QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

QCOPYPRP

Sample COBOL CICS WMQ Program
Copy messages and apply a property

The IBM ATS WebSphere MQ team:

Lyn Elkins — elkinsc @us.ibm.com
Mitch Johnson — mitchj@us.ibm.com

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 1

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

INEEOAUCTION ...ttt et ettt et sab e et e s e s 3
TEITIIS ettt ettt ettt et et ettt et et et nees 4
QCOPYPRP ...ttt ettt et ettt e bt et et e b ebeeneens 5
Program DeESCTIPHIONoiiiiiiiiieeiiie ettt ettt st st e st e st e s e e 5
5110101 5
The Copy CONLIOl MESSAZE ...ccvveeerurieeiiieeiiieerieeette et e ettt eie e st e e st e e sbeeeeaaee s 5
Sample QCOPYPRP Copy Control MESSaZeceevvveerveeeriieeniieeiieeeireeeieeesvneenns 6

The TriZEET MESSAZEeeeuiiieiiieeiiie ettt ettt ettt et s e e st e e sabeeesanee s 6
OULPULS 1.ttt eetteeeetee et e et e et e e etteeentaeeeataeeasaeeeassaeensseeansseeanssaeenssaeansseeansseensseeennseenn 6
The Status IMESSAZE. ...ccuvveeruiiieiiieeiite ettt ettt eit e st e st e e st e e sabeeesabeeesaaee s 6

The COPIEA MESSAZES. .. .vvieeiiieeiieeeiieeeieeerteeesteeesteeesaee e reeeabeeesreessreesnseeesnseeennseens 7
QCOPYPRP Program FIOWc.cooiiiiiiiiiiiieeieete ettt 7
The Message Properties COUC.coouiiiiiiiriiieriie ettt ere e e e e e e 8
Installing the SAMPIE.......cccciiiiiiiiiiii et 10
Uploading the sample filec.ceeciiiiiiiiiiiiieie et 10
Customizing the SAMPIEoeeiiiiiiiiiiii et 13
Edit the REXX €dit file......cceeoiiiiiiieiieieeeeeecee e 13
Process DEfINILIONScovuiiriiiiiiniiiieeniieete ettt s 16
QUEUE DEfINITIONScoeiiiiiiiieiiec ettt e eeee e e e e e e eeaatarreeeeeeseennrseneens 16
TEeStNG the PrOZTAIMN ..cc..uviiiiiiieiiie ettt ettt e et e et e st e e st e e sabeeesabeeesabeeeas 17
ACKNOWIEAZIMENES: ...eiiiiieiiiieciie ettt ettt e et e et e e e e etaeeentaeesnsaeesssaeesnseeenns 25

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 2

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Introduction

This document describes the sample COBOL MQ CICS program, QCOPYPRP. This
program copies messages from a source queue to a target queue and applies message a
message property to each message that is copied. This sample requires WMQ V7.0.1 or
above and CICS 3.2 or above.

Please note that the following PTFs, or their equivalent for your release level, need to be
applied to support the WMQ V7 verbs, and should be applied before implementing these
samples

CICS TS 3.2 - PK66866 (UK52671,UK52672,UK52673,UK52680) OR
CICS TS 4.1 — PK89844 (UK52619,UK52667,UK52668,UK52669)

The program is single purpose, it was created to demonstrate adding and deleting
message properties in a COBOL CICS program. The program is simple:

1) After being triggered, it retrieves the control message that drives the operation.
The control message holds the number of messages to be copied, the source
queue, the target queue, and an optional message property value.

2) It reads a specified number of messages from the source queue, applies a message
property and writes each message to the target queue. The message property
name is COPY_PROP. The default value for this is “DEFAULT PROP”.

3) It deletes the property for the copied messages and creates the property for the
status message. The status property name is (predictably) STATUS_PROP. The
value is “TEST MESSAGE PROPERTY”.

4) Finally, it writes the status message, closes all the queues, and terminates.

