
Developing Physical Solutions for InfoSphere Master Data 
Management Server Advanced Edition v11

MDM Workbench Development Tutorial

Copyright IBM 2013

John Beaven – IBM, Hursley
2013

Page 1 Copyright IBM 2013



Contents

Overview 3
Machine Requirements 4
System Configuration 4
Changes in Version 11 5
Some up-front Terminology 5
Solution Overview 7

Step 1 - Setting up the Workspace 8
Step 2 – Configuring the Server Connection  10
Step 3 - Creating the “Development Model” 12
Step 4 - Creating the four new Entity Types 14

An introduction to containment structures 16

Step 5 - Creating “containment” relationships 17
Step 6 – New Code Table & Type Code for Room 20
Step 7 - Extending the “Person” entity type 22
Step 8 - Enforcing ‘addPerson’ transaction validation 24
Step 9 - Generating code from the model 27
Step 10 - Implementing the behaviour extension 28
Step 11 - Customizing the Code Table values 29
Step 12 - Deploying the code 32
Step 13 - Deploying the metadata configuration 37
Step 14 - Testing the Solution 42

Page 2 Copyright IBM 2013



Overview

In modern businesses, the volume of information being managed by an organization is 
increasing whilst at the same time this information is becoming ever more critical to a 
businesses success. 

If this information is not managed and controlled, there is the potential for companies 
to make vital decisions based on incorrect data or become over whelmed by the scale 
of the information.

Master Data Management (MDM) solutions can provide a single, trusted view of 
critical business data and help organizations meet growth, revenue-generation and 
cost-reduction goals. 

The MDM Server provides such a solution with a comprehensive range of out of the 
box services that help businesses manage and control their information.

The MDM Workbench allows these services to be enhanced or extended to tailor the 
capabilities for a specific deployment.

This tutorial shows how the MDM Workbench can be used to design a model of these 
additional capabilities and how these can be deployed to the MDM Server. 

No prior experience of either the MDM Server or MDM Workbench is assumed

The instructions in this tutorial are broken down into two types of information. Those 
sections marked with a 'textpad' icon contain background information that you can 
choose to skip if if time is pressing and refer to later:

(BACKGROUND!)

Those sections marked with a 'user' icon contain the key steps that must be followed 
to complete the tutorial:

 (KEY STEPS!)

Page 3 Copyright IBM 2013



Machine Requirements

The requirements for running MDM V11 are as follows:

• 8GB-12GB of memory
• 50GB of dedicated disk space required for a typical installation

To set-up a machine for this tutorial, if MDM is not already installed, then it is 
recommended to run a 'Typical Installation'. Instructions for this can be found by 
following the link below:

https://www.ibm.com/developerworks/community/blogs/64033fdd-4a35-4733-852f-
a39abcdf4fb3/entry/installing_mdm_workbench_v11?lang=en
  

System Configuration

This tutorial assumes you have completed a typical installation of MDM V11 
including the software listed below:

• IBM Rational Application Developer for WebSphere Software Version 8.5.1
• IBM WebSphere Application Server Version 8.5.0.2
• IBM InfoSphere Master Data Management Workbench Version 11
• InfoSphere MDM Standard Edition or Advanced Edition Version 11
• IBM DB2 Version 10.1

For a typical installation the default user ids and passwords are as follows:

• DB2 User ID: db2admin
• DB2 Password: db3Admin
• WebSphere User ID:  mdmadmin
• WebSphere Password: mdmadmin

Page 4 Copyright IBM 2013

https://www.ibm.com/developerworks/community/blogs/64033fdd-4a35-4733-852f-a39abcdf4fb3/entry/installing_mdm_workbench_v11?lang=en
https://www.ibm.com/developerworks/community/blogs/64033fdd-4a35-4733-852f-a39abcdf4fb3/entry/installing_mdm_workbench_v11?lang=en


Changes in Version 11 (BACKGROUND!)

What’s this section about? Discusses some changes since the last version of the 
workbench. If you have not used the workbench before you can skip this section.

One of the most apparent changes when using the latest version of the workbench is 
that you no longer need to use the DEST utility to prepare the development 
environment. Unlike previous releases where an MDM Enterprise Archive (EAR) was 
unpacked into the workspace, version 11 uses an Enterprise Bundle Archive (EBA) 
stored outside the workspace to provide the basis for development. The necessary 
dependencies on the EBA are established automatically when the workbench is 
installed. Modules developed in the workspace are combined into a Composite 
Bundle Archive (CBA) which can be deployed alongside the main server EBA to 
customize MDM.

