavaScript on the browser side, HTTP as transport layer/protocol and XML as format for the responses. The IBM Safer Payments client
and API implementation differs from this in one respect. Responses from IBM Safer Payments are not XML, but JSON formatted. The
primary reason for it is that JSON is more succinct than XML, however, since both formats can be transferred easily back and forth, the
choice of JSON over XML for the AJAX responses has no practical consequences.

API port ping

To test if the API is active on a specific port, the request:

iris.mybank.com?{"request":"ping"}

can be sent to the API. If the API is active, this request is responded with:

{"responseStatus":["OK","API_ACTIVE"],"reloadUserProfile":false}

even when the requesting party has not established a valid session. Notice that it is not necessary or recommended to ping the API
port. This functionality is provided only for testing and for certain load balancing / failover equipment.

Requests

IBM Safer Payments API requests have one JSON object after the IBM Safer Payments installation URL. Here is an example:

iris.mybank.com?{"request":"save","uid":-1,"type":"","mandator":1033,"revision":1051,"ruleset":-1,"data":{}}

Of these JSON variables, only the first one "request" is mandatory. If the other variables must be provided or not, depends on the type
of request. If they are provided, they must be provided in this sequence:

• request
This variable identifies the request type as text value. It must always be present for IBM Safer Payments to understand what it is

asked to do.

• uid
Many requests reference an IBM Safer Payments element identified by a UID. For these requests, the UID is provided with this
JSON variable. For requests that save settings of an IBM Safer Payments element, the value "-1" indicates that this IBM Safer
Payments element has not yet been created in IBM Safer Payments and therefore must first be created before saved. IBM Safer
Payments in this case generates a new unique ID (UID) for it.

• type
Some requests exist in variants. In this case, the type variable denotes this variant.

• mandator
For all requests that target mandator specific actions, this variable transmits the UID of the respective mandator.

• revision
For all requests that target model revision specific actions, this variable transmits the UID of the respective revision.

• ruleset
For all requests that target ruleset specific actions, this variable transmits the UID of the respective ruleset.

• data
Some requests, mostly the ones that save an entire IBM Safer Payments element, need to deliver structured data to the IBM Safer
Payments server. In this case, the data variable delivers a JSON object with this data.

The IBM Safer Payments API supports only GET type requests. There must not be space or other "filler" characters outside text values in
quotes.

Responses

All responses from IBM Safer Payments to the browser are JSON formatted. All JSON variable names in IBM Safer Payments start with
small caps and – if name is combined – use camel case thereafter. They all first contain the (optional) actual responseData followed by
the variable "responseStatus" describing the status of the response:

{ responseData, "responseStatus": ["status", "feedbacktext"], "reloadUserProfile" : true|false, "csrfToken": csrfToken }

With the variable "responseStatus", an array containing one or two (first one mandatory) values, depending on the response status:

• OK with optional feedback
status is "OK" and feedbacktext may contain informational feedback that can be shown to a user (if the request was from a UI) or
a log file (if the request was from a third party component).

• Warning
status is "W" and feedbacktext contains an warning feedback that can be shown to a user (if the request was from a UI) or a log
file (if the request was from a third party component).

• Error
status is "E" and feedbacktext contains an error feedback that can be shown to a user (if the request was from a UI) or a log file (if
the request was from a third party component). Such an error should be alerted to the user with a modal dialog box.

• Fatal
status is "F" and feedbacktext contains an error feedback that can be shown to a user (if the request was from a UI) or a log file (if
the request was from a third party component). The difference to the "Error" is that "Fatal" is for errors that are assumed to be not
correctable by the user. They typically are assumed internal software (UI-service) mismatches or the result of improper API
requests (that could for instance also be the result of a user manipulating HTTP requests). Because "Fatals" are not expected to
ever be shown to a user, they are in English language and not translated into any language.

• Session Expired
status is "SEX" and feedbacktext contains an informational feedback that can be shown to a user (if the request was from a UI) or
a log file (if the request was from a third party component).

With many IBM Safer Payments API requests, there is no responseData, leaving "responseStatus" the only returned variable.

The "csrfToken" is provided to protect IBM Safer Payments against "cross site request forgery" (constant for a session).

Sessions

All API access, whether by users or by third-party components, is granted only within a valid IBM Safer Payments session and thus
require a user account to be associated with (Because the JavaScript code in the browser cannot be fully protected against
manipulation, the session Id is stored and checked to be valid on the IBM Safer Payments server, where it cannot be manipulated). In
addition, all API requests are subject to the user/group privilege model of IBM Safer Payments. Thus the first step using API requests is
to initiate a session with the IBM Safer Payments server.

How this is done differs a bit between user access and third-party component access. User access requires one first step before because
users are able to access the IBM Safer Payments server from a standard web browser with no additional software installed.

Typical web sites use an HTTP server to deliver HTML pages to the browser upon its requests. These HTML pages may be static or
server-generated. IBM Safer Payments uses a radically different approach.

When users access IBM Safer Payments via the installation URL, the embedded HTTP service function of IBM Safer Payments delivers an
HTML page to the browser that only contains links to JavaScript libraries (In other words, the HTML page only contains a header with
the links to the JS libraries and the body contains the call to the JS library main function. It is – with the exception of the links – empty).
These libraries contain the entire user access component of IBM Safer Payments that from that moment on run user access to IBM Safer
Payments. No other HTML page is loaded after this.

Once the JS libraries are loaded (depending on the environment, this process typically takes less than a second), the IBM Safer
Payments MVC (model view controller) in the web browser is started. Detecting that no session is valid; the controller first invokes the
log-in process. Then, depending on the user actions, the controller moderates the communication between the browser and IBM Safer

Payments via AJAX requests. For third-party component IBM Safer Payments API access, a session starts directly with the invocation of
the login process.

The API identifies a session through a browser cookie. The response to a successful login request contains an HTTP cookie that is stored
with the browser. For third-party component access, this cookie is set for instance by the line:

Set-Cookie: sessionIdn=sessionId;path=/; HttpOnly

contained in the HTTP header of the IBM Safer Payments response.

Notice n corresponds to the instance ID of the respective IBM Safer Payments instance (as defined in the "id=n" command line
parameter). This enables multiple sessions with different IBM Safer Payments instances on the same browser.

Now every request from the browser or the third-party component must send the sessionId as cookie in its HTTP request header, for
instance by including the line:

Cookie: sessionIdn=sessionId

in its header. The session ID value remains the same during the session.

If enabled in its settings, IBM Safer Payments uses a second session token to prevent CSRF (cross-site request forgery) attacks. This
token is submitted as part of each API response as JSON variable "csrfToken" explained above. Its value must be passed back with each
subsequent request as the HTTP header element:

CsrfToken: csrfToken

Remarks

• The sequence of JSON request objects and variables must exactly follow the sequence specified. There may be objects/variables
missing (if the default value applied would work), and there may be additional objects/variables (which will be ignored), but the
defined objects/variables must always be provided in the specified sequence.

• Notice that whitespaces and linefeeds are added in this documentation for readability with any printed JSON example. The actual
responses of the IBM Safer Payments API may not have these for reasons of efficiency.

• The "reloadUserProfile"=true variable indicates if an administration change impacts the current user session. If this variable is
present, the user profile – if cached – should be updated from IBM Safer Payments to avoid errors from actions for which no
privileges exist.

A full reference on all API requests and responses can be obtained from the IBM Safer Payments support.

Multi-user capabilities

IBM Safer Payments is designed for a large number of concurrent users. It thus keeps locks for viewed-/edited contents at a minimum
to ensure maximum productivity. Different lock mechanisms are used for different parts of IBM Safer Payments:

• Administrative functions
Most administration pages have a table that lists the number of existing items. Clicking on an entity opens an entry form below
that lets the user view the properties of the respective item. Users with edit privileges for this item in addition get a "New XYZ"
button above the table to open the entry form empty for the creation of a new item, and when they click on an existing item, the
form opens editable and "Save"/"Delete" buttons are presented. To avoid that multiple users edit the same item, the first user that
opens an item in editable form implicitly reserves the item (the "reservation" is kept until the "lock timeout" period, as defined in
this section, is not expired). Each other user that clicks on the item in the table will only get the form in non-editable mode.
Because with all items the item names must be unique, the uniqueness of the item name is checked right within the JavaScript
code in the form. However, because multiple users with edit privileges can simultaneously create new items, the unlikely case that
two users simultaneously create two items with the same name, there is a second check for name doublets when the item
properties are actually saved.

• Decision model maintenance
Locking of model revisions is described on the online help page of the revision selection on the "model" tab page.

• Case investigation
Locking of cases is described on the online help page of the "investigation" tab page.

Direction

The API interface is an incoming interface, each connection is initiated and terminated by the web browser, its (reverse) proxy, or a
third-party application.

back to top

10.1.1.4 Batch Data Interface Overview

The batch data interface ("BDI") is used for various purposes in IBM Safer Payments. In essence, it is a vehicle to get data in and out of
IBM Safer Payments as data files. The two primary uses of this interface are:

• Ad hoc

• Periodical

Typical ad hoc use cases are to get analysis data into IBM Safer Payments, for example as part of a feasibility study or offline model
generation, or to extract data from IBM Safer Payments for use in other systems. The job scheduling page (administration tab) provides
a one-glance overview on all jobs scheduled and their status.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

Data format

IBM Safer Payments supports multiple formats for batch files:

• CSV
Character separated value ("CSV") format with the following formatting rules:

◦ Text format files, using LF (line feed) or CRLF (carriage return and line feed) as record delimiters.

◦ Field separators are either commas, semicolons, or tab control characters. Notice that IBM Safer Payments interprets the file
separator used in the header line and utilizes this for the entire file. You may thus not mix delimiters.

◦ The first row contains all mapping definition alias names of the message of the load job, separated by the field separator.

◦ Notice that the data files must have the ".csv" suffix in their file names.

• FCD
Fixed column data ("FCD") format using text format files with fixed length data ranges (no delimiters). Unlike CSV files, such data
files do not contain a header row that identifies which variables are contained in each data row and what their sequence is. This
information must be provided with format definitions from mappings. In this case, the start and length of each variable to be
mapped to an IBM Safer Payments attribute are defined directly with the respective message mapping.

• Json
Messages can also be imported in the JSON format. Every line must represent one complete JSON message, which can be parsed.
"[" and "]" are forbidden characters for fieldnames, because these are used in the mapping to access array elements of the JSON

Value format

IBM Safer Payments supports different data types for which the following formatting rules apply:

• Numeric
All numeric values may or not contain the period (".") as decimal separator. Negative values are preceded with the minus ("-"). No
exponential format, no currency character(s), and no digit group separators may be present. The number of decimals used from
the values delivered, and the minimum and maximum value depend on the settings of the respective attribute in the model. Values
higher or lower than the limits are clipped to the respective limit.

• Text
Must be put within quotes ("). All characters between the opening and closing quote are considered text value. The quote
characters " may not be part of a batch data delivered value. Characters must also be in the ASCII range from 32 to 126 or 128 to
255. Values longer than defined with the respective model attribute are clipped to this length.

• Timestamp
All timestamp values must be ISO-formatted, that is follow exactly the "YYYY-MM-DD hh:mm:ss" format ("YYYY": year in four
digits, "MM": month in two digits, "DD": day in two digits, "hh": 24-hour in two digits, "mm": minutes in two digits, and "ss":
seconds in two digits). If you need to enter a date as a timestamp, add " 12:00:00" to the ISO date format. Milliseconds are not
supported.

• Time interval
All time interval values use a format similar to ISO 8601 for each side of the interval and the "~" symbol to separate them. Several
types of date and time information are supported but both sides of the interval must use the same type:

◦ Full timestamps: Both sides are formatted exactly as you would when sending just a single timestamp. Example:
"2018-03-01 09:00:00~2018-03-15 12:00:00".