This document assumes the reader is somewhat familiar with WMQ, CICS, and COBOL.
The test samples make use of a Message broker SupportPac, IP13: WebSphere Business
Integration Broker - Sniff test and Performance on z/OS. While technically a WMB
SupportPac, this has been very useful for testing WMQ as well. This SupportPac may be
found at:

http://www-01.ibm.com/support/docview.wss 7rs=171&uid=swg24006892&loc=en US&cs=utf-8&lang=en

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 3

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Terms

Control Message — the message used to start the QCYP transaction. For QCYP the
message contains, in comma delimited format:

1. The number of messages to be copied

2. The source queue

3. The target queue

4. The value to be used for the copy message property (optional)

Trigger message — this is the message passed to the processing program when the
transaction is triggered, by placing the control message in the queue. A complete
description of the trigger message is documented in the WebSphere MQ InfoCenter, or
for those have the older MQ manuals in the Application Programming Reference
(publication number SC34-6940).

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 4

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

QCOPYPRP

Program Description

The QCOPYPRP program is executed from the QCYP transaction. It copies messages
from one queue to another applying a message property to each message. It is started by
a comma delimited control message which triggers the transaction. It also uses
information from the WMQ process object.

Inputs

The Copy Control message

The Copy Control message is a free form area; commas (',') are used to delimit the fields.
A field can be omitted by including a blank and a comma (',') in it's place. If a field is
omitted, a default value is supplied by the program. The data is broken up into the
following fields:

01 COPY-CONTROL-MESSAGE.

05 COPY-CONTROL PIC 9(06) VALUE 1.

05 SOURCE-QUEUE PIC X (48) VALUE SPACES.
05 TARGET-QUEUE PIC X(48) VALUE SPACES.
05 COPY-MESSAGE-PROP PIC X (25) VALUE SPACES.

The fields are used as follows:

e COPY-CONTROL - The number of messages to copy from the source queue to
the target queue. This can be a range of 1-99999 messages.

e SOURCE-QUEUE - The source of the messages to be copied. If not supplied,
the default value is ‘QCOPYPRP.SOURCE.QUEUE'.

e TARGET-QUEUE - The target for the copied messages. If not supplied, the
default value is ‘QCOPYPRP.TARGET.QUEUE'.

e COPY-MESSAGE-PROP - The property value to be applied to the copied
messages. If not supplied, this defaults to ‘DEFAULT PROP’. The property
name is always ‘COPY_PROP".

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 5

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Sample QCOPYPRP Copy Control Message

000003,QCOPYPRP.QCPY.INPUT.QUEUE1,QCOPYPRP.QCPY.OUTPUT.QUEUE1,TESTTHIS

The values were assigned as follows:

Field name

Value

COPY-CONTROL

3

SOURCE-QUEUE

QCOPYPRP.QCPY.INPUT.QUEUEI

TARGET-QUEUE

QCOPYPRP.QCPY.OUTPUT.QUEUEI1

COPY-MESSAGE-PROP

TESTTHIS

The Trigger Message

Contains data fields that are used as follows:

e MQTM-QNAME - the name of the copy control queue, in the sample delivered it
is ‘QCOPYPRP.CONTROL.QUEUE’

e MQTM-ENVDATA - this is taken from the process definition, and may be used
to supply the status queue name (see Outputs). If not supplied on the process
definition, this defaults to ‘QCOPYPRP.STATUS.QUEUE’.

e MQTM-USERDATA - if present this provides the message wait value for getting

messages from the source queue.

Outputs

The Status Message

The status message has the follow layout:

9(6) VALUE ZEROS.

X (48) VALUE SPACES.

01 STATUS-MESSAGE.

05 FILLER PIC X (20)
VALUE 'MESSAGES COPIED = '.

05 SM-NUMBER PIC

05 FILLER PIC X (20)
VALUE ' FROM QUEUE = '

05 SM-SOURCE-QUEUE PIC

05 FILLER PIC X (20)
VALUE ' TO QUEUE = '.

05 SM-TARGET-QUEUE PIC

The fields are used as follows:

X (48) VALUE SPACES.

