Non-Reusable Address Space IDs

The number of address space IDs is a fixed number in the system and remains fixed for the duration of an IPL. Parameter in IEASYSxx in PARMLIB specifies a value that the system uses to limit the number of address spaces that can run concurrently during a given IPL. This number includes time sharing jobs, batch jobs, started tasks, system tasks, and the master scheduler, JES2 or JES3.

In z/OS a terminated address space that owned a system LX becomes permanently non-reusable. If a cross memory binding is made to any other address spaces, they also become permanently non-reusable.

An address space which owns a non-system LX may be temporarily non-reusable. When an address space terminates (call this one ASID_X) for which there is a cross memory binding from some other address space (call this one ASID_Y) into the just terminated address space ASID_X, this ASID is not usable until the cross memory binding is terminated. This normally occurs when the address space which has the binding (ASID_Y in our example) terminates. When an address space is terminated that has latent bindings you will see messages on the console and the syslog that look like:

C P5SRV1C.P5SRV1C,A=004A

Therefore, the address space with ASID=004A associated with Started Task P5SRV1C is not reusable. This could be a temporary or permanent situation but cannot be determined from message IEF352I. Please note, it does not matter whether you cancel or stop the ASID, you will get the same behavior.

z/OS monitors the number of address spaces in use on a two minutes interval and issues various messages:

```
IEA059E ASID SHORTAGE HAS BEEN DETECTED
IEA060I ASID SHORTAGE HAS BEEN RELIEVED
IEA061E REPLACEMENT ASID SHORTAGE HAS BEEN DETECTED
IEA062I REPLACEMENT ASID SHORTAGE HAS BEEN RELIEVED
```

It is considered to be ASID shortage condition when the number of ASIDs in **active use** being >= 95% of the IEASYSxx MAXUSER specification (RSVSTRT usage is not monitored, since started tasks will spill over into MAXUSER). The shortage will be considered relieved when the usage value is <= 90%.

The number of replacement ASIDs in use being >= 95% of the IEASYSxx RSVNONR specification. The shortage will be considered relieved when the usage value is <= 90%.

When a shortage condition is detected an action message is issued. When the shortage is relieved the prior message will be DOMed and a new message will be issued.

The following displays are from **MXI**, the freeware tool available at http://www.mximvs.com or <a href="http://www.mxim

ASID option of MXI displays the following:

MXI - ASID - SYSC - HOME - Command ===>	CPU	5 UIC 254	PAG	0Row 1 of 12 Scroll ===> CSR
Address Space Definitions				
Maximum Defined	750			
Reserved Non-Reusable	200			
Reserved Start Commands	5			
Address Space Type	Number	Percentage		
Available For Use	849	88		
Marked Not-Reusable	15	1		
Started Tasks Active	69	7		
TSO Users Active	2	0		
Batch Jobs Active	0	0		
Initiators Active	20	2		

The display shows the **total** number of ASIDs that are defined, the MAXUSER and the RSVNONR values. More importantly 15 ASIDs are marked not re-usable. This includes some active address spaces and some that are marked non-reusable.

MXI provides two options, **XM** (ASIDs with current cross memory bindings) and **MDQ** (non-reusable ASIDs with system LX or latent bindings) which will help in determining non-reusable ASIDs. First let's look at the XM display.

From the XM display we see the following:

MXI - XM SYSC - HOME CPU 4 UIC 254 PAG 0Row 1 of 66										
Command ===> Scroll ===> CSR										
Jobname	ASID	То	From	n XMSE	ASCB	Туре	e CJOB	CAID	Status	5
PCAUTH	0002	*	*	7FFD4E20	00FB3400	<==>	*	*	System	LX
RASP	0003	*	*	7FFD3BE0	00FB3280	<==>	*	*	System	LX
TRACE	0004	*	*	7FFD37C0	00FB3100	<==>	*	*	System	LX
XCFAS	0006	*	*	7FFD33A0	00F3DD00	<==>	*	*	System	LX
GRS	0007	*	*	7FFD3A00	00F3DB80	<==>	*	*	System	LX
SMSPDSE	8000	*	*	7FFD3E20	00FB3A80	<==>	*	*	System	LX
SMSVSAM	0009	*	*	7F849E20	00FB3900	<==>	*	*	System	LX
CONSOLE	000A	*	*	7FFD4C40	00F3DA00	<==>	*	*	System	LX
WLM	000B	*	*	7FFCFA58	00F3D080	<==>	*	*	System	LX
ANTMAIN	000C	*	*	7F84CE20	00FA5680	<==>	*	*	System	LX
ANTAS000	000D	*	*	7F84BC40	00FA5500	<==>	*	*	System	LX
OMVS	000E	*	*	7FFCF638	00F24A80	<==>	*	*	System	LX
IEFSCHAS	0010	*	*	7FFCF878	00F3E700	<==>	*	*	System	LX
JESXCF	0011	*	*	7F84C438	00FB3700	<==>	*	*	System	LX

```
ALLOCAS 0012
                         * 7FFCFC98 00F3CE80 <==> *
                                                               System LX
         0013
                         * 7FFD4100 00F3CD00 <==> *
                                                               System LX
 IOSAS
                         * 7FFD51A0 00F3CB80 <==> *
 IXGLOGR 0014
                                                               System LX
                         * 7FFD4A60 00F24780 <==> *
 SMF
         0015
                                                               System LX
 VLF
         0016
                         * 7F84B650 00F24600 <==> *
                                                               System LX
         0017
                         * 7F84CC40 00F24480 <==> *
 LLA
                                                               System LX
 ATRRRS
        001A
                         * 7F84BE20 00F8EA80 <==> *
                                                               System LX
                         * 7F847BE0 00F8E900 <==> *
NET
         001B
                                                               System LX
         001C
                         * 7F849220 00F8E780 <==> *
 RMF
                                                               System LX
 ASCH
        0020
                         * 7F84C678 00F8E180 <==> *
                                                               System LX
                         * 7F84B410 00F89E80 <==> *
 APPC
         0021
                                                               System LX
         0022
                         * 7F849A60 00F89D00 <==> *
                                                               System LX
 SDSF
 RACFDS 0024
                         * 7FFD4880 00F88200 <==> *
                                                               System LX
                        * 7F84CA60 00F88080 <==> *
 SMS
         0025
                                                             System LX
                        * 7FFD35E0 00F89500 <==> *
         0026
                                                             System LX
 RACF
                         * 7FFD46A0 00F89380 <==> *
 TNF
         0027
                                                             System LX
                         * 7FFD44C0 00F89200 <==> *
 VMCF
         0028
                                                             System LX
 CATALOG 0029
                         * 7FFD42E0 00FAB900 <==> *
                                                             System LX
                         * 7F849820 00FA8600 <==> *
 RESOLVER 002A
                                                               System LX
 TCPIPC 0043
                         * 7F84BA60 00FA6280 <==> *
                                                               System LX
 RMFGAT
         0046
                        * 7F847608 00F9DB80 <==> *
                                                               System LX
                        * 7F847428 00F9D880 <==> *
 ICSF
         0048
                                                               System LX
 DBP3MSTR 0049
                   3
                         5 7F845A60 00FAA280 <=== DBP3MSTR 0049 Active
                                             ===> DBP3MSTR 0049 Active
                                             <=== DBP3DBM1 02F8 Active
                                             <=== DBP3DIST 004D Active
                                             ===> DBP3DBM1 02F8 Active
                                             ===> DBP3DIST 004D Active
                                             <=== ATRRRS
                                                          001A Active
                                             <=== DBP3SPAS 02F6 Active
DBP3DIST 004D 3 4 7F843A00 00FAAD00 ===> DBP3MSTR 0049 Active
                                             <=== DBP3DIST 004D Active
                                             ===> DBP3DIST 004D Active
                                             <=== DBP3MSTR 0049 Active
                                             <=== DBP3DBM1 02F8 Active
                                             ===> DBP3DBM1 02F8 Active
                                             <=== DBP3SPAS 02F6 Active
DBP3IRLM 004E
                         * 7F843580 00FAA100 <==> *
                                                                System LX
 P5DMN 005B
                          * 7F84B880 00FAC580 <==> *
                                                           *
                                                                System LX
DBP3SPAS 02F6
                   3
                          0 7F843820 00FAAB80 ===> DBP3DBM1 02F8 Active
                                              ===> DBP3DIST 004D Active
                                             ===> DBP3MSTR 0049 Active
DBP3DBM1 02F8
                   3 4 7F843BE0 00FAAE80 ===> DBP3MSTR 0049 Active
                                              <=== DBP3DBM1 02F8 Active
                                              ===> DBP3DBM1 02F8 Active
                                              <=== DBP3MSTR 0049 Active
                                              ===> DBP3DIST 004D Active
```