Some up-front Terminology (BACKGROUND!)

What’s this section about? Provides an introduction to some of the core components  
that make up a solution. Skip this section if required and refer to it as necessary.

Entity Type – A physical entity in the MDM data model. As supplied the MDM 
Server supports a range of different Entity Types such as Person, Contract or Group. 
Additional Entity Types may be created in the Workbench to extend the data model.

Attribute – A field defined for an Entity Type or Entity Type Extension

Entity Type Extension – An extension to an out of the box Entity Type. Typically 
this mechanism is used to add additional attributes required by a solution that are not 
present in the out of the box data model. For example, if a Contract needed an 
additional contract classification field, an Entity Type Extension could be defined to 
add this. This should not be confused with a subtype, which is a separate concept. 
Creating an Entity Type Extension of Contract allows additional fields to be added to 
requests and responses that include instances of a Contract. The extension however is 
not considered to be a separate type in its own right. Additional fields are included in 
a generic “extended block” that’s common to all Entity Type definitions.

Code Table – A structure used to contain a set of String values that can be referred to 
by a Type Code. Conceptually similar to an enumeration in Java, these structures are 
used to hold well defined sets of values that don’t change often. For example, we 
could create a Code Table to hold a set of colors (“Red”, “Green”, “Blue”, “Orange”) 
Once deployed each Code Table entry has both a “value” – the String representation 

Page 5 Copyright IBM 2013



and a “type” – essentially the numerical database key. For example, (1, Red) or (2, 
Green)

Type Code – A reference to an entry within a Code Table. When referencing a Code 
Table, either the Code Table “Type” or “Value” may be specified. If both are present, 
they must match.

Transaction – A service or operation that can be executed by a client on the MDM 
Server. For example, when adding a person to the database, users would invoke the 
“addPerson” transaction. XML is used to define a request which can be passed to the 
server over a number of different interfaces (eg a WebService call)

Behaviour Extension – Allows the default services provided by MDM to customized 
by executing code before and/or after the core service runs. For example, we could 
add additional validation to ensure that specific constrains are met when performing 
an addContract transaction.

Page 6 Copyright IBM 2013



Solution Overview (BACKGROUND!)

What’s this section about? Provides an outline of the solution that you will build in  
this tutorial. If time is pressing, you can skip this and simply follow the instructions in 
further sections below. Its recommended that you do at least review the model  
diagram in this section.

For this tutorial, we have created a simplified model that consists of a range of 
different elements supported by the workbench. The tutorial shows how this model is 
defined and converted into code. It demonstrates how this code can be modified to 
customize the solution and how this can then be deployed to and tested on a server.

To keep things simple and allow you to focus on the mechanics involved, we 
minimized the amount of additional complexity that might be found in a real-world 
scenario. During the course of this of this tutorial we will build following model:

This model reflects a simplified asset tracking system used to manage machinery in a 
factory complex.

Site – A new Entity Type introduced to hold information about a factory or plant 
location.

Building – A new Entity Type used to hold details about a building at a Site 

Room – A new Entity Type used to hold details of a specific Room within a Building

MachineAsset – A new Entity Type used to hold details of a physical machine asset 
within a room.

Page 7 Copyright IBM 2013



RoomType – A Code Table used to define the set of possible room classifications 
(“Office”, “PlantRoom”, “MeetingRoom”, “StoreRoom”)

XPerson – MDM provides an “of the box” Entity Type called Person that holds 
details of individuals that exist in the database. XPerson is an Entity Type Extension 
of Person that defines an extra attribute not present in the standard data model. In this 
case, it’s a field that indicates if a person has been certified to operate heavy 
machinery. 

MinimumAgeCheck  - Behaviour extension to ensure that all employees are over 16. 
Additional logic will run prior to the “addPerson” transaction to enforce this.

         Step 1 - Setting up the Workspace (KEY STEPS!)

What’s this section about? The workspace will be prepared for development. You 
must follow these steps to complete the tutorial.

● Start RAD or RSA by running the application from the Desktop or Start 
menu

● When the “Workspace Launcher” dialog appears, select a new folder to 
contain the projects developed in this tutorial and click OK

Page 8 Copyright IBM 2013



Each time a brand new workspace is opened, the Configuring the WebSphere 
Application Server dialog will appear. The next steps show how to use this to create 
a connection to the WebSphere server configured on the local machine:

● In the Configuring the WebSphere Application Server dialog, ensure the 
“Add WebSphere Application Server V8.5 configuration to the 
workspace” option is checked.