SM-NUMBER is the total number of messages copied.

e SM-SOURCE-QUEUE - the source queue
e SM-TARGET-QUEUE - the target queue.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 6

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

The copied messages

Each message is copied with the “COPY_PROP” message property added.

QCOPYPRP Program Flow

The QCYP transaction is triggered.

The control queue is opened.

Publication control message is read.

Control message is parsed into the controlling fields.
The source queue is opened.

The target queue is opened.

The message handle is created

The message property for the copied messages is setup.

WO R WD =

with the message property.
10. The message property is deleted.
11. The status message property is set up.
12. The status message is built.
13. The status queue opened and the status message is put.
14. All queues are closed.
15. Control is returned to CICS.

In a loop, messages are read from the source queue and written to the target queue

For this sample program, if the call to MQ fails the transaction will abend. The abend

codes and their meanings are:
A QCPI1 - The open of the control queue failed
QCP2 - The open of the target queue failed
QCP3 - The MQGET of the Copy Control message failed
QCP4 — The open of the status queue failed
QCPS5 - The open of the source queue failed
QCMH - The create message handle request failed
QSMP - The set message property request failed
QDMP - The delete message property request failed

- = = = = -

© Copyright IBM Corporation, 2013 QCOPYPRP

Page: 7

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

The Message Properties code

The COBOL code to manipulate WebSphere MQ message properties is straightforward;
it uses three of the WMQ V7 verbs:
1. Create Message Handle — this verb sets up the association between message
properties the program defines and messages that are put. This is required before
messages properties can be used by the application. For additional information,

please see:
http://publib.boulder.ibm.com/infocenter/wmgqgv7/v7rl/topic/com.ibm.mq.doc/fr40140_.htm

The sample code is shown:

X
X CREATE A MESSAGE HANDLE TO STORE THE COPY MESSAGE PROPERTY
X

CALL 'MQCRTMH' USING HCONN
MOM-CRT-MSG-HNDLE -OPTIONS
MESSAGE -HANDLE
COMPCODE
RERSON.

2. Set Message Property — this defines message properties that can be associated

with messages that are put. For additional information please see:
http://publib.boulder.ibm.com/infocenter/wmgqv7/v7rl/topic/com.ibm.mq.doc/fr40770__.htm

The sample code setting up the property:

SETUP COPY MESSAGE PROPERTIES

IF COPY-MESSAGE-PROP EQUAL TO SPACES
MOVE 'DEFAULT PROP' TO COPY-MESSAGE-PROP.

MOVE COPY-MESSAGE-PROP TO COPY-PROP.

COMPUTE MQSMPO-OPTIONS = MQSMPO-SET-FIRST.

SET MQCHARW-WSPTR TO ADDRESS OF COPY-PROP-NAME

MOVE LENGTH OF COPY-PROP-NAME TO
MQCHARY-VSBUFSIZE.

MOVE LENGTH OF COPY-PROP-NAME TO
MQCHARY-VSLENGTH.

COMPUTE MQPD-CONTEXT = MQPD-USER-CONTEXT.

COMPUTE PROPERTY-TYPE = MQTYPE-STRING.

MOVE LENGTH OF COPY-MESSAGE-PROPERTY TO
PROPERTY-WALUE-LENGTH.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 8

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

The MQ call:

CREATE MESSAGE PROPERTIES

1% 2

CALL 'MQSETMP' USING HCONN
MESSAGE -HANDLE
MQM-SET-MESSAGE -OPTIONS
MQM-SET-PROPERTY-NAME
MQM-SET-PROPERTY-DESCRIPTOR
PROPERTY-TYPE
PROPERTY-WALUE-LENGTH
COPY-PROP
COMPCODE
REASON.