						<===	DBP3DIST	004D	Active
						<===	DBP3SPAS	02F6	Active
P5AGNTC	02FD	1	2	7FFD5E20	00FAF880	<===	P5AGNTC	02FD	Active
						===>	P5AGNTC	02FD	Active
						<===	ATRRRS	001A	Active
						<===	ATRRRS	0342	Active
P5DMGR	0067	1	3	7F835178	00F93880	<===	P5DMGR	0067	Active
						===>	P5DMGR	0067	Active
						<===	ATRRRS	0342	Active
						<===	P5DMGRS	0068	Active
P5DMGRS	0068	1	0	7F837100	00F93700	===>	P5DMGR	0067	Active
T5SRV1	0300	1	3	7F829A60	00FA6580	<===	T5SRV1	0300	Active
						===>	T5SRV1	0300	Active
						<===	ATRRRS	0342	Active
						<===	T5SRV1S	033F	Active
T5SRV1S	033F	1	0	7F829E20	00F95880	===>	T5SRV1	0300	Active

The bottom of this display shows how address spaces have cross memory bindings to each other. In particular the WAS Version 5 Control Region for the node agent (P5AGNTC). Notice that ATRRRS has a cross memory binding to this address space. Unfortunately there is not a full Network Deployment configuration up on this system using DB2, CICS etc, but you can get the idea.

Basically, all the WebSphere Application Server's Control Regions, except for the daemon, will have a binding from ATRRRS to them. They also have a cross memory binding to themselves. Each of the Server Regions will have a cross memory bindings to its Control Region. When you have other resource managers, it can get even more complicated. Now let's look at the MDQ display.

From the MDQ display of MXI we see the following:

MXI - MD	Q—SYSC -	SYSC		CPU 5 I	JIC 254	PAG	0		- Row 1	oi 9
Command ===> Scroll ===> CS								=> CSR		
Jobname	ASID	To	From	XMSE	ASCB	Type	CJOB	CAID	Status	
P5DMNX	02FA	*	*	7F847180	00FAF580	Both	*	*	System	LX
P5SRV1C	004A	0	1	7F847E20		From	ATRRRS	001A	Active	
P5SRV1C	0051	0	1	7F846E20		From	ATRRRS	001A	Active	
P5AGNTC	02F7	0	1	7F845C40		From	ATRRRS	001A	Active	
P5AGNTC	02F5	0	1	7F845768		From	ATRRRS	001A	Active	
P5AGNTC	02F4	0	1	7F845190		From	ATRRRS	001A	Active	
P5AGNTC	02F1	0	1	7F846380		From	ATRRRS	001A	Active	
P5SRV1C	004B	0	1	7F846A00		From	ATRRRS	001A	Active	
P5AGNTB	0042	0	1	7F846190		From	ATRRRS	001A	Active	

The address apace P5SRV1C from ASID 004A is in the list of currently non-reusable ASIDs, which cannot be reused until ATRRRS is terminated.