● Specify the user id and password, for a typical installation the defaults 
are “mdmadmin” and password “mdmadmin” under the authentication 
settings and click Finish

● Once the workspace opens, close the Welcome screen by clicking on the 
cross on the Welcome tab.

   

Page 9 Copyright IBM 2013



You should now see an empty workspace as shown below:

New “Development Projects” 
are created in here and 

contain models and code 
developed in the workspace

Resources being edited appear 
in the right hand panel

The Servers tab provides control over 
the WebSphere application server

The Problems tab shows details 
of any errors

         Step 2 – Configuring the Server Connection  (KEY STEPS!)

What’s this section about? The WebSphere server connection definition will be 
updated to control how code is deployed from the workspace to the server

The server connection created by the “Configuring the WebSphere Application 
Server” dialog above needs some fine tuning. We need to change the settings so that 
binary code developed in the workspace is copied to the WAS server rather than being 
linked to it. The distinction may seem subtle, but the effect is to de-couple code 
developed in the workspace with the code deployed on the server. The server 
deployment will remain valid and functional even if the workspace is deleted (if it 
was linked to a workspace that was deleted, this would cause problems). The 
following steps show how to do this:

● Open the Servers view from the RSA main menu Window -> Show View -> 
Servers

Page 10 Copyright IBM 2013



● Double click on the WebSphere Application Server v8.5 in Servers view to 
open the configuration settings for the server connection.

● Under Publishing settings for WebSphere Application Server, ensure the 
Run server with resources on Server option is selected.

● Close the WebSphere Application Server v8.5 configuration

● Save the configuration settings when prompted by clicking Yes

The workspace is now configured and you are ready to start developing code!

Page 11 Copyright IBM 2013



         Step 3 - Creating the “Development Model”  (KEY STEPS!)

What’s this section about? A new Development project containing a development  
model (previously referred to as a Hub Model) will be created in the workspace. You 
must follow these steps to complete the tutorial.

● Open the “context menu” (right hand mouse button) in the Package Explorer or 
Navigator view (left hand portion of RAD window)

● Select New -> Other… from the menu

● In the New wizard, select Master Data Management ->Development Project 
wizard and click Next

● In the New Master Data Management Development Project window enter the 
project name “FactoryAssetTracking”, the Base Java package name 
“com.factory.asset.tracking” and click Next

Page 12 Copyright IBM 2013



● In the following panel enter “FactoryAssetTracking” for the Identifier 
(previously Hub Base Name) and db2admin for the Database schema name. 
Ensure that Add development project to composite is checked and that the 
Composite project is set to FactoryAssetTracking.cba. Click Finish

Hint: Once the project has been created you will be prompted to change to the MDM 
Development perspective. You should click Yes to do this as certain menu options will  
not be visible otherwise.

When the wizard completes you will see that three projects have been created:

FactoryAssetTracking – This is the “Development Project” that contains the solution 
model file (module.mdmxmi) and eventually generated code.

Page 13 Copyright IBM 2013



FactoryAssetTracking.cba – This is the composite bundle archive that will group 
together one or more development projects for subsequent deployment - the CBA is 
deployed alongside the MDM EBA to customize MDM. Although you can have more 
than one CBA, its recommended that you add further development projects to the 
same CBA project.

MDMSharedResources – This is similar to CustomerResources from previous 
versions of the MDM. It groups together content that’s solution wide rather than 
project specific (schema, SQL etc). Multiple projects contribute content.

● Open the module.mdmxmi file in the FactoryAssetTracking project and select 
the Model tab. This will open the empty development model in the right hand 
panel

+  > 
          Step 4 - Creating the four new Entity Types (KEY STEPS!)

What's this section about? In this section of the tutorial we will define the four new 
Entity Types that form the core of the solution. These are Site, Building, Room and 
MachineAsset. Initially these will be created without the relationships between them 
which will be added later. You must follow these steps to complete the tutorial.
 

● Open the context menu on the FactoryAssetTracking subfolder (shown below) 
and select New -> Entity Type

Page 14 Copyright IBM 2013



● In the right hand panel, change the name of the new Entity Type to Site

● Open the context menu on the Site Entity Type in the model tree view and select 
New -> Attribute

● In the right hand panel, change the attribute name to name, the type to String, 
ensure that the Nullable field is not checked and that the Persistent field is 
checked. 