3. Delete Message Property — this deletes a previously created message property, so
it will no longer be included with any put messages. For additional information
please see:

http://publib.boulder.ibm.com/infocenter/wmgqv7/v7rl/topic/com.ibm.mq.doc/fr25400__.htm

The Delete Message property sample

X
X DELETE COPY MESSAGE PROPERTY
*

CALL 'MQDLTMP' USING HCONN
MESSAGE -HANDLE
MQM-DELETE -MESSPROP-OPTIONS
MQM-SET-PROPERTY-NAME
COMPCODE
REASON.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 9

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Installing the Sample

Uploading the sample file

The samples file contains the source for the copy with properties program, the WMQ

definitions, the CICS definitions, JCL for the test, sample data, and an edit exec that can
be used to alter the ‘++ variables in the definitions and JCL. The file must be uploaded

to z/OS in binary fixed length record format and then received to create the PDS.
And example of the upload, done via PCOM, and the TSO receive are shown below.
1) Upload the QCOPYPRP_SOURCE_XMIT.BIN file. Make sure that the

sequential file is a fixed length 80 byte file, and that you use the binary format.
The transfer type used in the ATS test was:

T — T ——————— — ——m——
— A WS —
File Transfer Settings
e s i
General MVS/TSO |VM | CICS | Translation Tables | IDP Fies |
Todeype: | [EUEE <] | e |
Transfer Options
File Options [asci [of [append
Record Format: | Fixed ~|
Logical Record Length: |80
TSO Allocation Parameters
Allocation Amounts Allocation Units
Primary Secondary Allocation Units |Cylinders -
[10 |1 Block Size: [3200
Additional Options: I
oK | Cancel Help

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 10

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

2) The PCOM upload looked as follows:

Send Files to Host - Session F (MVS/TSO) —— X
Add File to Transfer List
PC
File Name:
|C:\Users\|B M_ADMIN\Documents'Projects\DevelopedDocs\CICS_ Browse... |
Host
File Name:
|QCOPYPRP_SOURCE_bin Browse... |
Transfer Type:
Ibinary-ﬁxed LI
| [n List I Clear | Templates... |
Transfer List
[PC File Name | Host File Name | Type
C\ \QCOPYPRP\QCOPYPRP SOURCE X QCOPYPRP.SOURCE bin
Save List... | Open List... I Delete List... | Remove |
[Send [Options | Cancel | Help |

3) Once the upload has been completed, then use the TSO receive command to
rebuild the source PDS. The receive command is entered from a TSO ready
prompt or from the TSO command panel as shown.

receive indsname(’'elkinsc.qcopyprp.source.bin’)

4) When prompted either hit the enter key to accept the default names or enter the
DSNAME(‘your.source.dataset’) command to suite your naming conventions.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 11

QCOPYPRP — Sample COBOL WMQ CICS Copy messages ad

5) Display the contents of the created PDS, it should look a

ding Message Properties

s illustrated.

BROWSE ELKINSC.QCOPYPRP.SOURCE Row 00001 of 00009
Command ===} _ Scroll ===> CSR
Name Prompt Size Created Changed ID
CICSDEFS 19 2013/08/07 2013/08/23 13:38:52 ELKINSC
COPYTSTM 1 2013/08/08 2013/08/24 10:40:55 ELKINSC
LOADMSGS 10 2013/08/08 2013/08/08 12:30:19 ELKINSC
QCOPYPRP 625 2013/08/23 2013/08/23 15:05:33 ELKINSC
QCYPEDIT 29 2013/08/07 2013/08/23 15:34:45 ELKINSC
QCYPMSG 10 2013/08/23 2013/08/23 15:49:43 ELKINSC
QCYPPROC 9 2013/08/23 2013/08/23 14:59:40 ELKINSC
QCYPQUES 189 2013/08/23 2013/08/23 14:58:25 ELKINSC
QCYPTEST 99 2013/08/23 2013/08/24 11:14:42 ELKINSC
6) Repeat the upload and receive steps for the load dataset. The load library should

contain only one member:

BROWSE ELKINSC.QCOPYPRP.LOARD Row 00001 of 00001
Command === _ Scroll ===> CSR
Name Prompt Alias-of Size TTR AC AM RM
QCOPYPRP 00007918 000004 0O 31 ANY
© Copyright IBM Corporation, 2013 QCOPYPRP Page: 12

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Customizing the Sample

Edit the REXX edit file

For convenience a REXX exec has been included that has change commands to tailor all
the ‘++’ variables used in the other samples to those suitable for your environment.
These steps describe editing and using the REXX exec to tailor the members.