◦ Time only: Both sides consist of a time only. Possible formats are "hh:mm:ss", "h:mm:ss", "hh:mm" and "h:mm".

◦ Day of the week only: Both sides use the english names of the weekdays either in full or abbreviated. Case does not matter.
Example: "mon~wed".

◦ Day of the week with time: Combines the type above with a time. All time formats mentioned above can be used. Example:
"mon 9:00~wed 12:00:00".

◦ Day of month and mont only: Both sides appear similar to full timestamps but with a "-" instead of the year and without a
time. Example: "--03-01~--03-15".

◦ Day of month and month with time: Combine the type above with a time. All time formats mentioned above can be used.
Example: "--03-01 9:00~--03-15 12:00:00".

◦ Day of month only: Both sides appear similar to full timestamps but with a "-" instead of the year and the month and without
a time. Example: "----01~----15".

◦ Day of month with time: Combines the type above with a time. All time formats mentioned above can be used. Example:
"----01 9:00~----15 12:00:00".

If files are to be used as inputs for IBM Safer Payments that do not comply with these settings, they must be converted outside IBM
Safer Payments.

Semaphore files

Data files used in the BDI typically are relatively large, so that it can take some time to write them in the incoming directory. If a load
job would be started while the data is not fully transmitted, the load job could fail to load all records. Therefore the BDI supports
"semaphore files". These files have the same name as the respective data file, but the suffix ".sem" . If the "Wait for semaphore file"
checkbox of a respective job is checked, the loading of the data file will not started before the respective semaphore file is found in the
incoming directory. Notice that the contents of the semaphore file is ignored; it thus is typically empty.

Interruptions and logging

During loading of a data file, a ".log" file is created that has the same name as the data file loaded. It contains a response entry for each
record (line) of the data file that was successfully loaded. Each response entry is terminated by a line feed.

The response entry contains the output attributes and their values (if defined with the attribute mappings of the model revision), plus:

• the timestamp of the system time (UTC) the record was processed,

• the URID that IBM Safer Payments has associated the record with, and

• the computation (error) status.

If loading of a file ever gets interrupted during file loading, IBM Safer Payments uses the information of the log file to commence file
loading where it was stopped.

Notice that processing of batch files can be interrupted (and later restarted) after each record. This allows shutting down an IBM Safer
Payments instance before all jobs are completed and resume them at a later point in time.

However, if "Curtail masterdata" or "Re-create interval index" is enabled, the job will not be resumed after interruption. Instead, this will
lead to a re-execution of the whole job. Interruption may not only be performed manually and when shutting down the instance but also
during golives, saving of various elements (e.g. case classes, notifications, reminders...), updating of mandators, rebuilding of indexes,
reloading of compliance lists. It is thus recommended to perform these kinds of jobs when there is low activity on the cluster.

Archiving and error handling

Once a data file is processed without errors, it is moved together with its ".log" and – if exists – its ".sem" file to the archive directory
specified for this job.

If an error occurs, the respective file is moved to the error directory specified for this job. In this case, the records processed up to the
moment the error manifests itself are logged in the ".log" file. If any of the archive or error directory paths is empty, the move is
suppressed.

Messages

Records in a batch file are considered transaction messages just as those handled by the MCI. The "Message type ID" is the same
(numeric) value used by IBM Safer Payments to identify the type of transaction message (messages are created and maintained in their
own section on the administration tab, see messages for details). Message type ID can be associated with the BDI job either for the
entire file, or read for each record (for more details, refer to jobs).

Importing encrypted job files

If "Job encryption enabled" is activated, encrypted job files can be imported through the BDI interface. See Importing encrypted job files
for further details.

back to top

10.1.1.5 Status and Control Interface Overview

The SCI is used between IBM Safer Payments instances of a cluster to exchange status information and to dispatch control commands.
It is hence the only IBM Safer Payments interface that cannot be deactivated.

During operation, each IBM Safer Payments instance can send "irisInstanceStatusRequest" type JSON formatted requests to all the
other IBM Safer Payments instances to form a "complete picture" of the entire IBM Safer Payments cluster.

Direction

The SCI consists of both an incoming interface and an outgoing interface for each other IBM Safer Payments instance in the cluster.
While you may enable/disable the incoming interface, the outgoing interface always remains enabled. If the target instance's incoming
SCI is unreachable or disabled, the sender IBM Safer Payments instance considers this target instance as non-reachable (and displays
this accordingly on the cluster page).

back to top

10.1.1.6 Encrypted Communication Interface Overview

The ECI is used between IBM Safer Payments instances of a cluster to exchange AES encryption keys. It is not needed for an
unencrypted IBM Safer Payments installation. If deactivated, no exchange of encrypted keys is possible.

Direction

The ECI consists of both an incoming interface and an outgoing interface for each other IBM Safer Payments instance in the cluster.
While you may enable/disable the incoming interface, the outgoing interface always remains enabled. If the target instance's incoming
ECI is unreachable or disabled, the sender IBM Safer Payments instance considers this target instance as non-reachable (and displays
this accordingly on the cluster page).

back to top

10.1.1.7 FastLink Interface Overview

The FLI (FastLink Interface) is used between IBM Safer Payments instances of a cluster to exchange configuration data and transaction
data for keeping all IBM Safer Payments instances of a cluster at the same configuration and data level. It uses JSON (JavaScript Object
Notation) formatted messages over IP networking. It transfers different types of messages:

• Cc-ed transactions

• Configuration and model revision updates

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• System and audit event log messages

Buffering

Each IBM Safer Payments instance creates an outgoing queue that can temporarily store (buffer) the messages to be sent to the
respective other IBM Safer Payments instance.

The queue buffer needs to be sized large enough that it can store messages for even multi-hour or multi-day outages or non-
reachability of instances. During operations, each IBM Safer Payments instance writes all its messages that require replication to the
other IBM Safer Payments instances (cf. list above) into this disk buffer. A separate service thread for each queue continuously reads
from this buffer and transmits the messages to the target IBM Safer Payments instance. Once the target IBM Safer Payments instance
has received and processed the message, it acknowledges this to the sending queue, which in turn erases the message from its buffer.

In normal operational conditions, there should thus only be a few messages "in transit". Thus a threshold can be specified with IBM
Safer Payments settings which defines when IBM Safer Payments considers the number of messages in transit to be so low that it
considers the IBM Safer Payments instances "in sync".

There are a number of situations in which messages can build up in the FLI outgoing queue buffers:

• Peak load
Each IBM Safer Payments instance opens exactly one FLI outgoing queue connection for each other IBM Safer Payments instance.
Thus all transmission of replication messages uses only one connection and is hence computed mostly in a single thread on the
target IBM Safer Payments instance. In most IBM Safer Payments installations, however, there are multiple MCI connections and
there may be multiple BDI jobs performing in parallel. It could thus be that the total throughout of messages processed by one
IBM Safer Payments instance is (temporarily) higher than what one connection/servicethread to/at the target IBM Safer Payments
instance can process. In this case, messages can build up in the buffer. As soon as the total throughput decreases, the buffered
messages are transferred to the target faster than new ones come in and the buffer empties over time. Notice that any IBM Safer
Payments installation must be sized so that the average transaction load does not exceed the FLI throughput as otherwise the
buffers will overflow.

• Downtime
Non-availability of an IBM Safer Payments instance in a cluster can stem from various causes, such as network outages,
server/infrastructure hardware/software trouble, or from maintenance tasks. Certain maintenance tasks require an IBM Safer
Payments instance to be taken offline or down:

◦ Backup
Certain backup strategies require the files of the IBM Safer Payments instance to be backed up to remain unchanged during
backup, thus requiring temporary disablement of all incoming interface of this instance.

◦ IBM Safer Payments live updates
Certain IBM Safer Payments software updates can be made during full live operation of the IBM Safer Payments cluster. In
this case, one instance by one is taken offline and shutdown, and restarted with the new software release.

◦ Operating system updates/upgrades

◦ Server hardware updates/upgrades

In all such cases, where one IBM Safer Payments instance is temporarily unavailable, the respective FLI outgoing queues buffer the
replication messages so that once the IBM Safer Payments instance becomes available again, the FLI connections are automatically re-
established and the buffer contents is transmitted. As soon as the number of messages in transit is below the defined threshold, the IBM
Safer Payments instance is considered in sync. There are two timing parameters that can be set on the system configuration page to
control the timing behaviour of this process.

Buffer sizing

The size of the FLI outgoing queue buffer can also be set on the system configuration page. It must be large enough to hold the
replication messages for the maximum duration of an IBM Safer Payments instance non-availability you need to be covered for. If your
configuration is using the deferred writing option, keep in mind that you will need the configured amount of memory both on disk and in
main memory. Please consult with the IBM Safer Payments support if you are unsure about how to determine the correct size for your
application.

Buffer management

If an IBM Safer Payments FLI outgoing queue buffer overflow occurs, e.g. if the outage of an IBM Safer Payments instance takes longer
than sizing assumed, the IBM Safer Payments cluster has no means anymore to synchronize the non-available IBM Safer Payments
instance. The outgoing queue buffers of the other IBM Safer Payments instances are thus dropped, and the non-available IBM Safer
Payments instance must be re-created from the other instance; must be "recovered" as described as "cold start" procedure in cluster
management.

To reduce the risk of a buffer overflow, IBM Safer Payments automatically takes certain measures when buffer space becomes scarce:

• BDI brake
With the batch data interface section on the system configuration page, you may define a percentage threshold. If the buffer filling
level of at least one FLI outgoing buffers passes this threshold, the batch data loading jobs on this instance will be frozen This
ensures that the FLI buffers are not used up by data that is already stored on disk. All jobs continue loading once the threshold is
no longer exceeded. Typical values for this threshold range between 10% and 50%.

• MCI connection/MQ closing
With the FastLink interface section on the system configuration page, you may define another percentage threshold for MCI/MQ
closings. This threshold is typically set between 75% to 95% and thus much higher than the BDI brake threshold and once the
buffer filling level of at least one FLI outgoing buffers passes this threshold, message command interface connections are closed
and MQ stops pulling messages. In a typical IBM Safer Payments cluster setup, this would cause the connected systems to route
their transaction messages to the message command interface of another instance that may have its FLI buffers less filled. If this
is not the case, the connected systems will not find an IBM Safer Payments instance in the cluster that will accept their transaction

messages and will react accordingly. In this situation, transaction messages may get lost. Yet it is important to "reserve" a small
amount of buffer space for replication messages that deal with configuration changes. If such messages get lost because of a
buffer overflow, the IBM Safer Payments instance concerned must be recovered in a complex process.

Notice that there are status alarm indicators that let you monitor the FLI buffers and that can alert administrators to potential buffer
overflows before they occur.

Direction

The FLI consists of both an incoming interface and outgoing interfaces (queues) for each other IBM Safer Payments instance in the
cluster. While you may enable/disable the incoming interface, the outgoing interface always remains enabled. If the target instance's
incoming FLI is unreachable or disabled, the outgoing interfaces automatically buffer all data and resend it once the target's incoming
FLI becomes responsive again.

Instance authentication via checksums

During startup cluster instances exchange an encryption key via the ECI. When sending FLI messages, a checksum for each message is
computed, encrypted and also sent. The receiving instance uses the key to decrypt the checksum and validate it. The validation of
checksums can be deactivated in the "System configuration". When enabled only authorized systems (i.e. the cluster instances) can
send out FLI messages and change the cluster.

back to top

10.1.1.8 Relational Database Interface

The RDI is optional. During standard operation, IBM Safer Payments only uses its multi-tiered, cached data repositories (aka CDC, MDC,
DDC) and thus is self-contained. From these repositories, data can conveniently be retrieved using IBM Safer Payments' query function.