If you were to issue the **SETRRS CANCEL** command to terminate ATRRS and then redisplay using MDQ, you would see the following:

Now if you look at the ASID display you will see those ASIDs marked non-reusable has decreased by eight, and the number of available increased by 8. However, you will not see any console messages unless there was a shortage of ASIDs or LXs.

If you start canceling WebSphere Application Server (WAS) Control Regions, you will see ASIDs accumulate again.

Summary

The number of unavailable ASIDs changes whenever an ASID goes through memory termination (MEMTERM). The situation can get better or worse depending on whether the latent bindings are removed. Some ASIDs can never be reclaimed.

Sometimes the impact of terminating all the components which are causing ASIDs to become non-reusable will require an IPL. If you have access to MXI, then you can easily determine the number of address spaces that are not available and which address space is preventing the reuse. So in the above example, where ATRRRS is the root cause, you can make a decision of whether or not to recycle ATRRRS and the subsystems dependent on it at your convenience as opposed to an unscheduled IPL.

On systems where there is a lot of starting and stopping of address spaces which get latent bindings, you need to manage the number of ASIDs and LXs.

The monitoring function of z/OS, which runs every 2 minutes, monitors the available ASIDs and LXs. It will issues action message when there is shortage and DOMs them when the shortage is relieved.

An installation running WebSphere test servers, where many Control Region restarts will occur, should consider increasing their **IEASYSxx** specifications for **MAXUSER**, **RSVSTRT**, and **RSVNONR**.

We recommend that you specify larger than necessary values for MAXUSER, RSVSTRT, and RSVNONR. The MAXUSER value must be large enough to include all the active address spaces. Therefore, the value you specify for MAXUSER must take into account the number of initiators, TSO/E USERMAX, and any other factors that contribute to the number of active address spaces.

However, do not over-specify the MAXUSER value by too great of an amount. The console control block area allocates CSA storage based on the sum of MAXUSER and RSVSTRT,

available. So, if the system is not configured to have a lot of storage below 16MB, a large combined value of these two fields can result in a shortage of CSA storage. For each allowed user specified by the MAXUSER parameter, 50 bytes of CSA storage is allocated below 16MB. For example, if you specify a value of 2000 for MAXUSER, 100,000 bytes of CSA storage will be allocated below 16MB. This storage is allocated after system initialization, reducing the amount of available CSA storage below 16MB. This could result in an ABEND 878 reason code 08 when applications are started after IPL. A large MAXUSER value could also cause a wait state 040 to occur at IPL time.

When the system is heavily used, it can use the value specified on the RSVSTRT system parameter to allow more concurrent jobs and started tasks than the number specified by MAXUSER.

When there are non-reusable ASIDs, it can use the value specified on the RSVNONR systems parameter to allow the MAXUSER value to be honored until the number of non-reusable ASIDs exceeds the value of RSVNONR. When this happens, the number of jobs and started tasks that can run concurrently will be reduced by the difference between the number of non-reusable ASIDs and the value of RSVNONR.

As an example, suppose that MAXUSER in IEASYSxx specifies 500 and RSVSTRT specifies 5. If there is an attempt to start an address space via the START command, and none of the 500 address space entries defined by the MAXUSER parameter is available (meaning heavy system use), but an entry defined by the RSVSTRT parameter is available, the system will use that entry. Thus, when the system is heavily used, there can be more concurrent jobs and started tasks in the system than the number defined by MAXUSER. The absolute limit to the number of concurrent jobs and started tasks is the **sum** of the values specified for the MAXUSER and RSVSTRT system parameters. The maximum ASID value is the sum of the values specified for the MAXUSER, RSVSTRT, and RSVNONR system parameters.

If started tasks or batch jobs that create non-reusable ASIDs end enough times, they will exhaust all available ASIDs and an IPL will be required. When IPLing is not an acceptable option, determine which ASIDs caused the problems and fix them using the method outlined above. Please note that the **sum** of the values specified for the MAXUSER, RSVSTRT, and RSVNONR system parameters cannot exceed 32767.