Tip: The default string length of 250 characters is fine for all String types you create 
in this tutorial

 

● Repeat this process to create the Entity Types Building and Room, both of 
which should have a single String attribute called name.

● Repeat this process one more time to create the Entity Type MachineAsset 
which should have attributes named name (String), serialNumber (String) 
and description (String).

The Model should now look like this:

Page 15 Copyright IBM 2013



Tip: The workbench automatically adds primary key fields and basic 
Create/Read/Update/Delete (CRUD) style transactions for each entity you create.  
For example you can add a new machine asset using the addMachineAsset  
transaction or query rooms by primary key using the getRoom transaction. These 
basic CRUD transactions are available for all entity types developed in the 
workbench.

          An introduction to containment structures (BACKGROUND!)

What's this section about? This section provides a high level overview of what 
containment relationships are and how they are represented in the development  
model. Skip this section if required and refer to it as necessary.

In this model, a Site consists of a set of Buildings, a Building consists of a set of 
Rooms and a Room contains a set of MachineAssets. We can establish these 
relationships as “containment” relationships where we say a “containing” entity such 
as Building “contains” another “contained” entity such as Room.

Exactly how this is modelled depends on the “cardinality” of the relationships and 
here there are two key scenarios. Depending on whether the relationship is a “one-to-
one” or “one-to-many”, the workbench will create different model content when the 
containment is defined. 

“One to one” relationship:

In this case, the containing entity has a single contained entity underneath it. This can 
be captured in the model as a simple reference from the containing entity to the 
contained entity as shown below:

For example, if we assert that a Room only ever houses a single MachineAsset, we 
could have a reference to a MachineAsset from Room. This is simplest case.

Page 16 Copyright IBM 2013



“One to Many” relationship:

In many cases however, this is not realistic. For example a Room might well contain 
many different MachineAssets. Whilst it is possible to create multiple references from 
a ContainingEntity to different instances of the ContainedEntity, it is not possible to 
create an arbitrary number of such references. Using this approach we would have to 
know in advance exactly how many references were required and give them all 
separate names in the model – this is impractical and messy.

The solution is to turn the problem around and have a reference from the contained 
entity to the containing entity as shown in the model below:
 

For example a MachineAsset would have a reference to the Room in which it resides. 
By doing this, we can associate an arbitrary number of MachineAssets with a single 
Room.

As mentioned above, the workbench creates simple CRUD transactions to support the 
data model. For example, the “getRoom” transaction returns a specific Room given a 
primary key. If you introduce a one-to-many containment relationship, you will see an 
additional transaction gets added to the model under the contained entity. This 
additional transaction provides a service to retrieve all instances of the contained 
entity that reference a given containing entity.

For example, when the transaction getRoom(53) is invoked to retrieve the Room with 
primary key 53, it will include in the response all those MachineAssets that reside in 
this specific room – derived by the reference from MachineAsset to Room. In this 
case the transaction would be called “getMachineAssetByRoom” and would return 
all those instances of MachineAsset that have a reference to Room 53.

          Step 5 - Creating “containment” relationships (KEY STEPS!)
          
What's this section about? The “containment” relationships between these key Entity  
Extensions will be added to the model.  You must follow these steps to complete the 
tutorial.

To simplify this process, a wizard dialog is provided to automatically create the 
required model components for a given containment structure. We will use this 
wizard now to build up these relationships.

First, we will create the containment of Building within a Site:

Page 17 Copyright IBM 2013



● Open the context menu on the Site Entity Type and select New -> 
Containment…

● In the Containment Wizard dialog, enter a containment name buildings
● Ensure the Allow multiple contained references option is checked
● Ensure the Automatically create references and transactions option is checked
● Click the Browse… button and select the FactoryAssetTracking -> 

FactoryAssetTracking -> Building Entity Type.
● Click OK

● The Containment Wizard panel should then show a summary of the changes that 
will be made to the model. Check this matches those listed below and click Finish

Page 18 Copyright IBM 2013



● Open the context menu on the Building Entity Type and repeat this process to 
create a new containment of Room named rooms.

● Open the context menu on the Room Entity Type and repeat this process to create 
a new containment of MachineAsset named machineAssets.

Page 19 Copyright IBM 2013



The model should now look like this:

          Step 6 – New Code Table & Type Code for Room (KEY STEPS!)