However, IBM Safer Payments data storage has been optimized for IBM Safer Payments' real-time and analytical needs. Thus customers
seeking the type of access to their IBM Safer Payments data that a relational database management system provides can connect any
standard database management system (DBMS) to IBM Safer Payments.

To ensure that DBMS operations can never disturb IBM Safer Payments real-time operations, the RDI is designed as a file interface,
where IBM Safer Payments generates SQL DML (data manipulation language) statements that can be read by a DBMS. The necessary
DBMS loading scripts are not part of the IBM Safer Payments product.

An example of such a statement could look like (depending on the configuration) as follows:

INSERT INTO DEFAULT_TRANSACTIONS (`PRIMARY_URID`, `PRIMARY_INSTANCE_ID`, `SYSTEM_TIMESTAMP`,
`INPUT_ATTRIBUTE_1`, `INPUT_ATTRIBUTE_2`, …, `OUTPUT_ATTRIBUTE_1`, …) VALUES (101, 1, '2016-09-01 09:45:00',
'Input_Value_1', Input_Value_2, …, 'Output_Value_1', …)

For table definition for cases see below

Configuration

• To ensure the correct syntax and escaping choose the database format from the list of currently supported formats.

• The encrypted values can be masked in the SQL DML statements by enabling the checkbox.

• The file creation interval can be selected for file per (second/minute/hour). Standard is one file per hour.

• If needed, a line break can be added after a defined number of characters. To enable this, enter the number of characters after
which at least a line break should be set. If a text values length is greater than the set value, it will be truncated by defined line
break length - 2, because the quotes need to be considered here. If it is set to zero, no line breaks will be added. There will always
be a line break after each statement

Transaction data configuration

• The RDI can be enabled for transactions with the checkbox. There will only be SQL DML transactions statements created for
mandators that have 'Transaction Settings' enabled.

• Only the selected attributes will be included in the SQL DML statements.

• The table name for transactions has to be the same name as the table in your database. The default name is
"DEFAULT_TRANSACTIONS" but you can choose a different name.

• The SQL DML files for transaction data will be saved in the location of the delivery path.

Cases data configuration

• The RDI can be enabled for cases with the checkbox. There will only be SQL DML cases statements created for mandators that
have 'Cases Settings' enabled. Some data will be exported into separate tables, like Audittrail, Reporting Attributes, Blocklist hits,
hitting Urid, collusions fired, first parties and rules fired.

• The table name for cases has to be the same name as the table in your database. The default name is "DEFAULT_CASES" but you
can choose a different name.

• The SQL DML files for case data will be saved in the location of the delivery path.

File name convention

All SQL files generated have the name "sp_transaction_data_i_m_YYYY-MM-DD_hh-mm-ss.sql" where i is the IBM Safer Payments
instance id, m is the name of the mandator and YYYY-MM-DD_hh-mm-ss is the timestamp the file was generated.

Remarks

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Each INSERT and UPDATE statement is terminated by a line feed.

• Attribute names are converted to SQL standard (all caps, whitespaces replaced by underscore characters, leading numbers
preceded by underscores, etc.). Best observe some IBM Safer Payments generated SQL statements to verify that the attribute
names are what you expect them to be.

• All selected attributes are included in the INSERT and UPDATE statements if they are not null (value was set by either the delivered
transaction message/record or computed by profiling or rule conclusion). Exceptions to this are the selected Boolean, IP and
Hexadecimal attributes which will be included in any case. Null value attributes are not included so that the respective values in the
database are also null.

• The "Primary Urid" and "Primary Instance Id" attributes are always delivered with each SQL DML statement, even though they are
not explicitly defined attributes in IBM Safer Payments.

• Notice that the IBM Safer Payments generated SQL files require the database structure to be already established within the DBMS.

• The selected input/output attribute names of the champion are used as column names.

• A new file is generated according to the settings every second, minute or hour. The file name timestamp thus indicates that exact
time. If there was no SQL DML statement for a certain second, the respective file is not generated.

• There is no removal function for outdated SQL files in IBM Safer Payments. You thus need to use for instance a script for feeding
the files' contents into the DBMS and archive/delete them.

Table definition for cases

back to top

10.1.1.9 Alert Message Interface Overview

IBM Safer Payments has an outgoing message interface for alert messages. Alert messages include:

• Status alarm indicator (SAI) alert messages

• Investigation alert messages (Case actions, External Queries)

• Processng alert messages (Notifications)

Alert messages are sent by IBM Safer Payments using one of the following protocols:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• file system (plain text)

• file system (docx)

• HTTP message

• IP message

• ODBC SQL

• SMTP (email, SMS)

For each of these protocols IBM Safer Payments uses a dedicated outgoing queue, which sends the produced messages using
asynchronous, parallel processing. The AMI is an outgoing interface. While it is possible to work with responses and response codes, the
AMI does not provide any functionality to connect to Safer Payments from external applications, such as mail or database servers. To
send information to IBM Safer Payments, use the BDI, MCI, or MQI.

Because it is assumed that all IBM Safer Payments instances use the same SMTP server, its configuration is made in the "settings.iris"
file (administration system configuration page) rather than in the "cluster.iris" file (cluster administration page). This configuration will
then also be offered as a template to all outgoing channel configurations using the SMTP protocol. Activation and de-activation of the
AMI or specific protocols are controlled by the cluster administration page and stored individually for every instance.

back to top

10.1.1.10 WebSphere MQ Interface

The WebSphere MQ Interface ("MQI") connects IBM Safer Payments to the messaging solution WebSphere MQ.

WebSphere MQ enables IBM Safer Payments to receive transactions from a queue and write responses to another. The application
writing the transactions and reading the response is independent of IBM Safer Payments.

Notice that further information on WebSphere MQ is provided in the appropriate WebSphere MQ documentation.

System Requirements

To use WebSphere MQ Interface, you need an existing MQ environment. This includes a MQ server installation in your network and a MQ
client version 8.0.0.5 (or later) installed on your IBM Safer Payments machine. In order to enable IBM Safer Payments to make use of
the client installation, "libmqic_r.so" has to be located on (or linked to) the library search part of your IBM Safer Payments installation. It
is not possible to use WebSphere MQ Interface without an existing MQ installation.

Troubleshooting

The MQI will print out event log message 648 whenever it connects to a queue manager or a queue. Errors during message processing
are reported with event log messages 184 and 441. If a connection is not possible, event log message 649 will be printed containing MQ
reason codes. Please visit the IBM MQ Knowledge Base for more information about those codes.

back to top

10.1.2 SSL Settings

This section lets you define the SSL settings for this interface.

IBM Safer Payments needs two external contents to support an encrypted connection: certificate and private key files. In PEM format,
both contents can be in the same file. If you are using encrypted certificates, IBM Safer Payments needs its passphrase to unlock the
certificate. You may choose to either have IBM Safer Payments ask the operator for this passphrase each time it starts up, or a (secure)
file location where the passphrase is stored.

Form Settings

• Certificate file
The server certificate file in PEM format. This file has to fit with the Interface IP address, if the certificate validation is enabled

• Certificate private key file
The private key file of server certificate in PEM format. This file can be the same file, as the server certificate file.

• Diffie Hellman file
(Optional) The static diffie hellman file. This file is only needed, if you like to have a static diffie hellman key exchange.

• Certificate passphrase entry

◦ Passphrase input via console during startup:
You will have to insert the passphrase over console, every time IBM Safer Payments starts.

◦ Read passphrase from file during startup:
IBM Safer Payments will read the passphrase from an unencrypted file on startup.

◦ Use unencrypted private key:
The private key of the server certificate is unencrypted. No need to insert a passphrase.

• Reject TLS 1.0
Reject encrypted connections using TLS 1.0. Reject TLS 1.0 is recommended as countermeasure against the known "BEAST"
vulnerability in CBC ciphers.

• Reject TLS 1.1
Reject encrypted connections using TLS 1.1.

• Validate server certificate

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

(Only in ECI) Validate the server certificate of outgoing connections against rfc 2818.

• Server CA certificate file
(Only in ECI) The certificate of a remote server (in outgoing connections) must be signed by this Certificate Authority.

• Server CRL file / path
(Only in ECI) The certificate of a remote server (in outgoing connections) must not be rejected by this Certificate Revokion List.
This CRL is one file, that contains all revoked certificates.

• Validate client certificate
Validate the client certificate of incoming connections.

• Validate client certificate CN (API only)
Checks if the installed client certificate's Common Name (CN) fits with the users "login". The login is rejected with "login failed", if
the CN does not match the user's login.

• Client certificate file
(Only in ECI) The client certificate file in PEM format. This file is used for outgoing connections and will be verified by another IBM
Safer Payments instance.

• Client Certificate private key file
(Only in ECI) The private key file of the client certificate in PEM format. This file can be the same file, as the client certificate file.

• Client Certificate passphrase entry
(Only in ECI)

◦ Passphrase input via console during startup:
You will have to insert the passphrase over console, every time IBM Safer Payments starts.

◦ Read passphrase from file during startup:
IBM Safer Payments will read the passphrase from an unencrypted file on startup.

◦ Use unencrypted private key:
The private key of the client certificate is unencrypted. No need to insert a passphrase.

• Client CA certificate file
The certificate of an incoming connection must be signed by this Certificate Authority

• Client CRL file / path
The certificate of an incoming connection must not be rejected by this Certificate Revokion List. This CRL is one file, that contains
all revoked client certificates.

Remarks

• Since IBM Safer Payments often is operated as a Windows service or as a UNIX daemon, a console (window) for password entry is
often not available to IBM Safer Payments. In this case, the password must be read from a file.

• If you store the passphrase in a separate file, this file must be protected from any access other than the IBM Safer Payments
process.

• Notice that the SSL settings are individual for each IBM Safer Payments instance. This is also because different instances of IBM
Safer Payments running on different computers with different IP addresses will require different certificates.

• Enabling/disabling of SSL (above) and saving your settings is immediately carried out.

Certificate validation

To avoid man-in-the-middle attacks, it is recommended to use certificate validation.

• Server certificate validation

The server certificate validation is to validate the IBM Safer Payments server. Without this check, the client software cannot
distinguish between a real IBM Safer Payments connection, and a man-in-the-middle connection.

For the API and the MCI, the server certificate is verified by the client software (web-browser or message system). This means
that you have to verify that the IBM Safer Payments certificate can be validated by your client software. This is usually a check
against the configured CA of the client software and a check of the IP (or domain) against the CN field of the IBM Safer Payments
server certificate
For the ECI, the server certificate is checked by IBM Safer Payments against rfc 2818. This means, that the IP-address of the ECI
and the CN field in the certificate of the IBM Safer Payments instance must be the same. Every ECI interface needs its own
certificate with the fitting IP of the network interface. It is helpful, to name your certificate after the IP address to distinguish the
different certificates of different instances.

• Client certificate validation

The client certificate validation is to validate incoming connections.

◦ API: The client certificate validation can act as a "two-factor-authentiation" token. Every user can get its own client
certificate, which is checked against the CA and the CRL in IBM Safer Payments. All API connections without valid client
certificate will be rejected in IBM Safer Payments, if the certificate is expired or not fitting the requirements.

◦ MCI: The client certificate validation verifies, that no other system is sending transaction messages to the IBM Safer
Payments MCI.

◦ ECI: No other system should send "change encryption key commands" to IBM Safer Payments. The client certificate
validation checks incoming ECI connections are sent from a valid IBM Safer Payments instance.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

10.1.3 Storage Architecture

IBM Safer Payments uses a "three plus one" layer storage architecture to deliver exceptional real-time performance as well as ultra-fast
simulation and rule generation results:

• A computational data cache (CDC) caches one complete transaction message or record during the entire computation. Once
completed, the CDC content is copied to both the MDC and the DDC. Because the CDC uses the same binary data representation
as the MDC/DDC, this copy operation is computationally very efficient. This enables effective parallelisation of all computation
tasks, so that IBM Safer Payments fully exploits the power of today's multi-core computing hardware. The configuration of the CDC
for MCI, BDI, and simulation/rule generation is made by respective settings in the IBM Safer Payments configuration.