1) Open the QCYPEDIT member in edit mode. It should looks as follows:

000001 ISREDIT MACRO NOPROCESS

000002 ADDRESS ISREDIT

000003 /x xxxx CICS DEFINITIONS CHANGES xxxx x/

000004 "CHANGE '++QMLOGRP++' 'CICSGRP' ALL"

000005 “"change '++QCYP++' 'QCYP' all"”

000006 "change '++QCOPYPRP++' 'QCOPYPRP' all”

000007 "change '++USER++' 'ELKINSC' all”

000008 /x xxxx OEMPUTX CHANGES xxxx x/

000009 “change '++IP13.LOADLIB++' 'SYS1.MQM.IP13.LOADLIB’' all"”
000010 “change ‘++WMQMLQ++' ‘'SYS1.MQY761° all”

000011 “change '++THIS.PDSNAME++' 'QCYP.INSTALL.PDS' all1”
000012 “"change '++QMGR++' 'CSQ1' all"

000013 “"change '++DOC.SUMMARY++' 'QCYP.IP13.DOC.SUMARY' all”
000014 “"change '++DB2.NAME++' 'DSNAR’' all”

000015 "change '++DOC.SUMMARY++' 'QCYP.IP13.DOC.SUMARY' all”
000016 "change '++IP13.TEMP++' 'QCYP.IP13.TEMP' all”

000017 “change '++QCYP.CONTROL.QUEUE++' 'QCYP.CONTROL.QUEUE' all”
000018 “change '++QCYP.INPUT.QUEUE++' 'QCYP.INPUT.QUEUE' al1"

2) Only change the sample values, those on the right. If the ++ variables are changed, in
this member, they will not be changed in the other members. As an example, the
value ‘QMLOGRP’ will be changed to ‘CICSGRP’. You would need to change that
to the RDO group selected for this sample.

Note that some of the variables are repeated because these values are used in multiple
members.

3) Once the values are changed, activate the library using the following command:
ALTLIB ACTIVATE APPLICATION(EXEC) DA(‘your.source.dataset’)

4) Apply the edits by entering the ‘QCYPEDIT’ command to alter the ++ variables to
those valid in your environment.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 13

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

5) As an example, the CICSDEFs member looks as shown before editing:

EDIT ELKINSC.QCOPYPRP.SOURCE (CICSDEFS) - 01.02 Columns 00001 BOO72
Command ===> g Scroll ===> CSR
AR 0K K I IK I KK KK KK KKK AKOK 30K KK KK XK K Top of Data ROk KK 3K KK KKK 3K XK K KK XK KK KK XK
000001 DEFINE PROGRAM(++QCOPYPRP++) GROUP (++QMLAOGRP++)

000002 DESCRIRTION (SAMPLE WMQ COPY WIH PROPERTIES)

0oooe3 ANGUAGE (COBOL) RELOAD (NO) RESIDENT (NO) USAGE (NORMAL)

0oooo4 USELPACOPY (NO) STATUS (ENABLED) CEDF (YES) DATALOCATION [ANY)
000005 EXECKEY (USER) CONCURRENCY (THREADSAFE) API (CICSAPI) DYNAMIC [(NO)
000006 EXECUTIONSET (FULLAPI) JVM(NO) JVYMPROFILE (DFHJVMPR)

oooea? DEFINETIME (11/08/30 05:45:17) CHANGETIME (11/08/30 05:45: 46)
ooooos CHANGEUSRID (++USER++) CHANGEAGENT (CSDAPI) CHANGEAGREL (0660)