What’s this section about? A code table is created to define the possible room types 
that can be present in a building. We then create a “Type Code” reference to this  
code type in the Room entity type. These steps must be followed to complete the 
tutorial.

● Open the context menu over the FactoryAssetTracking subfolder (see below) 
and select New -> Code Table

● Select the new code table entry in the tree view and in the right hand panel, 
change the name to RoomType

Page 20 Copyright IBM 2013



● Open the context menu on the Room Entity Type and select New -> Type Code

● Select the new type code in the tree view and in the right hand panel change the 
name to roomType

● Click on the Edit button, select FactoryAssetTracking -> 
FactoryAssetTracking -> RoomType in the Code Table Selection dialog and 
click OK

The model for the Room Entity Type should now look like this:

Page 21 Copyright IBM 2013



Tip: We will add the various room types later once we have generated the code. This  
is not something we capture in the model.

          Step 7 - Extending the “Person” entity type (KEY STEPS!)

What’s this section about? In our model we need to be able to capture whether or not  
a person has been trained to operate heavy machinery. We will create an Entity Type 
Extension of the Person Entity Type to hold this information.  These steps must be 
followed to complete the tutorial.

● Open the context menu on the FactoryAssetTracking subfolder (see below) and 
select New -> Entity Type Extension

● Select the new Entity Type Extension in the tree view and in the right hand panel, 
change the name to XPerson

● Click the Edit button and in the Entity Type Selection dialog select Party -> 
Party -> Person -> Person

● Click OK

Page 22 Copyright IBM 2013



● Open the context menu on the XPerson Entity Type Extension and select New -> 
Attribute

● Select the new attribute in the tree view and in the right hand panel change the 
name to heavyMachineryCertified and the type to Boolean.

● Open the context menu on the MachineAsset Entity Type and select New -> 
Reference

● Select the new reference in the tree view and in the right hand panel change the 
name to owner

● Click the Edit button and in the Entity Type Selection dialog select Party -> 
Party -> Person -> Person and click OK

Page 23 Copyright IBM 2013



Tip: Although we have extended Person with XPerson, remember that extensions are 
really nothing more than “adjustments” to the underlying entity type. They should not  
be thought of as subtypes which are a separate concept. For this reason we are 
creating a reference to Person and not to XPerson. We are still able to pass the 
extended field value for ‘heavyMachinaryCertified” when creating instances of  
Person.

         Step 8 - Enforcing ‘addPerson’ transaction validation (KEY 
STEPS!)

What’s this section about? We create a “behaviour extension” in the model which 
will allow us to introduce some additional validation logic to the out of the box 
“addPerson” transaction. The logic itself will be added later as Java code. For the 
moment we must create a place-holder in the model. These steps must be followed to 
complete the tutorial.

● Open the context menu on the FactoryAssetTracking subfolder (see below) and 
select New -> Behaviour Extension

Page 24 Copyright IBM 2013



● Select the new Behaviour Extension in the tree view and in the right hand panel 
change the name to MinimumAgeCheck and the implementation type to Java

● Open the context menu on the MinimumAgeCheck Behaviour Extension and 
select New -> Transaction Event

● Select the new transaction event in the tree view and in the right hand panel set the 
name to checkPersonAge

● Ensure the Pre option is checked
● Click the Edit button and in the Transaction Selection dialog select the Party -> 

CoreParty -> addPerson transaction. Click OK.

Page 25 Copyright IBM 2013



● Open the context menu on the MinumumAgeCheck Behaviour Extension and 
select New -> Error Reason

● Select the new Error Reason in the tree view and in the right hand panel set the 
Name to PERSON_UNDER_AGE

● Set the Message field to “New Person entity must be over 16 years”
● Set the Error type to FVERR (Field Verification Error type)

● Repeat this process to create a second Error Reason with these properties:

Name - BIRTHDATE_FIELD_MANDATORY
Message -  BirthDate field must be provided

Page 26 Copyright IBM 2013



Error type – FVERR

● Repeat this process to create a third Error Reason with these properties:

Name – UNABLE_TO_PARSE_BIRTHDATE
Message -  Unable to parse BirthDate field
Error type – FVERR

Now that the model is complete, it should look like this:

         Step 9 - Generating code from the model (KEY STEPS!)

What’s this section about? Now that the model is complete, we need to create the 
equivalent code to implement this solution. These steps must be followed to complete  
the tutorial.