• A memory data cache (MDC) stores data for two purposes:

1. providing recent records for profiling (counter computation etc.) needed for real-time operations and

2. providing data for simulation, analysis and model generation. Like the CDC, the MDC stores data in RAM.

• A disk data cache (DDC) stores data for two purposes:

1. to provide a longer time period or more attributes than the MDC (mostly for case investigation) and

2. to prime the MDC upon IBM Safer Payments startup.
Because the DDC stores data in files, it is much slower than the MDC but it can be much larger.

• A relational database (RDB) can be optionally added with later releases of IBM Safer Payments. While it is not necessary for IBM
Safer Payments operations, it can provide IBM Safer Payments users with the capability to run custom long-term analyses and
reports without any disturbance to IBM Safer Payments operations. IBM Safer Payments only delivers data to this storage layer,
even though data can be exported from the RDB and re-imported into IBM Safer Payments.

Notice that IBM Safer Payments calls its disk storage facility a "cache". This is because – like any cache – it only stores data for a
specified amount of time. The reasons for this, and the techniques used, are described below.

Test data

In addition to the CDC/MDC/DDC layered cache structure, IBM Safer Payments also has a data cache for test data, called the SDC
(Sandbox Data Cache). This is not linked to the CDC/MDC/DDC that deal with real (production) data, but linked to a challenger model
revision where it serves the purpose of testing the model behavior with test data. SDC data is therefore stored with a model revision
and since it has no connection with the other data caches, it is not explained further here.

Interaction of caches

While MDC and DDC are structured by records, the CDC is structured by computational threads. This is because the purpose of the CDC
is to maximise utilisation of computer hardware with a large number of cores. Without CDC, each message computation would have to
access attribute values in the MDC many hundred times during the computation of the message. This would limit the number of parallel
computing threads. Using a CDC, each message computation thread is completely independent up to the moment when it dumps into
the MDC. Since this is only one single time per message, the number of computational processes that can perform in parallel is thus
orders of magnitude higher.

While the CDC stores only one record, but n times for n computational threads, the MDC and DDC store multiple records, but just once
for all threads.

The cooperation between MDC and DDC can be configured through the deferred writing option.

Sizing example

For illustration, a possible sizing of an IBM Safer Payments installation is considered:

• The DDC is sized to 180 days of data. This is a typical maximum time period transaction data is required for case investigation
purposes. The DDC also holds all attributes.

• The MDC is sized to 60 days of data and only the subset of DDC attributes. This is because it typically takes about 30 days to have
the majority of fraudulent transactions flagged, and this information is essential for analysis and model generation.

Notice:

• MDC/DDC sizing can be different for every attribute.

• The DDC size must always be greater than or equal to the MDC size, because to ensure fast startup, the MDC is primed with data
from the DDC. Because both data caches use the same binary data representation, this priming is very fast.

• Because the DDC is on disk, memory is usually available in abundance. However, access to data within the DDC is significantly
slower.

• The kind of fast access provided by the MDC is typically necessary for the computation of counters or the merging of transactions.
Because here, a sequence of up to many hundred previous transactions must be evaluated, disk access for each of these
transactions would make this operation too slow. It can therefore be defined with the respective model revision profiling method
whether or not evaluation should consider DDC transactions in case the MDC stored transactions are not exhaustive.

• If the optional RDB layer shall be employed, IBM Safer Payments creates SQL insert scripts that can be loaded into a database.
Following database systems can be used to import the SQL commands: IBM DB2, Oracle, MS SQL, MySQL.

Unique record ID

Messages that enter IBM Safer Payments either via the MCI or the BDI are stored as records in the cache (if they are no merging or
masterdata sources). At the moment IBM Safer Payments creates a new record for this message, it associates it with a so-called
"unique record ID" (urid). This ID is a number that starts with 0 for the first record and is then incremented with each new record.

The urid is used everywhere in IBM Safer Payments where a record must be identified. Internally it is used to address records in MDC

and DDC. The urid are also provided externally so that each record can be uniquely referenced.

Data cache sizing

IBM Safer Payments lets you exactly configure how it shall use its disk and main memory resources to cache data. Because of these
many degrees of freedom, some planning ahead is required to obtain optimum balance between resource usage and computational
performance. This section explains the background to IBM Safer Payments disk caching that must be considered when planning data
cache sizing.

Of the many data cache layers of IBM Safer Payments, only the MDC and DDC layer require sizing by the user. The other caches are
managed by IBM Safer Payments internally and their resource consumption is typically orders of magnitude below MDC and DDC.

MDC and DDC both hold individual transaction data. They can be configured for each attribute and each index.

Attributes

With attributes, configuration is relatively easy:

• Attributes that you do not want to store in the MDC or DDC do not require any sizing and do not consume any resources. Examples
of such attributes are profiling output attributes that in many cases are not needed anymore after a transaction is processed, and
input attributes that are only used during the processing of a transaction. You may later recreate such attributes for analytical
purposes using IBM Safer Payments’ simulation capabilities.

• Attributes that you do not need in real-time processing, that is, attributes for which you do not plan to define counter or merging
conditions/conclusions, typically do not need to be stored in the MDC at all. You may enable counter and merging
conditions/conclusions to be defined for DDC stored records in the IBM Safer Payments settings. In this case, the full history of the
DDC becomes available for real-time processing; however, computational performance can significantly suffer as a result. If you
size MDC for these attributes, query and other access to this attributes will be faster and main memory consumption will increase.
To determine the DDC size for such attributes, take the number of records your processing generates each day and multiply it by
the number of days you would like IBM Safer Payments to be able to access this attribute. While IBM Safer Payments allows you to
define the DDC sizes differently for each attribute, it is common practice to define the same DDC size for all attributes that are
stored in the DDC. This is different to the MDC because typically disk storage is not as scarce as main memory.

• Attributes that you want to access in real-time processing typically get stored in the MDC and DDC. MDC storage always implies
DDC storage because the MDC gets primed with data upon startup from the DDC. Typically, the MDC is sized smaller – as main
memory is more costly than disk space – and reflects the time period that counters or mergings would need to access this
attribute into the past. Because of the costliness of main memory, MDC sizes are not commonly the same for all attributes. MDC
sizes are "sized to fit".

While IBM Safer Payments allows you to define different MDC and DDC sizes for each attribute, this can be confusing. Thus it could be
preferred to decide:

1. for a time period that you want certain attributes to be available in counter or merging conditions/conclusions and rule generation;
and

2. for a time period you want certain attributes to be available for case investigation, queries, analyses, and simulation.

Multiplying each time period with the number of records results in (1.) the unified size for the MDC and (2.) the unified size of the DDC.
You then divide attributes in the same three categories as presented before – not stored / only DDC / MDC and DDC – and can you
apply these settings. If later you find that for certain attributes you need longer or shorter historical evaluation, you can then modify the
MDC size.

Indexes

Sizing indexes is different because they do not store historical records, but index value entries, such as card numbers, account numbers
or merchant identifiers. While these types of indexes are mostly used to allow IBM Safer Payments to evaluate transaction sequences of
the value entries, indexes can also be used to profile general entries, such as country codes, merchant categories or POS entry codes. In
the latter case, indexes would not have sequences.

The index itself is sized to fit the total expected entry values that occur during the lifetime of the index. This value is the same for MDC
and DDC, and each index by definition is stored in both MDC and DDC because IBM Safer Payments must always store the entire index
both on MDC and DDC. Notice that unlike attributes, index entries cannot just leave the cache because they are eventually overwritten
by new records. Unlike with attributes, the "age" of an index entry is not when it was entered into the ring buffer, but when it was last
accessed. The latter, however, is in no relation to the position of the entry. Thus simple overwriting of data cannot work. Therefore each
index entity is given a "lifetime" in days. Once an entry has not been accessed (there was no transaction on this entry) for longer than
this time period, IBM Safer Payments can overwrite this entry. This ensures that indexes are not constantly growing but contain all data
needed for operations.

Such an index can be used for calendar profiles, masterdata, and events.

If you also need to evaluate transaction sequences for the index entries, that is to evaluate counters and mergings along these index
entries, you need to enable the sequence feature of an index. The sequence is similar to an attribute as it is also stored on a record
basis and always points (for this index) to the record "before" the current one.

It is for this reason that sequences have MDC and DDC sizes like attributes. Typically you want the index to reach over the entire time
period of the MDC and DDC, respectively. In this case, you would define the MDC to be the maximum of all attribute MDC sizes, and the
DDC to be the maximum of all DDC sizes.

back to top

10.2 Python Code Execution

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

It is possible to use the Python interpreter within IBM Safer Payments. That allows you to create your custom scripts (aka "modules")
and define calls to the functions of that scripts directly from IBM Safer Payment's decision model. Allowing to run Python code provides
a lot of flexibility and freedom in defining additional transaction processing capabilities where the whole power of the Python language
can be used in conjunction with other model element types. You have full control over defining arbitrary functions specifically tailored for
your needs which includes defining formulas but is not limited to performing much more complex operations. Transaction and profiling
attribute data can be easily made accessible to your Python scripts which is explained in more detail in the subsequent paragraphs.

In order to use Python within IBM Safer Payments you need to have one of the supported Python versions installed on the host machine.
Supported Python versions are 2.6, 2.7 and 3.5. IBM Safer Payments will automatically detect and link to the highest supported Python
version during start-up. Upon successful load there should be an indicator in the system internals page.

Python execution can be enabled or disabled on a per mandator level. By default this setting is disabled and you can leave it disabled if
this functionality is not needed. When enabled, Python scripts created offline can be directly uploaded into IBM Safer Payments using
the respective subsection in the mandator form, and calls to these functions can be defined in model revisions of that mandator.
Additionally, you can make each Python script also available in sub-mandators, and thus in the model revisions of sub-mandators
respectively. By default, the use of each Python module is restricted within the target mandator only. However, it can be easily extended
to its sub-mandators if decided to do so by ticking the respective checkbox next to the uploaded Python module name.

Structuring your Python code

IBM Safer Payments loads all functions that are found in the uploaded Python modules and makes them available to be used in model
revisions. You thus need to wrap your code in functions. Each module can contain one or more functions. There is no limitation on using
any of Python packages available on the host machine in your scripts. However, these packages have to be available at the moment of
uploading the module otherwise the module will not be loaded and its functionality will not be available. Below you can find an example
of a script containing a simple Python function that calculates the length of a given string:

def calculateStringLength(inputString):
"""
This function takes a string as an input and calculates its length.
Returns the number of characters in the input string.
"""
return len(inputString)

It is generally useful to comment your Python functions and by that provide cues to other users of the system on what is each Python
function doing exactly. To achieve that, you can use the Python comment notation and add function description as shown in the example
above. You might want to provide general information about what arguments does function take, how does it processes data and what is
the return value. This comments are informational only and will be later shown the in the model revision where calls to Python function
are to be defined.

Defining a call to Python function

Python functions can be used in rule conclusions and formulas. In order to define a call, you need to type the function name in the
expression field. It is sufficient to type "py" in the expression field to get the list of all available Python functions. Function calls are
defined in the following format:

py.{module_name}.{function_name}(arg1; arg2; ... ; argn)

Below you can find an example showing how the call definition for the aforementioned example will look like:

py.string_operations.calculateStringLength({Customer Name})

Similarly you can define Python function calls that take constant values as input along with attribute data. Below you can find an
example call how to pass a constant string:

py.string_operations.calculateStringLength("John Jakob Jones")

Python formulas can also be used as arguments to mathematical operations as for example:

(10 - py.string_operations.calculateStringLength({Customer Name}))

The result of a Python call is written to either an expression attribute or formula output attribute, depending on where the function call
was used. In general, any numeric overwritable IBM Safer Payments attribute can be used for that.