000008 DEFINE TRANSACTION (++QCYP++) GROUP (++QMLOGRP++)
000010 DESCRIPTION(SAMPLE WMQ COPY WITH PROPERTIES TRANSACTION)

000011 PROGRAM (++QCOPYPRP++) TWASIZE (0) PROFILE(DFHCICST) STATUS (ENABLE
000012 TASKDATALOC (ANY) TASKDATAKEY (USER) STORAGECLEAR (NO)

000013 RUNAWAY (SYSTEM) SHUTDOWN (DISABLED) ISOLATE(YES) DYNAMIC (NO)
000014 ROUTABLE (NO) PRIORITY (1) TRANCLASS (DFHTCL@O) DTIMOUT (NQ)

000015 RESTART (NO) SPURGE (NO) TPURGE (NO) DUMP [YES) TRACE (YES)

000016 CONFDATA (NO) OTSTIMEOUT (NO) ACTION(BACKOUT) WAIT (YES)

000017 WAITTIME (0,0,0) RESSEC (NO) CMDSEC (NO)

000018 DEFINETIME (11/08/30 05:43:04) CHANGETIME (11/08/30 05:43:04)
000019 CHANGEUSRID (++USER++) CHANGEAGENT (CSDAPI) CHANGEAGREL (0660)

6) Following the execution of qcypedit, the member has been updated as shown:

EDIT ELKINSC.QCOPYPRP.SOURCE (CICSDEFS) - 01.03 Columns 00001 00072
Command === Scroll ===> CSR
KKK KKK KK KKK KKK K KK K KK K K K Top of Data 000030 K KK KK KK I K KKK K K
==CHG> DEFINE PROGRAM(QCOPYPRP) GROUP (CICSGRP)

000002 DESCRIPTION(SAMPLE WMQ COPY WIH PROPERTIES)

ooooes LANGUAGE (COBOL) RELOAD (NO) RESIDENT (NO) USAGE (NORMAL)

ooooo4 USELPACOPY (NO) STATUS (ENABLED) CEDF(YES) DATALOCATION (ANY)
000oes5 EXECKEY (USER) CONCURRENCY (THREADSAFE) API (CICSAPI) DYNAMIC (NQ)
000006 EXECUTIONSET (FULLAPI) JVM(NO) JVMPROFILE (DFHJVMPR)

oooee7? DEFINETIME (11/08/30 05:45:17) CHANGETIME (11/08/30 05:45: 46)
==CHG> CHANGEUSRID (ELKINSCJ CHANGEAGENT (CSDAPI) CHANGEAGREL (0660)

==CHG> DEFINE TRANSACTION (QCYP) GROUP (CICSGRP) ®
000010 DESCRIPTION(SAMPLE WMQ COPY WITH PROPERTIES TRANSACTION)

==CHG> PROGRAM (QCOPYPRP) TWASIZE (0) PROFILE (DFHCICST) STATUS (ENABLED)
000012 TASKDATALOC (ANY) TASKDATAKEY (USER) STORAGECLEAR [NO)

000013 RUNAWAY (SYSTEM) SHUTDOWN (DISABLED) ISOLATE (YES) DYNAMIC (NO)
0ooo14 ROUTABLE (NO) PRIORITY (1) TRANCLASS (DFHTCLGEA) DTIMOUT (NO)
0o0015 RESTART (NO) SPURGE (NO) TPURGE (NO) DUMP (YES) TRACE (YES)

0ooo1s6 CONFDATA (NO) OTSTIMEOUT (NO) ACTION (BACKOUT) WAIT (YES)

0ooe17 WAITTIME (0,0,0) RESSEC(NO) CMDSEC (NO)

opoo1s DEFINETIME (11/08/30 05:43:04) CHANGETIME (11/08/30 05:43:04)
==CHG> CHANGEUSRID (ELKINSC) CHANGEAGENT (CSDAPI) CHANGEAGREL (0660)

7) Repeat the edit process for all members, except qcypedit itself.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 14

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

CICS Definitions

There are two CICS definitions required; one transaction (QCYP) and one program
QCOPYPRP. The definitions are in the CICSDEFS member, and may be used with the
DFHCSDUP utility to define the resources. Alternatively, RDO (the CEDA CICS
transaction) may be used to define the resources.