The bulk of the code will be automatically created by the workbench by running a 
process referred to as “code generation”. Once the code has been generated, some 
manual extension is required to configure the code table values and implement the 
behaviour extension logic.

● Click the Generate code option at the bottom right hand side of the Development 
Module Model panel

Page 27 Copyright IBM 2013



● The Generating… dialog shows the progress of code generation. 

Tip: Once code generation is complete you should check to see if there are any errors 
in the Problems view. If there are problems this indicates that something has failed  
during code generation and you will need to investigate further.

        Step 10 - Implementing the behaviour extension (KEY STEPS!)

Whats this section about? We add the Java code required to implement the  
behaviour extension. You must follow these steps to complete the tutorial.

As discussed above, we need to add a behaviour extension to ensure that no-one under 
16 years of age can be added to the system using the “addPerson” transaction. Code 
generation will have created a template class that must be manually modified to 
implement the required logic.

● Open the generated source code file MinimumAgeCheck.java from the 
FactoryAssetTracking/src/com.factory.asset.tracking.behaviour folder

Page 28 Copyright IBM 2013



Tip: This file contains a blank execute method that will be triggered each time the 
addPerson transaction is invoked. We will need to add code to this method to make 
the necessary age checks and reject any transactions where the party is less than 16 
years old.

● Replace the MinimumAgeCheck.java file in the workspace with the version 
supplied with this tutorial.

Tip: This replacement code extracts the root business object from the request (an 
instance of TCRMPersonBObj) obtains the birth date from it and uses this to evaluate  
if the person is older than 16 years. If the birth date field is not provided, can’t be 
parsed, or was less than 16 years ago from the current time an error is reported and 
the transaction is aborted.

         Step 11 - Customizing the Code Table values (KEY STEPS!)

What's this section about? We configure the possible values for the RoomType Code 
Table. You must follow these steps to complete the tutorial.

As previously discussed, the RoomType provides a mechanism for defining a set of 
possible room type strings. In this example, we will use the following set of room 
types:

• Office
• PlantRoom
• MeetingRoom
• StoreRoom

Tip: These String values are NOT stored in the Development model. The generated 
SQL must be manually modified to add the required values.

Page 29 Copyright IBM 2013



When code is generated for the model, an SQL file named 
FactoryAssetTracking_CODETABLES_DB2.sql is created in the workspace under 
FactoryAssetTracking\resources\sql\db2.

This file contains INSERT statements to a add 4 sample values to the CDROOMTP 
database table as shown below:

This SQL setup file, along with the others in the same folder are combined together to 
create a single SQL setup file named Setup_DB2.sql in the 
MDMSharedResources\sql\db2 folder as shown below. This process is dynamic and 
any changes to the SQL files in the FactoryAssetTracking project are automatically 
incorporated into the single merged file.

Page 30 Copyright IBM 2013



Tip: The Rollback_... scripts are merged in a similar way into the Rollback_DB2.sql  
file

Tip: Merged script files are also created for the Oracle and zOS database platforms 
but they are not used within this tutorial.

Tip: In this case FactoryAssetTracking is the only development project within the 
workspace. If you create other development projects and generate code, then the SQL 
files in those projects are also incorporated within the merged master SQL files.

In order that we can modify the values for the Code Table without them being 
overwritten during code generation we will modify a copy of the master SQL files. 
You will need to manually maintain this file if further changes are made to the model 
so that the SQL files in the MDMSharedResources folder are changed.

● Take a copy of the Setup_DB2.sql script from the MDMSharedResourcessql 
folder and place it into the FactoryAssetTracking\resources folder 

Page 31 Copyright IBM 2013



● Open the copied version of the Setup_DB2.sql file, scroll to the end and locate 
the configuration statements for the Code Table as shown below:

● Replace the name1, name2, name3 and name4 values with the required 
RoomType values as shown below:

         Step 12 - Deploying the code (KEY STEPS!)

What's this section about? - Code developed in the workspace will be deployed to the 
WebSphere application server. You must follow these steps to complete the tutorial.

Now that the development is complete, the workspace should contain the following 
projects with code generated ready for deployment:

Page 32 Copyright IBM 2013



The first step is to deploy the Composite Bundle Archive 
‘FactoryAssetTracking.cba’ to WebSphere:

● Open the Servers view and locate the target WAS server (eg WebSphere 
Application Server v8.5 at localhost). Check to see if the server is Started

● If the server is Stopped, start it by opening the context menu on the server 
definition and selecting the Start option. Wait for the server start-up to complete.