Uploading new modules and updating the existing ones

Each Python module should have a unique name in the mandator hierarchy. To upload a module you can click the upload button of the
respective section in the mandator form or simply use the drag and drop function to upload one or multiple modules. The uploaded
modules are directly loaded and made available for use.

Updating an existing Python module requires some additional steps. You need to do your modifications to the desired functions locally to
the desired script. Then you can upload a new version of your script. Since module names should be unique, you can include version
number in your filenames such as "string_operations_v1.py", "string_operations_v2.py", etc. Note that uploading a new version of your
module will not update old functions. You need to manually update Python function usages in a challenger revision so that functions of
the new module are called. After updating all usages in the challenger revision you need to promote it to be the new champion.

Data exchange and data type mapping

In order to pass data to a Python function, IBM Safer Payments will need to handle the data type conversion, i.e. all data types of
passed arguments in a function call will be converted to their counterparts in Python. Data type conversion will be handled according to
the following table.

SP data type Python data type

Numeric (with decimals) Float

Numeric (without decimals) Long

Timestamp Long

Text, IP*, Hexadecimal String

Boolean Bool

Similar to passing data to Python, the same rules of data type conversion apply when data is received from Python call-outs (return
values). Each Python data type can only be stored in a matching IBM Safer Payments attribute as shown in the table above.

* While it is possible to pass IP attribute data to Python as "String" data type, it is not possible to use IP attributes for storing Python
outputs of type "String".

back to top

10.3 Encryption and PCI DSS Compliant Operations

This section covers certain aspects on encryption, primarily with respect to PCI DSS compliant operations of IBM Safer Payments.

back to top

10.3.1 IBM Safer Payments Security

Software products in payment systems must be protected against security breaches that allow a non-authorized person to:

1. access payment and customer data

2. manipulate data, models, and audit trails

3. sabotage the function of IBM Safer Payments

4. use IBM Safer Payments to perform malicious actions to the user

While IBM Safer Payments has multiple interfaces that could potentially be abused for such security breaches, only the API is typically
configured to be accessible outside the data center.

Because the API is connected to the user computer’s browser, it is a potential door to intrusion for manipulation. If IBM Safer Payments
is deployed over the internet to users in other companies, the circle of potential contact points that could access the API can thus not be
limited to trusted people. And even if the people can be trusted, their computers could be compromised.

Therefore IBM Safer Payments contains various measures of protection against such manipulation on different levels:

• Application Server
A potential intrusion scenario is to utilize a weak point in the application server to inject malicious code. Because IBM Safer
Payments does not use a standard application server, but a fully embedded, custom designed function, standard weaknesses do
not exist.

• Buffer Overflow
Another intrusion scenario is to exploit unprotected buffer resources in a software program. The application serving function in IBM
Safer Payments uses fully protected buffers and thus does not expose such vulnerabilities.

• SQL Injection
This technique uses flaws in a software program so that SQL instructions are passed directly and uncontrolled from the program’s
application logic to the underlying SQL database. Because SQL is a powerful execution environment, such an attack could cause
significant damage. IBM Safer Payments is fully protected against this as it does not use any SQL engine.

• HTML Injection
This summarizes any technique in which character sequences are passed to the software program (typically as user entries) that
when later displayed back to the user either execute some HTML command or Javascript commands. To protect from any such
attack, the IBM Safer Payments server escapes HTML reserved characters in user inputs.

• Cross-site request forgery (CSRF)
Cross-site request forgery, also known as a one-click attack or session riding, is a type of malicious exploit of a website whereby
unauthorized commands are transmitted from a user that the website trusts.] Unlike cross-site scripting (XSS), which exploits the
trust a user has for a particular site, CSRF exploits the trust that a site has in a user's browser. IBM Safer Payments supports
session-specific cookie values that it checks with each request to protect against CSRF attacks.

Escaping

To ensure that no "unsafe" characters can be injected into its data elements, IBM Safer Payments employs a set of cascaded escaping
mechanisms:

1. The IBM Safer Payments client (aka browser component) uses standard URL encoding to escape special characters like quote,
curly/square bracket, or space with a percentage character followed by a two-character hexadecimal value of the single-character
UTF-8 value. For instance, a quote is escaped to %22 and a space to %20. Language specific characters are encoded to two such
values; the letter Ü for instance in encoded to %C3%9C. Within values of text entries all quotes are escaped as %5C%22, which
corresponds to ". This is necessary because quotes are the termination characters for text values in the JSON format used by the
IBM Safer Payments client to send HTTP requests to the IBM Safer Payments server.

2. The IBM Safer Payments server decodes all these URL encodings with the exception of the quotes within text values. The " are also
present when any IBM Safer Payments element is stored on disk as JSON because JSON uses quotes as text delimiters.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

3. The IBM Safer Payments server responds to the IBM Safer Payments client using only JSON data streams. In these, the characters
& # < > () are escaped as & # < > () Quotes within text values remain escaped as \".

4. These escape sequences are decoded within the IBM Safer Payments client for display and in text entry fields.

This escaping mechanism ensures that an attacker cannot introduce potentially malicious code from both an IBM Safer Payments text
entry field or as HTTP API request.

back to top

10.3.2 PCI DSS Encryption

IBM Safer Payments supports PCI DSS compliant encryption for PAN input attributes.

Attribute encryption

To use any encryption feature, encryption must be enabled on the "system configuration" page. Once enabled, each attribute page
displays a checkbox to enable or disable encryption for this specific attribute. Provided you have the respective privileges, you may turn
encryption on and off.

If encryption is enabled for an attribute, only users that have the view clear values privileges may see the values unmasked. In masked
values all digits except the first 6 and last four are replaced with an X.

Remarks:

• Encryption consumes considerable computational resources. You should thus keep encryption to only the attributes where you
really need it.

• With text type attributes, only the first 16 characters are encrypted.

• Each storage of an encrypted attribute requires 16 Bytes minimum, regardless of the length of the attribute.

Keys and their subkeys

Encryption in IBM Safer Payments is facilitated by so-called "key triplets". Each key triplet contains the subkeys:

• Private key

• Left public key

• Right public key

To enable encryption, all three subkeys of a triplet must be present for the triplet to be activated and perform IBM Safer Payments
encryption and decryption.

The private subkeys of triplets are stored in a file "key_no.iris" in the IBM Safer Payments "key" directory, while the public keys are kept
secretly by human "keyholders". To ensure that no one person alone can activate a key triplet; the public key is divided into two keys
for two keyholders.

The naming convention "left" and "right" is to differentiate the subkeys and their "keyholders".

IBM Safer Payments allows keeping multiple active and non-active (a "non-active" triplet would be one where a subkey has not yet been
provided) key triplets in its key management function, and allows for switching between the active ones. While only one of the key
triplets can be active at a time, it makes no difference which of the key triplets is the active one.

Key triplets are differentiated by their number.

Master key generation

The following figure exemplifies the computational actions involved in master key generation:

The actual master key used by IBM Safer Payments to en-/decrypt data is generated by using two sets of random keystrokes hashed by
MD5, delivering a 256 bit length root key. This master key is never stored or made accessible to users. Rather, using the two
passphrases of the keyholders, the master key is encrypted using the AES-256 algorithm.

It is important to notice that (dotted line in the figure above) using the two passphrases, the encrypted master key can be decrypted.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

This encrypted master key is therefore stored in a safe place and is subsequently used – together with the passphrases of the
keyholders – to create the triplets that are the only keys used during IBM Safer Payments operations.

This is also the reason why the key generator is provided as a separate utility program rather than an integral part of IBM Safer
Payments. Not even the encrypted master key should ever be on the IBM Safer Payments server host. Rather you may use any other
computer to create the encrypted master key, store it in a safe place, and generate triplets from this whenever needed.

Key triplet generation

Key triplet generation requires the left and right master key passphrases – thus the presence of the respective keyholders – plus two
keyholders for the two public subkeys of each triplet. The keyholders may be the same people.

The figure below illustrates the process:

First the encrypted master key is read from file and using the two master passphrases gets decrypted in main memory only. From this
unencrypted version of the master key now each triplet is derived by encrypting the master key with a new pair of passphrases.

The result of this process is the private triplet subkey. This must be stored in the "key" directory of the IBM Safer Payments installation.
Because the file system of the IBM Safer Payments server host is a protected area, this provides an added level of security.

A good practice with key generation is to generate a number of key triplets in advance and then use them as they are needed.

It is important to notice that from each private triplet subkey, by decryption using the two public subkeys, IBM Safer Payments can
reconstruct the master key in main memory for its operations.

Key management summary

IBM Safer Payments thus uses a 256 bit "master key" to encrypt and decrypt all data. Multiple key triplets are used to store an
encrypted version of this master key. The master key is never stored by IBM Safer Payments on disk (it though exists in main memory
during IBM Safer Payments operations in clear).

Key triplets always consists of a "private" key of 256 bit length, and two "public" keys of 128 bit length. All three complete keys are
necessary to unlock the IBM Safer Payments encryption.

The private keys remain within IBM Safer Payments, the public keys are handed out to two different users.

IBM Safer Payments keeps a pool of private keys of active triplets. The private keys of active triplets are stored with the "key_no.iris"
configuration files of IBM Safer Payments in clear (these files are not shared between the IBM Safer Payments instances automatically).
As long as the private key of a triplet is in this pool, it is valid. That is, when the public keys are entered, the key becomes valid.

Key triplet generation is provided by a utility program delivered to IBM Safer Payments users. The first step is to generate a "master
triplet". To generate the master triplet, the user enters two passphrases (or two different users enter passphrases) as the two public
keys.

Notice that the use or passphrases for the public keys is strictly convenience. Passphrases can be memorized much easier than any
binary key (passphrases can have any length; enforcement of "strong" passphrases is not part of the IBM Safer Payments software).
The passphrases are hashed (MD5) into 128 bit public keys that are used by the utility to generate the private key stored with IBM Safer
Payments.

Key administration

When IBM Safer Payments starts, its finds n active private keys in its "key_no.iris" files. To activate encryption, either at least one
(fitting) public key pair must be entered, or IBM Safer Payments obtains the key from one of the other IBM Safer Payments instances in
a redundant configuration.

Notice:

• They public keys are transported in clear between the IBM Safer Payments instances.

• The private keys are not transported between the IBM Safer Payments instances.

• New keys cannot be created from IBM Safer Payments administration.

Key management is controlled with 6 privileges that can be associated with a role:

• Key management
View PCI DSS compliant encryption key management.

• Left key
Entry of left public key.

• Right key
Entry of right public key.

• Key activation
Set the currently active key.

• Key revocation
Invalidation of a key.

• Master key change
Change a master key and re-encrypt all data.

Notice that no user may have the privilege to enter both keys.

For more details on role definition refer to the help page of roles.

Remarks:

• Each key triplet can be checked for whether the passphrases were entered correctly. The "key_no.iris" files therefore contain a
known sequence so that correctness of passphrases can be verified before activation.

• Deactivated keys remain in the table "forever", only if they are revoked, they are physically removed. Deactivated keys can later
be activated again.

• Only one key can be active at the same time, thus activating one key is deactivating all others.

Limited validity of keys

Both, key triplets and master keys are only valid for a limited amount of time. The key lifetime can be changed separately in the system
configuration for master key and key triplets. IBM Safer Payments stores the time of the first activation of the key.