For information on the DFHCSDUP utility, please see:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=%2Fcom.ibm.cics.ts.resourcedefinition.doc%2Fcsdup%2Fdthcs
dup.html

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 15

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

WMQ Definitions

The WMQ definitions are in members in the source library, and should be edited to
ensure compliance with your standards.

Process Definitions

The member QCYPPROC is the process definition used to trigger the QCYP transaction.
The PDS member may be used as input to he CSQUTIL program to define the processes
in batch mode, or the objects can be defined online via the WMQ ISPF panels or the MQ
Explorer.

Queue Definitions

The members QCYPQUES contain the queue definitions required to implement the
sample. The PDS members may be used as input to he CSQUTIL program to define the
processes in batch mode, or the objects can be defined online via the WMQ ISPF panels
or the MQ Explorer.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 16

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Testing the program

The following steps may be used to test the QCOPYPRP program.

1.

bt

If not already installed, install the IP13 SupportPac. It can be found at:

http://www-01.ibm.com/support/docview.wss?uid=swg24006892

While technically a WebSphere Message Broker (IBM Integration Bus as it is now
known) SupportPac, this is very useful for testing WebSphere MQ programs.
Define the resources to the queue manager you will use for this test. The members
contain listed below the generic MQ object definitions. You can modify the samples
(using the sample edit REXX) and use CSQUTIL to create the definitions, or you can
create the definitions via the explorer or ISPF panels. The object definition members
are:
a. QCYPPROC - the process definition to trigger the QCYP transaction
b. QCYPQUES - the sample queue definitions.
Define the CICS resources needed for the test. The sample program nad transaction
definition are in the CICSDEFS member of the source library.
Add the sample program to your CICS environment. This can be done by one of the
following:
a. Compiling and linking the sample program, QCOPYPRP, into a load
library already defined to the CICS region.
b. Copying the load module into a load library already defined to the CICS
region.
c. Adding the load library delivered with this sample to the RPL list of the
test CICS region.
Modify the test JCL, which is in member QCYPTEST in the delivered source file.
Run the test JCL. At the end of the test the queue depths should look as shown:

Filter: QCOPYPRP

7 Queue name Queue type QSG disp... Openinputc.. Op.. Current queue .. Put messages Get messages
lel QCOPYPRP.CONTROL.QUEUE Local Queuem.. 0 0 0 Allowed Allowed

= QCOPYPRP.INPUT.QUEUE Local Queue m... 0 0 5 Allowed Allowed

1= QCOPYPRP.OUTPUT.QUEUE Local Queuem.. 0 0 5 Allowed Allowed

1= QCOPYPRP.STATUS.QUEUE Local Queuem.. 0 0 1 Allowed Allowed

The input queue should have 5 message, the output queue has 5 messages, and the
status queue should have one.
To verify the results, first browse the input queue. These messages have been placed
there by the OEMPUTX program. They should not have any message properties. To
use the MQ explorer to browse the messages {

a. Right click on the input queue, and select ‘Browse messages;

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 17

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Compare with...

Delete...
Status...

Watch Activity
Trace Route ...
Clear Messages...
Put Test Message...
Browse{’\\yessages...
Create JMS Queue...

Properties...

8. The messages on the queue will be displayed. Right click on any of the messages and

select Properties as shown.

N e T T T T T —— e T T T Y

&5 Aug 23, 2013 10:16:47 AM_ ELKINSC ELKINSC1

Compare with...
Manage Messages |
Properties...

