

 1

Considerations for Running Connect:Direct for UNIX
Behind a Load Balancer - Updated

Date: November 17, 2020

 2

Table of Contents

1. INTRODUCTION... 3

2. SNODE SERVER CONSIDERATIONS .. 4

3. SNODE CONNECT:DIRECT NODE SETUP .. 4

4. SHARED SNODE WORK AREA SETUP ... 4

5. “STRANDED” SNODE TCQ ENTRIES ... 5

6. RUN TASK RESTART PARAMETER ... 6

7. SNODE PROCESS STATISTICS ... 6

8. PNODE TO SNODE CONSIDERATIONS.. 7

9. FASP CONSIDERATIONS. .. 7

10. EXAMPLE ILLUSTRATIONS. .. 8

 3

1. Introduction
Customers may wish to use a connection load balancer to distribute incoming
Snode sessions across multiple instances of Connect:Direct for UNIX. In such an
arrangement the Connect:Direct for UNIX instances behind the load balancer
appear as a single Snode to the outside world. A given incoming session is
distributed to one of the instances based on criteria defined in the load balancer.
If an incoming session fails and is restarted by the remote PNODE, then the
restarted session may be assigned to any of the instances behind the load
balancer and will not necessarily be established with the original SNODE
instance. Generally, from the point of view of the nodes behind the load balancer
only incoming or “SNODE” sessions are affected by the load balancer; PNODE,
or outgoing sessions operate the same way they normally do. Connect:Direct for
UNIX includes an enhancement that allows COPY checkpoint/restart and RUN
TASK resynchronization to work when Connect:Direct is set up in this way.

This document points out some extra considerations that come into play only
when instances of Connect:Direct for UNIX are configured to operate behind a
connection load balancer. These considerations can be categorized as:

• SNODE server characteristics

• SNODE Connect:Direct node setup

• Shared SNODE work area setup

• “Stranded” SNODE TCQ entries

• RUN TASK RESTART parameter

• Process Statistics

• Remote Snode alternate.comminfo parameter

 4

2. SNODE Server Considerations

• The servers used for the Connect:Direct for UNIX instances behind the
load balancer must all have access to a common shared cluster disk
storage since any COPY statement source and destination files for
SNODE processes must reside in directories accessible to all of the
servers. All nodes must have access to a common SNODE work area. If
you want to use NFS for the shared drive, the NFS version must be v4 or
greater.

• The system clocks on all the servers must be synchronized for COPY
checkpoint/restart and RUN TASK synchronization to work.

• The administrator user ID used to install Connect:Direct for UNIX must be
defined the same on each server and must be the same user and group
number on each server.

• The servers should all be of the same hardware platform type and running
the same Operating System.

3. SNODE Connect:Direct Node setup

• One Connect:Direct for UNIX node should be installed on each server
behind the load balancer.

• Each node must be the same Connect:Direct for UNIX version and
maintenance level.

• Each node must be installed by the same user ID.

• Each node must have the same C:D node name.

• Each node must have the same node-to-node connection listening port.

• Each node must specify the same path for the snode.work.path attribute of
the ndm.path initialization parameter in the initialization parameter file.

• Each node must specify its local host name in the tcp.api listening address
specification of the netmap local node entry.

4. Shared SNODE work area setup

A directory should be established for the shared SNODE work area used by the
Connect:Direct for UNIX nodes behind the load balancer. The path to this
directory must be specified in the snode.work.path attribute of the initialization
parameter file for each instance. Following is an example for this parameter.

 5

Miscellaneous Parameters

ndm.path:path=/<local_install_path>/cdunix:\

 :snode.work.path=/<shared_disk_mount_point>/cdunix/shared:

SNODE return code files (steprc files) and COPY checkpoint information are
created and stored in this area when the snode.work.path attribute is specified in
the initialization parameters.

This directory should be owned by the Connect:Direct administrator ID and must
be accessible to all of the servers behind the load balancer. It must be on a
cluster file system. If you want to use NFS for the shared drive, you must use
NFS v4 or greater.
The initial size of the shared work area is dependent upon the number of
Connect:Direct for UNIX servers behind the load balancer and the total workload
on the servers. You can start with 50Mb, or more. You will need to monitor the
usage of this disk space from time to time and be prepared to increase the size if
necessary.