IBM Safer Payments closes all incoming data connections on all instances after key expiration.

The transaction processing or a subsequent setting change is no longer possible after expiration. It is strongly recommended to add a
status alarm indicator which alarms the administrator before key expiration.

Cluster key handling

If encryption is enabled, starting a cluster is different:

• Once you start the first IBM Safer Payments instance, it loads its private keys. Because the public keys are not entered at this
moment, this IBM Safer Payments instance does not set MCI, BDI, and FLI active (if IBM Safer Payments would receive transaction
data through any of these interfaces, it could not store them encrypted).

• Therefore, you must first set a key active on the first IBM Safer Payments instance. This activates the enabled MCI, BDI, and FLI
on the first IBM Safer Payments instance.

• Now, the other IBM Safer Payments instances can be started. Upon start, each IBM Safer Payments instance fetches all entered
public keys with all other IBM Safer Payments instances via the ECI (encrypted communication interface). If an active key is found,
this key is then also activated. This activates the enabled MCI, BDI, and FLI on the other IBM Safer Payments instances.

Once a cluster is up and running, and one instance is shut down, this instance upon re-start automatically "asks" the other IBM Safer
Payments instances for the public keys. There should thus be no need to ever enter the public keys ever again as long as there is still at
least one IBM Safer Payments instance running that stores the public key pairs.

Master key change

The master key change re-encrypts all encrypted data in IBM Safer Payments with a different key. To ensure that transaction processing
is not interrupted during key change, IBM Safer Payments allows a cascaded key change. Similar to cascaded golives IBM Safer
Payments delays the re-encryption on remote instances. The delay depends on the master key change wait factor which can be
configured in system configuration. For a wait factor of "0" the key change is executed immediately on all instances. While this is the
fastest way to change a master key it prevents IBM Safer Payments from scoring transactions during the key change. If the wait factor
is greater than "0" the key change is executed on the instance with the active API at first. Once the first instance finished the remote
instances are sorted depending on their FLI buffer fill levels and written to a list. The next key change will be executed on the remote
instance with the lowest fill level. The other instances start the key change after a certain delay, which is defined as list position
multiplied by master key change wait factor multiplied by the time it took to re-encrypt everything on the first instance. For a wait factor
greater than "1" this leads to an cascaded master key change where only one instance re-encrypts at the same time. We recommend a
wait factor of "1.05" to have an additional wait of 5% and to avoid having a simultaneous re-encryption on two instances.

If you want to execute a master key change follow those steps:

1. Generate a new master key with the keygen tool with a new master key ID and new private keys from this new master key.

2. Copy the new private keys ("key_<key_id_n>.iris") into the "key" folder on all instances

3. Do not replace any file of the "key" folder while copying.

4. Click on "reload private keys" in "Admin/Keys". You need the right to revoke keys to click on this button. The new master key
should appear now.

5. Log out if necessary and let the left keyholder log in and insert the left key.

6. Log out if necessary and let the right keyholder log in and insert the right key.

7. Log in as your account. You need the right to activate a key.

8. Click on "change master key".

The figure below illustrates the process of a master key change:

Once the master key change is triggered all cluster instance enter a passive state. The information that the cluster is going to change
the master key is send via SCI to ignore possible filled FLI buffers. Every instance performs the following steps to prepare itself for a key
change:

• Disable the API and BDI.

• Stop the case consolidation. Alarms are still generated but will not be aggregated until the master key change is finished.

• Stop forwarding of notifications via FLI. Notifications are still created and will be send as long as the AMI is active on the
generating instance. If there is no active AMI on the generation instance the notifications will be stored and forwarded once the
key change is finished.

• Stop the reminder controller.

• Stop the end of day job controller.

• Write a "ready for key change message" to the FLI buffer that confirms the previous steps are completed.

The instance that had the active API waits in the passive state until it received the "ready for key change message" from all other
instances and has sent its own. Afterwards the instance prepares itself for the re-encryption by disabling the MCI and the incoming FLI.
In case deferred writing is enabled the deferred writing service is stopped as well and all files are dumped to disk. The re-encryption
starts and the instance status is changed to master key change active.
During this re-encryption the instance dumps all configuration files, the encrypted ddc attributes, all active cases and all unsent
notifications. Once the re-encryption was successful, the master notifies the remote instances to start the key change according to the
previously described wait factor. The instance enters status finalize and reactivates itself again:

• Activate MCI and BDI. It is possible to process transactions.

• Activate incoming FLI. The outgoing FLI will send all messages that were encrypted with the "old" key. Messages that are
encrypted with the new key are only send if the receiving instance finished re-encryption as well.

• Activate API and start reminder controller.

• Write all stored notifications and emails to FLI buffer and allow forwarding of alert messages.

• Start the end of day job controller.

Every instance reports when it received all messages that were encrypted with the previous master key. As soon as all instances have
finished the key change and received all old messages, the instances revoke the previous keys and switch the status from finalize to ok.
The master key change finished successfully.

Possible error scenarios
There are several error scenarios during a master key change:

• A remote instance is shutdown or crashes during the key change.
If a remote instance becomes unreachable the master key change continues on the other instances, but the instances will wait
until this instance is available again before leaving status finalize. Only instances in status invalidated are ignored. Once the
instance is restarted it will start in status invalidated and allow the other instances to finish the key change. The restarted instance
has to be restored.

• The master instance crashes during key change.
It depends at which point the instance crashes. If the re-encryption is finished on the remote instances, the master instance can
be restarted in status invalidated and the key change will finish successfully. If the instance crashes before the re-encryption was
successful the remote instance will stay in status passive, but can be set to status ok using the maintenance function.

• The network communication to one instance is lost.
IBM Safer Payments will wait indefinitely for instances that are unreachable. If necessary the other instances can be set to status
ok via maintenance function to finish the master key change manually.

Maintenance functions
The master key change implements a special maintenance function to cancel a master key change on one instance. The function is
bound to a special user privilege. It allows to cancel a master key change and set the new instance status to “invalid” or “ok” after
cancellation.

Known error messages when reloading keys from disk

• "Active key cannot be found: it will not be accessible on next start"
Current active key is not found on disk. Restore key files and reload keys from disk

• "The content of revoked_keys file is too short. Something went wrong while decrypting. Please contact the IBM Safer Payments
support or change revoked_keys file!"
Restore the revoked_keys file and reload keys from disk

• "The revoked_keys checksum is wrong. Something went wrong while decrypting. Please contact the IBM Safer Payments support
or change revoked_keys file!"
Restore the revoked_keys file and reload keys from disk

• "The "revoked_keys.iris" file cannot be found. Please contact the IBM Safer Payments support."
Restore the revoked_keys file and reload keys from disk

back to top

10.4 Maintenance Functions

This section covers specific maintenance functions for IBM Safer Payments.

back to top

10.4.1 Rebuild Index

Re-creates an entire index based on transaction data stored.

This function can only be executed on an IBM Safer Payments instance that does not process any transaction messages or API requests
(MCI, FLI, and BDI must be disabled on the instance). It performs the following actions:

1. Erases index in MDC and DDC.

2. The rebuild starts on the beginning (earliest record) in DDC and fills the index (and its sequences) from scratch (only in index
MDC).

3. Dumps index MDC to index DDC at once.

Remarks

• Since with indexes (unlike attributes), MDC and DDC sizes are always the same. Thus the rebuild index function can create the
"new" index only in MDC and then dump it at once to DDC; which is much faster compared to creating the index in parallel in MDC
and DDC.

• The rebuilt index only contains entries for transaction records stored in DDC; all entries that are not stored in DDC will not be part
of the rebuilt index.

• Depending on the size of the MDC/DDC, the execution of this function may take a significant amount of time during which this
instance is not computing transaction messages.

• All index-oriented elements (calendar profiles, events) are recomputed as well.

back to top

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

10.4.2 Rewrite Element to Disk

Stores a serializable object of an IBM Safer Payments installation on disk.

back to top

10.4.3 Cleanout Revision

Unloads all non-champion revisions from IBM Safer Payments and moves their file representation from the "cfg" to the "arc" directories
of all IBM Safer Payments instances.

This function is typically used in the implementation phase of an IBM Safer Payments installation, where when the staging moves from
the test/QA/verification environment to the production environment to eliminate the potentially numerous iterations of revisions made
during earlier stages.

Notice that if there is no champion revision for a mandator, one revision is not deleted to serve as copy source.

back to top

10.5 Miscellaneous

This section covers topics that did not fit into any other chapter.

back to top

10.5.1 Conditions

Condition format

Conditions in IBM Safer Payments follow the format:

attribute operator expression

where attribute is either an input attribute or an output attribute of one of the previous elements, operator is a comparator, and
expression is either a single element, or a list of the following elements: A constant value (singleton), a wildcarded constant value, an
interval, a mathematical formula or the reference to another attribute (special conditions like index based evaluation also allow
masterdata, event and calendar computation as reference elements).

In a list of expressions you can combine all above elements. They will be computed with the operator OR. For example you can define a
single condition that checks if an attribute value is within a list of constants, or equals any attribute of a list of attributes, or equals the
result of any of multiple formulas.

Both the attribute and the operator can be selected via a drop down menu. The expressions can either be typed in manually or by using
the context menu. To open the context menu, press the space key while the expression field is activated. All available types of
expressions are listed in the context menu and can be selected directly. Furthermore, parts of the expression can be rearranged via
drag-and-drop. This provides a quick and comfortable way to define conditions in IBM Safer Payments.

Operator overview

The table below shows a row for each operator. The columns explain which attribute data types for this operator are supported (empty
field indicates that this combination is not supported; rest mouse over field to view details for certain operator/expressions).

Operator
Expression (single item or list of items)

Singleton Interval Attribute of same/current record Math expression

[not] equal to numeric / text / timestamp / hexadecimal / IPv4 numeric / text / timestamp numeric / text / timestamp / boolean / hexadecimal
numeric /
timestamp

greater than / less than [or
equal to]

numeric / timestamp numeric / timestamp
numeric /
timestamp

[not] close to
numeric (±tolerance) / text (distance) / timestamp
(±tolerance)

numeric ([x-tol; y+tol]) / timestamp ([x-tol;
y+tol])

numeric (±tolerance) / text (distance) / timestamp
(±tolerance)

numeric /
timestamp

[not] starts /ends with numeric / text numeric / text numeric / text
numeric /
timestamp

[not] contains numeric / text numeric / text
numeric /
timestamp

prefix [not] equal to numeric / text numeric / text numeric / text
numeric /
timestamp

[not] empty This operator has no expression. Any value is considered 'empty' if it is not delivered.

is true/is false This operator is available for boolean attributes only and has no expression.

same / distinct B / C net These operators are available for IPv4 attributes only and expect an IP address or a list of IP addresses as expression.

Remarks

• Time interval attributes can only be used on the right side of a condition and can only be compared to timestamps. All operators
available to timestamps are supported.

• With the "[not] close to" operator, the "tolerance" setting is in percent for numeric type attributes. The "distance" setting for "text"

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

types is the minimum Levenshtein distance for the condition to be satisfied. For timestamp attributes the "tolerance" is a number
without decimals. Its unit can be selected separately and is one of "seconds", "minutes", "hours" and "days".

• With the "prefix [not] equal to" operator, the number of characters considered to be the prefix characters is defined in a separate
field of the condition row.

• IBM Safer Payments provides additional options for text type attributes. These are listed in a separate field of the condition row:

◦ Case sensitive/Ignore cases
Decides whether there is a difference between "TeSt" and "test" or not.

◦ Maximum/Minimum number of consecutive digits
Example: The maximum number of consecutive digits in "te123st45" is equal to 3 while the minimum number of consecutive
digits is equal to 2.