●  Open the context menu for the server definition and select Add and Remove…

● In the Add and Remove… dialog select the CBA to be deployed from the 
Available list and click Add > to move it to the Configured list

Page 33 Copyright IBM 2013



● Click the Finish button to publish the CBA to the server.

● Wait for the Server connection to become Synchronized again

Tip: The CBA is published to the server but not yet associated with a Business Level  
Application. Before it can be used, it must be configured as a Composition Unit  
Extension… 

● In the Servers view, expand the server connection to reveal the published CBA. 
Open the context menu for the CBA and select Manage Extensions.

● In the Manage Extensions dialog, expand the Advanced section.

Page 34 Copyright IBM 2013



● Click the Get information from server button to retrieve information about 
existing deployed applications.

● When the Business-level application dropdown appears, select the target 
application (in the case of MDM Server this is MDM-operation-server-EBA-
E001). 

Page 35 Copyright IBM 2013



● When the Composition unit dropdown appears select the target Composition 
Unit (in the case of MDM Server this is  com.ibm.mdm.hub.server.app-
E001_0001.eba)

● Click Finish to apply this configuration

Page 36 Copyright IBM 2013



● The Manage Extension dialog will appear whilst this configuration is performed.

● Once the process is complete, check the Server connection status again and wait 
for it to become Synchronized

Tip: Although the CBA is now fully deployed, the Database configuration must be 
applied before it can be invoked. The next step is to setup a connection to the MDM 
database and run an SQL script to apply the necessary configuration.

         Step 13 - Deploying the metadata configuration (KEY STEPS!)

What's this section about? - Configuration settings will be  deployed to the DB2 
database. You must follow these steps to complete the tutorial.
 
● In the Servers view, open the context menu on the server connection and select 

Stop.

Page 37 Copyright IBM 2013



● Wait for the Server connection to become Stopped

● Select the Data Source Explorer view and expand Database Connections 
● Open the context menu on the MDM database connection (MDM11DB) and 

select Properties

● In the Properties for MDM11DB dialog, Select Driver Properties in the left 
hand panel, open the General  tab in the right hand panel and update the User 
name and Password fields if necessary. The default values for the MDM Typical 
Workbench installation are:

DB2 User name : db2admin
DB2 Password: db3Admin

Page 38 Copyright IBM 2013



● Click the Test Connection button to determine if these settings are correct. You 
should see the Success dialog after a few seconds. Click OK to dismiss this 
window.

● Once you have confirmed the connection to the database is correctly setup, close 
the Properties for MDM11DB dialog by clicking OK

● Select the Package Explorer view
● Locate the Setup_DB2.sql script that you modified in step 11.
● Open the context menu over this file and select Open With -> SQL and XQuery 

Editor

Page 39 Copyright IBM 2013



● Open the context menu anywhere in the SQL file and select Use Database 
Connection…

● In the Select Connection Profile dialog, select the MDM11DB database 
connection and click Finish

Tip: This associates the specific SQL file with the MDM11DB connection. When the 
script is subsequently executed, this is the database connection that will be used.

● Open the context menu anywhere in the SQL file and select Run SQL

Page 40 Copyright IBM 2013



● The statements in the SQL file will be executed to configure the MDM database. 
Progress is displayed in the SQL Results view that will open in the workbench. 

Tip: You should check to see if the overall process Succeeded or if individual  
statements failed. Where failures do occur, it may be that a previous deployment is 
causing conflicts (e.g. a table already exists). You can either resolve such issues by 
hand or try to remove a previous configuration using the “Rollback” scripts created 
alongside the Setup script before re-running the setup scripts.

Once the database is configured its time to restart the WAS server:

● Open the Servers view and locate the target WAS server (eg WebSphere 
Application Server v8.5 at localhost). 

Page 41 Copyright IBM 2013



● Open the context menu on the server definition and select Start. Wait for the 
server start-up to complete

Note: The accompanying document “MDMWorkbenchV11Deployment” provides 
more detail about the development process including:

• How to remove a CBA from the server
• How to export the CBA from the workbench and install this via the 

WebSphere admin console.

         Step 14 - Testing the Solution (KEY STEPS!)

What's this section about? - Now that the code is deployed and configured this  
section shows how the services it provides can be invoked and tested.