5. “Stranded” SNODE TCQ entries

As mentioned above, when Connect:Direct instances are setup behind a load
balancer and an incoming session fails and is restarted by the remote PNODE,
then the restarted session may be assigned to any of the SNODE instances
behind the load balancer and will not necessarily be established with the original
SNODE instance. In this scenario, each SNODE instance that receives a
session for a given process creates a TCQ entry for the process. (Note that each
SNODE instance has its own TCQ file; these are not shared among SNODE
instances. Only the work files created in the shared work area are shared among
instances.)

Consider this scenario based on the drawing depicted in the introduction. If a
process P is submitted on the remote PNODE, a session may be established
with SNODE instance 1, which creates an SNODE TCQ entry in its TCQ file. If
process execution is interrupted and the process is requeued and restarted, the
restart session may be established with SNODE instance 2, which also creates
an SNODE TCQ entry in its TCQ file. If the process runs to completion on the
restart session with SNODE instance 2, then that instance deletes its TCQ entry
for process P and also deletes any SNODE work files for process P from the
shared SNODE work area. However, SNODE instance 1 still retains its TCQ
entry for process P. This TCQ entry is “stranded” since the process has
completed and the work files have been deleted.

 6

Stranded SNODE TCQ entries are checked automatically when Connect:Direct
for UNIX is initialized and also when the TCQ is scanned periodically during
product execution. The stranded SNODE TCQ entries will be deleted according
to the parameter value set for ‘ckpt.max.age’ in the “TCQ Information” section of
the ‘initparm.cfg’ file. The default value is 8 days before automatic deletion
occurs. No administrator action is required.

6. Run Task Restart parameter

The Run Task Restart parameter works slightly differently when Connect:Direct
for UNIX is configured with shared SNODE work areas.

Ordinarily when process execution is interrupted during a Run Task step and
subsequently restarted, then the setting of the Run Task Restart parameter
determines whether or not the task is restarted only if it is determined that the
task is no longer active. Connect:Direct for UNIX determines whether or not the
task is still active by checking if the task system process is still active on the
server.

When shared SNODE work areas are configured and the Run Task is on the
SNODE, then at restart time it is generally not possible for Connect:Direct for
UNIX to determine whether the original task is still active or not since the restart
session may be with a different SNODE instance on a different server machine.

Therefore, in this scenario, the task is either restarted or not restarted based
solely on the setting of the Run Task Restart parameter. Because of this, caution
should be used when specifying Run Task Restart = Yes. It is possible that a
task could be restarted even though it may be active on another server machine.

7. SNODE Process Statistics

Because of the fact that statistics files are not shared among the SNODE
instances behind the load balancer, when a process is interrupted and restarted
to a different SNODE instance, the statistics records for that process will be
distributed between the two SNODE instances involved. Currently there is no
provision for selecting all the statistics records for a given process in a single
operation when the records are distributed across multiple SNODE instances.

 7

8. PNODE to SNODE Considerations.

 When the Connect:Direct for UNIX servers behind the load balancer are acting
as Pnodes sending to an Snode, the remote Snode needs to have the Netmap
record for the Pnodes configured with the “alternate.comminfo” parameter. This
will allow Netmap checking to work successfully on the remote Snode.
CDU Example:
XYZ:\
 :comm.info=9.1.2.2;1364:\ <<This is the IP address of the load balancer>>
 :alternate.comminfo=9.1.2.3, 9.1.2.4, 9.1.2.5:\ <<These are the IP addresses
 of the individual nodes
 behind the load balancer>>

 Support for distributing API connections through a load balancer is limited to
being used for submit process commands without a maxdelay specification.
When a process is submitted with maxdelay, the connection is idle until the
process is completed. Load Balancers tend to kill idle connections. A “Best
Practice” for submitting a long running process via a Load Balancer distributed
API connection is to submit the process without maxdelay, keep the API
connection open, and periodically poll the server for process results.
For example, a C:D File Agent operating outside of the CDU LB cluster could
have its connections distributed via the load balancer. Query and configuration
type commands should be submitted directly to each Connect:Direct for UNIX
server via its own API Listening port.

9. FASP Considerations.
CDU uses both TCP and UDP for FASP connections. When the CDU
environment is the Snode, destination address affinity persistence, also known
as ‘sticky persistence’, needs to be enabled in the load balancer. DAAP supports
both TCP and UDP protocols. This will direct session requests to the same
server based solely on the destination IP address of a packet.
Consult the following document for more details on using FASP behind a load
balancer.
Using a Load Balancer with FASP for Connect:Direct for UNIX

http://public.dhe.ibm.com/software/commerce/doc/mft/cdunix/whitepapers/Using_CD_HSAO_behind_a_load_balancer.pdf

 8

10. Example Illustrations.
The first is an example of the logical representation of the connectivity of the load
balancer environment. This illustration contains examples of the configuration
settings used to enable the connectivity between the two representative
companies.
This is an example only – your environment may be different.
The second is an example of the physical connectivity that one might use to
setup this environment.
This is an example only – your environment may be different.