Expressions using categories

If categories are defined for the attribute, the categories are accessible via the context menu. Each defined category leads to an entry in
the context menu. Each entry is marked with an icon and has the format "Label orignalValue".

To use a category in a condition, you can either select the category in the context menu or type the original value directly in the
expression field. In both cases the original value will be written in the expression field. To display the corresponding label, move the
mouse over the value in the expression field. Notice that it is not possible to type in the label in the expression field. This will be treated
as a constant.

Timestamp expressions

Timestamp attribute conditions have a few more options to define expressions:

• Daytime expressions
Examples: "22:00~6:00", "22:00 ~ 06:00" or "06:00~22:00". Daytimes must always be intervals and they must use the 24h
scheme (no "am/pm"). The first hour can be a single digit for times earlier than 10:00. Daytimes may either be expressed with or
without seconds. If expressed with seconds, the format is hh:mm:ss. If the seconds are not expressed, they are set to "00" for-
from daytimes and to "59" for to-daytimes. The interval "9:00~9:00" thus is equivalent to "9:00:00~9:00:59". Notice that
minutes are not optional and the colon is the only supported delimiter.

• Weekday expressions
Examples: "Monday~Friday", "Friday", or "sat ~sun". For the weekday, you may either use the unabridged "Monday" .. "Sunday"
(first letter capitalized or not), or the three-letter abbreviation "mon" .. "sun" (first letter capitalized or not). It is important to
notice that the begin of the from-weekday is considered 00:00:00 and the end of the to-weekday 23:59:59. Therefore, if you
define "sun~sun" (or just "sun"), it translates to the entire Sunday.

• Weektime expressions
Examples: "Monday 16:14~Friday 07:21". Weekday must be separated from daytime by a space character. The first hour can be a
single digit for times earlier than 10:00.

There may be a list of these values (value pairs) in timestamp attribute conditions. The list may also combine singletons and intervals
(e.g. "2009-12-22 05:22:53; sat~sun; Wednesday 14:09 ~ Wednesday 16:56; 00:10~00:20; 2010-01-02 00:00:00 ~ 2010-01-02
00:03:00" would be a valid timestamp attribute expression).

Wildcard expressions

The "[not] equal to" operator allows the use of wildcard characters for text and numeric type attributes. Possible wildcard constructs
are:

• Starts with
If the condition was "attribute equal_to text*", all attribute values that starts with "text" hit the condition. Note that this is equal to
the condition "attribute starts_with text".

• Ends with
If the condition was "attribute equal_to *text", all attribute values that ends with "text" hit the condition. Note that this is equal to
the condition "attribute ends_with text".

• Contains
If the condition was "attribute equal_to *text*", all attribute values that contain the substring "text" hit the condition. Note that
this is equal to the condition "attribute contains text".

• Bounded by
If the condition was "attribute equal_to te*xt", all attribute values that starts with "te" and ends with "xt" hit the condition.

• Single wildcard characters
If the condition was "attribute equal_to A???in", each value that has the non-? Characters the same as the expression hits the
condition (for instance "Austin"). Shorter words would not hit the condition.

The "[not] equal to" and "same / distinct B / C net" operators allow the use of wildcard characters for IPv4 type attributes. A single "*"
can be used instead of a numeric block to include all 256 possible values for this block.

Remarks

• This implies that constants in combination with the "[not] equal to" operator may not contain characters "* ? ; ~", as they are
used to mark wildcards, list elements, and intervals.

• In combination with other operators, wildcard characters ("*,?") are considered as "normal" characters in a text type constant.

• Double and single quotes are considered as "normal" characters in a text type constant. They will not be removed. White spaces
are ignored.

References to another attribute

There are two different methods which reference to an attribute:

• {attribute name} - attribute of the current transaction

• [attribute name] - attribute of the same transaction

In situations in which only the current transaction is evaluated (example: rules) the two methods are equivalent. However, there is a
difference whenever a sequence of transactions is evaluated (examples: counters, precedents, collusions, etc). The following example
demonstrates the functionality of these methods:

Assuming the following sequence of transactions:

Timestamp Attribute1 Country Attribute3

1 2010-01-10 14:00:00 114 US 114

2 2010-01-16 12:00:00 8303 US 8300

3 2010-01-18 08:00:00 2000 GB 2000

Here, the last row #3 represents the current transaction. The left table below (red) illustrates which values are compared when the
condition Attribute1 equal to {Attribute3} is evaluated for the sequence. The right table (blue) shows which values are compared when
the condition Attribute1 equal to [Attribute3] is evaluated for the sequence.

Math expressions

All basic mathematical operations can be used in IBM Safer Payments in an intuitive way. Please notice that mathematical expressions
must be surrounded by round brackets.

• (Exp1 + Exp2)

• (Exp1 - Exp2)

• (Exp1 * Exp2)

• (Exp1 / Exp2)

The operands Exp1 and Exp2 may either be:

• a numerical constant (may have leading minus sign)

• an absolute timestamp in the format YYYY-MM-DD hh:mm:ss

• an attribute of the current transaction (attribute name must be surrounded by curly brackets {attribute name})

• an attribute of the same transaction (attribute name must be surrounded by squared brackets [attribute name])

• a math expression itself

Formulas can be applied to numeric and timestamp type attributes. If values are used in conjunction with timestamp type attributes, the
unit of expression values is seconds. Because when large time intervals shall be represented, this can be cumbersome, the letters "m",
"h", "d" and "w" can be added to the value, indicating "minutes", "hours", "days" and "weeks", respectively. For instance:

TrxTimeStamp less_than (51w + {EmbossingDate})

hits when the current transaction is within less than 51 weeks after the embossing date of the card.

Remarks

Notice that each mathematical expression must contain exactly two operands. That means that (a + b +c) must be defined as (a + (b +
c)).

Geographical Distances

In addition to the basic computation methods mentioned above, IBM Safer Payments is able to calculate the geographical distance
between to geographical points. The format for this computation method is

• geoDistanceKm(pos(latitudeA;longitudeA);pos(latitudeB;longitudeB)) and

• geoDistanceMiles(pos(latitudeA;longitudeA);pos(latitudeB;longitudeB))

The operands latitudeA, longitudeA, latitudeB, and longitudeB are GPS coordinates in a floating point format (WGS84).

Example: geoDistanceKm(pos(55.7522;37.6156);pos(48.8667;2.3333)) computes the distance (in km) between Moscow and Paris.

back to top

10.5.2 Conclusions

Conclusion format

Conclusions in IBM Safer Payments follow the format:

attribute operator expression

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

where attribute is any model attribute, operator is an assignment, and expression is either a constant value or the reference to another
attribute.

Operators

If the element's conclusion is applied (all its conditions are evaluated to being true) with operator:

• is
the value of expression is applied to attribute (all attribute types).

• is (if not empty)
the value of expression is applied to attribute (not for bool, hexadecimal and IP). If the value of the expression is empty, the value
of the attribute will not be changed.

• increment by
the value of attribute is incremented by the value of expression (numeric and timestamp type attributes).

• decrement by
the value of attribute is decremented by the value of expression (numeric and timestamp type attributes).

• append
the value of the attribute (derived by computation of the transaction message so far) is appended to the value of expression (text
type attributes). Notice that you may use this also to add delimiters to a list of items created by multiple applications of "append".
Simply add another "append" conclusion with the delimiter as constant below the one appending the list item.

• reset
the value of the attribute is reset to "nil", which computationally is interpreted as "0" for numeric type attributes, and as an empty
string for text type attributes (all attribute types).

• maximize with
the value of attribute is set to the maximum of value of attribute and value of expression (numeric attributes). This is usually used
for scores. For example: The conclusion is "Score maximize with 60". For a Score of 50 before the element's execution this would
mean Score is set to 60 and for a Score of 70 this would mean nothing changes (i.e. Score remains 70).

Attribute values as expression

A conclusion may also copy the value of an attribute of the source transaction message to the target transaction record. For this, the
source transaction attribute name is put in curly brackets into the expression field.

For instance, to transfer the value of an attribute "FraudReasonCode" from the merging source transaction message to the same
attribute of the merging target transaction record, enter:

FraudReasonCode is {FraudReasonCode}

In merging conclusions it is also possible to copy the value of an attribute of the merging target transaction message to another
attribute of the merging target transaction record, if the attribute in the expression is put in square brackets.

You may also use this to transfer (or increment, decrement, and append) the value of a different attribute of the source transaction
message to the target transaction record. Notice that in this case, the attribute types must be identical. Different length or decimals are
corrected by IBM Safer Payments automatically.

Formulas and Python function calls

You can also use all basic mathematical operations, geographical operations and Python functions in rule conclusions. To get the list of
available Python functions you need to type "py" in the expression field. For more information refer to the online help.

back to top

10.5.3 Case Variable Conditions

Below you can find all case variables that can be used to define case conditions.

• Important dates:

◦ [GeneratedOn]: The generation date as ISO formatted date.

◦ [GeneratedOnTimestamp]: The generation date as UNIX timestamp.

◦ [ClosedOn]: The case close date as ISO formatted date.

◦ [ClosedOnTimestamp]: The case close date as UNIX timestamp.

◦ [FollowupOn]: The followup date as ISO formatted date.

◦ [FollowupOnTimestamp]: The followup date as UNIX timestamp.

◦ [LastActionOn]: The last action date as ISO formatted date.

◦ [LastActionOnTimestamp]: The last action date as UNIX timestamp.

◦ [StateChangedOn]: The case state change date as ISO formatted date.

◦ [StateChangedOnTimestamp]: The case state change date as UNIX timestamp.

• Timing metrics:

◦ [CaseAgeInDays]: The time since case generation in days.

◦ [CaseAgeInHours]: The time since case generation in hours.

◦ [CaseAgeInMinutes]: The time since case generation in minutes.

◦ [DaysSinceLastAction]: The time since last action in days.

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

◦ [HoursSinceLastAction]: The time since last action in hours.

◦ [MinutesSinceLastAction]: The time since last action in minutes.

◦ [DaysSinceStateChanged]: The time since case state changed in days.

◦ [HoursSinceStateChanged]: The time since case state changed in hours.

◦ [MinutesSinceStateChanged]: The time since case state changed in minutes.

• User information:

◦ [Investigating..]: The user, that is currently investigating the case.

◦ [Viewing..]: The user, that is viewing the case and sending the case action.

◦ [Closedby..]: The user, that closed the case.

◦ [..UserName]: The username as string.

◦ [..UserNameAndLogin]: The username, followed by the user login in parenthesis.

◦ [..UserUid]: The system internal user UID.

◦ [..UserEmail]: The users e-mail address.

◦ [..UserPhone]: The users phone number.

◦ [..UserLocation]: The users location.

◦ [..UserMandator]: The users mandator name.

◦ [..UserMandatorUid]: The UID of the users mandator.

• Other variables:

◦ [CaseClass]: The name of the case class.

◦ [CaseClassUid]: The UID of the case class.

◦ [CaseClassId]: The ID of the case class.

◦ [Mandator]: The case mandators name.

◦ [MandatorUid]: The case mandators UID.

◦ [Score]: The case score.

◦ [Hits]: The case hits.

◦ [FraudStatus]: The fraud status of the case close code, if the case was closed.

◦ [CaseCloseCode]: The case close code, if defined.

◦ [CaseCloseCodeUid]: The UID of the case close code.

◦ [State]: The investigation state.

◦ [StateUid]: The UID of the investigation state.

◦ [LastState]: The last investigation state.

◦ [LastStateUid]: The UID of the last investigation state.

◦ [CaseUid]: The case UID, as visible in the case selection table (1-123).

◦ [CaseUidRaw]: The case UID, as visible in url or in file system (1000000000000123).

