
QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 1

QCOPYPRP

Sample COBOL CICS WMQ Program

Copy messages and apply a property

The IBM ATS WebSphere MQ team:

Lyn Elkins – elkinsc@us.ibm.com

Mitch Johnson – mitchj@us.ibm.com

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 2

Introduction ... 3

Terms .. 4

QCOPYPRP .. 5

Program Description ... 5

Inputs... 5

The Copy Control message ... 5

Sample QCOPYPRP Copy Control Message ... 6

The Trigger Message .. 6

Outputs .. 6

The Status Message... 6

The copied messages... 7

QCOPYPRP Program Flow .. 7

The Message Properties code.. 8

Installing the Sample... 10

Uploading the sample file ... 10

Customizing the Sample ... 13

Edit the REXX edit file ... 13

Process Definitions ... 16

Queue Definitions ... 16

Testing the program .. 17

Acknowledgments: ... 25

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 3

Introduction

This document describes the sample COBOL MQ CICS program, QCOPYPRP. This

program copies messages from a source queue to a target queue and applies message a

message property to each message that is copied. This sample requires WMQ V7.0.1 or

above and CICS 3.2 or above.

Please note that the following PTFs, or their equivalent for your release level, need to be

applied to support the WMQ V7 verbs, and should be applied before implementing these

samples

CICS TS 3.2 – PK66866 (UK52671,UK52672,UK52673,UK52680) OR

CICS TS 4.1 – PK89844 (UK52619,UK52667,UK52668,UK52669)

The program is single purpose, it was created to demonstrate adding and deleting

message properties in a COBOL CICS program. The program is simple:

1) After being triggered, it retrieves the control message that drives the operation.

The control message holds the number of messages to be copied, the source

queue, the target queue, and an optional message property value.

2) It reads a specified number of messages from the source queue, applies a message

property and writes each message to the target queue. The message property

name is COPY_PROP. The default value for this is “DEFAULT PROP”.

3) It deletes the property for the copied messages and creates the property for the

status message. The status property name is (predictably) STATUS_PROP. The

value is “TEST MESSAGE PROPERTY”.

4) Finally, it writes the status message, closes all the queues, and terminates.

This document assumes the reader is somewhat familiar with WMQ, CICS, and COBOL.

The test samples make use of a Message broker SupportPac, IP13: WebSphere Business

Integration Broker - Sniff test and Performance on z/OS. While technically a WMB

SupportPac, this has been very useful for testing WMQ as well. This SupportPac may be

found at:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24006892&loc=en_US&cs=utf-8&lang=en

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 4

Terms

Control Message – the message used to start the QCYP transaction. For QCYP the

message contains, in comma delimited format:

1. The number of messages to be copied

2. The source queue

3. The target queue

4. The value to be used for the copy message property (optional)

Trigger message – this is the message passed to the processing program when the

transaction is triggered, by placing the control message in the queue. A complete

description of the trigger message is documented in the WebSphere MQ InfoCenter, or

for those have the older MQ manuals in the Application Programming Reference

(publication number SC34-6940).

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 5

QCOPYPRP

Program Description

The QCOPYPRP program is executed from the QCYP transaction. It copies messages

from one queue to another applying a message property to each message. It is started by

a comma delimited control message which triggers the transaction. It also uses

information from the WMQ process object.

Inputs

The Copy Control message

The Copy Control message is a free form area; commas (',') are used to delimit the fields.

A field can be omitted by including a blank and a comma (' ,') in it's place. If a field is

omitted, a default value is supplied by the program. The data is broken up into the

following fields:

01 COPY-CONTROL-MESSAGE.

 05 COPY-CONTROL PIC 9(06) VALUE 1.

 05 SOURCE-QUEUE PIC X(48) VALUE SPACES.

 05 TARGET-QUEUE PIC X(48) VALUE SPACES.

 05 COPY-MESSAGE-PROP PIC X(25) VALUE SPACES.

The fields are used as follows:

• COPY-CONTROL – The number of messages to copy from the source queue to

the target queue. This can be a range of 1-99999 messages.

• SOURCE-QUEUE – The source of the messages to be copied. If not supplied,

the default value is ‘QCOPYPRP.SOURCE.QUEUE'.

• TARGET-QUEUE – The target for the copied messages. If not supplied, the

default value is ‘QCOPYPRP.TARGET.QUEUE'.