 8

Company Alpha Company BravoNode name: Alpha1

CDU Server 1

Node name: Alpha1

Node name: Alpha1

CDU Server 2

CDU Server 3

Load Balancer

Local IP Address:

192.168.25.10

Port: 1364

Node name: Bravo1

E
x
a

m
p

le
 C

D
U

 S
e

rv
e

r

Initparm:

ndm.path:path=/<install_path>/cdunix:\

 :snode.work.path=/<install_path>/cdunix/shared:

rnode.listen:\

 :recid=alpha1

 :comm.info=192.168.25.12;1364:\

Initparm:

ndm.path:path=/<install_path>/cdunix:\

 :snode.work.path=/<install_path>/cdunix/shared:

rnode.listen:\

 :recid=alpha1

 :comm.info=192.168.25.14;1364:\

Initparm:

ndm.path:path=/<install_path>/cdunix:\

 :snode.work.path=/<install_path>/cdunix/shared:

rnode.listen:\

 :recid=alpha1

 :comm.info=192.168.25.16;1364:\

Netmap:

local.node:\

 :tcp.api=192.168.25.12;1363:\

Alpha1:\

 :comm.info=192.168.25.12:1364:\

Bravo1:\

 :comm.info=196.172.54.45;1364:\

Netmap:

local.node:\

 :tcp.api=192.168.25.14;1363:\

Alpha1:\

 :comm.info=192.168.25.14:1364:\

Bravo1:\

 :comm.info=196.172.54.45;1364:\

Netmap:

local.node:\

 :tcp.api=192.168.25.16;1363:\

Alpha1:\

 :comm.info=192.168.25.16;1364:\

Bravo1:\

 :comm.info=196.172.54.45;1364:\

Distribution for Alpha1

Host Listening -

IP Addresses:

192.168.25.12

192.168.25.14

192.168.25.16

All Ports: 1364

Initparm:

rnode.listen:\

 :recid=Bravo1

 :comm.info=196.172.54.45;1364:\

Netmap:

local.node:\

 :tcp.api=196.172.54.45;1363:\

Bravo1:\

 :comm.info=196.172.54.45;1364:\

Alpha1:\

 :comm.info=192.168.25.10:1364:\

 :alternate.comminfo=192.168.25.12,

192.168.25.14, 192.168.25.16:\

Common

Shared

Cluster

Disk

Storage

non-NFS

Node name: Bravo1

E
x
a

m
p

le
 C

D
W

 S
e

rv
e

r

Initparm:

[Local Node Characteristics]

 name=Bravo1

 tcp.host.port=196.172.54.45;1364

 tcp.api.port=196.172.54.45;1363

Netmap:

[Node:Bravo1]

 IPAddress=196.172.54.45;1364

[Node:Alpha1]

 IPAddress=192.168.25.10:1364

 AltCommInfo=192.168.25.12, 192.168.25.14,

192.168.25.16Distribution for API

Listening is not

supported. Node name: Bravo1

E
x
a

m
p

le
 C

D
Z

 S
e

rv
e

r

Initparm:

TCP.LISTEN=196.172.54.45;1364

TCP.API.LISTEN=196.172.54.45;1363

Netmap:

 Local.Node=Bravo1

 Adjacent.Node=Bravo1

 IPAddress=196.172.54.45;1364

 Adjacent.Node=

 ((Alpha1,1364,192.168.25.10,TCP)

 PARSESS=(6 2)

 Alt.Comm=

 (Alt.Addr=192.168.25.12, Alt.Port=1364,

 Alt.Use.Out=No)

 (Alt.Addr=192.168.25.14, Alt.Port=1364,

 Alt.Use.Out=No)

 (Alt.Addr=192.168.25.16, Alt.Port=1364,

 Alt.Use.Out=No))

Local IP Address:
192.168.25.10
Ports: 1363/1364

Distribution for Alpha1
Host/API Listening –
192.168.25.12
192.168.25.14
192.168.25.16
All Ports: 1363/1364

Can be NFS
v4 or greater

 9

Switch/Router
Firewall

CDU Server 1

CDU Server 2

CDU Server 3

Load Balancer

Company Alpha

Firewall Switch/Router

Company Bravo

The Internet

C:D Server

Common Shared

Cluster Disk

Storage