The code can be tested by running a series of transactions against the server to create 
and retrieve instances of the Entity Types defined by the model. The transaction 
documents are supplied in an archived project for your convenience.

● Switch to the Package Explorer view, open the Context menu and select 
Import…

●  In the Import dialog, select General -> Existing Projects into Workspace and 
click Next

Page 42 Copyright IBM 2013



●  In the Import dialog, Select the Select archive file option and click Browse…
●  In the Select archive containing the projects to import dialog, locate the 

supplied SampleTransactions.zip file and click Open

●  Ensure the SampleTransactions (SampleTransactions) option is checked and 
click Finish. This will import the projects containing the sample transactions into 
the workspace

Page 43 Copyright IBM 2013



TEST 1 - Creating a Site with associated content...

The first XML transaction file we will run is called createTestSite.xml. It will create a 
new Site instance called “TestSite1”. Contained within the new site will be a single 
Building instance called “TestBuilding1”. Contained within the new building will be a 
single Room instance of type PlantRoom called “TestRoom1”. Finally, the Room will 
have two machine assets listed, TestMachineAsset1 (serial MA0001) and 
TestMachineAsset2 (serial MA0002). Both of these machine assets are owned by the 
Person instance created by the MDM Server Installation Verification Test (primary 
key is 91111111) 

Examine the createTestSite.xml document shown below to understand its structure:

Page 44 Copyright IBM 2013



●  Again in the Package Explorer view, open the context menu on 
SampleTransactions -> xml -> createTestSite.xml and select Run as -> MDM 
Transaction

●  In the Edit Configuration dialog, open the Server tab, enable the Use specific 
server option and select the target WebSphere Application Server.

Page 45 Copyright IBM 2013



●  Click Run to execute the transaction

●  Progress is displayed in the Console view as shown below. Wait for the Info: 
Connection successful message to be displayed. 

Tip: The first time you run the transaction launcher, it may take longer to complete as 
client code is loaded and cached. Subsequent transactions will run faster.

Tip: The results of the transaction execution are captured in a file alongside the 
original request XML file. The file is created on disk and the workspace must be 
refreshed to detect and show this file.

● Open the context menu on the SampleTransactions project and select Refresh

Page 46 Copyright IBM 2013



● Once the project is refreshed, the XML response file will be visible in a response 
folder. Open the reponsecreateTestSuite.xml file to see the results. 

If the code is working correctly then the response file will contain a SUCCESS result 
code as shown below. In addition, various fields will be populated with data derived 
from the server (eg the primary key of the new Site Entity Type)

Page 47 Copyright IBM 2013



SitepkId – Primary key field allocated by MDM Server for the new Site instance. 
This value can be passed to a subsequent getSite transaction to retrieve the Site 
instance again.

SiteLastUpdateDate – The date and time of the last update operation (in this case the 
add operation). This field must be passed to a subsequent updateSite operation to 
ensure integrity between a getSite and subsequent updateSite. If in independent 
update occurs between the two transactions then the update will fail as the last update 
date would no longer be valid.

SiteLastUpdateUser – The user who performed the last update operation

SiteLastUpdateTxID – The transaction id of the last update operation

Test 2 - Creating a new Person Instance With Extended Fields

Next we will test the extended attributes defined by the XPerson Entity Type 
Extension. The additional field defined by XPerson is ‘HeavyMachineryCertified’ 
and it applies to instances of Person.

When we invoke an add or an update transaction for Person we include this new field 
in the request. Since the new field is not part of the underlying Person schema, we 
include this in an “extended” portion of the request document that all requests 
support.

The transaction document addPersonWithExtendedField.xml shows how this is 
done:

Page 48 Copyright IBM 2013



The extended information is stored in the TCRMExtension block (supported by all 
business objects). We specify the extension object that being provided in the 
ExtendedObject field and then provide the extension object itself – in this case this 
XPersonBObjExt. 

● Invoke this transaction on the server and check the results as before. You should 
see a successful invocation of addPerson with populated field values and the 
TXRMExtension block:

Test 3 - Checking the Behaviour Extension logic is working

● The file addPersonNotSixteenYet.xml contains an addPerson request for 
someone who is not yet sixteen years old. Try running this transaction and ensure 
the request is rejected with the following error response:

Page 49 Copyright IBM 2013



Test 4 - Try some other transactions yourself

● Try creating your own transaction requests using the templates under 
actoryAssetTracking/resources/sampleRequest/

Page 50 Copyright IBM 2013