• COPY-MESSAGE-PROP – The property value to be applied to the copied

messages. If not supplied, this defaults to ‘DEFAULT PROP’. The property

name is always ‘COPY_PROP’.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 6

Sample QCOPYPRP Copy Control Message

000003,QCOPYPRP.QCPY.INPUT.QUEUE1,QCOPYPRP.QCPY.OUTPUT.QUEUE1,TESTTHIS

The values were assigned as follows:

Field name Value

COPY-CONTROL 3

SOURCE-QUEUE QCOPYPRP.QCPY.INPUT.QUEUE1

TARGET-QUEUE QCOPYPRP.QCPY.OUTPUT.QUEUE1

COPY-MESSAGE-PROP TESTTHIS

The Trigger Message

Contains data fields that are used as follows:

• MQTM-QNAME – the name of the copy control queue, in the sample delivered it

is ‘QCOPYPRP.CONTROL.QUEUE’

• MQTM-ENVDATA – this is taken from the process definition, and may be used

to supply the status queue name (see Outputs). If not supplied on the process

definition, this defaults to ‘QCOPYPRP.STATUS.QUEUE’.

• MQTM-USERDATA – if present this provides the message wait value for getting

messages from the source queue.

Outputs

The Status Message

The status message has the follow layout:
01 STATUS-MESSAGE.

 05 FILLER PIC X(20)

 VALUE 'MESSAGES COPIED = '.

 05 SM-NUMBER PIC 9(6) VALUE ZEROS.

 05 FILLER PIC X(20)

 VALUE ' FROM QUEUE = '.

 05 SM-SOURCE-QUEUE PIC X(48) VALUE SPACES.

 05 FILLER PIC X(20)

 VALUE ' TO QUEUE = '.

 05 SM-TARGET-QUEUE PIC X(48) VALUE SPACES.

The fields are used as follows:

• SM-NUMBER is the total number of messages copied.

• SM-SOURCE-QUEUE – the source queue

• SM-TARGET-QUEUE – the target queue.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 7

The copied messages

Each message is copied with the “COPY_PROP” message property added.

QCOPYPRP Program Flow

1. The QCYP transaction is triggered.

2. The control queue is opened.

3. Publication control message is read.

4. Control message is parsed into the controlling fields.

5. The source queue is opened.

6. The target queue is opened.

7. The message handle is created

8. The message property for the copied messages is setup.

9. In a loop, messages are read from the source queue and written to the target queue

with the message property.

10. The message property is deleted.

11. The status message property is set up.

12. The status message is built.

13. The status queue opened and the status message is put.

14. All queues are closed.

15. Control is returned to CICS.

For this sample program, if the call to MQ fails the transaction will abend. The abend

codes and their meanings are:

� QCP1 – The open of the control queue failed

� QCP2 – The open of the target queue failed

� QCP3 – The MQGET of the Copy Control message failed

� QCP4 – The open of the status queue failed

� QCP5 – The open of the source queue failed

� QCMH – The create message handle request failed

� QSMP – The set message property request failed

� QDMP – The delete message property request failed

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 8

The Message Properties code

The COBOL code to manipulate WebSphere MQ message properties is straightforward;

it uses three of the WMQ V7 verbs:

1. Create Message Handle – this verb sets up the association between message

properties the program defines and messages that are put. This is required before

messages properties can be used by the application. For additional information,

please see:
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/fr40140_.htm

The sample code is shown:

2. Set Message Property – this defines message properties that can be associated

with messages that are put. For additional information please see:
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/fr40770_.htm

The sample code setting up the property:

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 9

The MQ call:

3. Delete Message Property – this deletes a previously created message property, so

it will no longer be included with any put messages. For additional information

please see:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/fr25400_.htm

The Delete Message property sample

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 10

Installing the Sample

Uploading the sample file

The samples file contains the source for the copy with properties program, the WMQ

definitions, the CICS definitions, JCL for the test, sample data, and an edit exec that can

be used to alter the ‘++’ variables in the definitions and JCL. The file must be uploaded

to z/OS in binary fixed length record format and then received to create the PDS.

And example of the upload, done via PCOM, and the TSO receive are shown below.

1) Upload the QCOPYPRP_SOURCE_XMIT.BIN file. Make sure that the

sequential file is a fixed length 80 byte file, and that you use the binary format.

The transfer type used in the ATS test was:

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 11

2) The PCOM upload looked as follows:

3) Once the upload has been completed, then use the TSO receive command to

rebuild the source PDS. The receive command is entered from a TSO ready

prompt or from the TSO command panel as shown.

4) When prompted either hit the enter key to accept the default names or enter the

DSNAME(‘your.source.dataset’) command to suite your naming conventions.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 12

5) Display the contents of the created PDS, it should look as illustrated.

6) Repeat the upload and receive steps for the load dataset. The load library should

contain only one member:

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 13

Customizing the Sample

Edit the REXX edit file

For convenience a REXX exec has been included that has change commands to tailor all

the ‘++’ variables used in the other samples to those suitable for your environment.

These steps describe editing and using the REXX exec to tailor the members.

1) Open the QCYPEDIT member in edit mode. It should looks as follows:

2) Only change the sample values, those on the right. If the ++ variables are changed, in

this member, they will not be changed in the other members. As an example, the

value ‘QML0GRP’ will be changed to ‘CICSGRP’. You would need to change that

to the RDO group selected for this sample.