◦ [Memo]: The text value of memo field.

back to top

10.5.4 Message Computation

Computing responses to message requests is the essential function of IBM Safer Payments message request processing. The flow chart
below illustrates this non-trivial process:

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

The steps in this computation process are:

1. IBM Safer Payments receives transaction messages either from XML requests via its IP port (real-time requests), WebSphere MQ
via message queues or from data files (batch requests). With real-time requests, the message type Id is derived from the
respective <IRIS> element attribute "MessageTypeId"; with batch requests, the message type Id is taken from the job
configuration.

2. From the message type Id, IBM Safer Payments concludes the message definition to be applied. The message definition contains
the alias names that IBM Safer Payments should look for in the transaction message received, and defines the function
preprocessing to be applied.

3. Now all input attribute values are stored in the computational data cache (CDC) of the computational thread that performs the
computation of this transaction message. The CDC contains storage positions also for the model output attributes and the output
attributes of the profiling elements.

4. Next IBM Safer Payments assembles a list of mandators that shall be applied to compute this transaction message. For this, IBM
Safer Payments first identifies the mandator this transaction belongs to, and then creates a list of all mandators on the path to the
top mandator from there. This list is then computed top-down, that is starting with the top mandator to the transaction owning
mandator. This computational sequence with respect to mandators is applied to all subsequent model element computation steps
(lists, indexes, masterdata, calendar profiles, events, counters, formulas, and rulesets/rules).

5. Now IBM Safer Payments computes model lists.

6. Next IBM Safer Payments checks if the transaction message satisfies any of the merging source conditions of any applicable
mandator. If so, it checks if any of the applying mergings has "insert" merging source activated. If so, an URID is allocated for the
transaction message, the merging(s) is/are executed, the merging source transaction message as stored in the CDC is stored
(permanently) into the MDC/DDC, a response message is generated, and the response message is sent. If none of the applying
mergings has "insert" merging source activated, the merging(s) is/are executed, and a response message is generated and sent.
This concludes the processing of a merging source transaction message.

7. Otherwise, the transaction message is checked if it satisfies any of the masterdata conditions. This process is analogous to the
merging process.

8. If the transaction message is no merging and no masterdata source, it is a "normal" transaction and thus an URID is allocated for
it. Then all model elements are computed, each for all applicable mandators. The generated output attribute values of all elements
are stored in the CDC.

9. Once all computation is completed, IBM Safer Payments checks of the "CaseClass" meta attribute is set (nonzero). If so, an alarm
is generated and this alarm is queued for case consolidation. Case consolidation is performed asynchronously by a separate
computational thread dedicated to just case consolidation. Only after case consolidation, the case becomes "visible" in case
investigation.

10. Finally the CDC gets "dumped" to the MDC/DDC, which renders the transaction message permanent as record. If the "Timestamp"
meta attribute value of the transaction is later/higher than the one of the previous transaction, the IBM Safer Payments internal
"transaction time" is updated. This time is used for period computation. Then the response message is generated with all status
and output attributes of all applicable mandator models, and sent back to the service consumer (if it was a real-time transaction
message) or written to the ".log" file (if it was a batch transaction message).

back to top

10.5.5 Time Representation

IBM Safer Payments is designed to work in a world environment, where transactions can come from any region (and thus time zone) as
well as users. Therefore IBM Safer Payments uses three time representations:

• UTC (universal time coordinated)
IBM Safer Payments uses UTC timestamps internally for all its representation of date/time data. UTC is also used between the IBM
Safer Payments server and the IBM Safer Payments client (via the API), where the IBM Safer Payments client recomputes the local
date/time for display.

• Local time
Local time is used in any display and entry of date/time information by the user according to his preference settings. Therefore
users in different time zones will see different date/time values.

• Server time
Server time is used for display of any server relevant date/time information and as a reference for the actual transaction message
computation.

back to top

10.5.6 Benchmarking Prevention Performance

To measure the performance of a fraud prevention system, two performance indicators are most relevant:

• Fraud detected

• False alarms

A fraud prevention system is better, if it detects more fraud and generates fewer false alarms. Unfortunately, both objectives are
mutually exclusive in real world fraud prevention. Tuning a fraud prevention system to catch more fraud will also increase the number of
false alarms and tuning it to decrease the number of false alarms will decrease the amount of fraud detected.

Therefore tuning a fraud prevention system is always about finding the best compromise between fraud detection rate and false alarms.
The analytical features of IBM Safer Payments assist you in this task.

Frequently your tuning task will be determined by external constraints. For example, you may be in a situation where you are only
allowed to a certain alarm rate.

Multiple definitions of the benchmarks listed above exist. The remainder of this document uses the following definitions:

Fraud detected

Fraud detected is measured either for individual rules, rulesets or analysis categories as a percentage of the total fraud amount. If there
is $1000 of fraud in a given set of data, and a rule would hit $10 of it, the fraud detection would be 1%.

Therefore if you get the result that a given ruleset will deliver you 50% fraud detection, you would have saved half of your fraud losses
if this logic would have been used.

False Alarms

False alarms are measured by the ratio of false alarms that are generated for any correct alarm (hit). If the false alarm ratio is 5, there
would be 5 false alarms for any hit.

Notice that in the example above, a total of 6 alarms is generated.

Also notice that fraud detected is using "amount" as reference, while false alarms uses "number of transactions" as reference. This is
because for fraud detected shall reflect the monetary savings while false alarms shall reflect customer disturbance. While monetary
savings are expressed by the loss amount saved, customer disturbance is expressed by the number of genuine transactions that are
intercepted.

Savings per false alarm

"Fraud detected" is measured either for individual rules, rulesets or analysis categories as a percentage of the total fraud amount. If
there is $1000 of fraud in a given set of data, and a rule would hit $10 of it, the fraud detection would be 1%.

However, "fraud detected" cannot be the only performance measure of rules and rulesets. A rule may "catch" a lot of fraud, but if it at
the same time generates too many false alarms, it is not a "good" rule. Therefore it has become customary to use a second benchmark
figure, dubbed "false positive". False positives are typically measured as the number of false alarms that are generated to generate one
correct alarm.

Notice that while "fraud detected" uses the amount of the transactions as measure unit, the "false positive" use the number
oftransactions.

Tuning a decision logic always takes these two benchmark figures into account, and you will find them on many pages in IBM Safer
Payments. Always one implies the other. In theory, you can catch all fraud if you intercept with every transaction. This would at the
same time result the worst result for false positives. No false positives are generated if you never intercept with any transaction at all. It
is obvious that the setting you want your decision logic to have should be somewhere between these extremes. The question is, where.

Often you have constraints with one of the two benchmark figures. You may be in a situation where you are only allowed to intercept

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

with one in a thousand transactions. With your false positives limited to this figure, you now try to get the best fraud detected rate
possible for the interceptions permitted. Or you have a fraud savings target, in which case you try to achieve this target with the
minimum number of (false positive) interceptions.

Whatever situation you are in, however, a good rule is always one with a high "fraud detected" rate and low "false positives". In this
situation it is beneficial to use a single performance indicator to express how "good" a rule really is. IBM Safer Payments introduces a
new performance indicator to rules, rulesets and decision logics, the so-called "Saved amount per false alarm". This performance
indicator is a monetary figure. If the value for a rule or a decision logic for this benchmark is "$10", it means that for each false alarm,
you save $10. This performance indicator does not say whether this rule only saves $10 and generates one single false alarm or
whether it saves $1,000,000 and generates 100,000 false alarms. It is a "relative" benchmark.

What this performance indicator is good for, is to sort rules with respect to their quality. IBM Safer Payments' analytical capabilities let
you generate a list of all your rules, sorted by the "Saved amount per false alarm" (SAPFA). If you now select rules starting with the
highest value, you are always sure that you prefer the rules that generate most fraud savings for the false alarms ("most bang for the
buck").

back to top

10.5.7 Online Help

IBM Safer Payments offers three ways to access online help:

1. Context help
Context sensitive help is directly available from the toolbar of the most page section by clicking on the respective icon.

2. Topic help
Generic topic help is available either from context help pages or from the links below.

3. Search help
If you need help to any subject, just type in the keyword(s) in the light blue box in the upper right hand corner of this (and any)
help window. As soon as you type in three letters or more, a drop list of suggested choices appears. Pressing the return key opens
a full page of search results.

Usage hints

• All online help pages appear within the browser window you opened for IBM Safer Payments. To quickly identify help pages, their
header uses bright green background colour.

• They always appear over the IBM Safer Payments page and can be moved by dragging the header bar with the mouse.

• To change the size of a help page, use the drag bars at the right side and bottom of the help page. Help pages scroll only vertically.

• Notice that each help page's position and size settings are stored individually in your user account preferences. Thus, next time
you open the same help page, it will open at the same position and with the same size.

• A new browser window with a printer optimized formatting opens by clicking on the toolbutton at the right side of the help page
header. Use the print function of your browser to print the page.

• Help pages are closed by clicking on the toolbutton at the right side of the help page header, or by pressing the [Esc] key.

• Links to other help pages are shown in blue; underlining appears when the mouse pointer rests over them. If you click on a link,
the new help page is displayed on top of the others. IBM Safer Payments keeps all online help pages open until you manually close
them, even when you navigate to another IBM Safer Payments page. Notice that there is no "back" navigation in help pages as the
browser "back" function is tied to the IBM Safer Payments page itself.

IBM Safer Payments manual

You may generate a printable version of all online help pages, formatted and structured as a manual by clicking on the toolbutton at
the right side of this help page header. The IBM Safer Payments manual opens in a new browser window. You may either print it from
there or import it to a word processing software for further processing. For example, to import the manual into Microsoft Word, click into
the manual browser window, press [Ctrl]-[A] to mark the entire text, press [Ctrl]-[C] to copy it to the clipboard, and press [Ctrl]-[V] in
a new empty Word document. Notice that Word understands the document structure, allowing you to set format template and
automatically create a full table of contents.

Generic topics help pages

• Quick facts

• User access

• Cluster management

• Operational cluster control

• Interfaces overview

• Storage architecture

• Structural configuration

• PCI DSS encryption

• IBM Safer Payments security

• Revision control

• Automatic and assisted rule generation

• Benchmarking prevention performance

• Message computation

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

• Time representation

• Device identification

back to top

10.5.8 Levenshtein

IBM Safer Payments uses the Levenshtein algorithm to determine the closeness of two text values.

In information theory and computer science, the Levenshtein distance is a string metric for measuring the amount of difference between
two sequences. The term edit distance is often used to refer specifically to Levenshtein distance.

The Levenshtein distance between two strings is defined as the minimum number of edits needed to transform one string into the other,
with the allowable edit operations being insertion, deletion, or substitution of a single character. It is named after Vladimir Levenshtein,
who considered this distance in 1965.

The table below lists some exemplary Levenshtein distances.

Value 1 Value 2 Levenshtein distance

Godot God0t 1

Müller Mueller 2

Jon Jones J. Jones 2

Pete Black G. Peter Black 4

Marylin Monroe MarylinManson 4

John Jakob Jones John Jones 6

Chris Thomas Nick Pye 11

A. Mueller Mueller, Anton 10

A. Müller Mueller, Anton 12

back to top

10.6 Definitions

This section explains some of the specific terminology used in the IBM Safer Payments documentation.

back to top

10.6.1 Service Consumer

When discussing integration of IBM Safer Payments with other systems, we use the following terminology:

• Service provider
In all integration scenario, we refer to IBM Safer Payments as the "service provider", providing decision services to the service
consumer.

• Service consumer
We refer to any system that is connected to IBM Safer Payments as a "service consumer". This includes authorization systems,
card management systems, automatic calling systems, etc. From the IBM Safer Payments server component point of view, also the
IBM Safer Payments client (via the API) is a service consumer.

back to top
IBM Safer Payments 6.0.0.12

http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0
http://sphost1.fyre.ibm.com:8005/#level0