TS T

MQSTR 800

test mr

© Copyright IBM Corporation, 2013 QCOPYPRP

Page: 18

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

b. Note that there are no ‘Named properties’ associated with these messages,
as that tab does not show up on this display.

E:\"l Message 5 -PITPGPFD “ ﬁ

General General
Report
Context Position: 5
Tcleiifiers Message type: Datagram
Segmentation
. Data Priority: 0
i Persistence: Not persistent
[Put date/time: Aug 23, 2013 10:16:47 AM
Expiry: Unlimited

Reply-to queue:
Reply-to %leue manager: QML3

Backout count: 0

@ Close

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 19

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

c. Selecting the Data folder will display the message contents.

Qj Message SW

s

Message data bytes:

General Data
Report '
Context Data length:
Identifiers Eonat
Segmentation
n Data Coded character set identifier:
. -
E Encoding:
N
N Message data:

800
MQSTR
500
785

test msgl

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090

| m

s

A3
40
40
40
40
A3
40
40
40
40

85
40
40
40
40
85
40
40
40
40

A2
40
40
40
40
A2
40
40
40
40

A3
40
40
40
40
A3
40
40
40
40

40
40
40
40
40
40
40
40
40
40

Close

© Copyright IBM Corporation, 2013 QCOPYPRP

Page: 20

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

9. Next browse the output queue to verify that a property has been added to the
messages.
1. Right click on the output queue, and select ‘Browse messages’.
2. Right click on one of the messages. In the output queue, you should see
he ‘Named properties’ folder as shown:

&) Message 5 - Properties W B B W=

General General
Report
Context Position: 5
Identifiers Message type: Datagram
Segmentation
1 Named Properties Priority: L
i Data Persistence: Not persistent
|
I Put date/time: Aug 23, 2013 10:16:47 AM
Expiry: Unlimited

Reply-to queue:
Reply-to queue manager: QML3

Backout count: 0

@ Close

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 21

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

3. Select the ‘Named Properties’ folder, and the message property added on
the copy is displayed.

EEJ Message 5 - Properties- - _“ ﬂl
D General Named Properties
Report ;
B Context Name Value
Identifiers COPY_PROP TEST_PROP
! Segmentation
" Named Properties
L Data
N
N
-
:ll
N
@ Close
i B .= —— J i P 3

d. The Data folder should look like the data folder from the input queue.
e. Close the panels back to the queue list.

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 22

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

10. Finally, verify that the status message was created correctly and has a property

associated.

a. Right click on the status queue, and select ‘Browse messages’.

b. Right click on the message. The ‘Named Properties’ folder should appear
in the list, as it did on the output queue.

c. On the status message the named property should look as shown:

EE] Message 1 m

TR =

General
Report
Context
Identifiers

Data

Segmentation

Named Prope@a&s

Named Properties

Name
STATUS_PROP

Value
TEST MESSAGE PROPERTY

Close

© Copyright IBM Corporation, 2013 QCOPYPRP

Page: 23

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

f. Select the data folder, and the message contents should look something
like this (queue names may be different):

[

S Eres e o
General Data
Report
Context Data length: 282
Ientifiers Format: MQSTR
Segmentation
Named Properties Coded character set identifier: 500
Bl Encoding: 785
Message data: MESSAGES COPIED = 000005 FRONM
Message data bytes: 40 [|MESSAGES COPIED | =
40 | = 000005 FROM || |
C3 |QUEUE = QC|
C5 |OFYPRP.INPUT.QUE|
40 |UE HIE
E3 | T|
40 |0 QUEUE = |
E4 | QCOPYPRP.OUTPU|L -
40 |T.QUEUE |
40 | '~
b T 1
« Lm
| s
|
@ Close
e —
Congratulations!

© Copyright IBM Corporation, 2013 QCOPYPRP

Page: 24

QCOPYPRP — Sample COBOL WMQ CICS Copy messages adding Message Properties

Acknowledgments:

The authors would like to thank the following people for their assistance
Mark Taylor

Shalawn King

Kenishia Sapp

Chris Griego

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 25