Note that some of the variables are repeated because these values are used in multiple

members.

3) Once the values are changed, activate the library using the following command:

ALTLIB ACTIVATE APPLICATION(EXEC) DA(‘your.source.dataset’)

4) Apply the edits by entering the ‘QCYPEDIT’ command to alter the ++ variables to

those valid in your environment.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 14

5) As an example, the CICSDEFs member looks as shown before editing:

6) Following the execution of qcypedit, the member has been updated as shown:

7) Repeat the edit process for all members, except qcypedit itself.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 15

CICS Definitions

There are two CICS definitions required; one transaction (QCYP) and one program

QCOPYPRP. The definitions are in the CICSDEFS member, and may be used with the

DFHCSDUP utility to define the resources. Alternatively, RDO (the CEDA CICS

transaction) may be used to define the resources.

For information on the DFHCSDUP utility, please see:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=%2Fcom.ibm.cics.ts.resourcedefinition.doc%2Fcsdup%2Fdfhcs

dup.html

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

 © Copyright IBM Corporation, 2013 QCOPYPRP Page: 16

WMQ Definitions

The WMQ definitions are in members in the source library, and should be edited to

ensure compliance with your standards.

Process Definitions

The member QCYPPROC is the process definition used to trigger the QCYP transaction.

The PDS member may be used as input to he CSQUTIL program to define the processes

in batch mode, or the objects can be defined online via the WMQ ISPF panels or the MQ

Explorer.

Queue Definitions

The members QCYPQUES contain the queue definitions required to implement the

sample. The PDS members may be used as input to he CSQUTIL program to define the

processes in batch mode, or the objects can be defined online via the WMQ ISPF panels

or the MQ Explorer.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 17

Testing the program

The following steps may be used to test the QCOPYPRP program.

1. If not already installed, install the IP13 SupportPac. It can be found at:

http://www-01.ibm.com/support/docview.wss?uid=swg24006892

While technically a WebSphere Message Broker (IBM Integration Bus as it is now

known) SupportPac, this is very useful for testing WebSphere MQ programs.

2. Define the resources to the queue manager you will use for this test. The members

contain listed below the generic MQ object definitions. You can modify the samples

(using the sample edit REXX) and use CSQUTIL to create the definitions, or you can

create the definitions via the explorer or ISPF panels. The object definition members

are:

a. QCYPPROC – the process definition to trigger the QCYP transaction

b. QCYPQUES – the sample queue definitions.

3. Define the CICS resources needed for the test. The sample program nad transaction

definition are in the CICSDEFS member of the source library.

4. Add the sample program to your CICS environment. This can be done by one of the

following:

a. Compiling and linking the sample program, QCOPYPRP, into a load

library already defined to the CICS region.

b. Copying the load module into a load library already defined to the CICS

region.

c. Adding the load library delivered with this sample to the RPL list of the

test CICS region.

5. Modify the test JCL, which is in member QCYPTEST in the delivered source file.

6. Run the test JCL. At the end of the test the queue depths should look as shown:

The input queue should have 5 message, the output queue has 5 messages, and the

status queue should have one.

7. To verify the results, first browse the input queue. These messages have been placed

there by the OEMPUTX program. They should not have any message properties. To

use the MQ explorer to browse the messages{

a. Right click on the input queue, and select ‘Browse messages;

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 18

8. The messages on the queue will be displayed. Right click on any of the messages and

select Properties as shown.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 19

b. Note that there are no ‘Named properties’ associated with these messages,

as that tab does not show up on this display.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 20

c. Selecting the Data folder will display the message contents.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 21

9. Next browse the output queue to verify that a property has been added to the

messages.

1. Right click on the output queue, and select ‘Browse messages’.

2. Right click on one of the messages. In the output queue, you should see

he ‘Named properties’ folder as shown:

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 22

3. Select the ‘Named Properties’ folder, and the message property added on

the copy is displayed.

d. The Data folder should look like the data folder from the input queue.

e. Close the panels back to the queue list.

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 23

10. Finally, verify that the status message was created correctly and has a property

associated.

a. Right click on the status queue, and select ‘Browse messages’.

b. Right click on the message. The ‘Named Properties’ folder should appear

in the list, as it did on the output queue.

c. On the status message the named property should look as shown:

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 24

f. Select the data folder, and the message contents should look something

like this (queue names may be different):

Congratulations!

QCOPYPRP – Sample COBOL WMQ CICS Copy messages adding Message Properties

© Copyright IBM Corporation, 2013 QCOPYPRP Page: 25

Acknowledgments:

The authors would like to thank the following people for their assistance

Mark Taylor

Shalawn King

Kenishia Sapp

Chris Griego

